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On the Lipschitz continuity of the spherical cap discrepancy
around generic point sets

Holger Heitsch, René Henrion

Abstract

The spherical cap discrepancy is a prominent measure of uniformity for sets on the d-dimensional
sphere. It is particularly important for estimating the integration error for certain classes of func-
tions on the sphere. Building on a recently proven explicit formula for the spherical discrepancy,
we show as a main result of this paper that this discrepancy is Lipschitz continuous in a neigh-
bourhood of so-called generic point sets (as they are typical outcomes of Monte-Carlo sampling).
This property may have some impact (both algorithmically and theoretically for deriving necessary
optimality conditions) on optimal quantization, i.e., on finding point sets of fixed size on the sphere
having minimum spherical discrepancy.

1 Introduction

Point sets uniformly located on the classical or higher dimensional sphere are of much interest in many
disciplines of mathematics. As examples we refer to point cloud interpolation in computer vision [10]
or to optimization problems with chance constraints using the so-called spherical-radial decomposition
of elliptically distributed (e.g., Gaussian) random vectors [12]. Uniformity of point sets on the sphere
can be characterized by various criteria, e.g., the sum of pairwise distances (which should be large)
or by its Coulomb energy (which should be small). If the focus is on estimating the integration error
when replacing a spherical integral of a function by an average function value on the spherical point
set, then the so-called spherical cap discrepancy is a natural measure of goodness for the uniformity
of this point set [6, 1, 3]. Contrary to the criteria mentioned above, the spherical cap discrepancy
(being defined as a supremum of infinitely many local discrepancies) is originally not endowed with
an explicit formula which could be used for its numerical computation or for its minimization as a
function of the point set. This did not harm theoretical investigations in the context of the construction
of low discrepancy sequences but it became obstructive in numerical experiments. A possible remedy
consisted in reducing the supremum to a maximum over finitely many local discrepancies (e.g. [1,
p.1005]), but, of course, this provides just a lower bound which might deviate considerably from the
true value [7, p.13]. A certainly more precise algorithmic approximation was provided in [2], but still it
was not based on an exact formula and moreover restricted to the classical two-dimensional sphere.
In [7], a precise enumerative formula for the spherical cap discrepancy was derived, which reduced
the supremum over an infinite family of local discrepancies to a finite maximum of fully explicit and
numerically easy to compute expressions. Not surprisingly, this formula suffers from a poor complexity.
Nonetheless, it could be used for calibration purposes for moderate sizes of the point set and small
dimensions of the sphere (in [7], sets with 2000 points in the two-dimensional sphere to 100 points
in the five-dimensional sphere were considered). For a practical application of this formula in image
analysis, we refer to [10].

It turns out that, apart from its numerical use, the mentioned formula maybe of interest in characterizing
the spherical cap discrepancy as a function of the point set. This observation is based on the fact that
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the finitely many expressions whose maximum constitutes the spherical cap discrepancy are fully
explicit functions of the point set. This allows us, beyond proving the continuity of the spherical cap
discrepancy by elementary arguments, to verify even its Lipschitz continuity around so-called generic
point sets. The latter refers to point sets on the sphere for which each selection of cardinality not larger
than the space dimension is linearly independent. Such point sets are typical outcomes of Monte-Carlo
(but not of Quasi Monte-Carlo) sampling. The main argument for proving Lipschitz continuity relies on
the fact that, locally around a generic point set, the spherical cap discrepancy can be represented as a
continuous selection of C1-functions (see [11]). Moreover, we are able to provide explicitly computable
Lipschitz constants. This might be of interest in the application of global optimization methods for
minimizing the spherical cap discrepancy (optimal quantization) for a fixed sample size. Note that low
discrepancy sequences whose design on the sphere is an active field of research have nice asymptotic
properties but do not guarantee optimality for a fixed sample size. Apart from algorithmic relevance,
the proven Lipschitz continuity paves a way for establishing necessary optimality conditions in optimal
quantization on the sphere by means of the Clarke subdifferential [4].

The paper is organized as follows: Section 2 briefly introduces some basic concepts, presents some
simple preliminary results needed later on and proves the continuity of the spherical cap discrepancy.
In Section 3, a representation formula for the spherical cap discrepancy as a maximum of finitely many
(explicit) functions around generic point sets is proven. In section 4, an extended cap discrepancy is
introduced and its Lipschitz continuity around generic point sets is verified. As a trivial consequence,
the same property for the original discrepancy is derived as the main result of the paper. Section 5
briefly describes how the previous results could applied in order to derive necessary conditions for
optimal quantization with respect to the spherical cap discrepancy.

2 Basic concepts and continuity of the spherical cap discrepancy

We start by defining the following family of subsets of Rd:

H(w, t) :=
{
x ∈ Rd| 〈w, x〉 ≥ t

} (
w ∈ Rd, t ∈ R

)
.

If w 6= 0, then H(w, t) represents a closed half space in Rd, otherwise it coincides with either Rd

or the empty set depending on whether t ≤ 0 or t > 0. With each of these sets, we associate its
so-called cap measure on the sphere:

µcap (w, t) := σ
(
Sd−1 ∩H(w, t)

)
(σ = law of uniform distribution on Sd−1),

where Sd−1 refers to the (d−1)-dimensional Euclidean unit sphere in Rd. We assume in the following
that d ≥ 2.

For a matrix X =
(
x(1), . . . , x(N)

)
of order (d,N) with N ≥ 1 representing a set of points{

x(1), . . . , x(N)
}
⊆ Sd−1, the empirical measure induced from this point set assigns to the set

Sd−1 ∩H(w, t) its empirical probability

µemp (X,w, t) := N−1 ·#
{
i ∈ {1, . . . , N} |x(i) ∈ Sd−1 ∩H(w, t)

}
= N−1 ·#

{
i ∈ {1, . . . , N} |x(i) ∈ H(w, t)

}
.

As a side remark we note that the following relation is immediate from the definition:

µemp (X,w, t) + µemp (X,−w,−t) = 1 +N−1 ·#
{
i ∈ {1, . . . , N} |〈w, x(i)〉 = t

}
. (1)
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In order to measure the uniformity of a point set on the sphere, one might compare the deviation
between its cap measure and empirical measure on all sets Sd−1 ∩H(w, t):

∆0 (X) := sup
w∈Rd, t∈R

|µemp (X,w, t)− µcap (w, t)|
(
X ∈

(
Sd−1

)N )
. (2)

Clearly, the smaller ∆0, the better both measures coincide on the chosen family of sets. Such quan-
tities are called discrepancies. If one restricts the family of sets H(w, t) to those with (w, t) ∈
Sd−1 × [−1, 1], then one obtains the so-called spherical cap discrepancy (e.g., [3])

∆ (X) := sup
w∈Sd−1, t∈[−1,1]

|µemp (X,w, t)− µcap (w, t)|
(
X ∈

(
Sd−1

)N )
. (3)

Observe, that for (w, t) ∈ Sd−1× [−1, 1], the setsH(w, t) represent closed half spaces with normal
vector w and height t. Their intersections Sd−1 ∩ H(w, t), on which the empirical measure and the
uniform distribution are compared, are nonempty and called spherical caps. Some authors define the
spherical cap discrepancy by using open half spaces instead, i.e., by imposing the strict inequality
〈w, x〉 > t in the definition of H(w, t) (e.g., [5]). One could formally refer to this alternative definition
as a discrepancy ∆1(X). It is easy to see that all these three discrepancy definitions coincide, i.e.,
∆(X) = ∆0(X) = ∆1(X). We provide a proof in Proposition A.1 of the appendix for the reader’s
convenience. We shall base this paper on the representation (3), but occasionally, the equality with (2)
may turn out to be useful.

Ifw ∈ Sd−1, then the cap measure does not depend onw and we simply write µcap (t) := µcap (w, t).
In this case, the following explicit formula is well known (e.g., [8]):

µcap (t) =


Cd

∫ arccos(t)

0

sind−2(τ)dτ, if 0 ≤ t ≤ 1,

1− Cd
∫ arccos(−t)

0

sind−2(τ)dτ, if −1 ≤ t < 0,

(4)

where

Cd :=
1∫ π

0
sind−2(τ)dτ

(5)

is some normalizing constant. It follows immediately from (4) that µcap is continuous and that

µcap(t) = 1− µcap(−t) ∀t ∈ [−1, 1]. (6)

Therefore, we shall work from now on with the following form of (3):

∆ (X) := sup
w∈Sd−1, t∈[−1,1]

|µemp (X,w, t)− µcap (t)|
(
X ∈

(
Sd−1

)N )
. (7)

We collect three properties of the spherical cap discrepancy that are direct consequences of the
definition (7). We observe first, that the supremum in (7) is actually a maximum and that the spherical
cap realizing this maximum contains at least one element of the given point set on its relative boundary:

Proposition 2.1 ([7], Proposition 1 & 2). LetX ∈
(
Sd−1

)N
be given. Then, there are w∗ ∈ Sd−1 and

t∗ ∈ [−1, 1] such that
∆(X) = |µemp(X,w∗, t∗)− µcap(t∗)|.

Moreover, there exists some i ∈ {1, . . . , N} with 〈w∗, x(i)〉 = t∗.
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Secondly, we state a general lower bound for ∆(X) that depends on the space dimension and the
number of points, but not on the position of the points on the sphere.

Proposition 2.2. Let be κ := min{d,N}. One has that ∆(X) ≥ κ(2N)−1 for all X ∈
(
Sd−1

)N
.

