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On the optimal control of viscous Cahn–Hilliard systems with
hyperbolic relaxation of the chemical potential

Pierluigi Colli, Jürgen Sprekels

Abstract

In this paper, we study an optimal control problem for a viscous Cahn–Hilliard system with
zero Neumann boundary conditions in which a hyperbolic relaxation term involving the second
time derivative of the chemical potential has been added to the first equation of the system. For
the initial-boundary value problem of this system, results concerning well-posedness, continu-
ous dependence and regularity are known. We show Fréchet differentiability of the associated
control-to-state operator, study the associated adjoint state system, and derive first-order nec-
essary optimality conditions. Concerning the nonlinearities driving the system, we can include
the case of logarithmic potentials. In addition, we perform an asymptotic analysis of the optimal
control problem as the relaxation coefficient approaches zero.

1 Introduction

Let Ω ⊂ R3 be a bounded and connected domain with smooth boundary ∂Ω. We denote by n the
unit outward normal to ∂Ω, with the associated outward normal derivative ∂n. Moreover, let T > 0
stand for some final time, and set

Qt := Ω× (0, t), Σt := ∂Ω× (0, t), for t ∈ (0, T ], and Q := QT , Σ := ΣT .

We then study the following optimal control problem:

(CP) Minimize the tracking-type cost functional

J(ϕ, u) :=
b1

2

∫∫
Q

|ϕ− ϕQ|2 +
b2

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3

2

∫∫
Q

|u|2 + κG(u)

=: J(ϕ, u) + κG(u) (1.1)

subject to the initial-boundary value system

α∂ttµ+ ∂tϕ−∆µ = 0 a.e. in Q, (1.2)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ w a.e. in Q, (1.3)

γ∂tw + w = u a.e. in Q, (1.4)

∂nµ = ∂nϕ = 0 a.e. on Σ, (1.5)

µ(0) = µ0, (∂tµ)(0) = ν0, ϕ(0) = ϕ0, w(0) = w0 a.e. in Ω, (1.6)

and to the control constraint

u ∈ Uad = {u ∈ U : u(x, t) ≤ u(x, t) ≤ u(x, t) for a.a. (x, t) in Q}. (1.7)
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P. Colli, J. Sprekels 2

Here, the control space is specified by
U = L∞(Q). (1.8)

The given bounds u, u ∈ L∞(Q) satisfy u ≤ u almost everywhere in Q, the targets ϕQ, ϕΩ are
given functions, and b1 ≥ 0, b2 ≥ 0, b3 > 0 are constants. Moreover, G : L2(Q) → [0,+∞) is
a convex and continuous functional enhancing the occurrence of sparsity of optimal controls, where
κ ≥ 0 is a fixed constant (the sparsity parameter); a typical choice for G is

G(u) = ‖u‖L1(Q) =

∫∫
Q

|u| . (1.9)

The equations (1.2)–(1.3) constitute a variation of the well-studied viscous Cahn–Hilliard system (see,
e.g., the recent contributions [9,10,12–14] and the references given therein)

∂tϕ−∆µ = 0 in Q, (1.10)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ w in Q, (1.11)

in which a hyperbolic relaxation term α∂ttµ has been added in the first equation. While hyperbolic
relaxations of the viscous Cahn–Hilliard system involving an inertial term of the phase variable ϕ have
been considered in the previous works [1–4, 11, 15, 16], an inertial term like α∂ttµ in (1.2) was to our
knowledge studied only in the recent paper [8].

In the above class of problems (which model, e.g., the coarsening processes in binary metallic alloys),
the unknown functions ϕ and µ usually stand for the order parameter, which can represent a scaled
density of one of the involved phases, and the chemical potential associated with the phase separation
process, respectively. The state variables ϕ and µ are monitored through the input variable w, which
is in turn determined by the action of the control u via the linear control equation (1.4). Eq. (1.4)
models how the “forcing” w is generated by the external control u. We remark that Eq. (1.4) could be
replaced by much more general partial differential equations modeling the relation between an L∞-
control u and a forcing w. In the practical application to the coarsening process of a binary metallic
alloy, a typical aim of the control problem (CP) is to monitor the system in such a way as to achieve
desired distributions ϕQ and ϕΩ of one of the metallic components in the container Ω during the
process and at the final time t = T , respectively, at minimal cost.

In the state system (1.2)–(1.6), γ > 0 and τ > 0 are given fixed constants, and µ0, ν0, ϕ0, w0

are given initial data. Moreover, f ′ denotes the derivative of a double-well potential f and stands
for the local part of the thermodynamic force driving the evolution of the system. Typically, f is split
into a (possibly nondifferentiable) convex part f1 and a smooth and concave perturbation f2. Typical
and physically relevant examples for f are the so-called classical regular potential, the logarithmic
double-well potential , and the double obstacle potential , which are given, in this order, by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.12)

flog(r) :=


(1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r

2 if r ∈ (−1, 1)
2 ln(2)− c1 if r ∈ {−1, 1}
+∞ if r 6∈ [−1, 1]

, (1.13)

f2obs(r) :=

{
c2(1− r2) if r ∈ [−1, 1]
+∞ if r 6∈ [−1, 1]

. (1.14)

Here, the constants ci in (1.13) and (1.14) satisfy c1 > 1 and c2 > 0, so that flog and f2obs are
nonconvex. Notice that for f = flog the term f ′(ϕ) occurring in (1.3) becomes singular as ϕ ↘ −1
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Control for Cahn–Hilliard systems with hyperbolic relaxation 3

and ϕ ↗ 1, which forces the order parameter ϕ to attain its values in the physically meaningful
range (−1, 1). In the nonsmooth case (1.14), the convex part f1 is given by the indicator function of
[−1, 1]. Accordingly, in such cases one has to replace the derivative of the convex part by the subdif-
ferential ∂f1 and, consequently, to interpret (1.3) as a differential inclusion or a variational inequality.
We admit in this paper only the regular and logarithmic cases.

There exists a large literature concerning the optimal control of viscous Cahn–Hilliard systems that
cannot be cited here; in this connection, we refer the interested reader to the references given in the
recent papers [5,7,9]. On the other hand, optimal control problems like (CP) for the system (1.2)–(1.6)
have not been investigated before.

The paper is organized as follows. In the following section, we formulate the general assumptions and
state the main results concerning the system (1.2)–(1.6). In Section 3, we show the Fréchet differ-
entiability of the control-to-state operator associated with the state system. Section 4 then brings an
analysis of the control problem (CP) for fixed α ∈ (0, 1]. Besides existence of an optimal control,
first-order necessary optimality conditions are shown in terms of a variational inequality and the corre-
sponding adjoint state variables. We also obtain a sparsity result in the case κ > 0. The final section
then deals with asymptotic results as α↘ 0. We show that both the state and adjoint state variables
converge in a well-defined sense to their counterparts associated the nonrelaxed case when α = 0,
and we also prove a convergence result for the optimal controls as α↘ 0.

Prior to this, let us fix some notation. For any Banach space X , we let X∗ denote its dual space,
and ‖ · ‖X stands for the norm in X and any power of X . For two Banach spaces X and Y that
are both continuously embedded in some topological vector space Z , the linear space X ∩ Y is the
Banach space equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y for v ∈ X ∩ Y . The
standard Lebesgue and Sobolev spaces Lp(Ω) and Wm,p(Ω) are defined on Ω for 1 ≤ p ≤ ∞ and
m ∈ N∪{0}. For the sake of convenience, we denote the norm of Lp(Ω) by ‖ · ‖p for 1 ≤ p ≤ ∞.
If p = 2, we employ the usual notation Hm(Ω) := Wm,2(Ω). We also set

H := L2(Ω), V := H1(Ω), W :=
{
v ∈ H2(Ω) : ∂nv = 0 on Γ

}
. (1.15)

Moreover, V ∗ is the dual space of V , and 〈 · , · 〉 stands for the duality pairing between V ∗ and V .
We also denote by ( · , · ) the natural inner product in H . As usual, H is identified with a subspace of
the dual space V ∗ according to the identity

〈u, v〉 = (u, v) for every u ∈ H and v ∈ V .

