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Hierarchical proximal Galerkin: A fast hp-FEM solver for
variational problems with pointwise inequality constraints

Ioannis P. A. Papadopoulos

Abstract

We leverage the proximal Galerkin algorithm (Keith and Surowiec, Foundations of Compu-
tational Mathematics, 2024, DOI: 10.1007/s10208-024-09681-8), a recently introduced mesh-
independent algorithm, to obtain a high-order finite element solver for variational problems with
pointwise inequality constraints. This is achieved by discretizing the saddle point systems, arising
from the latent variable proximal point method, with the hierarchical p-finite element basis. This re-
sults in discretized sparse Newton systems that admit a simple and effective block preconditioner.
The solver can handle both obstacle-type, u ≤ φ, and gradient-type, |∇u| ≤ φ, constraints.
We apply the resulting algorithm to solve obstacle problems with hp-adaptivity, a gradient-type
constrained problem, and the thermoforming problem, an example of an obstacle-type quasi-
variational inequality. We observe hp-robustness in the number of Newton iterations and only
mild growth in the number of inner Krylov iterations to solve the Newton systems. Crucially we
also provide wall-clock timings that are faster than low-order discretization counterparts.

1 Introduction

Minimizing the Dirichlet energy with an obstacle- or gradient-type pointwise constraint is known as the
obstacle problem or generalized elastic-plastic torsion problem, respectively. The obstacle problem
models the deflection of an elastic membrane in contact with an obstacle [37, 88] and due to its
foundational nature, has wide-ranging applications in various fields including optimal control [32, 58,
82], topology optimization [20, 23, 75], and elasticity theory [49, 37] among many others. In turn,
many PDE-constrained optimization problems are thoroughly reliant on an efficient obstacle problem
solver. Gradient-type constraints arise in quasi-variational inequalities that model sandpile growth,
river networks, semiconductors, strain-limited elastic material, and number of other applications cf. [8,
94, 90, 26, 80, 79, 7, 65, 35, 84, 91, 30, 83].

In this paper we discretize the latent variable proximal point method (LVPP) of Keith and Surowiec [57]
with the hierarchical p-finite element method (p-FEM) to construct the hierarchical proximal Galerkin
algorithm (hpG), a solver that enjoys the following properties:

(i) h- and p-independent number of nonlinear iterations until convergence;

(ii) arbitrarily fast convergence to solutions of both the obstacle problem and minimization problems
with gradient-type constraints;

(iii) high-order discretizations (see Section 7.4 for a discretization with polynomials up to total de-
gree 164 (p = 82) on each quadrilateral element of a 4× 4 mesh);

(iv) competitive solve times with lower order methods to reach a prescribed error;

(v) a block-diagonal preconditioner resulting in mild polylogarithmic growth in the inner Krylov
method iterations as h→ 0 and p→ ∞;
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(vi) fast sparse factorizations for the mass, stiffness, and preconditioner matrices;

(vii) fast quasi-optimal complexity quadrature via fast transforms and the discrete cosine transform
(DCT).

1.1 Motivation

For nontrivial constraints, the regularity of a solution u is capped at u ∈ Hs(Ω), for s < 5/2, where
Hs(Ω) denotes the usual Sobolev spaces W s,2(Ω) [1]. This is true even if the problem is posed
on a smooth domain Ω with smooth data and a smooth obstacle [27, Th. 3]1. As such low-order
discretizations are often favoured due to their simplicity, perceived reduced computational cost due to
sparsity, and efficiency in convergence due to low solution regularity. For the obstacle problem, there
exist efficient low-order optimal complexity (but mildly mesh dependent) multigrid (MG) techniques
[41, 24, 44, 50, 51, 62, 63, 29, 95]. There is a strong correspondence between these MG solvers
and active-set strategies [41, Sec. 6] which require that nodal feasibility in the discretization implies
pointwise feasibility. In turn this requirement typically restricts a user to the lowest-order continuous
FEM basis2. A reader may now arrive at the following question:

Why develop a high-order discretization for pointwise-constrained problems?

In this paper, we argue that, per degree of freedom (dof), a high-order discretization may induce an
error that is orders of magnitude smaller than the low-order counterpart – particularly in the H1-norm.
Of course, fewer dofs does not imply faster solve times. Matrix assembly overhead may significantly in-
crease as sparsity is often greatly reduced, resulting in a substantial increase in the number of nonzero
entries that must be evaluated. Moreover, each individual nonzero entry becomes more expensive to
compute. The loss of sparsity also impacts the effectiveness of sparse linear solvers further reducing
solver speed. However, in recent years, there have been a number of developments that allow for fast
expansions and evaluations of the high-order orthogonal polynomials that form the hierarchical p-FEM
basis which, incidently, when used to discretize the LVPP subproblems [57], induces discretized linear
systems where the loss of sparsity is heavily mitigated [92, 60, 76]. By leveraging these develop-
ments, we will present concrete counterexamples where accurate solutions are cheaper to obtain with
high-order discretizations.

Secondly, despite the cap on the regularity of the solution, convergence rates faster thanO((h/p)3/2)
in the H1-norm are achievable if the mesh aligns with the regions in the solution where the loss of
regularity occurs. In our context, these regions are where the pointwise constraints transition from
being active to inactive. These are not known beforehand. However, one may develop estimators
to locate these regions and, particularly in the case of gradient-type constraints, the location of the
transitions may sometimes be inferred from the problem data. In Section 7.1 and Section 7.3 we
present two examples where we obtain convergence rates faster than 3/2 in the regimes of h and p
we consider. Note that a discretization with degree p = 1 will only ever converge at a rate of O(h).

Aside from solver speed and convergence rates, high-order discretizations often offer other benefits.
They minimize numerical artefacts in fluid dynamics and elasticity [54], e.g. in two dimensions, locking
in linear elasticity does not occur if p ≥ 4 [2]. As pointwise constraints naturally occur in models for

1For a constant gradient-type constraint, the fact that u ∈ Hs(Ω), for s < 5/2, follows by rewriting the gradient-type
constrained problem as an obstacle problem with a Lipschitz continuous obstacle [91, Th. 2.2]. The result in [27, Th. 3]
then applies.

2A recent study has shown success with active-set strategies and a carefully chosen quadratic or cubic FEM basis [59].
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such settings (e.g. the topology optimization of linear elasticity [20, 74] and fluids [23, 77, 73]) then
utilizing a solver that is then confined to the lowest-order (continuous) FEM discretization is limiting.
High-order methods are also amenable to parallelization making them suitable for modern computing
architectures cf. [60, 6].

The proximal Galerkin (pG) algorithm arises after a Galerkin discretization of LVPP which was first
introduced in the context of the obstacle problem by Keith and Surowiec [57] and generalized to a
number of other problems in a recent review [34]. LVPP is formulated on the infinite-dimensional level
and not tied to any particular choice of discretization. The main component of the algorithm is the
repeated solve of a coupled nonlinear system of PDEs. Although not yet proven, experiments show
that the number of iterations of the pG solver is mesh (h) and degree (p) independent. This, among
other reasons, is a motivating factor for choosing a variation of the pG solver in this work. A second
reason is that after a Newton linearization of the pG nonlinear system, one arrives at a saddle point
problem with one nontrivial term. Hence, with a sparsity promoting discretization, the density of a high-
order method is localized to the nontrivial term which in turn is effectively handled by a simple block
preconditioning strategy.

In principle, a high-order FEM discretization of a path-following penalty method can be used to enforce
the pointwise constraints. In exact arithmetic, this would lead to mesh independent iteration counts [45,
48]. However, in order to extract optimal convergence rates for the obstacle problem when p > 1, one
must scale the penalty parameter as O(h−3) which also scales the condition number of the arising
discretized linear systems by the same factor [42, Sec. 3.1]. Ill-conditioning may quickly cause mesh
dependent effects and a potential blowup in the required number of nonlinear iterations. Moreover, it
is unclear how to handle the loss of sparsity as p→ ∞.

We are not the first to discuss high-order discretizations for the obstacle problem [78]. Keith and
Surowiec, in the seminal pG paper, solve a 2D obstacle problem with a mesh consisting of five cells
and a degree p = 12 basis [57, Fig. 11]. They were capped at p = 12 by their choice of FEM software
and their chosen basis induces increasingly dense stiffness and mass matrices as p → ∞. A recent
paper includes an obstacle problem example with p = 48 [34, Sec. 3.1] although the discretization
is a spectral method limited to a single-cell disk mesh. Other works include [64, 43] as well as a
sequence of successful papers by Banz, Schröder, and coauthors [18, 19, 16, 17]. In these works the
choice of FEM basis also leads to increasingly denser stiffness and mass matrices as p → ∞ and
the outer nonlinear solver is mesh dependent, i.e. the number of nonlinear iterations grow as h → 0
and p → ∞. However, in [18], Banz and Schröder successfully consider examples with p = 30 and
implement a fully h- and p-adaptive scheme in two dimensions, complete with a posteriori estimators,
leading to highly accurate approximations. Also of significant note is a hp-FEM discretization to a
problem involving gradient-type constraints in [15], where Bammer, Banz, and Schröder considered a
discretization with p = 50.