Proof. Chose some w ∈ Sd−1 such that 〈w, x(1) − x(j)〉 = 0 for all j = 2, . . . , κ and put t :=
〈w, x(1)〉. Then, |t| ≤ 1, and we have that 〈w, x(i)〉 = t for i = 1, . . . , κ. Therefore, owing to (1) and
(6),

2∆(X) ≥ |µemp(X,w, t)− µcap(t)|+ |µemp(X,−w,−t)− µcap(−t)|
≥ |µemp(X,w, t) + µemp(X,−w,−t)− µcap(t)− µcap(−t)|
= |1 +N−1 ·#{i ∈ {1, . . . , N} |〈w, x(i)〉 = t} − 1|
= N−1 ·#{i ∈ {1, . . . , N} |〈w, x(i)〉 = t} ≥ N−1κ.

A further property we want to adapt from [7] is a slightly stronger version of [7, Corollary 1]. We observe
that the empirical measure is always strictly greater than the cap measure for any (w∗, t∗) realizing
the spherical cap discrepancy.

Proposition 2.3. For (w∗, t∗) realizing ∆(X) in Proposition 2.1 it holds that µemp(X,w∗, t∗) >
µcap(t∗).

Proof. By assumption, we have that ∆(X) = |µemp(X,w∗, t∗)−µcap(t∗)|. From [7, Corollary 1] we
already know that µemp(X,w∗, t∗) ≥ µcap(t∗). Now, the equality µemp(X,w∗, t∗) = µcap(t∗) would
imply ∆(X) = 0, a contradiction with Proposition 2.2.

As a consequence, we end up at a yet different representation of the spherical cap discrepancy, which
allows us to get rid of absolute values:

Corollary 2.1. One has that

∆ (X) = sup
w∈Sd−1, t∈[−1,1]

µemp (X,w, t)− µcap (t) ∀X ∈
(
Sd−1

)N
.

Proof. Clearly, the relation ’≥’ in the claimed equality holds true by (7). On the other hand, by Propo-
sition 2.3, there exists (w∗, t∗) ∈ Sd−1 × [−1, 1] such that ∆(X) = µemp(X,w∗, t∗) − µcap(t∗).
Hence, the reverse relation ’≤’ holds also true in the claimed equality.

Throughout the paper, we understand the sphere Sd−1 as a metric space inheriting its metric from the
Euclidean norm in Rd. Next, we are going to prove that the spherical cap discrepancy is continuous.

Theorem 2.2. The function ∆ :
(
Sd−1

)N → R is continuous.

Proof. We show first that ∆ is lower semicontinuous. Fix arbitraryX =
(
x(1), . . . , x(N)

)
∈
(
Sd−1

)N
and ε > 0. According to Proposition 2.1 and Proposition 2.3, there exist w∗ ∈ Sd−1 and t∗ ∈ [−1, 1]
such that

∆ (X) = µemp (X,w∗, t∗)− µcap (t∗) .
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We claim that t∗ > −1. Indeed, if t∗ = −1, then µemp (X,w∗, t∗) = µcap (t∗) = 1, whence the
contradiction ∆(X) = 0 with Proposition 2.3. Define I :=

{
i ∈ {1, . . . , N} |x(i) ∈ H(w∗, t∗)

}
.

Clearly, we find c > 0 such that

t∗−c ≥ −1; 〈w∗, x(i)〉 > t∗−c ∀i ∈ I; 〈w∗, x(i)〉 < t∗−c ∀i ∈ Ic; | µcap(t∗)−µcap(t∗−c) |< ε.

By continuity, there exists δ > 0 such that for all X̃ ∈
(
Sd−1

)N
with ‖X̃ −X‖ < δ (‖ · ‖ denoting

the Euclidean norm) it holds that

〈w∗, x̃(i)〉 > t∗ − c ∀i ∈ I; 〈w∗, x̃(i)〉 < t∗ − c ∀i ∈ Ic.

Consequently, µemp(X̃, w∗, t∗ − c) = µemp(X,w∗, t∗) for all such X̃ . Hence, for all X̃ ∈
(
Sd−1

)N
with ‖X̃ −X‖ < δ,

∆(X̃) ≥ |µemp(X̃, w∗, t∗ − c)− µcap(t∗ − c)|
= |µemp(X,w∗, t∗)− µcap(t∗) + µcap(t∗)− µcap(t∗ − c)| > ∆(X)− ε.

Since ε > 0 was arbitrary, this shows the lower semicontinuity of ∆ at X .

As for the upper semicontinuity, assume that ∆ fails to be upper semicontinuous at some X ∈(
Sd−1

)N
. Then there exist some c > 0 as well as a sequence Xn ∈

(
Sd−1

)N
with Xn → X

and ∆(Xn) > ∆(X) + c. Let (w∗n, t
∗
n) be a sequence that realizes the cap discrepancies ∆(Xn).

Due to Proposition 2.3 we have that

∆(Xn) = µemp(Xn, w
∗
n, t
∗
n)− µcap(t∗n) ∀n ∈ N.

Since (w∗n, t
∗
n) ∈ Sd−1 × [−1, 1], we may assume that (w∗n, t

∗
n) → (w∗, t∗) ∈ Sd−1 × [−1, 1].

Altogether, (Xn, w
∗
n, t
∗
n)→ (X,w∗, t∗). With the index set I introduced in the first part of this proof,

one has that 〈w∗, x(i)〉 < t∗ for all i ∈ Ic. By continuity, there is some n0 such that 〈w∗n, x
(i)
n 〉 < t∗n for

all n ≥ n0 and i ∈ Ic. This entails that µemp(Xn, w
∗
n, t
∗
n) ≤ µemp(X,w∗, t∗) for n ≥ n0. Moreover,

by continuity of µcap, we have |µcap(t∗) − µcap(t∗n)| ≤ c for sufficient large n. Consequently, there
exists some n1 ∈ N such that for all n ≥ n1

∆(Xn) = µemp(Xn, w
∗
n, t
∗
n)− µcap(t∗n) ≤ µemp(X,w∗, t∗)− µcap(t∗) + µcap(t∗)− µcap(t∗n)

≤ |µemp(X,w∗, t∗)− µcap(t∗)|+ |µcap(t∗)− µcap(t∗n)| ≤ ∆(X) + c

which is a contradiction to the previously established inequality ∆(Xn) > ∆(X) + c.

A consequence of the continuity property is the existence of an optimal quantization with respect to
the spherical cap discrepancy for any fixed number of points on the unit sphere.

Corollary 2.3. For eachN ≥ 1, there exists a point setX∗ =
(
x

(1)
∗ , . . . , x

(N)
∗
)
∈
(
Sd−1

)N
realizing

the minimal spherical cap discrepancy, i.e.,

∆(X∗) = inf
X∈(Sd−1)

N
∆(X).
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3 Generic point sets and a representation formula for the
spherical cap discrepancy

Our ultimate goal in this paper is to prove the local Lipschitz continuity of the spherical cap discrepancy.
While it is not clear at this point, whether a general Lipschitz result holds true in general, we will be
able to derive it for the class of generic point sets, which would be the typical outcomes of Monte-Carlo
sampling on the sphere.

Definition 3.1. A point set X =
(
x(1), . . . , x(N)

)
∈
(
Rd
)N

is called generic if for any index set
I ⊆ {1, . . . , N} with #I ≤ d the selection

{
x(i) | i ∈ I

}
is linear independent in Rd.

Clearly, all point sets close enough to some generic point set are generic themselves, which allows for
the following proposition.

Proposition 3.1. If X̄ ∈
(
Rd
)N

is generic, then there exists a neighborhood O of X̄ such that X is
generic for each X ∈ O.

Definition 3.2. Define the family of index sets

Φ :=
{
I ⊆ {1, . . . , N}

∣∣ 1 ≤ #I ≤ d
}
. (8)

For generic X =
(
x(1), . . . , x(N)

)
∈
(
Rd
)N

and I ∈ Φ, let XI be the matrix whose columns are the
x(i) (i ∈ I). Put

1 := (1, . . . , 1)> ∈ R#I , tI :=
(
1>
(
X>I XI

)−1
1
)−1/2

, wI := tIXI

(
X>I XI

)−1
1, (9)

which are well-defined by the assumed genericity of X .

Proposition 3.2. If X ∈
(
Rd
)N

is generic, then tI > 0, wI ∈ Sd−1 and XT
I wI = tI1 for all I ∈ Φ.

If, moreover, X ∈
(
Sd−1

)N
, then 0 < tI ≤ 1 for all I ∈ Φ.

Proof. The first assertion is evident from (9). If X ∈
(
Sd−1

)N
, then the first assertion implies the

second one:
tI = 〈x(1), wI〉 ≤ ‖wI‖ = 1 ∀I ∈ Φ.

Next, we shall prove a representation formula for the spherical cap discrepancy of generic point sets
which follows from and which simplifies the enumerative formula for general point sets proven in [7,
Theorem 1].