Note that W ⊂ V ⊂ H ≡ H∗ ⊂ V ∗ with dense and compact embeddings. Finally, we introduce for
functions v ∈ L1(Q) the temporal antiderivative 1 ∗ v by setting

(1 ∗ v)(x, t) :=

∫ t

0

v(x, s) ds for a.e. x ∈ Ω and all t ∈ [0, T ] . (1.16)

About the constants used in the sequel for estimates, we adopt the rule that C denotes any positive
constant that depends only on the given data. The value of such generic constants C may change
from formula to formula or even within the lines of the same formula. Finally, the notation Cδ indicates
a positive constant that additionally depends on the quantity δ.
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2 General assumptions and properties of the state system

In this section, we formulate the general assumptions for the data of the system (1.2)–(1.6) and state
known existence, continuous dependence, and regularity results. First, let us remark that the positive
parameter α is not listed in the assumptions below, since it is also involved in the related asymptotic
analysis. Consequently, we let

0 < α ≤ 1.

On the other hand, throughout the paper we generally assume:

(A1) τ > 0 and γ > 0 are fixed constants.

(A2) f = f1 + f2, where f1 : R→ [0,+∞] is convex and lower semicontinuous with f1(0) = 0,
and where f2 : R→ R has a Lipschitz continuous first derivative f ′2 on R.

Note that (A2) implies that the subdifferential ∂f1 is maximal monotone in R × R and satisfies
0 ∈ ∂f1(0). Let D(∂f1) denote the domain of the subdifferential. An important requirement is the
following:

(A3) There are −∞ ≤ r− < 0 < r+ ≤ +∞ such that D(∂f1) = (r−, r+) and the restrictions
of f1 and f2 to (r−, r+) belong to C3(r−, r+). Hence, for r ∈ (r−, r+), we have ∂f1(r) = {f ′1(r)}.
Moreover, we assume that

lim
r↘r−

f ′1(r) = −∞, lim
r↗r+

f ′1(r) = +∞. (2.1)

Observe that the conditions (A2) and (A3) are fulfilled in each of the cases considered in (1.12) and
(1.13), with the domain D(∂f1) given by R and (−1, 1), respectively.

We further assume:

(A4) µ0 ∈ W , ν0 ∈ V , w0 ∈ L∞(Ω), ϕ0 ∈ W , and it holds r− < ϕ0(x) < r+ for all x ∈ Ω.

Observe that ϕ0 ∈ W implies that ϕ0 ∈ C0(Ω). Moreover, we obviously have that

m0 :=
1

|Ω|

∫
Ω

ϕ0

lies in the interior of D(∂f1). Here, |Ω| denotes the Lebesgue measure of Ω, and m0 thus repre-
sents the mean value of ϕ0. In the following, we use the general notation v to denote the mean value
of a generic function v ∈ L1(Ω). If v is in V ∗, then we can set

v :=
1

|Ω|
〈v, 1〉 (2.2)

as well, noting that the constant function 1 is an element of V . Clearly, v is the usual mean value of v
if v ∈ H , and m0 = ϕ0.

Finally, once and for all we fix a ball in the control space that contains Uad:

(A5) The constant R > 0 is such that Uad ⊂ UR := {u ∈ L∞(Q) : ‖u‖L∞(Q) < R}.

In the following theorem, we collect results that have been stated and proved in Theorems 2.2 to 2.5
in [8]. Observe that some of these results can be shown under slightly weaker assumptions, but the
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version stated here is tailored to the application to the control problem (CP). We have the following
result.

Theorem 2.1. Suppose that (A1)–(A5) are satisfied. Then the state system (1.2)–(1.6) has for any u ∈
UR and every α ∈ (0, 1] a unique solution triple (µα, ϕα, wα) satisfying the regularity requirements

µα ∈ W 2,∞(0, T ;H) ∩W 1,∞(0, T ;V ) ∩ L∞(0, T ;W ), (2.3)

ϕα ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.4)

wα ∈ W 1,∞(0, T ;L∞(Ω)). (2.5)

Moreover, there is a constantK1 > 0, which depends only on the data of the state system andR and
not on α ∈ (0, 1], such that

α‖µα‖W 2,∞(0,T ;V ∗) + α1/2‖µα‖W 1,∞(0,T ;H) + ‖µα‖L∞(0,T ;V ) + ‖wα‖W 1,∞(0,T ;L∞(Ω))

+ ‖ϕα‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖f ′1(ϕα)‖L∞(0,T ;H) ≤ K1 . (2.6)

In addition, there holds a uniform separation condition in the following form: for any α ∈ (0, 1], there
are constants r∗(α), r∗(α), which depend only on the data of the state system and R, such that

r− < r∗(α) ≤ ϕα(x, t) ≤ r∗(α) < r+ for all (x, t) ∈ Q. (2.7)

The above result implies that for every α ∈ (0, 1] the control-to-state operator

Sα = (Sα1 , S
α
2 , S

α
3 ) : u 7→ Sα(u) = (Sα1 (u), Sα2 (u), Sα3 (u)) := (µα, ϕα, wα) (2.8)

is a well-defined mapping between UR and the Banach space identified by the regularity proper-
ties (2.3)–(2.5).

Remark 2.2. Notice that, due to the compactness of the embedding W ⊂ C0(Ω), it follows from [17,
Sect. 8, Cor. 4] and (2.6) that ϕα ∈ C0(Q). By the same token, the compact embedding V ⊂ Lp(Ω)
for 1 ≤ p < 6 yields that also µα ∈ C1([0, T ];Lp(Ω)) for 1 ≤ p < 6. In addition, owing to (2.7) and
(A3) there exists for every α ∈ (0, 1] a constant K2(α) > 0, which depends only on R and the data
of the state system, such that

max
i=1,2

max
j=0,1,2,3

‖f (j)
i (ϕα)‖L∞(Q) ≤ K2(α) , (2.9)

whenever ϕα = Sα2 (u) for some u ∈ UR. Moreover, in the case when r− = −∞ and r+ = +∞
so that D(∂f1) = R and f1 ∈ C3(R) in (A3), the values r∗(α) and r∗(α) in (2.7), as well as the
constant K2(α) in (2.9), can be taken independent of α. This is due to the bound (2.6) which ensures
that ‖ϕα‖C0(Q) ≤ C.

We also have the following continuous dependence result.

Theorem 2.3. Suppose that (A1)–(A5) are fulfilled, and let α ∈ (0, 1]. Then there is a constant
K3(α) > 0 which depends only on R and the data of the state system such that the following holds
true: whenever ui ∈ UR are given and (µαi , ϕ

α
i , w

α
i ) = Sα(ui), i = 1, 2, then

‖µα1 − µα2‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ϕα1 − ϕα2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖wα1 − wα2 ‖H1(0,T ;H) ≤ K3(α)‖u1 − u2‖L2(0,T ;H) . (2.10)

DOI 10.20347/WIAS.PREPRINT.3190 Berlin 2025
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Proof. First observe that we have (wα1 − wα2 )(0) = 0 and

γ∂t(w
α
1 − wα2 ) + wα1 − wα2 = u1 − u2 a.e. in Q.