1.2 Contributions

The main contribution of this paper is the investigation of a fast sparsity-preserving hp-FEM discretiza-
tion of the subproblems of the LVPP algorithm applied to the obstacle and generalized elastic-plastic
torsion problems, with a view of providing a bedrock for its potential in applications. We develop the
first preconditioners for the Newton systems arising in a pG method and observe them to be excep-
tionally effective. We notice that the quadrature for the assembly of the matrices at each Newton step
can be confined to a discontinuous basis consisting of Legendre polynomials which admit fast evalua-
tion and expansion transforms. We then leverage an atypical but fast quadrature scheme. We also see
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that the method may adopt error estimators already developed in the literature to guide hp-refinement.
Altogether this allows us to consider examples with the highest discretization degree that have been
reported in the literature to date. Moreover, since the novel hpG solver retains sparsity, requires little
computational overhead, and exhibits hp-independent number of nonlinear iterations, we are able to
provide the first reported competitive wall-clock timing comparisons with other solvers featuring low-
order discretizations. In fact in Section 7, we observe up to a 24 and 100 times speed up, per linear
solve, to reach the same error for an obstacle problem and generalized elastic-plastic torsion problem,
respectively (cf. Sections 7.2 and 7.3).

We begin by introducing the Dirichlet minimization problem with obstacle- and gradient-type con-
straints, together with the pG algorithm in Section 2, followed the construction of the hierarchical
p-FEM basis in Section 3. Next we provide a detailed investigation of the discretized Newton lineariza-
tion of the pG subsystems in Section 4 and the design the preconditioning strategy in Section 4.4.
hp-adaptivity is discussed in Section 5 and we outline four algorithmic techniques that significantly
speed up the algorithm when p≫ 1 in Section 6.

We consider four numerical examples in Section 7. Section 7.1 tackles a one-dimensional obstacle
problem with an oscillatory forcing-term where hp-adaptivity is fully explored. Section 7.2 handles a
two-dimensional obstacle problem where it is clear that high-order discretizations give smaller errors
both with respect to the dofs and wall-clock time (see Figure 6). The penultimate problem in Sec-
tion 7.3 investigates the effectiveness of the solver applied to a gradient-type constrained problem.
We conclude the examples in Section 7.4 by computing the approximate solution of a two-dimensional
thermoforming problem, an obstacle-type quasi-variational inequality, with a discretization consisting
of 16 cells and multivariate polynomials up to total degree 164 on each element. Finally we give our
conclusions in Section 8.

2 Problem setup and latent variable proximal point

Consider an open, convex, and bounded Lipschitz domain Ω ⊂ Rd, d ∈ {1, 2}. Let ⟨·, ·⟩X∗,X

denote the (topological) duality pairing between a Banach space X and its dual space X∗. The
inner product of a Hilbert space H is denoted by (·, ·)H . Let W s,p(Ω), s > 0, p ≥ 1, denote the
usual Sobolev spaces and let Lp(Ω), p ≥ 1, denote the Lebesgue spaces [1]. Consider the Hilbert
spaces Hs(Ω) := W s,2(Ω), s > 0 and denote by H1

0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0} where

|∂Ω : W 1,p(Ω) → W 1− 1
p
,p(∂Ω) denotes the standard boundary trace operator [40]. Consider the

Dirichlet energy functional

J(v) :=
1

2
∥∇v∥2L2(Ω) − (f, v)L2(Ω). (1)

We seek the minimizer u ∈ H1
0 (Ω) of the Dirichlet energy functional J , with datum f ∈ L2(Ω), while

satisfying the obstacle or gradient-type constraint with φ ∈ H1(Ω). In other words we consider one
of the obstacle- or gradient-type constrained minimization problems:

min
u∈K

J(u) where K = {v ∈ H1
0 (Ω) : v ≤ φ a.e. in Ω} (obstacle-type), (2a)

min
u∈K

J(u) where K = {v ∈ H1
0 (Ω) : |∇v| ≤ φ a.e. in Ω} (gradient-type). (2b)

A classical calculus of variations result reveals that the solution u ∈ K of either (2a) or (2b) also
satisfies the variational inequality [36, Ch. 8.4]

(∇u,∇(v − u))L2(Ω) ≥ (f, v − u)L2(Ω) for all v ∈ K. (3)
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The existence and uniqueness of the minimizer follows by classical results provided the data is com-
patible, e.g. φ|∂Ω > 0 a.e. on ∂Ω for the obstacle problem [66].

2.1 LVPP: obstacle problem

LVPP approximates the solution of the obstacle problem (2a), on the infinite-dimensional level, by
solving a series of nonlinear mixed saddle point systems where a parameter α ∈ R+ and a source
term is updated. More specifically, given the datum f ∈ L∞(Ω), the obstacle φ ∈ H1(Ω), the
parameter αk > 0, k ∈ N, a previous latent variable iterate ψk−1 ∈ L∞(Ω) and setting ψ0 ≡ 0, the
pG subproblem seeks (uk, ψk) ∈ H1

0 (Ω)× L∞(Ω) that satisfies, for all (v, ζ) ∈ H1
0 (Ω)× L∞(Ω)

[57, Alg. 3],

αk(∇uk,∇v)L2(Ω) + (ψk, v)L2(Ω) = αk(f, v)L2(Ω) + (ψk−1, v)L2(Ω),

(uk, ζ)L2(Ω) + (e−ψk , ζ)L2(Ω) = (φ, ζ)L2(Ω).
(4)

It was shown that as long as
∑N

k=1 αk → ∞ as N → ∞ then uk → u∗ strongly in H1(Ω)
and λk := (ψk−1 − ψk)/αk → λ∗ strongly in H−1(Ω) where u∗ is the solution of the obstacle
problem and λ∗ := −∆u∗ − f is its associated Lagrange multiplier [57, Th. 4.13]. By driving αk
larger at a faster-than-geometric rate (e.g. αk = k(k+1)(k+2) · · · (k+m) for some m ∈ N), one
can converge to the solution of the obstacle problem with superlinear convergence [57, Cor. A.12].
Moreover, unlike other mesh independent solvers that rely solely on a penalty term, cf. [47, 45], the
solver still converges to the solution even if αk is kept at a fixed value, albeit at a sublinear rate [57,
Cor. A.12]. The faster αk increases, the quicker the convergence to the solution of the original obstacle
problem but at the cost of a harder nonlinear problem at each iteration.

2.2 LVPP: gradient-type constraint

Recently LVPP was adapted to handle gradient-type constraints [34, Sec. 4.1] although the conver-
gence properties and choices of stable discretizations have not yet been theoretically justified. Nev-
ertheless, experimentally, we observe very similar behaviours as for the obstacle problem. As before,
suppose we are given the datum f ∈ L∞(Ω), the constraint function φ ∈ L∞(Ω) ∩ H1(Ω) where
ess inf φ ≥ c for some c > 0, the parameter αk > 0, k ∈ N, and a previous latent variable
iterate ψk−1 ∈ L∞(Ω)d where if k = 1 then ψ0 ≡ 0. Then, the pG gradient-type subproblem
for approximating the solution of (2b) is to find (uk, ψk) ∈ H1

0 (Ω) × L∞(Ω)d that satisfies, for all
(v, ζ) ∈ H1

0 (Ω)× L∞(Ω)d [34, Eq. (4.3)],

αk(∇uk,∇v)L2(Ω) + (ψk,∇v)L2(Ω) = αk(f, v)L2(Ω) + (ψk−1,∇v)L2(Ω),

(∇uk, ζ)L2(Ω) = (φψk(1 + |ψk|2)−1/2, ζ)L2(Ω).
(5)

3 Hierarchical p-FEM basis

The hierarchical p-FEM basis was pioneered in the 1980s and 1990s by Babuška, Szabó and coau-
thors [12, 10, 13, 11, 89]. The basis contains very high-order piecewise polynomials whilst retaining
sparsity in the stiffness (weak Laplacian) and mass matrices. More specifically, the basis functions
consist of shape and external functions, otherwise known as bubble and hat functions. The shape
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functions are translated and scaled weighted orthogonal polynomials whose support are contained
within a single cell in the mesh. Hence, shape functions tested against shape functions supported on
another cell evaluate to zero. Moreover, thanks to the orthogonality properties, testing many of the
basis functions with other basis functions supported on the same cell also evaluate to zero. For more
details we refer the reader to [85, 54, 60].