Theorem 3.1. Let X =
(
x(1), . . . , x(N)

)
∈
(
Sd−1

)N
be generic. Then, with the notation from

Definition 3.2, the spherical cap discrepancy may be represented as

∆(X) = max
I∈Φ

max
{
µemp(X,wI , tI)− µcap(tI), µemp(X,−wI ,−tI)− µcap(−tI)

}
. (10)

Proof. For some I ∈ Φ, denote by X̃I the extension X̃I =
(
XI

−1T

)
of the matrix XI . From the

enumeration formula in [7, Theorem 1] we know that the cap discrepancy is represented as a maximum
of local discrepancies associated with index subsets contained in Φ. Let I∗ ∈ Φ some index set
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realizing this maximum. Then, according to [7, Theorem 1], we have that rank X̃I∗ = #I∗, the

number γ := 1>
(
X̃>I∗X̃I∗

)−1

1 ∈ (0, 1] and

∆(X) = max
{
|µemp(X,w∗, t∗)− µcap(t∗)|, |µemp(X,−w∗,−t∗)− µcap(−t∗)|

}
, (11)

where t∗ :=
(

1−γ
γ

)1/2

≥ 0 and

w∗ :=
1 + (t∗)2

t∗
XI∗

(
X̃>I∗X̃I∗

)−1

1 if t∗ > 0, and w∗ ∈ KerX>I∗ ∩ Sd−1 if t∗ = 0. (12)

As noted in [7, Theorem 1], the choice of w∗ in the second case of (12) is arbitrary.

Then, by virtue of Proposition 2.3, regardless of whether the first or the second term in (11) is domi-
nating,

∆(X) = max{µemp(X,w∗, t∗)− µcap(t∗), µemp(X,−w∗,−t∗)− µcap(−t∗)}. (13)

To proceed, put

v := −
(
1 + (t∗)2

) (
X̃>I∗X̃I∗

)−1

1.

From here, we get the two relations

1>v = −
(
1 + (t∗)2

)
γ = −

(
1 +

1− γ
γ

)
γ = −1; X̃>I∗X̃I∗v = −

(
1 + (t∗)2

)
1.

Along with the definition of X̃I∗ as an extended matrix, this yields that

−
(
1 + (t∗)2

)
1 = X̃>I∗X̃I∗v = (X>I∗XI∗ + 11>)v = X>I∗XI∗v − 1.

Therefore, it holds −(t∗)21 = X>I∗XI∗v. Since X>I∗XI∗ is regular by genericity of X , one gets that

v = −(t∗)2
(
X>I∗XI∗

)−1
1 and 1 = −1Tv = (t∗)21T

(
X>I∗XI∗

)−1
1. (14)

In particular, it must be t∗ > 0 and we observe that

t∗ =
(
1>
(
X>I∗XI∗

)−1
1
)−1/2

.

Furthermore, thanks to t∗ > 0, on the other hand, by (12) and (14) one arrives at

w∗ =
1 + (t∗)2

t∗
XI∗

(
X̃>I∗X̃I∗

)−1

1 = − 1

t∗
XI∗v = t∗XI∗

(
X>I∗XI∗

)−1
1.

Altogether, we conclude that (w∗, t∗) = (wI∗ , tI∗) for wI∗ , tI∗ defined in (9). Combining this with
(13), we get that

∆(X) = max
{
µemp(X,wI∗ , tI∗)− µcap(tI∗), µemp(X,−wI∗ ,−tI∗)− µcap(−tI∗)

}
.

Moreover, because I∗ ∈ Φ, it even holds that

∆(X) ≤ max
I∈Φ

max
{
µemp(X,wI , tI)− µcap(tI), µemp(X,−wI ,−tI)− µcap(−tI)

}
≤ ∆(X),

(15)
where the last inequality relies on (7) and on the fact that wI ∈ Sd−1 and tI ∈ [−1, 1] for all I ∈ Φ
by Proposition 3.2. This proves (10).
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We may slightly improve the representation formula (10) by excluding singletons from the index family
Φ in Theorem 3.1.

Proposition 3.3. Let be N ≥ 2. Then the assertion of Theorem 3.1 remains valid if replacing the
family of index sets Φ in (8) by the (smaller) family of index sets

Φ̄ :=
{
I ⊆ {1, . . . , N}

∣∣ 2 ≤ #I ≤ d
}
. (16)

Proof. Since Φ̄ ⊆ Φ, it is sufficient to show that there always exists some Ī∗ ∈ Φ̄ realizing the cap
discrepancy ∆(X) in (10). Assuming to the contrary that

∆(X) > max
I∈Φ̄

max
{
µemp(X,wI , tI)− µcap(tI), µemp(X,−wI ,−tI)− µcap(−tI)

}
, (17)

∆(X) must be realized by some I∗ ∈ Φ \ Φ̄. This implies that I∗ is a singleton, i.e., I∗ = {`} for
some ` ∈ {1, . . . , N}. Then, by (9) we have tI∗ = 1 and wI∗ = x(`), which by ‖x(i)‖ = 1 for
i = 1, . . . , N implies that

x(i) ∈ H(w∗I , t
∗
I)⇐⇒ 〈x(i), x(`)〉 = 1⇐⇒ x(i) = x(`) (i = 1, . . . , N).

On the other hand, by genericity of X , we know that x(i) 6= x(`) for i 6= `. Consequently, it holds
µemp(X,wI∗ , tI∗) = N−1 and µemp(X,−wI∗ ,−tI∗) = 1 due to (1). Moreover, µcap(tI∗) =
µcap(1) = 0 and µcap(−tI∗) = µcap(−1) = 1. Thus,

∆(X) = max
{
µemp(X,wI∗ , tI∗)− µcap(tI∗), µemp(X,−wI∗ ,−tI∗)− µcap(−tI∗)

}
= N−1.

(18)
Consider Ī := {1, 2} ∈ Φ̄ and define tĪ , wĪ as in (9). For

∆̄ := max
{
µemp(X,wĪ , tĪ)− µcap(tĪ), µemp(X,−wĪ ,−tĪ)− µcap(−tĪ)

}
it holds that (similarly to the proof of Proposition 2.2)

2∆̄ ≥ µemp(X,wĪ , tĪ)− µcap(tĪ) + µemp(X,−wĪ ,−tĪ)− µcap(−tĪ)
= 1 +N−1 ·#{i ∈ {1, . . . , N} |〈wĪ , x(i)〉 = tĪ } − 1 ≥ 2N−1.

From (9), it follows that XT
Ī
wĪ = tĪ1, and so, 〈wĪ , x(i)〉 = tĪ for i = 1, 2. Therefore, 2∆̄ ≥ 2N−1.

On the other hand, ∆(X) > ∆̄ by (17). This yields the contradiction ∆(X) > N−1 with (18).

At the end of this section, we prove a lemma connected with Theorem 3.1 and the quantities defined
in (9) which will be of later use.

Lemma 3.1. Let X ∈
(
Rd
)N

be generic and I ∈ Φ with #I < d. If there exists some index
j ∈ {1, . . . , N} \ I such that 〈wI , x(j)〉 = tI , then for J := I ∪ {j} it holds that tJ = tI and
wJ = wI .

Proof. By assumption and by definition of wI we obtain for y := x(j) that

tI = 〈wI , y〉 = tI1
>(X>I XI)

−1X>I y.

Hence, with tI > 0 (see Proposition 3.2), we observe that

1>(X>I XI)
−1X>I y = y>XI(X

>
I XI)

−11 = 1. (19)
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We first show that tJ = tI : The genericity of X ensures that X>J XJ is regular and that

1

t2J
= 1>(X>J XJ)−11 = (1> | 1)

(
X>I XI X>I y
y>XI ‖y‖2

)−1(
1
1

)
.

Using the Schur complement S := ‖y‖2 − y>XI(X
>
I XI)

−1X>I y 6= 0 of XT
I XI , a well-known

formula for the inverse of partitioned matrices, yields together with (19) and the definition of wI in (9)
that

1

t2J
= (1>| 1)

(X>I XI)
−1 + 1

S
(X>I XI)

−1X>I yy
>XI(X

>
I XI)

−1 − 1
S

(X>I XI)
−1X>I y

− 1
S
y>XI(X

>
I XI)

−1 1
S

(1
1

)

= 1>(X>I XI)
−11 +

1

S
1>(X>I XI)

−1X>I yy
>XI(X

>
I XI)

−11− 2

S
1>(X>I XI)

−1X>I y +
1

S

=
1

t2I
.

Thus, tJ = tI . Now we show that also wJ = wI : To this end, referring to (9) and taking into account
(19), we compute

〈wJ , wI〉 = tJtI
(
1> | 1

)( X>I XI X>I y
y>XI ‖y‖2

)−1(
X>I
y>

)
XI(X

>
I XI)

−11

= tJtI
(
1> | 1

)( X>I XI X>I y
y>XI ‖y‖2

)−1(
1
1

)
=

tItJ
t2J

= 1.

Since wI , wJ ∈ Sd−1 by Proposition 3.2, we conclude that wJ = wI .

4 Local Lipschitz continuity of the spherical cap discrepancy at
generic point sets

In this section, we are going to prove the main result of this paper, namely the local Lipschitz continuity
of the spherical cap discrepancy ∆ around generic point sets. The main argument would aim at
representing ∆ as a continuous selection of C1-functions. The Lipschitz continuity would allow one
to calculate the Clarke subdifferential of ∆ and to exploit it in the derivation of necessary optimality
conditions for minimizing ∆ as a function of the point set (optimal quantization). A technical difficulty
arising in this context is the fact that both, the argument of deriving Lipschitz continuity for continuous
selections of C1-functions and the definition of Clarke’s subdifferential are tied to a structure of normed
linear spaces, whereas ∆ is defined on the sphere. For this reason, we introduce a generalized cap
discrepancy Λ that extends the spherical cap discrepancy ∆ to arbitrary point sets in the Euclidean
space

(
Rd
)N

in a neighborhood of a given generic point set on the unit sphere. The idea is to prove
the local Lipschitz continuity of Λ first and then to get as an immediate corollary the same property for
the genuine spherical cap discrepancy ∆ which is the restriction of Λ to the sphere around generic
point sets.