Testing this identity by ∂t(wα1 − wα2 ) then immediately yields that

‖wα1 − wα2 ‖H1(0,T ;H) ≤ C ‖u1 − u2‖L2(0,T ;H),

where the constant C depends on R and the data of the state system, but not on α. The validity of
(2.10) is then a direct consequence of the inequality (2.27) in the statement of [8, Thm. 2.5].

3 Differentiability of the solution operator

In this section, we are going to prove differentiablity properties for the solution operator Sα, where,
throughout this section, we assume that α ∈ (0, 1] is fixed. To this end, let u ∈ UR be a fixed control
with associated state (µα, ϕα, wα) = Sα(u). We then consider the linearization of the state system
(1.2)–(1.6) at u in the direction h ∈ L2(0, T ;H), which we write in the form

α〈∂ttη, ρ〉+

∫
Ω

∂tψρ+

∫
Ω

∇η · ∇ρ = 0 for all ρ ∈ V and a.e. t ∈ (0, T ), (3.1)

τ∂tψ −∆ψ + f ′′(ϕα)ψ = η + v a.e. in Q, (3.2)

γ∂tv + v = h a.e. in Q, (3.3)

∂nψ = 0 a.e. on Σ, (3.4)

η(0) = ∂tη(0) = ψ(0) = v(0) = 0 a.e. in Ω. (3.5)

Notice that (3.1) is the weak form of the PDE α∂ttη + ∂tψ − ∆η = 0 together with the boundary
condition ∂nη = 0.

We have the following result concerning well-posedness.

Theorem 3.1. Suppose that (A1)–(A5) are fulfilled, let α ∈ (0, 1] and u ∈ UR be given, as well as
(µα, ϕα, wα) = Sα(u). Then the system (3.1)–(3.5) has for every h ∈ L2(0, T ;H) a unique solution
triple (ηh, ψh, vh) such that

ηh ∈ W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (3.6)

ψh ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.7)

vh ∈ H1(0, T ;H). (3.8)

Moreover, there is a constant K4(α), which depends on R and the data, such that

‖ηh‖W 2,∞(0,T ;V ∗)∩W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ψh‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W )

+ ‖vh‖H1(0,T ;H) ≤ K4(α)‖h‖L2(0,T ;H) . (3.9)

Proof. Obviously, the PDE (3.3), together with the initial condition v(0) = 0 a.e. in Ω, has for every
h ∈ L2(0, T ;H) the unique solution

vh(x, t) =
1

γ

∫ t

0

e−(t−s)/γh(x, s) ds for a.e. (x, t) ∈ Q.

DOI 10.20347/WIAS.PREPRINT.3190 Berlin 2025
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It is readily seen that

‖vh‖H1(0,T ;H) ≤ C‖h‖L2(0,T ;H), (3.10)

where, here and in the remainder of this proof, C > 0 denotes constants that may depend on α, R,
and the data of the system, but neither on n ∈ N nor on h ∈ L2(0, T ;H). We thus have to show the
existence of a unique pair (ηh, ψh) that has zero initial data and solves (3.1), (3.2) with v = vh, and
(3.4).

We argue by a Faedo–Galerkin approximation using a special basis. To this end, we take the eigen-
values {λj}j∈N of the eigenvalue problem

−∆y = λy in Ω, ∂ny = 0 on ∂Ω,

and let {ej}j∈N ⊂ W be associated eigenfunctions, normalized by ‖ej‖H = 1, j ∈ N. Then, it
turns out that

0 = λ1 < λ2 ≤ . . . , lim
j→∞

λj = +∞,∫
Ω

ejek =

∫
Ω

∇ej · ∇ek = 0 for j 6= k,

and it is clear that e1 is just the constant function |Ω|−1/2. We then define the n-dimensional spaces
Vn := span{e1, . . . , en} for n ∈ N, where V1 is just the space of constant functions on Ω. It is well
known that the union of these spaces is dense in both H and V . The approximating n-dimensional
problem is stated as follows: find functions

ηn(x, t) =
n∑
j=1

ηnj(t)ej(x), ψn(x, t) =
n∑
j=1

ψnj(t)ej(x), (3.11)

such that

α(∂ttηn(t), ρ) + (∂tψn(t), ρ) +

∫
Ω

∇ηn(t) · ∇ρ = 0

for all t ∈ [0, T ] and every ρ ∈ Vn, (3.12)

τ(∂tψn(t), ρ) +

∫
Ω

∇ψn(t) · ∇ρ+ ((f ′′(ϕα)ψn)(t), ρ) = (ηn(t) + vh(t), ρ)

for all t ∈ [0, T ] and every ρ ∈ Vn, (3.13)

ηn(0) = ∂tηn(0) = ψn(0) = 0 a.e. in Ω . (3.14)

We now take ρ = ek in the equations (3.12) and (3.13), for k = 1, . . . , n, obtaining a Cauchy
problem for an explicit system of linear ordinary differential equations with zero initial conditions, which
is of second order in the variables ηnk and of first order in the variables ψnk. Moreover, the coefficient
functions and source terms all belong to H1(0, T ). By Carathéodory’s theorem, the Cauchy problem
has a unique solution expressed by ηnk, ψnk, with ηnk ∈ H3(0, T ) and ψnk ∈ H2(0, T ), for k =
1, . . . , n. This solution uniquely determines a pair (ηn, ψn) ∈ H3(0, T ;Vn) × H2(0, T ;Vn) that
solves (3.12)–(3.14).

We now derive a series of a priori estimates for the finite-dimensional approximations.

DOI 10.20347/WIAS.PREPRINT.3190 Berlin 2025
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First estimate. We take the time derivative of (3.13) and then test it by ∂tψn. Then, we choose
ρ = ∂tηn in (3.12) and add the resulting equations, noting the cancellation of two terms. Next, we
integrate with respect to time over [0, t] for t ∈ (0, T ], obtaining the identity

α

2
‖∂tηn(t)‖2

H +
1

2
‖∇ηn(t)‖2

H +
τ

2
‖∂tψn(t)‖2

H +

∫∫
Qt

|∇(∂tψn)|2

= −
∫∫

Qt

f ′′(ϕα)|∂tψn|2 −
∫∫

Qt

f ′′′(ϕα)∂tϕ
α ψn ∂tψn +

∫∫
Qt

∂tvh ∂tψn

=: I1 + I2 + I3, (3.15)

with obvious notation. Owing to (2.7), Young’s inequality, and (3.10), we have

I1 + I3 ≤ C

∫∫
Qt

|∂tψn|2 + C‖h‖2
L2(0,T ;H) .

Now observe that, thanks to the zero initial conditions and Hölder’s inequality,

‖ηn(t)‖2
H ≤ t

∫∫
Qt

|∂tηn|2, ‖ψn(t)‖2
H ≤ t

∫∫
Qt

|∂tψn|2, for all t ∈ [0, T ]. (3.16)

Therefore, by virtue of (2.7), (2.9), Young’s inequality, and the continuity of the embedding V ⊂ L4(Ω),

I2 ≤ C

∫ t

0

‖∂tϕα(s)‖L4(Ω) ‖ψn(s)‖H ‖∂tψn(s)‖L4(Ω) ds

≤ 1

2

∫∫
Qt

(
|∇∂tψn|2 + |∂tψn|2

)
+ C

∫ t

0

‖∂tϕα(s)‖2
V ‖∂tψn‖2

L2(0,T ;H) ds, (3.17)

where, in view of (2.6), the function s 7→ ‖∂tϕα(s)‖2
V belongs to L1(0, T ). Hence, invoking Gron-

wall’s lemma, it is straightforward to infer from the above estimates that

α1/2‖ηn‖W 1,∞(0,T ;H) + ‖∇ηn‖L∞(0,T ;H)3

+ ‖ψn‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C‖h‖L2(0,T ;H) . (3.18)

Complementary estimates. In the following, let Pn denote the H-orthogonal projection operator
onto Vn. It is well known that

‖Pnρ‖H ≤ ‖ρ‖H and ‖Pnρ‖V ≤ CΩ‖ρ‖V for all ρ ∈ V, (3.19)

with a constant CΩ > 0 that depends only on Ω.