In this work we consider both a continuousH1-conforming hierarchical p-FEM space, which we denote
Uh,p to discretize u and a discontinuous L2-conforming space denoted by Ψh,p to discretize ψ. We
first define these spaces on a one-dimensional domain Ω = (a, b).

Consider the one-dimensional mesh Th = {xi}mi=1 where a = x0 < x1 < · · · < xm = b and
h = maxi |xi+1 − xi|. Let Ki = [xi, xi+1] and consider the set

ΨKi,p :=

{
Pn(y) : y =

2x− xi − xi+1

xi+1 − xi
, 0 ≤ n ≤ p

}
, (6)

where Pn(x) denotes the Legendre polynomial of degree n supported on the interval [−1, 1] [67,
Sec. 18.3]. For x ∈ R\[−1, 1] we define Pn(x) = 0. The Legendre polynomials are orthogonal with
respect to the L2-inner product, i.e. (Pn, Pm)L2(−1,1) =

2δnm

2n+1
, where δnm is the Kronecker delta.

Definition 3.1 (L2-conforming hierarchical p-FEM space Ψh,p). Consider the one-dimensional mesh
Th = ∪mi=1Ki. We define the L2-conforming hierarchical p-FEM space Ψh,p, p = (p1, . . . , pm) as
the union of the cellwise bases:

Ψh,p := span
m⋃
i=1

ΨKi,pi . (7)

In other words Ψh,p consists of scaled and translated Legendre polynomials on cell Ki up to degree
pi where each basis function has a support that is contained in a single cell on the mesh.

Lemma 3.2 (Diagonal mass matrix). The mass matrix of the discontinuous finite element space Ψh,p

is diagonal, i.e. (ζi, ζj)L2(Ω) =
|Ki|δij
2i+1

for all basis functions ζi, ζj ∈ Ψh,p and Ki ∈ Th is the cell
such that supp(ζi) ⊆ Ki.

The result in Lemma 3.2 follows as a direct consequence of the fact that each basis function is only
supported on one cell on the mesh as well as the orthogonality of the basis functions supported on
the same cell with respect to the L2-norm.

The H1-conforming space Uh,p consists of the union of the set of standard piecewise linear hat
functions with weighted Jacobi polynomials. Given two adjacent cells Ki−1, Ki, let Hi(x) denote
the usual continuous piecewise linear hat function supported on Ki−1 ∪Ki [25, Ch. 0.4]. Moreover,
consider the polynomials

Wn(x) :=
(1− x2)P

(1,1)
n (x)

2(n+ 1)
, (8)

where P (1,1)
n (x) are the Jacobi polynomials orthogonal with respect to the weight 1−x2 on the interval

[−1, 1] [67, Sec. 18.3]. The normalization is chosen such that d
dx
Wn(x) = −Pn+1(x) for n ≥ 0. We

define the set of shape functions for the cell Ki as

BKi,p :=

{
Wn(y) : y =

2x− xi − xi+1

xi+1 − xi
, 0 ≤ n ≤ p− 2

}
. (9)
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Definition 3.3 (H1-conforming hierarchical p-FEM space Uh,p). Consider the one-dimensional mesh
Th = ∪mi=1Ki. We define the H1-conforming hierarchical p-FEM space Uh,p, p = (p1, . . . , pm), as:

Uh,p := span

{
{Hi}m+1

i=1 ∪
m⋃
i=1

BKi,pi

}
. (10)

We use U0,h,p to denote the space

U0,h,p := {vhp ∈ Uh,p : vhp|∂Ω = 0}. (11)

We take the tensor product space for two dimensions and label the spaces as Uh,px,py
= Uh,px

⊗
Uh,py

and Ψh,px,py
= Ψh,px

⊗ Ψh,py
. We refer to the degree of the pre-tensor one-dimensional

polynomials as the partial degree and the degree of the resulting multivariate polynomial as the total
degree. With a slight abuse of notation, we will often compactify the subscripts such that Uhp = Uh,p
and Ψhp = Ψh,p in 1D and Uhp = Uh,px,py

and Ψhp = Ψh,px,py
in 2D.

We take the opportunity to introduce a discontinuous basis consisting of Legendre spectral Galerkin
polynomials [86]. This basis will later be used in the stabilization term for gradient-type constraints as
well as to construct a preconditioner for the obstacle problem. Consider a one-dimensional reference
cell K = [−1, 1]. We define the spectral Galerkin polynomials, for n ∈ N0:

Yn(x) := Pn(x)− Pn+2(x). (12)

Note that Yn(±1) = 0 for all n ∈ N0.

Remark 3.4. In fact each polynomial Yn is a rescaling of the shape function Wn defined in (8),
i.e. Yn(x) = cnWn(x) for some cn ∈ R. Nevertheless, we found that the numerical convergence
of the linear system iterative solvers proposed later were often better when utilizing the rescaling
rather than the shape functions directly. Hence we choose to keep the additional notation Yn for clarity
on where a rescaling is used or not.

For simplicity we assume that the same degree p is used on each cell. Then, given a one-dimensional
mesh Th = ∪mi=1Ki we define the local cellwise basis

ΦKi,p :=

{
Yn(y) : y =

2x− xi − xi+1

xi+1 − xi
, 0 ≤ n ≤ p

}
, (13)

and gluing the cells together forms the discontinuous 1D global basis

Φh,p := span
m⋃
i=1

ΦKi,p. (14)

As before, the two-dimensional basis is constructed via a tensor-product, i.e. Φh,px,py := Φh,px⊗Φh,py

for px, py ∈ N0.

4 Proximal Galerkin, Newton systems & preconditioning

We employ a mixedH1×L2-conforming hierarchical finite element discretization of the LVPP saddle-
point problems for (u, ψ) in (4) and (5) where, in particular, the discretization is continuous for u
(uhp ∈ Uhp) and discontinuous for ψ (ψhp ∈ Ψhp in (4) and ψhp ∈ Ψd

hp in (5)). We refer the
discretized nonlinear systems as the hpG subproblems. Below we first discuss the discretization of the
obstacle-type LVPP subproblem (4) and detail the differences for the gradient-type LVPP subproblems
in Section 4.2.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025
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4.1 Obstacle problem

For the obstacle-type LVPP subproblem (4), we discretize u with (partial) degree p and ψ with (partial)
degree p − 2 for p ≥ 2, where ±1 and ≥ are to be understood entrywise. With a slight abuse of
notation, we denote the finite element functions approximating u and ψ by uhp and ψhp, respectively.

After a Newton linearization of the FEM discretization of (4), a routine derivation reveals that one must
(approximately) solve the following symmetric saddle-point linear system at each Newton step:

G :=

(
Aα B
B⊤ −Dψ − Eβ

)(
δu
δψ

)
=

(
bu
bψ

)
, (15)

where bu and bψ denote the u and ψ components of the residual and δu and δψ are the coefficient
vectors for the Newton updates of uhp and ψhp, respectively. Aα := αA is the α-scaled stiffness
matrix for Uhp, B is the Gram matrix between U0,hp and Ψhp, Dψ is the discretization of the nonlinear
term, and Eβ is a symmetric positive-definite stabilization matrix such that

Aij = (∇vi,∇vj)L2(Ω), [Dψ]ij = (ζi, e
−ψhpζj)L2(Ω),

Bij = (vi, ζj)L2(Ω), [Eβ]ij = β(ζi, ζj)L2(Ω),
(16)

for each basis function vi ∈ U0,hp and ζi ∈ Ψhp and user-chosen parameter β ≥ 0. Eβ is aug-
mented to the bottom right block in order reduce the condition number of G but is not required for
well-posedness. In fact, in most examples in Section 7, we fix β = 0 which corresponds to Eβ ≡ 0.
Note that Dψ is the only matrix with dependence on the current Newton iterate.