4.1 Definition and continuity of the generalized cap discrepancy

In order to define the generalized cap discrepancy Λ mentioned above, one could be tempted to di-
rectly extend the definition (7) of ∆ to arbitrary Euclidean point sets. For deriving the desired Lipschitz
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property, however, it is beneficial to restrict considerations to generic point sets and to take the repre-
sentation formula (10) in Theorem 3.1 as a basis for defining Λ. From now on, we shall assume that
d ≥ 3 which is no substantial restriction because uniformity of point sets on a circle is trivial.

We start by introducing an extended cap measure µCap : R → R (for dimension d ≥ 3) in a way
that it is continuously differentiable on R and coincides with the original cap measure µcap from (4) on
[−1, 1] (which is continuously differentiable on (−1, 1)). This is achieved by the following definition:

µCap(t) :=


µcap(t), t ∈ [−1, 1],
−1

2
t+ 1

2
, |t| > 1, d = 3,

0, t > 1, d ≥ 4,
1, t < −1, d ≥ 4.

(20)

Indeed, it is easily seen from (4) that (µcap)′ (−1) = (µcap)′ (1) = 0, whenever d ≥ 4. Hence
the constant continuation by the respective function values µcap(1) = 0, µcap(−1) = 1 yields a
continuously differentiable extension in this case. The special case d = 3 cannot be treated in the
same way because one easily sees that µcap(t) = −t/2 + 1/2 for all t ∈ [−1, 1], so that the
derivatives do not vanish at -1 and 1, respectively. We may therefore simply keep the definition of
the function globally in order to end up at a continuously differentiable extension. Note also, that in
the case of d = 2 (which we excluded), there exists no continuously differentiable extension of µcap

because its derivative converges to −∞ with the argument t converging to ±1.

It is easy to show that for all d ≥ 3 we may extend relation (6) to

µCap(−t) = 1− µCap(t) ∀t ∈ R. (21)

Similarly to the cap measure, we may extend the empirical measure to arbitrary point sets by putting

µEmp (X,w, t) := N−1 ·#
{
i ∈ {1, . . . , N} |x(i) ∈ H(w, t)

}
∀X ∈

(
Rd
)N ∀(w, t) ∈ Rd+1.

(22)
Clearly, for all normalized point sets X ∈

(
Sd−1

)N
it holds that

µEmp (X,w, t) = µemp (X,w, t) ∀(w, t) ∈ Rd+1. (23)

For the following definition, we make reference to the quantities tI , wI defined in (9) for I ∈ Φ with Φ
as in (8). Note that, in the previous section, all results were formulated for a fixed (generic) point set
X . Therefore, for notational convenience, we did not emphasize the dependence of tI , wI on X . In
this section, however, we will investigate Lipschitz continuity of the spherical cap discrepancy based
on the representation formula (10). Since now the point set will become a true variable, we will rather
use the notations tI(X), wI(X) in the definitions (9) in order to stress the dependence on X . It is
obvious that tI , wI are continuous mappings on the set of generic point sets X .

Definition 4.1. For generic X ∈
(
Rd
)N

, we define the generalized cap discrepancy

Λ(X) := max
I∈Φ

max
{
µEmp(X,wI(X), tI(X))− µCap(tI(X)),

µEmp(X,−wI(X),−tI(X))− µCap(−tI(X))
}
.

(24)

Thanks to Proposition 3.1, we make the following observation:

Remark 4.1. If X̄ ∈
(
Rd
)N

is generic, then there exists a neighborhood O of X̄ such that Λ is
defined onO and has the representation (24) for all X ∈ O.
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On the Lipschitz continuity of the spherical cap discrepancy around generic point sets 11

By Proposition 3.2, it follows for generic X ∈
(
Sd−1

)N
, that |tI | ≤ 1 for all I ∈ Φ. This en-

tails that µCap(±tI) = µcap(±tI) for all I ∈ Φ. Moreover, by (23), one also has in this case that
µEmp (X,±wI ,±tI) = µemp (X,±wI ,±tI) for all I ∈ Φ. Now, (24) and Theorem 3.1 entail that
our generalized cap discrepancy reduces to the original spherical cap discrepancy for generic point
sets on the sphere:

Corollary 4.1. For generic X ∈
(
Sd−1

)N
one has that Λ(X) = ∆(X).

The first basic ingredient for proving the local Lipschitz continuity of Λ around a generic point set is the
continuity itself at such point. Adding to this property later that Λ is a selection of C1- functions, we will
arrive at the desired Lipschitz result. Given the already proven continuity of the genuine discrepancy
∆ at arbitrary point sets (Theorem 2.2), the following result shows the continuity of the generalized
cap discrepancy Λ at generic point sets.

Proposition 4.1. Let X̄ ∈
(
Rd
)N

be generic and O some open neighborhood of X̄ such that all
X ∈ O are generic too (see Proposition 3.1). Then, Λ : O → R is continuous.

Proof. Of course, it is sufficient to prove continuity of Λ at the arbitrarily fixed generic point set X̄
which entails continuity on the whole neighbourhoodO mentioned in the statement of Proposition 4.1.
We shall show first the lower and later the upper semicontinuity of Λ at X̄ , thus proving continuity itself.
Let I∗ ∈ Φ be some index set realizing the maximum in (24), so that Λ(X̄) = µEmp(X̄, w∗, t∗) −
µCap(t∗) for some (w∗, t∗) ∈ ±{(wI∗(X̄), tI∗(X̄)}. We fix an arbitrary ε > 0. Now, by Lemma
A.1 proven in the appendix, we can find some δ > 0, small enough such that Bδ(X̄) ⊆ O, and
in such a way that choosing an arbitrary X ∈ Bδ(X̄), we find J, w and t with J ∈ Φ, (w, t) ∈
±{(wJ(X), tJ(X))} satisfying

µEmp(X,w, t) = µEmp(X̄, w∗, t∗) and µCap(t) < µCap(t∗) + ε.

In particular, by (24), then

Λ(X) ≥ µEmp(X,w, t)− µCap(t) = µEmp(X̄, w∗, t∗)− µCap(t∗) + µCap(t∗)− µCap(t)
> Λ(X̄)− ε.

This means that Λ is lower semicontinuous at X̄ . In order to show that Λ is also upper semicontinuous
at X̄ , we assume to the contrary that there exist some c > 0 as well as a sequence Xn → X̄ such
that

Λ(Xn) > Λ(X̄) + c ∀n ∈ N. (25)

For each n ∈ N, choose I∗n ∈ Φ and (w∗n(Xn), t∗n(Xn)) ∈ ±
{

(wI∗n(Xn), tI∗n(Xn))
}

such that
Λ(Xn) is realized, i.e.,

Λ(Xn) = µEmp(Xn, w
∗
n(Xn), t∗n(Xn))− µCap(t∗n(Xn)).

Since Φ is a finite set, there exists some ∅ 6= I∗ ⊆ {1, . . . , N} such that, upon passing to a
subsequence, I∗n = I∗ for all n ∈ N. Once more, by passing to a subsequence, we may assume that
for all n ∈ N either

a) (w∗n(Xn), t∗n(Xn)) = (wI∗(Xn), tI∗(Xn)) or

b) (w∗n(Xn), t∗n(Xn)) = (−wI∗(Xn),−tI∗(Xn)) .
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We consider just case a) here (the second case being completely analogous). By continuity ofwI∗ and
tI∗ , we have that w∗n(Xn)→ wI∗(X̄) and t∗n(Xn)→ tI∗(X̄) as n→∞. From the definition in (22)
it follows easily for continuity reasons that the empirical measure at some triple (X,w, t) is always
larger than or equal to the empirical measure of triples (X ′, w′, t′) in a sufficiently small neighborhood
of (X,w, t). Accordingly,

µEmp (Xn, w
∗
n(Xn), t∗n(Xn)) ≤ µEmp

(
X̄, wI∗(X̄), tI∗(X̄)

)
for n large enough. Moreover, the continuity of the cap measure implies that∣∣µCap (tI∗(X̄)

)
− µCap (t∗n(Xn))

∣∣ ≤ c

for sufficient large n. Consequently, there exists some n0 ∈ N such that for all n ≥ n0

Λ(Xn) = µEmp(Xn, w
∗
n(Xn), t∗n(Xn))− µCap(t∗n(Xn))

≤ µEmp(X̄, wI∗(X̄), tI∗(X̄))− µCap(tI∗(X̄)) + µCap(tI∗(X̄))− µCap(t∗n(Xn))

≤ Λ(X̄) + c

which is a contradiction to inequality (25). Hence, Λ is also upper semicontinuous at X̄ .

4.2 Local Lipschitz continuity of the generalized cap discrepancy at generic
point sets

Now we turn to the Lipschitz continuity of the generalized cap discrepancy locally around a generic
point set X̄ . As before, we denote by O an open neighborhood of X̄ of generic point sets. According
to (24), we have the representation

Λ(X) = max
I∈Φ

max
{
ϕ

(1)
I (X), ϕ

(2)
I (X)

}
∀X ∈ O, (26)

where

ϕ
(1)
I (X) := µEmp(X,wI(X), tI(X))− µCap(tI(X));

ϕ
(2)
I (X) := µEmp(X,−wI(X),−tI(X))− µCap(−tI(X)).