Taking now an arbitrary ρ ∈ V in (3.12), and using (3.19) and the orthogonality of the basis functions,
we find that

α〈∂ttηn(t), ρ〉 = α(∂ttηn(t), Pn(ρ)) + α(∂ttηn(t), ρ− Pn(ρ))

≤ |α(∂ttηn(t), Pn(ρ))| ≤
∣∣∣∣(∂tψn(t), Pn(ρ)) +

∫
Ω

∇ηn(t) · ∇Pn(ρ)

∣∣∣∣
≤ C

(
‖∂tψn‖L∞(0,T ;H) + ‖∇ηn‖L∞(0,T ;H)3

)
‖ρ‖V for a.e. t ∈ (0, T ), (3.20)
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so that from (3.18) it follows that

α‖∂ttηn‖L∞(0,T ;V ∗) ≤ C‖h‖L2(0,T ;H) . (3.21)

In addition, we can take ρ = −∆(ψn(t)) in (3.13) and integrate by parts. We then obtain

‖∆ψn(t)‖2
H = (τ∂tψn(t) + f ′′(ϕα(t))ψn(t)− vh(t),∆ψn(t)) +

∫
Ω

∇ηn(t) · ∇ψn(t)

≤ 1

2
‖∆ψn(t)‖2

H + C
(
1 + ‖ψn‖2

W 1,∞(0,T ;H) + ‖vh‖2
L∞(0,T ;H)

)
+ ‖∇ηn‖L∞(0,T ;H)3‖∇ψn‖L∞(0,T ;H)3 for a.e. t ∈ (0, T ) . (3.22)

Consequently, from (3.18) and the elliptic regularity theory, we find that

‖∆ψn‖L∞(0,T ;H) + ‖ψn‖L∞(0,T ;W ) ≤ C‖h‖L2(0,T ;H) . (3.23)

Conclusion of the proof. By virtue of the estimates shown above, we conclude that, for all n ∈ N,

‖ηn‖W 2,∞(0,T ;V ∗)∩W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ψn‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W )

≤ C‖h‖L2(0,T ;H) . (3.24)

Hence there exists a pair (η, ψ) such that (possibly on a subsequence, which is again labeled by
n ∈ N)

ηn → η weakly star in W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), (3.25)

ψn → ψ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ). (3.26)

By a standard argument (which needs no repetition here) it then follows that the pair (η, ψ) solves the
equations (3.1), (3.2) with v = vh, and (3.4). In addition, we easily conclude that η(0) = ψ(0) =
0. Moreover, it follows from (3.24) and the lower semicontinuity properties of norms that the triple
(ηh, ψh, vh), where ηh = η and ψh = ψ, satisfies the estimate (3.9). From this it is easily seen that
the solution is unique: indeed, if (ηi, ψi, vi), i = 1, 2, are two solutions, then the triple (η, ψ, v) :=
(η1 − η2, ψ1 − ψ2, v1 − v2) solves the system (3.1)–(3.5) with h = 0, whence (η, ψ, v) = (0, 0, 0)
follows. With this, the assertion is completely proved.

Next, we show a differentiability result for the control-to-state operators Sα, for α ∈ (0, 1].

Theorem 3.2. Suppose that (A1)–(A5) are fulfilled, and let α ∈ (0, 1] be given. Then the control-to-
state operator Sα is Fréchet differentiable in UR as a mapping from L∞(Q) into the Banach space

X := C0([0, T ];H)×
(
H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )

)
×H1(0, T ;H). (3.27)

Moreover, for every u ∈ UR the Fréchet derivative DSα(u) ∈ L(L∞(Q),X) is defined as follows:
for all h ∈ L∞(Q) it holds DSα(u)[h] = (ηh, ψh, vh), where (ηh, ψh, vh) is the unique solution to
the linearized system (3.1)–(3.5).
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Proof. Let α ∈ (0, 1] and u ∈ UR be given, and let (µα, ϕα, wα) = Sα(u). Since UR is open, it
holds u + h ∈ UR provided ‖h‖L∞(Q) is sufficiently small. In the following we only consider such
variations h, and we define the quantities

(µh, ϕh, wh) := Sα(u+ h), yh := µh − µα − ηh,
zh := ϕh − ϕα − ψh, ωh := wh − wα − vh,

where (ηh, ψh, vh) denotes the unique solution to the linearized system (3.1)–(3.5). Notice that

yh ∈ W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ ∩L∞(0, T ;V ),

zh ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

ωh ∈ H1(0, T ;H),

according to Theorem 2.1 and Theorem 3.1. Moreover, from the estimate (2.10) in Theorem 2.3 we
conclude that

‖µh − µα‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩L∞(0,T ;V ) + ‖ϕh − ϕα‖H1(0,T ;H)∩L∞(0,T ;V )L2(0,T ;W )

≤ C‖h‖L2(0,T ;H) , (3.28)

where, here and in the remainder of this proof, C > 0 denotes constants that may depend on α, R,
and the data of the system, but not on the special choice of h with u+ h ∈ UR.

Next, we observe that it follows from the estimate (3.9) in Theorem 3.1 that the mapping h 7→
(ηh, ψh, vh) belongs to L(L∞(Q),X), in particular. Hence it suffices to show that

lim
‖h‖L∞(Q)→0

‖(yh, zh, ωh)‖X
‖h‖L∞(Q)

= 0, (3.29)

which is certainly satisfied if

‖yh‖2
C0([0,T ];H) + ‖zh‖2

H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖ωh‖2
H1(0,T ;H) ≤ C‖h‖4

L2(0,T ;H)

(3.30)

for all h ∈ L∞(Q) with u + h ∈ UR. We are going to show that (3.30) is in fact valid. To this end,
observe that the triple (yh, zh, ωh) apparently solves the system

α〈∂ttyh, ρ〉+ (∂tzh, ρ) +

∫
Ω

∇yh · ∇ρ = 0 for every ρ ∈ V , a.e. in (0, T ), (3.31)

τ∂tzh −∆zh = yh + ωh −
(
f ′(ϕh)− f ′(ϕα)− f ′′(ϕα)ψh

)
a.e. in Q, (3.32)

γ∂tωh + ωh = 0 a.e. in Q, (3.33)

∂nzh = 0 a.e. on Σ, (3.34)

yh(0) = ∂tyh(0) = zh(0) = ωh(0) = 0 a.e. in Ω. (3.35)

Obviously, it results that ωh = 0 a.e. in Q. Moreover, Taylor’s theorem with integral remainder yields
almost everywhere in Q the identity

f ′(ϕh)− f ′(ϕα)− f ′′(ϕα)ψh = f ′′(ϕα)zh + Ah (ϕh − ϕα)2, where

Ah :=

∫ 1

0

∫ 1

0

s f ′′′(ϕα + τ s (ϕh − ϕα)) dτ ds . (3.36)
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Owing to (A3) and (2.7), we have
|Ah| ≤ C a.e. in Q. (3.37)