4.2 Gradient-type constraint

In order to discretize the gradient-type LVPP subproblem (5) we choose a similar discretization. Now
we discretize u with (partial) degree p and ψ with (partial) degree p − 1 for p ≥ 1. After a Newton
linearization, this leads to the same symmetric saddle point structure as (15) that we choose not to
relabel. The α-scaled stiffness matrix Aα is identical to the one in the previous subsection. Recall that
Φhp denotes the discontinuous basis of Legendre spectral Galerkin basis defined in (14). Then, for
each basis function vi ∈ U0,hp, ζi ∈ Ψd

hp, and ηi ∈ Φd
hp, d ∈ {1, 2}, the (not relabeled) matrices B,

Dψ, and Eβ are defined as:

Bij = (∇vi, ζj)L2(Ω), [Dψ]ij = ⟨F ′
ζi
(ψhp), ζj⟩, [Eβ]ij = β(∇hηi,∇hηj)L2(Ω), (17)

where ∇h denotes the broken (cellwise) gradient, F ′
ζi
(ψhp) represents the Fréchet derivative of

Fζi(ψhp) := (ζi, φhpψhp(1 + |ψhp|2)−1/2)L2(Ω), and φhp denotes the FEM approximation of φ.
Eβ plays the same role as in Section 4.1 and, once again, Dψ is the only matrix with dependence on
the current Newton iterate. The effectiveness of the hpG algorithm hinges on the ability to solve (15)
efficiently and in a manner that is robust to choices of the mesh size h, the truncation degree p, α,
and ψhp.

4.3 The matrices Aα, B, Dψ, and Eβ

The matrices A, B, and Eβ are independent of any of the parameters of the pG algorithm and sparse
with O(pd/hd) entries that are nonzero. In particular Eβ is block-diagonal after a permutation of
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the rows and columns. Hence they can be efficiently assembled, stored and applied to a vector in
O(pd/hd) flops. Moreover, when d = 1, A admits a reverse Cholesky factorization3 A = L⊤L such
that the factor L is also sparse and has O(p/h) nonzero entries [60, Th. 4.2]. Thus the inverse of Aα
may be computed and applied with O(p/h) flops. In two dimensions, we observe that the Cholesky
factorization of A has only a moderate fill-in and can be computed quickly. In this paper, we always
performed this factorization once at the start of a solve. However, we note that an optimal complexity
iterative solver also exists for A in 2D [60, 76] via the ADI algorithm [38].

The matrix Dψ is not as sparse as Aα and B. However, since all the basis functions in Ψhp are
supported on a maximum of one cell, the columns and rows of Dψ may be permuted to a block
diagonal structure although the blocks themselves may be dense, leading toO((p−j)2d/hd) nonzero
entries where j = 2 for the obstacle problem and j = 1 in the gradient-type constraint case. We note
that we can apply the action ofDψ with quasi-optimalO((p−j)d logd(p−j)/hd) flops. Since we are
able to applyDψ in an efficient manner and have a fast inverse for the top left blockAα, this motivates
a block preconditioning approach coupled with a matrix-free Krylov method.

In Figure 1 we provide spy plots of the individual blocks in G in both a one and two-dimensional
discretization for the pG obstacle subproblem (4). The gradient-type case results in similar sparsity
patterns. The discretization involves five cells and p = 10 on each cell in 1D and 25 cells and partial
degree p = 5 on each cell in 2D. Note the sparsity in Aα, its (reverse) Cholesky factor, and B.
Moreover, Dψ has a block diagonal structure (after rearranging the rows and columns) and hence
computing its inverse can be performed cellwise and in parallel.

(a) Aα. (b) Lrchol
α . (c) B. (d) Dψ . (e) Permuted Dψ .

(f) Aα. (g) Lchol
α . (h) B. (i) Dψ . (j) Permuted Dψ .

Figure 1: The spy plots of the scaled stiffness matrix Aα, its lower Cholesky factor Lchol
α or reverse

lower Cholesky factor Lrchol
α , the Gram matrix B, the exponential block Dψ, and Dψ with permuted

rows and columns to reveal the hidden block diagonal structure for the Newton linearization of the pG
obstacle subproblem (4) when using: (top row) a one-dimensional p-FEM discretization on a uniform
mesh with five cells and degree p = 10 on each cell and (bottom row) a two-dimensional tensor-
product p-FEM discretization with 25 cells and partial degree p = 5 on each cell.

3A reverse Cholesky factorization A = L⊤L initializes the factorization from the bottom right corner of a symmetric
positive-definite matrix A rather than the top left.
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4.4 Block preconditioning

Given that the submatrices within G in (15) are relatively sparse, one can assemble the full matrix
and perform a sparse LU factorization–a strategy that showed unexpectedly good performance in our
examples. However, by employing a straightforward block preconditioning strategy, we can improve
the conditioning of the solver and achieve faster solve times, particularly as h → 0 and p → ∞.
Block preconditioning reduces the problem to solving a smaller system involving a dense Schur com-
plement matrix. Despite its density, this matrix allows for an efficient matrix-vector product, making
it well-suited for solution via Krylov subspace methods. As usual, maintaining an acceptable itera-
tion count depends on the availability of a suitable preconditioner. In this subsection we develop a
(up to permutation) block-diagonal preconditioner, whose effectiveness is expected to deteriorate at a
worse-case polylogarithmic rate with respect to p and h.

The first step of the block preconditioner is to perform a Schur complement factorization of the matrix
in (15). Let y = bψ −B⊤A−1

α bu. Then a routine calculation reveals that

δψ = S−1y (18a)

δu = A−1
α (bu −Bδψ) (18b)

where the Schur complement matrix S is S := −(Dψ + Eβ + B⊤A−1
α B). (18b) already has a fast

solve thanks to the sparse (reverse) Cholesky factorization of Aα and fast action of B. Hence a fast
solve for the full system hinges on computing the inverse of S quickly in (18a).

As is typical with the Schur complement, S is dense due to the B⊤A−1
α B term. Nevertheless, since

the action of S can be applied efficiently (each matrix in the triple matrix product B⊤A−1
α B is ap-

plied sequentially), we may solve (18b) via a right-preconditioned GMRES Krylov method. Now the
challenge is to construct a preconditioner for S that admits a cheap assembly and factorization.

Remark 4.1 (Other Krylov methods). The linear system in (15) is symmetric and thus amenable to
cheaper Krylov methods such as MINRES. In our implementation we utilize a quadrature scheme that
does not preserve the symmetry of Dψ (but provides other advantages such as speed) and therefore
required a Krylov method that does not rely on symmetry for convergence. We refer the reader to
Section 6 for further details.

4.5 Obstacle problem: a Schur complement preconditioner

In this subsection we focus on preconditioning the Schur complement as it arises in the context of the
pG obstacle subproblem (4). For ease of implementation, we will restrict our search for a preconditioner
for S in (18a) that can be assembled and factorized. Therefore, we do not consider preconditioners
based on p-multigrid in this work [13, 21, 61, 85].

S maps a vector from the primal to the dual space of Ψhp. Our goal is to preserve the mapping and
approximateB andAα with the alternative matrices B̂ and Âα such that the new matrix-triple-product
B̂⊤Â−1

α B̂ induces a (up to permutation) block-diagonal matrix. Common choices involve removing or
modifying the hat functions in U0,hp [13, Sec. 3]. We opt for removing the hat functions and rescaling
the remaining shape functions, i.e. we use the Legendre spectral Galerkin basis Φhp defined in (14)
which as we found it exhibited the lowest iteration counts. We choose the following sparse approxima-
tion for S

Ŝ = −Dψ − Eβ − B̂⊤Â−1
α B̂ (19)
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where, for each basis function ηi ∈ Φhp and ζi ∈ Ψhp,

[Âα]ij := α(∇hηi,∇hηj)L2(Ω) and B̂ij := (ηi, ζj)L2(Ω). (20)

Âα is diagonal when d = 1 and block-diagonal (after a permutation of the rows and columns) with 4N
blocks (where N is the number of 2D cells in the mesh) when d = 2. Thus Â admits a cheap sparse
Cholesky factorization. Ŝ is also block-diagonal although the blocks themselves are dense and of size
O(pd × pd), d ∈ {1, 2}.

In Figure 2 we consider (15) as constructed for both a 1D and 2D discretization and measure the
growth of Ŝ-left-preconditioned GMRES iterations to solve Sx = 1 to a relative error of 10−6 with
respect to partial degree p and 1/h. We fix α = 1, β = 0, and Dψ ≡ 0 which constitutes the worst
case scenario, i.e. where S is the most singular. In 1D, when h is fixed, we see that the GMRES
iteration counts remain constant as p → ∞. In all other cases, we observe polylogarithmic growth in
the number of GMRES iterations. We also provide timings for the sparse LU factorization of Ŝ.