(27)

As a preparatory step, we prove the following Lemma:

Lemma 4.1. Let X̄ ∈
(
Rd
)N

be generic andO some open neighborhood of X̄ such that all X ∈ O
are generic too. Then, there exists a neighborhood U ⊆ O of X̄ such that for all I ∈ Φ and all
X ∈ U there holds:

Λ(X̄) = ϕ
(1)
I (X̄), Λ(X) = ϕ

(1)
I (X) ⇒

µEmp(X,wI(X), tI(X)) = µEmp(X̄, wI(X̄), tI(X̄)),

Λ(X̄) = ϕ
(2)
I (X̄), Λ(X) = ϕ

(2)
I (X) ⇒

µEmp(X,−wI(X),−tI(X)) = µEmp(X̄,−wI(X̄),−tI(X̄)).

Proof. Without loss of generality, we prove just the first implication and assume it would not hold true.
Then, there exist sequences Xn → X̄ and In ∈ Φ such that

Λ(X̄) = ϕ
(1)
In

(X̄), Λ(Xn) = ϕ
(1)
In

(Xn),∣∣µEmp(X̄, wIn(X̄), tIn(X̄))− µEmp(Xn, wIn(Xn), tIn(Xn))| ≥ 1

N
.
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In the last inequality, we used the fact that the values of µEmp are multiples of 1
N

. Moreover, by
continuity onO of µCap ◦ tI for all I ∈ Φ, we have that, for n large enough,∣∣µCap(tIn(X̄)− µCap(tIn(Xn)

∣∣ ≤ 1

2N

whenever U is small enough. Consequently, for n large enough, we arrive at the following contradiction
with the continuity of Λ shown in Proposition 4.1:

|Λ(X̄)− Λ(Xn)| =
∣∣∣ϕ(1)

In
(X̄)− ϕ(1)

In
(Xn)

∣∣∣ ≥ 1

2N
.

A natural idea to show the local Lipschitz continuity around generic points of the maximum function
Λ in (26) would rely on checking the continuous differentiability or at least local Lipschitz continuity of
the elementary functions ϕ(1)

I , ϕ
(2)
I . This, however, does not apply because these functions fail to be

even continuous as a consequence of the discontinuity of µEmp. The fact is illustrated for a numer-
ical example in Figure 1. Here, a generic set X̄ of four points in R3 is considered and subjected to
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Figure 1: Caption

one-parametric variation (shifting one of the four points while keeping the others fixed). The variation
parameter zero corresponds to the nominal point set X̄ . The figure plots the elementary functions
ϕ

(1)
I , ϕ

(2)
I (depending on just one parameter) with those participating in the maximum of (26) at X̄

being colored. As can be seen, the maximum Λ of all these functions is continuous as it should be
according to Proposition 4.1. However, all elementary functions being active for the maximum at the
nominal point set X̄ exhibit jumps at that same point set. Still, the maximum function Λ is apparently
not only continuous but even Lipschitz continuous. To show this rigorously, we shall represent Λ as a
selection (not a maximum though!) of finitely many smooth functions. It is well known that continuous
selections of smooth (or more generally: locally Lipschitzian) functions are locally Lipschitzian. The
desired selection cannot be made among the original elementary functions ϕ(1)

I , ϕ
(2)
I due to their dis-

continuity. We therefore define smooth modifications of these functions by locally fixing µEmp around
the nominal point set X̄ :

ϕ̃
(1)
I (X) := µEmp(X̄, wI(X̄), tI(X̄))− µCap(tI(X));

ϕ̃
(2)
I (X) := µEmp(X̄,−wI(X̄),−tI(X̄))− µCap(−tI(X)).

(28)

Clearly, the desired smoothness of the ϕ̃(1)
I , ϕ̃

(2)
I will follow from the continuous differentiability of the

functions βI := µCap ◦ tI for I ∈ Φ around some arbitrary generic point set X .
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Lemma 4.2. Let X̄ ∈
(
Rd
)N

be generic and O a neighbourhood of X̄ such that all X ∈ O are
generic too. Then, for each I ∈ Φ, the function βI is continuously differentiable onO with the following
partial gradients w.r.t. x(l), (l ∈ {1, . . . , N}):

∇x(l)βI(X) =


0, if l /∈ I or |tI(X)| ≥ 1, d ≥ 4,

−1
2
t2I(X)c

τ(l)
I wI(X), if l ∈ I, d = 3,

ρIc
τ(l)
I wI(X), if l ∈ I, |tI(X)| < 1, d ≥ 4,

∀X ∈ O. (29)

Here, with Cd from (5),

ρI := −Cd t2I(X)
(
1− t2I(X)

) d−3
2 and cjI :=

#I∑
i=1

(XT
I XI)

−1
i,j (j = 1, . . . ,#I).

Moreover, for l ∈ I , the index τ(l) refers to the rank of l in the index set I , i.e., if I = {κ1, . . . ,κ#I},
then l = κτ(l).

The proof of the lemma is provided in the Appendix.

Corollary 4.2. For each I ∈ Φ, the functions ϕ̃(1)
I (·), ϕ̃(2)

I (·) defined in (28) are continuously differ-
entiable onO(X̄) with

∇ϕ̃(1)
I (X) = −∇βI(X) and ∇ϕ̃(2)

I (X) = ∇βI(X) ∀X ∈ O(X̄).

Proof. The first formula above is evident from the definition of ϕ̃(1)
I in (28). Similarly, the definition of

ϕ̃
(2)
I yields that

∇ϕ̃(2)
I (X) = [µCap]′(−tI(X))∇tI(X) = [µCap]′(tI(X))∇tI(X) = ∇βI(X),

where the second equation follows from (47).

We shall prove now that, locally around generic point sets, Λ is a selection of the continuously differ-
entiable functions ϕ̃(1)

I , ϕ̃
(2)
I .

Proposition 4.2. Let X̄ ∈
(
Rd
)N

be generic and O some open neighborhood of X̄ such that all
X ∈ O are generic too. Then, there exists a neighborhood V ⊆ O of X̄ such that for all X ∈ V
there are I ∈ Φ and s ∈ {1, 2} with Λ(X) = ϕ̃

(s)
I (X).

Proof. Let U ⊆ O be the neighborhood of X̄ from Lemma 4.1 and define the set of active indices as

A(X) :=
{

(I, s) ∈ Φ× {1, 2} | Λ(X) = ϕ
(s)
I (X)

}
∀X ∈ O. (30)

(see (26)). We claim that there exists a neighborhood V ⊆ U of X̄ such that

A(X) ⊆ A(X̄) ∀X ∈ V . (31)

If this wasn’t the case, we could find sequences Xn ∈
(
Rd
)N

and (In, sn) ∈ Φ× {1, 2} such that

Λ(Xn) = ϕ
(sn)
In

(Xn), Λ(X̄) > ϕ
(sn)
In

(X̄) ∀n ∈ N and Xn → X̄.
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Moreover, by passing to a subsequence, we may find some Ī ∈ Φ and s̄ ∈ {1, 2} such that

Λ(Xn) = ϕ
(s̄)

Ī
(Xn) ∀n ∈ N and Λ(X̄) > ϕ

(s̄)

Ī
(X̄).

Because Λ is continuous at X̄ by Proposition 4.1, there is some n0 ∈ N such that

ϕ
(s̄)

Ī
(Xn) > ϕ

(s̄)

Ī
(X̄) +

c

2
∀n ≥ n0, where c := Λ(X̄)− ϕ(s̄)

Ī
(X̄) > 0.

Next, we use an argument already employed in the proof of Proposition 4.1, namely that the defini-
tion in (22) easily implies for continuity reasons that the empirical measure at some triple (X,w, t) is
always larger than or equal to the empirical measure of triples (X ′, w′, t′) in a sufficiently small neigh-
borhood of (X,w, t). Assuming, without loss of generality that s̄ = 1 (the argument being exactly the
same for s̄ = 2), we therefore get for n ≥ n0 that

µEmp(X̄, wĪ(X̄), tĪ(X̄))− µCap(tĪ(X̄)) +
c

2
= ϕ

(1)

Ī
(X̄) +

c

2

< ϕ
(1)

Ī
(Xn) = µEmp(Xn, wĪ(Xn), tĪ(Xn))− µCap(tĪ(Xn))

≤ µEmp(X̄, wĪ(X̄), tĪ(X̄))− µCap(tĪ(Xn)).

Passing to the limit on the right-hand side and exploiting the continuity of µCap ◦ tĪ , we arrive at the
contradiction

−µCap(tĪ(X̄)) +
c

2
≤ −µCap(tĪ(X̄))

which proves (31).

Now, fix an arbitrary X ∈ V and choose I ∈ Φ and s ∈ {1, 2} such that Λ(X) = ϕ
(s)
I (X). Then,

(I, s) ∈ A(X) ⊆ A(X̄) by (31), whence Λ(X̄) = ϕ
(s)
I (X̄). Since V ⊆ U , Lemma 4.1 yields that

ϕ
(s)
I (X) = ϕ̃

(s)
I (X). Thus, Λ(X) = ϕ̃

(s)
I (X), as was to be shown.

We are now in a position to formulate the main result of this paper:

Theorem 4.3. Let X̄ =
(
x̄(1), . . . , x̄(N)

)
∈
(
Rd
)N

be generic. Then, there exists some neighbor-
hood U of X̄ such thatX is generic for allX ∈ U and Λ is Lipschitz continuous on U . In other words,
there exists some L > 0 such that

|Λ(X1)− Λ(X2)| ≤ L‖X1 −X2| ∀X1, X2 ∈ U .

Proof. By Propositions 4.1 and 4.2, there exists a neighborhood U of X̄ such that Λ is continuous and
a selection of finitely many continuously differentiable functions on U (which means that Λ is piecewise
differentiable in the terminology of Scholtes [11, page 91]). In particular, Λ is a continuous selection of
Lipschitz functions on U , hence Λ is Lipschitz continuous on U itself [11, Proposition 4.1.2.].