We now integrate (3.31) over (0, t) for t ∈ (0, T ] to obtain the equation

α(∂tyh, ρ) + (zh, ρ) +

∫
Ω

∇(1 ∗ yh) · ∇ρ = 0, (3.38)

where the expression 1 ∗ yh is defined in (1.16). We test (3.38) by yh, (3.32) by zh, add the resulting
identities, and integrate with respect to time over (0, t) where t ∈ (0, T ]. Noting the cancellation of
two terms, we then arrive at the identity

α

2
‖yh(t)‖2

H +
1

2
‖∇(1 ∗ yh(t))‖2

H×H×H +
τ

2
‖zh(t)‖2

H +

∫∫
Qt

|∇zh|2

= −
∫∫

Qt

f ′′(ϕα)|zh|2 −
∫∫

Qt

Ah(ϕh − ϕα)2zh . (3.39)

Thanks to (A3), (2.7), (3.28), and (3.37), the right-hand side of this equation can be bounded by

C

∫∫
Qt

|zh|2 + C

∫ t

0

‖zh(s)‖H ‖ϕh(s)− ϕα(s)‖2
L4(Ω) ds

≤ C

∫∫
Qt

|zh|2 + C

∫ t

0

‖ϕh(s)− ϕα(s)‖4
L4(Ω) ds

≤ C

∫∫
Qt

|zh|2 + C‖h‖4
L2(0,T ;H) , (3.40)

where in the last estimate the continuity of the embedding V ⊂ L4(Ω) was used. Combining (3.39)
with (3.40), and invoking Gronwall’s lemma, we then conclude that

‖yh‖2
C0([0,T ];H) + ‖zh‖2

C0([0,T ];H)∩L2(0,T ;V ) ≤ C‖h‖4
L2(0,T ;H) . (3.41)

At this point we note that zh solves a linear parabolic initial-boundary value problem of heat conduction
type, with zero initial datum and zero Neumann boundary condition, whose right-hand side gh :=
yh − f ′′(ϕα)zh − Ah(ϕh − ϕα)2 has already been shown to satisfy the condition ‖gh‖2

L2(0,T ;H) ≤
C‖h‖4

L2(0,T ;H). It therefore follows from standard linear parabolic theory that

‖zh‖2
H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) ≤ C‖h‖4

L2(0,T ;H) . (3.42)

Combining (3.41) with (3.42), and recalling that ωh = 0, we obtain that (3.30) is valid, which finishes
the proof of the assertion.

Remark 3.3. Note that the value of the constant R > 0 did not really matter in the above proof. We
therefore conclude that the Fréchet derivatives DSα(u) ∈ L(L∞(Q),X) exist for all u ∈ L∞(Q).

4 The optimal control problem

In this section, we investigate the control problem formulated in the introduction, which, in order to
stress its dependence on the parameter α ∈ (0, 1], will in the following be denoted by (CPα). In
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addition to the general assumptions (A1)–(A5), we postulate:

(A6) b1 ≥ 0, b2 ≥ 0, b3 > 0 and κ ≥ 0 are given constants.

(A7) ϕQ ∈ L2(Q), ϕΩ ∈ V , and u, u ∈ L∞(Q) are given functions such that u ≤ u almost
everywhere in Q.

(A8) The mapping G : L2(Q)→ R is convex, continuous, and nonnegative.

4.1 Existence

We begin our analysis with an existence result.

Theorem 4.1. Suppose that (A1)–(A8) are fulfilled. Then the optimal control problem (CPα) has for
every α ∈ (0, 1] at least one solution.

Proof. Obviously, the cost functional J is nonnegative. Therefore, there is a minimizing sequence
{un}n∈N ⊂ Uad, i.e., we have

lim
n→∞

J(Sα2 (un), un) = inf
u∈Uad

J(Sα2 (u), u) ≥ 0.

Then the triple (µαn, ϕ
α
n, w

α
n) := Sα(un) solves for n ∈ N the state system (1.2)–(1.6) with u =

un and thus satisfies the global bounds (2.6) and (2.9). We may therefore assume without loss of
generality that, with a suitable triple (µ, ϕ, w),

µαn → µ weakly star in W 2,∞(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) , (4.1)

ϕαn → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) , (4.2)

wαn → w weakly star in W 1,∞(0, T ;L∞(Ω)) , (4.3)

ϕαn → ϕ strongly in C0(Q) , (4.4)

where the last convergence result is a consequence of [17, Sect. 8, Cor. 4] and the compactness of
the embedding W ⊂ C0(Ω). In addition, we have r∗(α) ≤ ϕαn ≤ r∗(α) in Q for every n ∈ N.
Hence, (4.4) and (A3) imply that

f ′(ϕαn)→ f ′(ϕ) strongly in C0(Q). (4.5)

Moreover„ Uad is a convex, bounded and closed subset of L∞(Q). Therefore, we may assume that
there is some uα ∈ Uad such that

un → uα weakly star in L∞(Q). (4.6)

Passage to the limit as n → ∞ in the equations (1.2)–(1.6), written for ((µαn, ϕ
α
n, w

α
n), un), taking

(4.1)–(4.6) into account, then leads to the conclusion that (µ, ϕ, w) solves the system (1.2)–(1.6) for
the control u = uα. In other words, we have (µ, ϕ, w) = (µα, ϕα, wα) = Sα(uα). It then follows
from the semicontinuity properties of the functionals J and G (notice that G is convex and continuous
and thus weakly sequentially lower semicontinuous on L2(Q)) that

J(ϕα, uα) = J(ϕα, uα) + κG(uα) ≤ lim inf
n→∞

(J(ϕαn, un) + κG(un)) = inf
u∈Uad

J(Sα2 (u), u),

which means that u = uα is an optimal control.
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4.2 Necessary optimality conditions

We begin by deriving a first condition for a control to be locally optimal. To this end, recall that uα ∈
Uad is called locally optimal for (CP) in the sense of Lp(Q) for some p ∈ [1,+∞] if and only if there
is some ε > 0 such that J(Sα2 (uα), uα) ≤ J(Sα2 (u), u) for all u ∈ Uad with ‖u − uα‖Lp(Q) ≤ ε.
Observe that every control which is locally optimal in the sense of Lp(Q) for some p ∈ [1,+∞)
is also locally optimal in the sense of L∞(Q). Therefore, all necessary conditions derived for locally
optimal controls in the sense of L∞(Q) are automatically valid also for locally optimal controls in the
sense of Lp(Q) for any p ∈ [1,+∞) and thus, in particular, for (globally) optimal controls.

We have the following result.

Lemma 4.2. Suppose that (A1)–(A8) are fulfilled and α ∈ (0, 1]. Moreover, assume that uα ∈ Uad

is a locally optimal control for (CP) in the sense of L∞(Q) with associated state (µα, ϕα, wα) =
Sα(uα). Then there is some λα ∈ ∂G(uα) (where ∂G(uα) ⊂ L2(Q) denotes the subdifferential of
G at uα) such that it holds

b1

∫∫
Q

ψh(ϕ
α − ϕQ) + b2

∫
Ω

ψh(T )(ϕα(T )− ϕΩ) + b3

∫∫
Q

uα(u− uα)

+ κ

∫∫
Q

λα(u− uα) ≥ 0 for all u ∈ Uad, (4.7)

where (ηh, ψh, vh) is the unique solution to the linearized system (3.1)–(3.5) associated with h =
u− uα.