(a) 1D: 10 cells (b) 1D: 10 cells (c) 1D: p = 5 (d) 1D: p = 5

(e) 2D: 16 quad. cells (f) 2D: 16 quad. cells (g) 2D: p = 5 (h) 2D: p = 5

Figure 2: (Obstacle problem). We consider d ∈ {1, 2} and fix α = 1, β = 0, Dψ ≡ 0 and
consider the dense Schur complement S as defined (18a), in the context of the obstacle sub-
problem (4), and its sparse preconditioner Ŝ as defined in (19). We measure the growth in the
number of Ŝ-left-preconditioned GMRES iterations to solve Sx = 1 to a relative error of 10−6

(i.e. ∥rk∥ℓ2/∥r0∥ℓ2 ≤ 10−6) with respect to partial degree p in (a) and (e) and 1/h in (c) and (g).
We observe no growth in 1D with respect to p and polylogarithmic growth in the other cases. We also
measure the sparse LU factorization time for Ŝ with respect to partial degree p in (b) and (f) and 1/h
in (d) and (h).

4.6 Gradient-type constraints: a Schur complement preconditioner

We choose a simpler preconditioner in the case of the pG gradient-type subproblem (5). More specifi-
cally, we drop the triple-matrix-product in S and choose:

Ŝ = −Dψ − Eβ. (21)

This provided robust preconditioning as evidenced in Figure 3. We perform the same experiment as
for the obstacle-type case and examine the number of left-preconditioned GMRES iterations to solve
Sx = 1 to a relative tolerance of 10−6 with respect to increasing p and 1/h in 2D. We fix α = 1,
Dψ ≡ 0 but select β = 10−5 as otherwise the Schur complement S is nearly singular.
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(a) 16 quad. cells (b) 16 quad. cells (c) p = 4 (d) p = 4

Figure 3: (Gradient-type constraint). We consider d = 2 and fix α = 1, β = 10−5, Dψ ≡ 0 and
consider the dense Schur complement S as defined (18a), in the context of the pG gradient-type
subproblem (5), and its sparse preconditioner Ŝ as defined in (21). We measure the growth in the
number of Ŝ-left-preconditioned GMRES iterations to solve Sx = 1 to a relative error of 10−6 with
respect to partial degree p in (a) and 1/h in (c). We observe slower than logarithmic growth in both
cases. We also measure the sparse LU factorization time for Ŝ with respect to partial degree p in (b)
and 1/h in (d).

5 Adaptive hp-refinement

As the regularity of the solution is almost always capped at Hs(Ω), s < 5/2, a uniform p-refinement
will often fail to reduce the error faster than h-refinement, particularly if the mesh is under-resolved
in transition regions from obstacle contact to no contact. This is a well-studied phenomenon and
estimators have been designed to guide hp-refinement. There are two questions to consider:

1 How does one estimate the error on each cell in the mesh?

2 How does one choose whether to h and/or p-refine a cell?

In this study, we focus exclusively on hp-adaptivity for the one-dimensional obstacle problem. Achiev-
ing a fast and efficient implementation in higher dimensions is intricate and falls outside the scope of
this work. By design, p-adaptivity leads to a discretization where the degree p varies from cell to cell in
the mesh. This may provide the smallest error per dof but there is an overhead associated with such
an implementation. In particular certain speedups for the fast transforms in 2D are lost in an imple-
mentation that allows for varying degree and may lead to slower solve times. Moreover, the current
tensor-product structure of the discretization for d ≥ 2 introduces additional challenges. Our focus on
the obstacle problem stems from the availability of the provably reliable and efficient hp-a posteriori
error estimators developed by Banz and Schröder in [18, Sec. 4].

We first consider (2) and utilize the strategy as found in the work of Houston and Süli [52, Alg. 1].
Suppose that d = 1. Given a cell K ∈ Th and the discrete solution uhp, we recover the coefficients
of the Legendre expansion on the cell K : uhp(x)|K =

∑p+1
j=0 ajP

K
j (x), where PK

j denotes the
Legendre polynomial of degree j affine-transformed to the cellK . In other words we re-expand uhp in
theL2-conforming p-FEM space4. Next we find the ℓ2-norm least squares solution (m, b) to jm+b =
| log |aj|| for j = 0, . . . , p+1. e−m is a measurement of the analyticity of uhp inK cf. [52, Sec. 2.4.1].
Thus for a user-chosen parameter σ ∈ (0, 1), if e−m < σ, then we uniformly h-refine the cell and
then p-refine the refined cells whereas if e−m ≥ σ then we only uniformly h-refine the cell K .

For (1) we found that the a posteriori estimate for the limit problem (3) provided the best error reduction.

4Practically these are easily found (without a need for quadrature) since there exists a banded matrix R with block
bandwidths (1, 1) such that a = Ru [60, Sec. 2.2.1].
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Consider the local residuals for K ∈ Th:

η21(K) :=
h2K
p2K

∥fhp +∆uhp + λhp∥L2(K) +
h2K
p2K

∥f − fhp∥2L2(K) + ∥φ− φhp∥L2(K)

η2(K) := η21(K) + |(λhp, φhp − uhp)L2(K)|+ ∥min{φhp − uhp, 0}∥2L2(K),

(22)

where φhp is the projection of φ in Ψhp, λhp = (ψk−1,hp − ψhp)/α and ψk−1,hp is the FEM latent
variable solution at the previous hpG iterate k−1. By combining the local measurements for analyticity
and error, we derive the hp-refinement algorithm in Algorithm 1.

Remark 5.1 (pG error indicator). We are the using a strong reformulation of the limit problem, the
variational inequality (3), to estimate the error on each cell. Instead one might argue that an error
indicator derived from the pG subsystem might be more accurate, i.e.

η2(K) := α2η21(K) + ∥uhp + exp(−ψhp)− φhp∥2L2(K). (23)

However, we found that for the examples considered in Section 7, the error indicator in (23) performed
worse than the one in (22).

Algorithm 1 hp-adaptivity

1: Input. Th, uhp, λhp, local error estimator η, adaptivity parameters σ ∈ (0, 1), δ ∈ (0, 1).
2: Output. A refined mesh Th̃ and associated degree pK for each K ∈ Th̃.
3: For each K ∈ Th, compute the local error estimate η(K).
4: Mark cells K̃ ⊂ N where N = {T ∈ Th : η(T ) ≥ δmaxK∈Th η(K)}.
5: for K ∈ N do
6: Compute the analyticity coefficient mK .
7: if e−mK < σ then p-refine K end
8: h-refine K .
9: end for

6 Notes for fast implementation

Fast transforms. An essential aspect for fast solve times when handling high-degree polynomials is
the ability to implement the analysis (expansion in the basis) and synthesis (evaluation of the basis
on a grid) routines in quasi-optimal complexity. Such transforms exist for the L2-conforming basis
Ψhp consisting of scaled-and-shifted Legendre polynomials [3, 56, 92, 70]. In our implementation we
opt for the approach described in [70, Sec. 4.6.4] and implemented in [87] where the coefficients
of the Legendre expansion are converted to and from the coefficients of the equivalent Chebyshev
expansion. The Chebyshev expansion then enjoys the use of the Discrete Cosine Transform (DCT) for
quasi-optimal analysis and synthesis.

Alleviating ill-conditioning. As observed by Keith and Surowiec [57] the nonlinear convergence of
the Newton solver may degrade as h → 0 and p → ∞. We hypothesize this is due to the ill-
conditioning of the linear system in (15). We find that there are three remedies to such a situation:

■ Utilization of the block preconditioning strategy in Section 4.4.
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■ Adding a small modification to the Jacobian, which we denoted by Eβ in (15). The local modifi-
cation also makes the GMRES solver more robust.

■ Choosing small values for the α-sequence. Since the solver converges without requiring α →
∞, one may use small values of α, for instance terminating whilst α < 1, and still observe
numerical convergence.

Quadrature. Quadrature is required to assemble or apply the action of the matrixDψ. For instance, in
the obstacle problem, given ψhp we must compute (I) (ζi, e−ψhp)L2(Ω) and (II) (ζi, e−ψhpζj)L2(Ω) for
each basis function ζi, ζj ∈ Ψhp. In our implementation we opted for a fast but non-standard quadra-
ture. We consider the approximations e−ψhp ≈

∑
k ckζk for (I) and e−ψhpζj ≈

∑
k c̃kζk for (II). Once

the expansions are performed, the integrals (I) and (II) are computed efficiently due to the orthogonality
and support properties of the basis functions in Ψhp. The integrals are only exact if e−ψhp is a piece-
wise constant. Nevertheless, experimentally the quadrature rule provided excellent results with the
hpG solver exhibiting robustness against polynomial aliasing [54, Ch. 2.4.1.2]. This quadrature scheme
does not preserve symmetry inDψ but when tested against a symmetry-conserving Clenshaw–Curtis
quadrature scheme [33, 93] we found that the non-standard route allowed for quicker assembly of Dψ

and actually reduced the number of nonlinear and GMRES iterations required for the obstacle problem
solve. We use the same technique for the action and assembly of Dψ in the gradient-type case.