As an immediate consequence, we get the desired local Lipschitz continuity of the (original) spherical
cap discrepancy ∆ around generic points on the sphere:

Corollary 4.4. Let X̄ =
(
x̄(1), . . . , x̄(N)

)
∈
(
Sd−1

)N
be generic. Then, there exists some neighbor-

hood U of X̄ such thatX is generic for allX ∈ U ∩Sd−1 and ∆ is Lipschitz continuous on U ∩Sd−1.
In other words, there exists some L > 0 such that

|∆(X1)−∆(X2)| ≤ L‖X1 −X2| ∀X1, X2 ∈ U ∩ Sd−1.
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Proof. This follows immediately from Theorem 4.3 and Corollary 4.1.

It is noteworthy that the Lipschitz constantL in Theorem 4.3 (which is the same as in Corollary 4.4) can
be explicitly estimated from the data by using the formulae in Lemma 4.2. Indeed, as a consequence
of Proposition 4.2 and of [11, Proposition 4.1.2], we obtain that the Lipschitz constant L of Λ on U can
be represented by the Lipschitz constants L(s)

i of the continuously differentiable functions ϕ̃(s)
I as

L = max
(I,s)∈Φ×{1,2}

L
(s)
i .

Clearly, the L(s)
i can be chosen greater than but arbitrarily close to the norms ‖∇ϕ̃(s)

I (X̄)‖ by shrink-

ing the neighbourhood U . By Corollary 4.2 and Lemma 4.2, a rough upper estimate of the L(s)
i would

be
Cd max

I∈Φ,l∈I
|cτ(l)
I |

(a finer estimate would incorporate the expressions t2I(X)).

5 Optimal quantization and necessary optimality conditions

Finding an optimal point set on the sphere minimizing the spherical cap discrepancy amounts to the
optimization problem

minimize ∆(X), (32)

where ∆ :
(
Sd−1

)N → [0, 1] is the spherical cap discrepancy introduced in (3). This problem is
also referred to as optimal quantization and has to be distinguished from the construction of low
discrepancy sequences because the cardinality N of the point set X is fixed. Our aim is to establish
necessary optimality conditions a point set has to satisfy in order to be optimal. Note that there is no
hope for optimality conditions which are sufficient at the same time due to the lack of convexity of Λ.
We will restrict ourselves here to generic point sets. The degenerate case seems to be more delicate
to handle and is left for future research.

While (32) is a free (without constraints) optimization problem, the domain of the objective function
is a manifold. Standard optimization problems, however, are usually defined on normed spaces sub-
jected to possible further constraints in order to conveniently derive nonsmooth optimality conditions
by using tools from generalized differentiation such as the subdifferentials in the sense of Clarke [4] or
Mordukhovich [9]. For this reason it is beneficial to equivalently rewrite problem (32) as an optimization
problem in the Euclidean space with the additional constraint that the arguments belong to the sphere
componentwise:

minimize Λ(X) subject to X ∈
(
Sd−1

)N
, X generic. (33)

The restriction to generic X is necessary because Λ is defined for such point sets only. While the
genericity constraint cannot be conveniently described as a classical (in-)equality constraint, it is an
open property. This means, that if we are interested in checking whether some generic point set X̄
satisfies certain necessary optimality conditions, then we don’t have to care about this constraint,
because we know it persists to hold in an open neighbourhood O of X̄ and, thus, has no impact on
the necessary optimality condition at all. Now, the equivalence of(33) with (32) around some generic
X ∈

(
Sd−1

)N
is evident from Corollary 4.1. We represent the normalization constraint on X =(

x(1), . . . , x(N)
)

as the set of smooth equalities

‖x(l)‖2 = 1 ∀l ∈ {1, . . . , N}.
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Then the derivative with respect to X of the l-th constraint function equals the matrix

2
(
0 · · · 0 |x(l) | 0 · · · 0

)
Clearly, all these derivatives are linearly independent due to x(l) 6= 0. Now, the local Lipschitz con-
tinuity of Λ and the continuous differentiability of the constraint functions implies that a generic point
set X̄ being a (local) solution of the optimal quantization problem (33) has to satisfy the inclusion(

λ1x̄
(1)| · · · |λN x̄(N)

)
∈ ∂CΛ(X̄) (34)

for certain multipliers λ1, . . . , λN ∈ R, where ∂CΛ refers to the Clarke subdifferential of Λ [4, p.235-
236]. In order to work with such an abstract condition, one has to make the Clarke subdifferential more
explicit: From [11, Proposition 4.3.1.], we know that at generic X̄ the identity

∂CΛ(X̄) = conv
{
∇ϕ̃(s)

I (X̄) | (I, s) ∈ A∗(X̄) ⊆ Φ× {1, 2}
}

holds true, where A∗(X̄) refers to the so-called set of essentially active indices (see [11, p. 92]) and
’conv’ refers to the convex hull. Rather than providing a precise definition of the difficult to handle index
set A∗(X̄) here, we just recall from its definition in [11, p. 92], that it is always a subset of the set of
active indicesA(X̄) defined in (30)

A∗(X̄) ⊆
{

(I, s) ∈ Φ× {1, 2} | Λ(X̄) = ϕ̃
(s)
I (X̄)

}
=
{

(I, s) ∈ Φ× {1, 2} | Λ(X̄) = ϕ
(s)
I (X̄)

}
= A(X̄).

Consequently, we arrive at an explicit upper estimate of ∂CΛ(X̄) just in terms of active gradients:

∂CΛ(X̄) ⊆ conv
{
∇ϕ̃(s)

I (X̄) | (I, s) ∈ A(X̄)
}
.

This upper estimate can now be clearly used to establish a weakened but explicit necessary optimality
condition as follows: A generic point set X̄ being a (local) solution of the optimal quantization problem
(33) has to satisfy the inclusion(

λ1x̄
(1)| · · · |λN x̄(N)

)
∈ conv

{
∇ϕ̃(s)

I (X̄) | (I, s) ∈ A(X̄)
}

for certain multipliers λ1, . . . , λN ∈ R. Resolving for the convex hull, we may extend this statement
to: If a generic point set X̄ is a (local) solution of the optimal quantization problem (33), then there
exist multipliers λ1, . . . , λN ∈ R and γ(I,s) ≥ 0 for (I, s) ∈ A(X̄) with

λlx̄
(l) =

∑
(I,s)∈A(X̄)

γ(I,s)∇x(l)ϕ̃
(s)
I (X̄) and

∑
(I,s)∈A(X̄)

γ(I,s) = 1 (l = 1, . . . , N).

Taking into account that ∇x(l)ϕ̃
(s)
I (X̄) = (−1)s∇x(l)β

(s)
I (X̄) for (I, s) ∈ Φ × {1, 2} and l =

1, . . . , N by Corollary 4.2, and that∇x(l)β
(s)
I (X̄) = 0 if l /∈ I by Lemma 4.2, we may further rewrite

this last relation as

λlx̄
(l) =

∑
{(I,s)∈A(X̄)|l∈I}

γ(I,s)(−1)s∇x(l)β
(s)
I (X̄) and

∑
(I,s)∈A(X̄)

γ(I,s) = 1 (l = 1, . . . , N).

This relation is now fully explicit thanks to the explicit gradient formulae in Lemma 4.2 and it can be
used to figure out potential candidates for local minima of the spherical cap discrepancy (by verifying
the necessary optimality conditions) or to exclude certain generic point sets as local or global minima
(by showing that the necessary optimality conditions cannot hold). We shall not pursue this concrete
application of optimality conditions here and rather leave this to future research.
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Conclusions

We have proven the Lipschitz continuity of the spherical cap discrepancy around generic point sets on
the sphere. Of course, it would be desirable to prove or disprove the Lipschitz continuity on the whole
sphere. It seems that we will not be able to show the positive result using the approach taken here
(via the representation formula (24)). On the other hand, a counter example isn’t easy to construct
either. We therefore strongly believe that the following conjecture holds true (note that local Lipschitz
continuity around arbitrary point sets implies the global Lipschitz continuity by compactness of the
sphere):

Conjecture. The spherical cap discrepancy ∆ : S(d−1) → [0, 1] is Lipschitz continuous.

Apart from proving this conjecture, future research will be devoted to the concrete application of the
necessary optimality conditions derived in Section 5 and to a numerical solution of the optimal quanti-
zation provlem exploiting Lipschitz continuity of the spherical cap discrepancy.

A Appendix

Proposition A.1. For the discrepancies presented in the introduction it holds that ∆(X) = ∆0(X) =

∆1(X) for all X =
(
x(1), . . . , x(N)

)
∈
(
Sd−1

)N
.

Proof. In order to show that ∆(X) = ∆0(X), it is evidently sufficient to verify the relation

|µemp (X,w, t)− µcap (w, t)| ≤ ∆(X) ∀(w, t) ∈ Rd × R. (35)

Let (w, t) ∈ Rd × R be arbitrary and assume first that w = 0 and t ≤ 0. Then, H(w, t) = Rd and,
hence, µemp (X,w, t) = µcap (w, t) = 1 and (35) follows trivially. Similarly, if w = 0 and t > 0,
then H(w, t) = ∅ and, hence, µemp (X,w, t) = µcap (w, t) = 0, so that (35) follows again. Next, let
w 6= 0 and t < −‖w‖. Then, x ∈ H(w, t) for all x ∈ Sd−1 because of

〈w, x〉 ≥ −‖w‖ > t ∀x ∈ Sd−1

which implies µemp (X,w, t) = µcap (w, t) = 1. Similarly, if t > ‖w‖, then x /∈ H(w, t) for all
x ∈ Sd−1 because any such x satisfies the relation

〈w, x〉 ≤ ‖w‖ < t,

so we have µemp (X,w, t) = µcap (w, t) = 0. In both cases, (35) follows trivially as before. It remains
to consider the case that w 6= 0 and |t| ≤ ‖w‖. Then, H(w, t) = H(w∗, t∗) for w∗ := w/‖w‖ ∈
Sd−1 and t∗ := t/‖w‖ ∈ [−1, 1]. Accordingly, and by virtue of (3),

|µemp (X,w, t)− µcap (w, t)| = |µemp (X,w∗, t∗)− µcap (w∗, t∗)| ≤ ∆(X).