Proof. For the following, we introduce the reduced functionals Ĵα and Ĵα by setting

Ĵα(u) := J(Sα2 (u), u), Ĵα(u) := Ĵα(u) + κG(u), for u ∈ L∞(Q). (4.8)

Then, by Theorem 3.2 and the quadratic form of the differentiable part J of the cost functional, it
follows from the chain rule that the mapping Ĵα : L∞(Q)→ R has a Fréchet derivative DĴα(u) for
every u ∈ L∞(Q). From the convexity of Uad and of G we then infer that

DĴα(uα)[u− uα] + κ(G(u)−G(uα)) ≥ 0 for all u ∈ Uad.

A standard argument from convex analysis (for the details, see, e.g., [18, Sect. 4.1]) yields that there
is some λα ∈ ∂G(uα) such that

DĴα(uα)[u− uα] + κ

∫∫
Q

λα(u− uα) ≥ 0 for all u ∈ Uad. (4.9)

Finally, we infer from the chain rule, using Theorem 3.2 and the special form of J (which, in particular,
does not involve the first and third solution components), that

DĴα(uα)[u− uα]

= b1

∫∫
Q

ψh(ϕ
α − ϕQ) + b2

∫
Ω

ψh(T )(ϕα(T )− ϕΩ) + b3

∫∫
Q

uα(u− uα),

where h = u− uα. This concludes the proof of the assertion.
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As usual, we improve the still rather useless optimality condition (4.7) by means of the adjoint variables.
We write the associated adjoint system in the form

α∂ttp−∆p− q = 0 a.e. in Q , (4.10)

− ∂t(p+ τq)−∆q + f ′′(ϕα)q = b1(ϕα − ϕQ) a.e. in Q , (4.11)

− γ∂tr + r − q = 0 a.e. in Q , (4.12)

∂np = ∂nq = 0 a.e. on Σ , (4.13)

p(T ) = ∂tp(T ) = r(T ) = 0, q(T ) =
b2

τ
(ϕα(T )− ϕΩ) a.e. in Ω . (4.14)

We have the following well-posedness result.

Theorem 4.3. Suppose that (A1)–(A8) are fulfilled and that α ∈ (0, 1]. In addition, let uα ∈ UR be
given and (µα, ϕα, wα) = Sα(uα). Then the system (4.10)–(4.14) has a unique solution (pα, qα, rα)
with the regularity

pα ∈ W 2,∞(0, T ;H) ∩W 1,∞(0, T ;V ) ∩ L∞(0, T ;W ) , (4.15)

qα ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ) , (4.16)

rα ∈ H2(0, T ;H) ∩ C1([0, T ];V ) ∩H1(0, T ;W ) . (4.17)

Moreover, there is a constantK5(α) > 0, which depends only onR and the data of the state system,
such that

α‖pα‖W 2,∞(0,T ;H) + α1/2‖pα‖W 1,∞(0,T ;V ) + ‖pα‖L∞(0,T ;W )

+ ‖qα‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖rα‖W 1,∞(0,T ;V )∩H1(0,T ;W )

+ ‖pα + τqα‖H1(0,T ;H) + α1/2‖∂tqα‖L2(0,T ;H) + α1/2‖∂ttrα‖L2(0,T ;H) ≤ K5(α). (4.18)

Proof. The existence proof follows that of Theorem 3.1: we again employ a Faedo–Galerkin approxi-
mation using the same basis functions as in the proof of Theorem 3.1. To keep the paper at a reason-
able length, we avoid here to write the approximating system explicitly and only give formal estimates
for (p, q, r) that would be rigorous on the level of the finite-dimensional approximations. In the follow-
ing, we use the notation

Qt := Ω× (t, T ), for t ∈ [0, T ).

First estimate. To begin with, we first test (4.10) by −∂tp, (4.11) by q, and (4.12) by −∂tr, and add
the resulting equations, noting the cancellation of two terms. Then we integrate over (t, T ), where
t ∈ [0, T ) is arbitrary. Using the terminal conditions (4.14), we arrive at the identity

α

2
‖∂tp(t)‖2

H +
1

2

∫
Ω

|∇p(t)|2 +
τ

2
‖q(t)‖2

H +

∫∫
Qt

|∇q|2 + γ

∫∫
Qt

|∂tr|2 +
1

2
‖r(t)‖2

H

=
b2

2

2τ

∫
Ω

|ϕα(T )− ϕΩ|2 −
∫∫

Qt

f ′′(ϕα)q2 +

∫∫
Qt

(
b1(ϕα − ϕQ)− ∂tr

)
q . (4.19)

The first term on the right-hand side of (4.19) is under control due to (2.6) and (A7). Next, we note that

−
∫∫

Qt

f ′′(ϕα)q2 = −
∫∫

Qt

f ′′1 (ϕα)q2 −
∫∫

Qt

f ′′2 (ϕα)q2,
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with the first contribution being nonpositive and the second one being bounded by C
∫∫

Qt q
2, due

to (A2), (2.6) and (A3). About the third term on the right-hand side of (4.19), by (2.6), (A7) and Young’s
inequality we have that∫∫

Qt

(
b1(ϕα − ϕQ)− ∂tr

)
q ≤ γ

2

∫∫
Qt

|∂tr|2 + C

∫∫
Qt

q2.

Then, using Gronwall’s lemma, we immediately see that

α1/2‖∂tp‖L∞(0,T ;H) + ‖∇p‖L∞(0,T ;H)3 + ‖q‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖r‖H1(0,T ;H) ≤ C , (4.20)

where the constant C > 0 depends on the data of the system, but is independent of α ∈ (0, 1].

Second estimate. Next, we test (4.11) by p+ τq, obtaining the identity

1

2
‖(p+ τq)(t)‖2

H +

∫∫
Qt

∇q · ∇(p+ τq)

=
τ 2

2
‖q(T )‖2 +

∫∫
Qt

(
b1(ϕα − ϕQ)− f ′′(ϕα)q

)
(p+ τq) .

Hence, by virtue of Young’s inequality, (4.20) and (2.9), we find from Gronwall’s lemma that ‖p +
τq‖L∞(0,T ;H) ≤ Cα. Therefore, using once more (4.20), it turns out that ‖p‖L∞(0,T ;H) ≤ Cα,
which, in turn, implies that

‖p‖L∞(0,T ;V ) ≤ Cα . (4.21)

Third estimate. In this estimate, which is entirely formal (but completely justified on the level of the
Faedo–Galerkin approximations), we first test (4.10) by ∆∂tp. Taking the boundary conditions (4.13)
and the terminal conditions (4.14) into account, we obtain the identity

α

2
‖∇∂tp(t)‖2

H +
1

2
‖∆p(t)‖2

H =

∫∫
Qt

q∆∂tp =

∫∫
Qt

∆q ∂tp . (4.22)

Secondly, we test (4.11) by −∆q to see that∫∫
Qt

∆q ∂tp+
τ

2

∫
Ω

|∇q(t)|2 +

∫∫
Qt

|∆q|2

=
τ

2

∫
Ω

|∇q(T )|2 +

∫∫
Qt

∆q
(
f ′′(ϕα)q − b1(ϕα − ϕQ)

)
. (4.23)

In view of (4.14), we recall that ϕΩ ∈ V , by assumption (A7) and consequently, by (2.6), deduce that∫
Ω

|∇q(T )|2 ≤ C(‖ϕα(T )‖2
V + ‖ϕΩ‖2

V ) ≤ C .