Inexact solves. Speedups are available if one does not solve the Newton linear systems exactly but
rather terminates the linear system iterative solver once the error falls below a user-chosen tolerance.

7 Examples

Data availability. The implementation is contained in the package HierarchicalProximalGalerkin.jl [71]
and is written in the open-source language Julia [22]. The version of HierarchicalProximalGalerkin.jl
run in our experiments is archived on Zenodo [72]. We utilize a number of available Julia packages
[81, 14, 39, 31, 55, 68, 87] and, in particular, the PiecewiseOrthogonalPolynomials.jl package [69] for
its implementation of the hierarchical p-FEM basis. The experiments in Sections 7.1 to 7.3 were run
on a deskstop with 16GB of RAM and 8 CPUs Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz. The final
example in Section 7.4 was run on a machine with 768GB of RAM and 72 CPUs HPE Synergy 660
Gen10 Xeon @ 3.1GHz.

7.1 Oscillatory data

The first example is a one-dimensional obstacle problem with an oscillatory right-hand side. Let ω =
10π and c = 2ω2 and consider the parameters:

Ω = (0, 1), f(x) = c sin(ωx), φ ≡ 1. (24)
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The solution of the obstacle problem with the setup (24) is

u(x) =



2 sin(ωx) + a0x if x ∈ [0, x0),

1 if x ∈ [x0, x1),

2 sin(ωx)− 1 if x ∈ [x1, x2),

1 if x ∈ [x2, x3),

2 sin(ωx) + a1x− a1 if x ∈ [x3, 1],

(25)

where x0 ≈ 0.038276, x1 = 0.05, x2 = 0.85, x3 ≈ 0.853423, a0 ≈ −22.621665, and a1 ≈
6.743534. The goal is to compare the hpG solver with the primal-dual active set strategy (PDAS) [46]
and investigate the effectiveness of an adaptive hp-refinement. When using PDAS, u is discretized
with continuous piecewise linear finite elements. The PDAS solver has no assembly cost at each
nonlinear iteration and is effectively solving a Poisson equation over the inactive set of the domain at
each iteration. However, each time the active set changes, the stiffness matrix must modified and re-
factorized via a sparse Cholesky factorization. For the hpG solver, we use the α-update rule α1 = 2−7,
αk+1 = min(

√
2αk, 2

−3) and terminate once αk = αk−1 = 2−3. We fix the stabilization parameter
β = 10−8 in (15). The results are visualized in Figure 4.

We observe that the hp-refinement strategy of Algorithm 1, labelled “hp-adaptiveïn Figure 4, is very
effective at error reduction. In fact, we discover a convergence rate of O((h/p)10) for the regimes
of h and p that we consider. At the final data point, we have an H1-norm error of 5.61 × 10−5, a
minimum and maximum discretization degree of 13 and 18 and mesh sizes hmin = 3.9 × 10−4 and
hmax = 5 × 10−2 across all the cells of the mesh, respectively. Moreover, the hpG iterations are
bounded for all ten data points where the solves required 32, 33, 28, 30, 30, 32, 32, 32, 33, and 33
cumulative Newton iterations for each successive refinement, respectively. Recall that on each mesh,
the initial guess is initialized as the zero function. Hence, these Newton iterations are not dependent
on grid-sequencing from the discretized solution of the parent coarser mesh.

The strategy labelled “h-adaptive, p-uniformïn Figure 4 also provided a fast convergence rate of
O((h/p)5). Here we use an adaptive h-refinement but coupled with an aggressive p-refinement where
on the first mesh p = 4 and then on each successive mesh we increase the polynomial degree by
one across all the cells on the mesh. The main advantage of such a strategy is that the transforms
required for the assembly and action of nonlinear block Dψ are parallelized more easily and lead to
fast wall-clock solve times. In fact this strategy provided both the smallest H1-norm error as mea-
sured by both the number of dofs and the time cost per linear solve, at least in the regime of h and
p that we consider. The hpG solves were mesh independent requiring 22 Newton iterations on each
refinement. The solve for the finest discretization took 0.087 seconds to achieve an H1-norm error of
2.0× 10−4. Most notably, this strategy required half the average wall-clock time per Newton iteration,
when compared to the PDAS strategy to achieve an H1-norm error smaller than 10−2.

The three strategies of uniform p-refinement (with a fixed h) and uniform h-refinement with either
p = 2 or p = 4 all delivered a convergence rate of slightly faster than O((h/p)3/2). This is expected
behaviour due to the Hs(Ω), s < 5/2, regularity of the solution. In the p-refinement, the largest p
considered is p = 41. As expected, both a uniform or adaptive h-refinement with p = 1 via the PDAS
solver was capped at a convergence of O(h).

Remark 7.1 (Comparing solver times). We solve the linear systems in the PDAS and hpG strategies
via sparse direct solvers. The linear solves in the PDAS could be greatly accelerated, for example,
by using algebraic multigrid techniques. However, we contend that a similar improvement is possi-
ble for the linear solves in the hpG solver via the preconditioning strategy of Section 4.4 and other
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similar strategies [13, 21, 61, 85]. To conclude, we are not claiming that a high-order discretization is
always the most computationally efficient strategy in terms of error reduction. However, we have clear
evidence to assert that they are certainly competitive.

Figure 4: (Left) The solution to the 1D obstacle problem with the setup (24). (Right) Convergence of 7
refinement strategies. hp-adaptive utilizes Algorithm 1 (δ = 0.7, σ = 0.8), h-adaptive is Algorithm 1
with σ = 0 (δ = 0.3), h-uniform implies the mesh size is uniformly halved with each refinement and
p-uniform is where the polynomial degree is incremented by one with each refinement. Any number
associated with a data point is the average time taken per Newton iteration, measured in milliseconds,
via a direct sparse factorization. In the order listed in the legend, the first two strategies converge at a
rate of 1, the next 3 at a rate slightly faster than 3/2 and the final two at a rate of 5 and 10, respectively
(in the regime of h and p considered).

7.2 Oscillatory obstacle

Consider the following setup of a two-dimensional obstacle problem:

Ω = (0, 1)2, f(x, y) = 100, and φ(x, y) = (1 + J0(20x))(1 + J0(20y)), (26)

where J0 denotes the zeroth order Bessel function of the first kind [67, Sec. 10.2(ii)]. We are not aware
of the exact solution of this problem and, therefore, estimate the error against a heavily-refined dis-
cretization that is plotted in Figure 5. In this example we focus primarily on uniform h and p-refinements
and discover that the best ratio of (approximate) error to computational expense is achieved by a hp-
uniform refinement, i.e. with each refinement the mesh size is halved and the partial discretization
degree is incremented by one. We believe that this subsection provides a clear counterexample to the
notion that low-order discretizations should always be preferred.

We initialize the discretization by meshing the domain into 10× 10 uniform quadrilateral cells and use
the same α-update rule as in Section 7.1. We do not use any stabilization, i.e. β = 0 in (15). We find
that all hpG runs required 24 Newton iterations independently of h and p. We plot the (approximate)
H1-norm error of the three strategies in Figure 6 and include the average time taken per linear solve
for each solver (including any matrix assembly costs).

The convergence of the PDAS solver is capped at O(h) since the partial degree is fixed at p = 1
whereas the other strategies observe an expected convergence rate ofO((h/p)3/2). Per dof, the high-
order discretizations achieve the smallest error. Moreover, the average time taken per linear solve
is clearly competitive with the low-order discretizations coupled with a finer mesh. In fact the best
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Figure 5: (Left) The solution to the obstacle problem with the setup (26). (Right) A 1D slice through the
solution at y = 1/2.

Figure 6: ApproximateH1-norm error of five strategies for the obstacle problem with the setup (26). All
hpG solves required a total of 24 Newton iterations independently of p and h. The numbers attached
to a data point are the average time taken per linear solve, as measured in seconds, via a sparse
factorization. The higher order discretizations achieve a smaller error with fewer dofs and a faster
solve time. The highest partial degree plotted is p = 24. The triangles indicate rates of convergence.
When p = 1 we observe an O(h) rate of convergence whereas for the other strategies the rate is
roughly O((h/p)3/2).

strategy, hp-uniform refinement, featured a discretization that resulted in wall-clock times that were
roughly 24 times faster, per linear solve, than the PDAS strategy for an error of 10−2.