It remains to show that

∆(X) = ∆1(X) := sup
w∈Sd−1, t∈[−1,1]

|µemp0 (X,w, t)− µcap0 (w, t)| ,

where, with H0(w, t) :=
{
x ∈ Rd| 〈w, x〉 > t

}
, one defines µcap0 (w, t) := σ

(
Sd−1 ∩H0(w, t)

)
and

µemp0 (X,w, t) := N−1 ·#
{
i ∈ {1, . . . , N} |x(i) ∈ H0(w, t)

}
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for all w ∈ Sd−1 and t ∈ [−1, 1]. We immediately check from the definitions, that for arbitrary
(w, t) ∈ Sd−1 × [−1, 1] one has that

µemp0 (X,w, t) = 1− µemp (X,−w,−t) .

Moreover, by (6), for arbitrary (w, t) ∈ Sd−1 × [−1, 1] one has that

µcap0 (w, t) = µcap (w, t) = 1− µcap (−w,−t) .

Now, the claimed equality ∆(X) = ∆1(X) follows readily from the identity

|µemp0 (X,w, t)− µcap0 (w, t)| = |µemp (X,−w,−t)− µcap (−w,−t)| ∀(w, t) ∈ Sd−1×[−1, 1].

Lemma A.1. Let X̄ ∈
(
Rd
)N

be generic. Let I∗ ∈ Φ be some index set realizing the maximum in
(24), so that Λ(X̄) = µEmp(X̄, w∗, t∗) − µCap(t∗) for some (w∗, t∗) ∈ ±

{
(wI∗(X̄), tI∗(X̄)

}
.

Then, the following holds true:

∀ε > 0 ∃δ > 0 ∀X ∈ Bδ(X̄) ∃J ∈ Φ ∃(w, t) ∈ ±{(wJ(X), tJ(X))} :

µEmp(X,w, t) = µEmp(X̄, w∗, t∗), µCap(t) < µCap(t∗) + ε.
(36)

Proof. We assume from the very beginning that the δ to be found in (36) is small enough to satisfy
the inclusion Bδ(X̄) ⊆ O from Remark 4.1, so that all X from this ball are generic. We introduce the
index sets

I0 := {i ∈ {1, . . . , N} | 〈w∗, x̄(i)〉 = t∗}, I1 := {i ∈ {1, . . . , N} | 〈w∗, x̄(i)〉 > t∗}

Proposition 3.2 ensures that X̄T
I∗wI∗(X̄) = tI∗(X̄)1, whence X̄T

I∗w
∗ = t∗1 due to (w∗, t∗) ∈

±{(wI∗(X̄), tI∗(X̄)}. It follows that I∗ ⊆ I0.

Case 1: I∗ = I0. Without loss of generality, we may also assume that (w∗, t∗) = (wI∗(X̄), tI∗(X̄))
(the opposite case following by absolutely analogous arguments). Then, by definition,

µEmp(X̄, wI∗(X̄), tI∗(X̄)) = N−1(#I0 + #I1).

For arbitrarily given ε > 0 we choose δ > 0 such that Bδ(X̄) ⊆ O for the open neighborhood from
the statement of Proposition 4.1 (i.e. all X ∈ Bδ(X̄) are generic). Moreover, δ > 0 is chosen small
enough to satisfy (by continuity of the mappings tI∗ , wI∗)

〈wI∗(X), x(i)〉 > tI∗(X) ∀i ∈ I1 〈wI∗(X), x(i)〉 < tI∗(X) ∀i ∈ (I0 ∪ I1)c

for all X ∈ Bδ(X̄) and all i ∈ {1, . . . , N}. Moreover, by Proposition 3.2, XT
I∗wI∗(X) = tI∗(X)1

for all such X , hence 〈wI∗(X), x(i)〉 = tI∗(X) for all i ∈ I∗ = I0. Altogether, this implies that
〈wI∗(X), x(i)〉 ≥ tI∗(X) if and only if i ∈ I0 ∪ I1. Therefore,

µEmp(X,wI∗(X), tI∗(X)) = N−1(#I0 + #I1) = µEmp(X̄, wI∗(X̄), tI∗(X̄)) ∀X ∈ Bδ(X̄).

Finally, by continuity of µCap, we may further shrink δ > 0 such that

µCap(tI∗(X)) < µCap(tI∗(X̄))) + ε

for all X ∈ Bδ(X̄). Thus, we verify (36) by the (constant) selection J := I∗, w := wI∗(X̄), t :=
tI∗(X̄) for each X ∈ Bδ(X̄).
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Case 2: I∗ ( I0. First, we observe that we may assume #I∗ = d. Indeed, if #I∗ < d, then we may
select some j ∈ I0 \ I∗. From (w∗, t∗) ∈ ±{(wI∗(X̄), tI∗(X̄)} and by definition of I0, we derive
that 〈wI∗(X̄), x̄(j)〉 = tI∗(X̄). Now, Lemma 3.1 yields that

(wI∗(X̄), tI∗(X̄)) = (wI∗∪{j}(X̄), tI∗∪{j}(X̄)).

Therefore, we may have replaced the index set I∗ ∈ Φ realizing the maximum in (24) from the very
beginning by the larger index set I∗ ∪ {j} ∈ Φ (with (#I∗ ∪ {j}) = #I∗ + 1 ≤ d) realizing the
same value in (24). Calling this larger index set I∗ again, we may proceed by adding further indices
from I0 to I∗ until I∗ = I0, in which case we are back to the situation we already dealt with above, or
until #I∗ = d, which will be the setting we follow next.

Case 2.1: (w∗, t∗) = (wI∗(X̄), tI∗(X̄)). The definition of I0 and Proposition 3.2 yield that

〈w∗, x̄(i)〉 = t∗ = tI∗(X̄) > 0 ∀i ∈ I0.

Consequently, given an arbitrary ε > 0, we may choose δ > 0 such that for all X ∈ Bδ(X̄) ⊆ O,

〈w∗, x(i)〉 ≥ t∗/2 > 0 ∀i ∈ I0 and µCap(tI(X)) < µCap(tI(X̄)) + ε ∀I ∈ Φ, (37)

〈wI(X̄), x(i)〉 > tI(X̄)⇒ 〈wI(X), x(i)〉 > tI(X)
〈wI(X̄), x(i)〉 < tI(X̄)⇒ 〈wI(X), x(i)〉 < tI(X)

}
∀i ∈ {1, . . . , N} ∀I ∈ Φ, (38)

where the continuity of µCap and of the wI , tI has been exploited. In order to verify (36), we fix an
arbitrary X ∈ Bδ(X̄) and find J, w, t as required there. To this aim, denote by P the convex hull of
the point set {x(i)}i∈I0 .

Case 2.1.a): intP 6= ∅. Clearly, 0 /∈ P due to the first relation of (37). It is well-known from the theory
of polyhedra (see, e.g., [13, Theorem 2.15 (7)]), that there exists a representation

P = {x ∈ Rd | 〈vk, x〉 ≥ τk (k = 1, . . . ,m)} (vk ∈ Sd−1, τk ∈ R), (39)

such that for k′ = 1, . . . ,m each set

Fk′ := {x ∈ Rd | 〈vk′ , x〉 = τk′ , 〈vk, x〉 ≥ τk (k = 1, . . . ,m, k 6= k′)}

is a facet of P . There exists some k0 ∈ {1, . . . ,m} such that τk0 > 0 because otherwise the
contradiction 0 ∈ P would result. As a facet of a bounded polyhedron P ⊆ Rd with intP 6= ∅,
Fk0 must contain at least d vertices of P . Since the vertices of P are contained in the set {x(i)}i∈I0 ,
there exists a subset J ⊆ I0 with #J = d and {x(i)}i∈J ⊆ Fk0 . Hence, by definition of Fk0 ,
XT
J vk0 = τk01. By Proposition (3.2), XT

J wJ(X) = tJ(X)1, with XT
J being a regular (d, d)- matrix

by genericity of X . Then,

vk0 = τk0
(
XT
J

)−1
1, wJ(X) = tJ(X)

(
XT
J

)−1
1.

Since ‖vk0‖ = ‖wJ(X)‖ = 1 and τk0 , tJ(X) > 0, (see Proposition 3.2), it follows that it holds
(wJ(X), tJ(X)) = (vk0 , τk0). Now, (39) yields that

〈wJ(X), x(i)〉 = 〈vk0 , x(i)〉 ≥ τk0 = tJ(X) ∀i ∈ I0. (40)

With X̄T
J wJ(X̄) = tJ(X̄) (by Proposition 3.2) and X̄T

J w
∗ = t∗ (by J ⊆ I0), the same reasoning

as before yields that (wJ(X̄), tJ(X̄)) = (w∗, t∗). After having fixed J ∈ Φ, we also fix (w, t) :=
(wJ(X), tJ(X)) as required in (36). Then, by (40), (38) and by the definitions of I0, I1, one gets that

µEmp(X,w, t) = µEmp(X,wJ(X), tJ(X)) = N−1#{i ∈ {1, . . . , N}|〈wJ(X), x(i)〉 ≥ tJ(X)}
= N−1(#I0 + #I1) = µEmp(X,w∗, t∗), (41)
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which is the first desired relation in (36). The second one follows immediately from the second relation
in (37).