Thus, adding (4.22) and (4.23) leads to a cancellation of two terms. Using (2.9) and Young’s inequality,
by standard elliptic estimates we can infer that

α1/2‖p‖W 1,∞(0,T ;V ) + ‖p‖L∞(0,T ;W ) + ‖q‖L∞(0,T ;V )∩L2(0,T ;W ) ≤ Cα . (4.24)

It then directly follows from (4.10) and (4.24) that ‖α∂ttp‖L∞(0,T ;H) ≤ Cα , and thus, by virtue of
(4.20),

α‖p‖W 2,∞(0,T ;H) ≤ Cα . (4.25)
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In addition, a comparison of terms in (4.11) yields

‖p+ τq‖H1(0,T ;H) ≤ Cα . (4.26)

Moreover, due to the estimate for q in (4.24), arguing on (4.12) and using the terminal condition for r
in (4.13) enable us to conclude that

‖r‖W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ Cα . (4.27)

The last part regards a similar bound for

α1/2‖∂tqα‖L2(0,T ;H) + α1/2‖∂ttrα‖L2(0,T ;H)

which follows then from (4.20), (4.26) and comparison in (4.11) and (4.12). At this point, we have
completely shown the relevant estimate (4.18) that suffices to prove the existence of a solution to the
adjoint system (4.10)–(4.14) that has the asserted properties. Owing to the linearity of the system, the
proof of uniqueness is simple and can be skipped here.

Remark 4.4. Recalling the contents of Remark 2.2 and the assumption (A3), we aim to point out that
in the case when D(∂f1) = R and f1 ∈ C3(R) in (A3), then the constant K5(α) in (4.18) may
be chosen independent of α ∈ (0, 1], since in this framework the coefficient f ′′(ϕα) appearing in
(4.11) is bounded in L∞(Q) independently of α. In fact, we can repeat all the argumentation leading
to (4.21)–(4.27) with constants C in the right-hand sides that do not depend on α.

Having shown the well-posedness of the adjoint system, it is now a standard procedure to improve
the necessary condition for locally optimal controls stated in Lemma 4.2. Indeed, a straightforward
calculation using the linearized system (3.1)–(3.5) and the adjoint system (4.10)–(4.14), which can be
left to the reader, leads to the following result.

Theorem 4.5. Suppose that (A1)–(A8) are fulfilled and α ∈ (0, 1]. Moreover, assume that uα ∈ Uad

is a locally optimal control for (CPα) in the sense of L∞(Q) with associated state (µα, ϕα, wα) =
Sα(uα) and adjoint state (pα, qα, rα). Then there is some λα ∈ ∂G(uα) such that∫∫

Q

(rα + b3u
α + κλα)(u− uα) ≥ 0 for all u ∈ Uad . (4.28)

4.3 Sparsity of controls

The convex functional G in the cost functional accounts for the sparsity of optimal controls, i.e., the
possibility that every locally optimal control may vanish in some subset of the space-time cylinder Q.
The form of this region depends on the choice of G, where the sparsity properties can be deduced
from the variational inequality (4.28) and the form of the subdifferential ∂G. In the following, we restrict
ourselves to the case of full sparsity which is obtained for the case of the L1(Q)-norm (1.9) that
recently has been investigated in [9]. Arguing exactly as there, one obtains the following result (see [9,
Thm. 4.7]).

Theorem 4.6. Suppose that (A1)–(A8) are fulfilled, α ∈ (0, 1], and κ > 0. Assume that u and u
are constants such that u < 0 < u. If uα ∈ Uad is locally optimal in the sense of L∞(Q) for
(CPα) with associated state (µα, ϕα, wα) and adjoint state (pα, qα, rα), then there exists a function
λα ∈ ∂G(uα) satisfying (4.28), and it holds
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uα(x, t) = 0 if and only if |rα(x, t)| ≤ κ, for a.e. (x, t) ∈ Q . (4.29)

Moreover, if rα and λα are given, then uα is obtained from the projection formula

uα(x, t) = max
{
u, min

{
u, −b−1

3 (rα + κλα)(x, t)
}}

for a.e. (x, t) ∈ Q.

Remark 4.7. Owing to the global estimate (4.18), we have

‖rα‖H1(0,T ;W ) ≤ K5(α),

and thus, thanks to the continuity of the embedding H1(0, T ;W ) ⊂ C0(Q),

‖rα‖C0(Q) ≤ κ̂(α),

with a constant κ̂(α) > 0. Hence, for each α ∈ (0, 1], if κ ≥ κ̂(α) then every locally optimal control
in the sense of L∞(Q) for (CPα) must vanish.

5 Asymptotic analysis

This section is devoted to the study of the asymptotic behavior of the problem (CPα) as α ↘ 0. The
case α = 0, which has been thoroughly investigated in [9], is denoted by (CP0).

5.1 Convergence of the state variables

The asymptotic results for the state system have already been studied in [8] where also the case of
the nondifferentiable double obstacle potential (1.14) was included in the analysis (see, [8, Thm. 5.1]).
We have the following result.

Theorem 5.1. Assume that (A1)–(A5) are satisfied, and let {αn}n∈N ⊂ (0, 1] and {uαn}n∈N ⊂ Uad

be sequences such that αn ↘ 0 and uαn → u0 weakly star in L∞(Q). If (µαn , ϕαn , wαn) :=
Sαn(uαn) denotes for n ∈ N the unique solution to the state system (1.2)–(1.6) for u = uαn estab-
lished in Theorem 2.1, then it holds

µαn → µ0 weakly star in L∞(0, T ;V ), (5.1)

αn µ
αn → 0 weakly star in W 2,∞(0, T ;V ∗) and strongly in W 1,∞(0, T ;H), (5.2)

ϕαn → ϕ0 weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and strongly in C0([0, T ];V ) ∩ C0(Q), (5.3)

f ′(ϕαn)→ f ′(ϕ0) weakly star in L∞(0, T ;H) and a.e. in Q, (5.4)

wαn → w0 weakly star in W 1,∞(0, T ;L∞(Ω)), (5.5)

where (µ0, ϕ0, w0) is the unique strong solution to the viscous Cahn–Hilliard system

∂tϕ−∆µ = 0 a.e. in Q , (5.6)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ w a.e. in Q , (5.7)

γ∂tw + w = u0 a.e. in Q , (5.8)

∂nµ = ∂nϕ = 0 a.e. on Σ , (5.9)

µ(0) = µ0, ϕ(0) = ϕ0, w(0) = w0 a.e. in Ω . (5.10)
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Proof. Arguing as in the proof of Theorem 4.1, by (2.6) it is not difficult to check that (µαn , ϕαn , wαn)
converges to a triple (µ, ϕ, w) in the sense of (5.1)–(5.3), (5.5), at least on a subsequence which we
still index by n ∈ N. In view of (5.3) and the Lipschitz continuity of f ′2, we have that f ′2(ϕαn)→ f ′2(ϕ)
strongly in C0(Q). Moreover, recalling (2.6), (A3) and the estimate (2.9), we also have that f ′1(ϕαn)
weakly star converges to a limit in L∞(0, T ;H) on one hand, and

f ′1(ϕαn)→ f ′1(ϕ) a.e. in Q

on the other. Then, the two limits must coincide and f ′1(ϕ) makes sense in L∞(0, T ;H), although it
is no longer expected that f ′1(ϕ) is uniformy bounded in L∞(Q) (cf. (2.9)).