To test the preconditioner constructed in Sections 4.4 and 4.5, in Table 1 we tabulate the average right-
preconditioned GMRES iterations and wall-clock time per Newton step of the hpG solver for various
choices of h and p. We pick β = 10−4 in Eβ in (15) and choose a relative stopping tolerance of
10−5 for the GMRES solver. For comparison, we include a row with the average wall-clock time per
Newton step via a sparse LU factorization. The GMRES iterations are bounded with respect to p and
only grow at a mild polylogarithmic rate as h → 0. Moreover, the GMRES solver always resulted in
faster average solve times per linear iteration than the LU factorization.
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p = n, h = 1/10 p = 2, h = 2−n/10 p = 3, h = 2−n/10 p = n+ 2, h = 2−n/10

n 3 10 17 24 1 3 5 0 2 4 0 2 4
GMRES Its. 16.38 23.63 23.54 23.38 20.33 32.08 36.54 16.38 26.79 35.13 14.21 29.33 35.29

GMRES Time 0.00 0.19 1.67 7.99 0.00 0.12 2.64 0.00 0.06 1.58 0.00 0.23 12.07
LU Time 0.00 0.22 2.75 15.28 0.01 0.15 3.10 0.01 0.10 2.40 0.00 0.20 13.38

Table 1: A comparison of the average right-preconditioned GMRES iterations and wall-clock timings (in
seconds) per Newton iteration for various choices of h and p over a run of the hpG algorithm to solve
the obstacle problem with the setup (26). We utilize the preconditioner outlined in Sections 4.4 and 4.5
with a GMRES relative tolerance of 10−5. We use the stabilization Eβ with β = 10−4 and include
the average wall-clock timings of a sparse LU factorization for comparison. We observe a bounded
iteration count with respect to p and a mild polylogarithmic growth with respect to h. The GMRES
solver is almost always faster than the LU factorization.

7.3 A gradient-type constrained problem

Consider the gradient-type constrained Dirichlet minimization problem in (2b) and fix the parameters
as

Ω = (0, 1)2, f(x, y) = 20, and φ(x, y) =

{
1/2 if x or y ∈ [0, 1/4] ∪ [3/4, 1],

∞ otherwise.
(27)

In Figure 7 we plot the solution of the gradient-constrained problem with the setup (27). There is a
kink in the solution at x, y ∈ {1/4, 3/4} which coincides directly with the definition of φ. Once again,
we are not aware of the exact solution of this problem and, therefore, we measure the convergence
against a heavily-refined discretization. We initialize the discretization by meshing the domain into 4×4
uniform quadrilateral cells (or 8× 8 in the p-uniform strategy) which aligns with the discontinuity of φ.
We use the α-update rule α1 = 2−7, αk+1 = min(

√
2αk, 2

2) and terminate once αk = αk−1 = 22.
The hpG solver features hp-robustness with all hpG solves requiring between 74 and 78 Newton
iterations irrespective of p and h. The convergence plot is also provided in Figure 7. Surprisingly, in
the strategies that also refine the mesh, we observe regions withO(hp) convergence rates in contrast
to the obstacle problems considered previously. We hypothesize that this superconvergence arises
from the alignment of the mesh with the discontinuity in φ. In this example, this alignment coincides
with the transition between the active and inactive regions of the solution which is where the loss of
regularity occurs. Hence, the solution restricted to each cell K is more regular than H5/2(K) and,
therefore, benefits from the high-order discretization. Once again, we observe significant speedups
when utilizing discretizations p ≥ 2. We observe that the induced linear systems are around 100
times faster to solve for the strategies where p > 1 in order to reach an error of 10−2.

In Table 2 we report the effectiveness of the preconditioning strategy of Sections 4.4 and 4.6. The
average GMRES iterations per linear solve are p-robust and grow with up to a linear rate with 1/h. The
growth is exacerbated by the choice of an adaptive stabilization parameter where β = 10−p+log2 h →
0 as p → ∞ and h → 0. If β is fixed to be constant, then the growth is at most polylogarithmic
but causes the error to plateau. For all reported choices of h and p, we observe that the average
wall-clock timing per linear solve of the preconditioned GMRES strategy is faster than a direct sparse
LU factorization.
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Figure 7: (Left) The solution to the gradient-constraint problem (2b) with the setup (27). (Right) Approx-
imate H1-norm error of five strategies. All hpG solves required between 74 and 78 Newton iterations.
The numbers attached to data points are the average time taken per linear solve, as measured in
seconds, with a sparse LU factorization. The highest partial degree plotted is p = 20. The triangles
indicate rates of convergence. We observe O(hp) convergence in the range of h and p considered.

p = n, h = 2−3 p = 1, h = 2−n p = 3, h = 2−n p = n− 1, h = 2−n

n 5 10 15 20 4 6 8 3 5 7 4 6
GMRES Its. 61.76 71.76 72.03 72.00 10.31 20.73 33.73 21.26 50.71 72.76 34.73 77.48

GMRES Time 0.03 0.33 1.70 5.45 0.00 0.02 0.83 0.00 0.16 4.49 0.03 4.66
LU Time 0.03 0.36 2.60 5.75 0.00 0.06 3.06 0.01 0.19 10.88 0.04 5.62

Table 2: A comparison of the average right-preconditioned GMRES iterations and wall-clock timings
(in seconds) per Newton iteration for various choices of h and p over a run of the hpG algorithm to
solve (2b) with the setup (27). We utilize the preconditioning strategy outlined in Sections 4.4 and 4.6
with a GMRES relative tolerance of 10−3 and terminate GMRES if it reaches 150 iterations. We use
the stabilization Eβ with β = 10−p+log2 h and include the average wall-clock timings obtained with a
sparse LU factorization for comparison. We observe that the iterations are p-robust and grow with up
to a mild linear rate with 1/h. The preconditioning strategy always offers a speedup when compared
to a direct sparse LU factorization.

7.4 An obstacle-type quasi-variational inequality

In this example we consider the thermoforming quasi-variational inequality (QVI). In a QVI, the obsta-
cle φ is dependent on the solution itself. Solvers for QVIs posed in an infinite-dimensional setting are
scarce and most examples in the literature are solved by means of a fixed point iteration, penalty or
augmented Lagrangian technique [53, 4]. Very recently a semismooth Newton method was introduced
for a class of obstacle-type QVIs in [5]. The solver in [5] requires the realization of an active set and,
therefore, is restricted to low-order FEM discretizations. The QVI can also be directly tackled by an
extension of the pG algorithm [34, Sec. 3.5] but handling the nonlinear terms such that the discretiza-
tions remain sparse as p → ∞ is nontrivial. Hence in this example we opt for a fixed point approach
where the obstacle subproblems are solved via the hpG solver. We believe this is the highest order
discretization of an elliptic obstacle-type QVI that is reported in the literature.

Given a Φ0 ∈ H1(Ω), ξ ∈ C2(Ω̄) ∩ H1
0 (Ω), f ∈ L2(Ω), γ > 0, and a globally Lipschitz and
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nonincreasing function g : H1(Ω) → L2(Ω), the thermoforming problem is given by

Find u ∈ H1
0 (Ω) satisfying, for all v ∈ {w ∈ H1

0 (Ω) : w ≤ Φ(u) := Φ0 + ξT},

u ≤ Φ(u), (∇u,∇(v − u))L2(Ω) ≥ (f, v − u)L2(Ω),

with T ∈ H1(Ω) satisfying, for all q ∈ H1(Ω),

(∇T,∇q)L2(Ω) + γ(T, q)L2(Ω) = (g(Φ0 + ξT − u), q)L2(Ω).

(28)

Remark 7.2 (Thermoforming QVI). In two dimensions, Ω ⊂ R2, (28) provides a simple model for
the problem of determining the displacement u ∈ H1

0 (Ω) of an elastic membrane, clamped at the
boundary ∂Ω, that has been heated, and is pushed by means of an external force f ∈ L2(Ω) into a
metallic mould with original shape Φ0 ∈ H1(Ω) and final shape Φ(u) ∈ H1(Ω). The deformation is
due to the mould’s temperature field T ∈ H1(Ω) which varies according to the membrane’s temper-
ature. The heat transfer is modelled by a conduction coefficient γ > 0, a given globally Lipschitz and
nonincreasing function g : H1(Ω) → L2(Ω), and a smoothing function ξ ∈ H1

0 (Ω) ∩ C2(Ω̄) that
incorporates the distance between the membrane and the mould. For more details on the thermoform-
ing problem, including its derivation and its background, we refer to [4, Section 6] and the references
therein.