Case 2.1.b): intP = ∅. Then, P as a polytope must be contained in some hyperplane H :

P ⊆ H := {x ∈ Rd | 〈ŵ, x〉 = t̂} (ŵ ∈ S(d−1), t̂ ∈ R).

We may assume that t̂ ≥ 0. In particular, 〈ŵ, x(i)〉 = t̂ for all i ∈ I0, or, XT
I0
ŵ = t̂1, for short. Since

also XT
I∗wI∗(X) = tI∗(X)1 (by Proposition 3.2), and recalling that #I∗ = d the same reasoning

as above (40) yields that (wI∗(X), tI∗(X)) = (ŵ, t̂). This implies that the choice J := I∗ satisfies
(40) (actually as an equation) so that in view of (w∗, t∗) = (wI∗(X̄), tI∗(X̄)) we may repeat the
reasoning after (40) and (41) in order to derive the two relations in (36) in that alternative case too.

Case 2.2): (w∗, t∗) = (−wI∗(X̄),−tI∗(X̄)). We observe that, in case of τk ≥ 0 for all k = 1, . . . ,m,

P must he unbounded according to (39) because from x(1) ∈ P it would follow that

〈vk, λx(1)〉 = λ〈vk, x(1)〉 ≥ λτk ≥ τk ∀λ ≥ 1 ∀k = 1, . . . ,m.

This entails that λx(1) ∈ P for all λ ≥ 1, whence P would be unbounded because x(1) 6= 0 thanks to
the genericity ofX . However,P is bounded as a convex combination of finitely many points. Therefore,
there exists some k1 ∈ {1, . . . ,m} with τk1 < 0. Now, we can repeat exactly the argumentation from
the first case above (referring to τk0 > 0), just with reversed signs.

Proof of Lemma 4.2:

Proof. Consider an arbitrary X ∈ O be arbitrary, whence X is generic. Let I ∈ Φ be arbitrary. We
assume that I = {κ1, . . . ,κ#I} ⊆ {1, . . . , N}. We want to derive first the function

α(X) := 1T
(
XT
I XI

)−1
1 =

#I∑
i,j=1

Ai,j(X), (42)

where Ai,j(X) is the element (i, j) of the matrix A(X) :=
(
XT
I XI

)−1
. In order to derive α, we

need to derive the Ai,j . As a preparation, let P (t) be a function assigning to each t ∈ R a matrix of
order (n, n). If at some t∗ ∈ R the matrix P (t∗) is regular, then the following derivative formula is
well-known: (

P−1
)′

(t∗) = −P−1(t∗)P ′(t∗)P−1(t∗).

Let M̄ be a regular matrix of order (n, n) and consider the matrix mapping Q(M) := M−1 for
matrices M in a neighborhood of M̄ so that regularity persists to hold. For k, l ∈ {1, . . . , n}, let Ek,l
be the matrix of order (n, n) defined by

(Ek,l)i,j =

{
1, if k = i and l = j,
0, else,

(i, j = 1, . . . , n).

Then, with P (t) := M̄ + tEk,l for |t| small enough to maintain the regularity of P (t), we derive that

∂Q

∂Mk,l

(M̄) =
(
P−1

)′
(0) = −P−1(0)P ′(0)P−1(0) = −M̄−1Ek,lM̄

−1.
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It follows that, for i, j, k, l = 1, . . . , n,

∂Qi,j

∂Mk,l

(M̄) = −(M̄−1Ek,lM̄
−1)i,j = −

n∑
m=1

(M̄−1)i,m

n∑
p=1

(Ek,l)m,p(M̄
−1)p,j

= −
d∑

m=1

(M̄−1)i,m(Ek,l)m,l(M̄
−1)l,j = −(M̄−1)i,k(Ek,l)k,l(M̄

−1)l,j

= −(M̄−1)i,k(M̄
−1)l,j.

Next, we derive the matrix function M(X) := XT
I XI with respect to X . Observing that

Mi,j(X) =
d∑
p=1

Xp,κi
Xp,κj

,

we arrive at

∂Mi,j

∂Xk,l

(X) =


0 l 6= κi, l 6= κj
Xk,κj

l = κi, l 6= κj
Xk,κi

l = κj, l 6= κi
2Xk,l l = κi = κj

(i, j = 1, . . . ,#I; k = 1, . . . , d; l = 1, . . . , N).

(43)
Summarizing, we get for the derivative of the above introduced mapping A(X) =

(
XT
I XI

)−1
, i.e.

A(X) = Q(M(X)), that

∂Ai,j
∂Xk,l

(X) =

#I∑
p,q=1

∂Qi,j

∂Mp,q

(M(X))
∂Mp,q

∂Xk,l

(X) = −
#I∑
p,q=1

[M(X)]−1
i,p [M(X)]−1

q,j

∂Mp,q

∂Xk,l

(X)

for i, j = 1, . . . ,#I; k = 1, . . . , d; l = 1, . . . , N . From (43) it follows that

∂Ai,j
∂Xk,l

(X) = 0 if i, j = 1, . . . ,#I, l /∈ I.

Therefore, assume now that l ∈ I . Then, there exists a unique index τ(l) ∈ {1, . . . ,#I} the with
l = κτ(l). By (43),

∂Ai,j
∂Xk,l

(X) = −
#I∑

q=1,l 6=κq

[M(X)]−1
i,τ(l)[M(X)]−1

q,jXk,κq −
#I∑

p=1,l 6=κp

[M(X)]−1
i,p [M(X)]−1

τ(l),jXk,κp

−2[M(X)]−1
i,τ(l)[M(X)]−1

τ(l),jXk,l

= −
#I∑
q=1

[M(X)]−1
i,τ(l)[M(X)]−1

q,jXk,κq −
#I∑
p=1

[M(X)]−1
i,p [M(X)]−1

τ(l),jXk,κp

= −[M(X)]−1
i,τ(l)

#I∑
q=1

[M(X)]−1
q,jXk,κq − [M(X)]−1

τ(l),j

#I∑
p=1

[M(X)]−1
i,pXk,κp

This finally leads us to the following derivative formula:

∂α

∂Xk,l

(X) =

#I∑
i,j=1

∂Ai,j
∂Xk,l

(X) = 0 if l /∈ I (44)
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and, exploiting the symmetry of the matrix [M(X)]−1 = (XT
I XI)

−1, we derive for all l ∈ I that

∂α

∂Xk,l

(X) = −
#I∑
i,j=1

(
[M(X)]−1

i,τ(l)

#I∑
q=1

[M(X)]−1
q,jXk,κq − [M(X)]−1

τ(l),j

#I∑
p=1

[M(X)]−1
i,pXk,κp

)

= −2

#I∑
i,j=1

[M(X)]−1
i,τ(l)

#I∑
q=1

[M(X)]−1
q,jXk,κq

= −2

#I∑
q=1

(
#I∑
i=1

[M(X)]−1
i,τ(l)

)(
#I∑
j=1

[M(X)]−1
j,q

)
Xk,κq .

By definition of M(X) and of the coefficients cjI introduced in the statement of this Lemma, we obtain
that

∇x(l)α(X) = −2c
τ(l)
I

#I∑
q=1

cqIx
(κq) (45)

Next, we observe that, for all q = 1, . . . ,#I ,

[(
XT
I XI

)−1
1
]
q

=

#I∑
i=1

(
XT
I XI

)−1

q,i
=

#I∑
i=1

(
XT
I XI

)−1

i,q
= cqI .

Consequently, by definition (9),

wI(X) = tI(X)XI

(
X>I XI

)−1
1 = tI(X)

#I∑
q=1

cqIx
(κj).

Thanks to (45), this entails that

∇x(l)α(X) = −2
c
τ(l)
I

tI(X)
wI(X) (46)

We observe next that the function µcap defined in (4) is continuously differentiable for d ≥ 3, t ∈ (0, 1)
with

[µcap]′(t) = −Cd(1− t2)
d−3
2 .

Along with (20) and the explanations below this equation, this yields that µCap is continuously differ-
entiable with

[µCap]′(t) =


0, if |tI(X)| ≥ 1, d ≥ 4,

−1
2
, if d = 3,

−Cd(1− t2)
d−3
2 , if |tI(X)| < 1.

(47)

Moreover, the function tI = α−1/2 defined in (9) and (42) is continuously differentiable in the generic
point set X because α was shown so in (45). Therefore, the function β = µCap ◦ tI is continuously
differentiable in X with

∂βI
∂Xk,l

(X) = [µCap]′(tI(X)) · ∂tI
∂Xk,l

(X) = −1

2
[µCap]′(tI(X)) · [α(X)]−3/2 ∂α

∂Xk,l

(X), (48)
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whence, along with (46),

∇x(l)βI(X) = −1

2
[µCap]′(tI(X)) · [tI(X)]3∇x(l)α(X) = [µCap]′(tI(X)) · [tI(X)]2c

τ(l)
I wI(X).

(49)
Now, lines two and three in (47), yield the corresponding lines in (29). Clearly, the outcomes of (29)
depend continuously on X thanks to the continuity of tI , wI . This also proves the continuous differen-
tiability of βI onO.
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