Therefore, passing to the limit as n→∞ in the state system (1.2)–(1.6) written for (µαn , ϕαn , wαn)
and uαn , reveals that (µ, ϕ, w) solves the system (5.6)–(5.10) at least in a variational sense. However,
as µ ∈ L∞(0, T ;V ) and ∂tϕ ∈ L∞(0, T ;H), from (5.7), (5.9) and standard elliptic regularity
results if follows that µ ∈ L∞(0, T ;W ), whence (µ, ϕ, w) is actually a strong solution of (5.6)–
(5.10). According to [9, Thm. 2.2], this solution is uniquely determined, and thus we have (µ, ϕ, w) =
(µ0, ϕ0, w0). Moreover, the unicity of the limit point entails that the convergence properties are in
fact valid for the entire sequence and not just for a subsequence. This concludes the proof of the
assertion.

At this point, we note that it makes sense to introduce the control-to-state operator for the viscous
Cahn–Hilliard system (1.2)–(1.6),

S0 = (S0
1, S

0
2, S

0
3) : u0 ∈ L∞(Q) 7→ (S0

1(u0), S0
2(u0), S0

3(u0)) := (µ0, ϕ0, w0). (5.11)

5.2 Convergence of optimal controls

As we have seen in the previous subsection, the state variables associated with α ∈ (0, 1] converge,
as α↘ 0 along a subsequence, in a well-defined sense to their counterparts for the case α = 0. We
are now going to show that the same holds true for the optimal controls.

Theorem 5.2. Suppose that (A1)–(A8) are fulfilled, and let {αn}n∈N ⊂ (0, 1] be given with αn ↘ 0.
For every n ∈ N, let uαn ∈ Uad be an optimal control for the problem (CPαn) with associated state
(µαn , ϕαn , wαn) = Sαn(uαn). If, in addition, uαn → u0 weakly star in L∞(Q) as n → ∞, then u0

is an optimal control of the problem (CP0).

Proof. First we observe that, according to Theorem 5.1, we have the convergence properties (5.1)–
(5.5) where (µ0, ϕ0, w0) = S0(u0), which means, in particular, that the pair ((µ0, ϕ0, w0), u0) is
admissible for the limit problem (CP0). Moreover, it obviously holds

lim
n→∞

(b1

2

∫∫
Q

|ϕαn − ϕQ|2 +
b2

2

∫
Ω

|ϕαn(T )− ϕΩ|2
)

=
b1

2

∫∫
Q

|ϕ0 − ϕQ|2 +
b2

2

∫
Ω

|ϕ0(T )− ϕΩ|2 . (5.12)

Now let u ∈ Uad be arbitrary. We recall the weak sequential lower semicontinuity of the L2(Q)-
norm and of the functional G, which is convex and continuous on L2(Q). Then, from (5.12) and the
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optimality of the pair ((µαn , ϕαn , wαn), uαn) for the problem (CPαn), it follows that

J(S0
2(u0), u0) =

b1

2

∫∫
Q

|ϕ0 − ϕQ|2 +
b2

2

∫
Ω

|ϕ0(T )− ϕΩ|2 +
b3

2

∫∫
Q

|u0|2 + κG(u0)

≤ lim inf
n→∞

(b1

2

∫∫
Q

|ϕαn − ϕQ|2 +
b2

2

∫
Ω

|ϕαn(T )− ϕΩ|2 +
b3

2

∫∫
Q

|uαn|2 + κG(uαn)
)

= lim inf
n→∞

J(Sαn
2 (uαn), uαn) ≤ lim inf

n→∞
J(Sαn

2 (u), u) = J(S0
2(u), u) . (5.13)

Since u ∈ Uad was arbitrary, the assertion is proved.

Remark 5.3. 1. Notice that any sequence {uαn} ⊂ Uad with αn ↘ 0 contains at least one subse-
quence that converges in the weak star topology of L∞(Q) to some limit point u ∈ Uad. From this it
also follows that the problem (CP0) admits at least one solution.
2. Observe that we cannot expect a similar result for controls that are only locally optimal in the sense
of L∞(Q). Indeed, if uαn is locally optimal for (CPαn) in the sense of L∞(Q), then we can only guar-

antee the existence of some εn > 0 such that Ĵ(Sαn
2 (uαn), uαn) ≤ Ĵ(Sαn

2 (u), u) for all u ∈ Uad

with ‖u − uαn‖L∞(Q) ≤ εn. Since it is well possible that εn → 0 as n → ∞, we cannot conclude
that limits of subsequences of {uαn} are locally optimal for (CP0).

5.3 Convergence of the adjoint variables

Finally, we present a convergence result for the adjoint state variables under the following additional
restriction.

(A9) In the framework of (A3) we further suppose that r− = −∞ and r+ = +∞ so that both f1

and f2 belong to C3(R).

Theorem 5.4. Suppose that (A1)–(A9) are fulfilled, and let {αn}n∈N and {uαn}n∈N ⊂ Uad be se-
quences with αn ↘ 0 and uαn → u0 weakly star in L∞(Q). If (µαn , ϕαn , wαn) = Sαn(uαn) and
(pαn , qαn , rαn) denote the respective state and adjoint state variables associated with uαn for n ∈ N,
then it holds

pαn → p0 weakly star in L∞(0, T ;W ), (5.14)

αn p
αn → 0 weakly star in W 2,∞(0, T ;H) and strongly in W 1,∞(0, T ;V ), (5.15)

qαn → q0 weakly star in L∞(0, T ;V ) ∩ L2(0, T ;W ), (5.16)

pαn + τqαn → p0 + τq0 weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

and strongly in C0([0, T ];H) ∩ L2(0, T ;V ), (5.17)

rαn → r0 weakly star in W 1,∞(0, T ;V ) ∩H1(0, T ;W ), (5.18)

where the triple (p0, q0, r0) is the unique solution to the adjoint system associated with the system
(5.6)–(5.10) and the control u0, which is with (µ0, ϕ0, w0) := S0(u0) given by

−∆p− q = 0 a.e. in Q , (5.19)

− ∂t(p+ τq)−∆q + f ′′(ϕ0)q = b1(ϕ0 − ϕQ) a.e. in Q , (5.20)

− γ∂tr + r − q = 0 a.e. in Q , (5.21)

∂np = ∂nq = 0 a.e. on Σ , (5.22)

(p+ τq)(T ) = b2(ϕ0(T )− ϕΩ), r(T ) = 0 a.e. in Ω . (5.23)

DOI 10.20347/WIAS.PREPRINT.3190 Berlin 2025



P. Colli, J. Sprekels 20

Proof. From Theorem 5.1 we infer that (µαn , ϕαn , wαn) converges to (µ0, ϕ0, w0) in the sense of
(5.1)–(5.5). Moreover, recalling Remark 2.2, it turns out that under the validity of (A9) the values r∗
and r∗ in (2.7) and the constant K2 in (2.9) are independent of α. Then, we can also infer that

f ′′(ϕαn)→ f ′′(ϕ0) strongly in C0(Q).

Moreover, it follows from the uniform estimate (4.18) (see Remark 4.4 as well) that (pαn , qαn , rαn)
converges to a triple (p, q, r) in the sense of (5.14)–(5.18) at least on a subsequence. It is then readily
seen that (p, q, r) is a strong solution to the system (5.19)–(5.23). In view of the linearity of this
system, the solution is easily shown to be uniquely determined (anyway the reader may consult and
refer to [9, Theorem 4.3]), and thus (p, q, r) = (p0, q0, r0).

We point out the correctness of the first terminal condition in (5.23) since the variable under time
derivative in (5.20) is just (p+ τq), so that the terminal condition follows from the convergence (5.17)
and the conditions in (4.14).

Hence, owing to the unicity of the limit point (p0, q0, r0), the convergence properties are in fact valid
for the entire sequence αn ↘ 0 and not just for a subsequence. This concludes the proof of the
assertion.
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