The fixed point approach proceeds as follows, for T0 ≡ 0 and i ∈ N0, repeat the following two steps
until convergence:

(I) Given a Ti ∈ H1(Ω), solve the obstacle problem

find ui+1 ∈ H1
0 (Ω) satisfying for all v ∈ {w ∈ H1

0 (Ω) : w ≤ Φ0 + ξTi a.e.}

ui+1 ≤ Φ0 + ξTi, (∇ui+1,∇(v − ui+1))L2(Ω) ≥ (f, v − ui+1)L2(Ω).
(29)

(II) For all q ∈ H1(Ω), solve the (nonlinear) PDE for Ti+1 ∈ H1(Ω):

(∇Ti+1,∇q)L2(Ω) + γ(Ti+1, q)L2(Ω) = (g(Φ0 + ξTi+1 − ui+1), q)L2(Ω). (30)

We now fix the example parameters as:

Ω = (0, 1)2, f(x, y) = 100, ξ(x, y) = sin(πx) sin(πy), γ = 1,

Φ0(x, y) = 11/10− 2max(|x− 1/2|, |y − 1/2|) + cos(8πx) cos(8πy)/10,

g(s) =


1/5 if s ≤ 0,

(1− s)/5 if 0 < s < 1,

0 otherwise.

(31)

The data (31) is such that we are guaranteed the existence and uniqueness of a solution to (28) [4].
Moreover, one can show there is a global contraction in the fixed point iteration induced by steps (I)
and (II), cf. [5, Sec. 4.4] and, therefore, the scheme is guaranteed to converge to the (unique) solution.
We plot the resulting membrane u and mould Φ0 + ξT in Figure 8 as well as a slice at y = 1/2.

We mesh the domain into a 4 × 4 uniform mesh (i.e. 16 cells total) and discretize (u, ψ, T ) with
(uhp, ψhp, Thp) ∈ Uh,px,py

× Ψh,px−2,py−2 × Uh,px,py
. We terminate the fixed point algorithm once

∥ui − ui−1∥H1(Ω) ≤ 3× 10−3.

To solve the obstacle problem in step (I), we use the hpG solver with the α-update rule α1 = 2−6,
αk+1 = 4αk, and terminate once αk = 1. We use the stabilization Eβ in (15) with β = 10−6 and a
GMRES relative and absolute stopping tolerance of 10−7.
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We found that an efficient nonlinear solver for step (II) was Newton’s method where the linear systems
are solved by GMRES left-preconditioned with A + γMu where A and Mu are the stiffness and
mass matrices for Uhp. Hence, the assembly of the (increasingly dense as p→ ∞) Jacobian is never
required and the Jacobian-vector product can be computed in quasi-optimal complexity (similar to the
discussion in Section 6). Since A + γMu is very sparse, it can be factorized efficiently with a sparse
Cholesky factorization (the factorization took 0.2 seconds with p = 82). We chose a relative stopping
tolerance of 1.5× 10−8 for the GMRES solver.

Figure 8: Surface plots of the membrane u (left) and the final mould (middle) of the thermoforming
problem (28) with setup (31). On the right is a slice plot at y = 1/2 of the membrane and final mould
as well as the original mould Φ0 and final temperature T .

In Table 3 we provide the iteration counts of the outer fixed point method as well as the average
number of Newton iterations per fixed point iteration and the average number of preconditioned GM-
RES iterations per Newton iteration for steps (I) and (II) with increasing partial degree p. We observe
p-independent Newton iteration counts for both steps (I) and (II). The average number of GMRES
iterations per Newton iteration appears to be bounded above by 22.4 and 3.11 for steps (I) and (II),
respectively.

Step (I) Step (II)
p Fixed point Avg. Newton Avg. GMRES Avg. Newton Avg. GMRES
6 4 15.00 11.00 1.50 2.83

12 4 15.25 15.85 2.00 3.13
22 4 16.00 19.36 2.00 3.00
32 4 16.00 21.09 2.00 3.00
42 4 15.75 21.75 2.25 3.11
52 4 15.00 22.40 2.00 3.00
62 4 15.00 21.90 2.00 3.00
72 4 15.00 21.90 2.00 3.00
82 4 15.25 21.61 2.00 3.00

Table 3: The partial degree p, the number of outer iterations of the fixed point scheme as well as the
average number of Newton iterations per fixed point iteration and average number of preconditioned
GMRES iterations per Newton iteration in steps (I) and (II) to approximate the solution of the QVI (28)
with setup (31). The algorithm terminates once ∥ui − ui−1∥H1(Ω) ≤ 3× 10−3. The outer fixed point
loop is p-independent and we observe bounded iteration counts in the Newton and GMRES solvers
for both steps (I) and (II).
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8 Conclusions

In this paper we discretized the latent variable proximal point method [57, 34] with the hierarchical
p-FEM basis [12, 85, 60] to construct the hierarchical proximal Galerkin algorithm, a high-order solver
for variational problems with pointwise obstacle- and gradient-type inequality constraints. As p→ ∞,
the choice of FEM basis retains sparsity in the discretized Newton systems and also admits a block
preconditioner that, when coupled with a GMRES iterative solver, bounds the inner Krylov iterations
with polylogarithmic growth in the worst case. Moreover, we observed that the outer Newton itera-
tions are experimentally mesh and degree independent. The method is amenable to hp-adaptivity
techniques which were fully explored in a one-dimensional obstacle problem example. We also suc-
cessively apply the solver to a two-dimensional obstacle problem and gradient-constrained problem
as well as a thermoforming problem, an example of an obstacle-type quasi-variational inequality. We
consider discretizations with up to partial degree p = 82 on each element.

We also compare wall-clock timings of our solver with low-degree discretizations and note that, for
the regimes of h and p considered, we found high-order discretizations deliver up to 100 times faster
solves to achieve the same errors. This discovery is, perhaps, in contrast to what the community has
come to expect.

We now outline some extensions:

■ Non-Cartesian cells. The discretization relies on a tensor-product structure of the mesh when-
ever d ≥ 2. For applications where non-Cartesian cells are required, we advocate that our
solver be used as a preconditioner for the more general discretization via equivalent operator
preconditioning [9]. We refer the interested reader to an excellent introduction by Brubeck and
Farrell in [28, Sec. 2.7] who also prove their preconditioner is spectrally equivalent to the original
problem.

■ hp-adaptivity when d ≥ 2. Similar to the case of non-Cartesian cells, the required tensor-
product structure places a limit on a full implementation of hp-adaptivity whenever d ≥ 2. In
such a case, we once again recommend to use our solver as a preconditioner via equivalent
operator preconditioning.

■ p-multigrid. We believe an investigation into utilizing p-multigrid as a preconditioner (cf. [28]) is
worthwhile and may allow one to consider significantly finer meshes and achieve inner Krylov
iteration counts that are even more robust to p and h.

■ Alternative problems. Minimizing the Dirichlet energy subject to obstacle- and gradient-type
pointwise constraints constitutes the simplest PDE structure one might consider. The proximal
Galerkin method has been shown to be a flexible framework, as evidenced in [34], and can be
extended to tackle problems in contact mechanics, brittle fracture, multiphase species, quasi-
variational inequalities, and the Monge–Ampère equation among others. The goal here would
be to adapt the chosen high-order FEM discretization of the pG subproblems to also provide
fast solves for these more general problems.

Acknowledgements

I would like to thank Michael Hintermüller, Brendan Keith, Patrick Farrell, Thomas Surowiec, Jørgen
Dokken, Sheehan Olver, Richard M. Slevinsky, Jishnu Bhattacharya, Lothar Banz, Andreas Schröder,

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025



Hierarchical proximal Galerkin 23

and Pablo Brubeck for discussions and comments that have significantly aided with the writing of this
manuscript.

References

[1] R. A. Adams and J. J. Fournier. Sobolev spaces. Second. Elsevier, 2003. ISBN: 978-0-12-
044143-3.

[2] M. Ainsworth and C. Parker. “Unlocking the secrets of locking: Finite element analysis in planar
linear elasticity”. In: Computer Methods in Applied Mechanics and Engineering 395 (2022),
p. 115034. DOI: 10.1016/j.cma.2022.115034.

[3] B. K. Alpert and V. Rokhlin. “A fast algorithm for the evaluation of Legendre expansions”. In:
SIAM Journal on Scientific and Statistical Computing 12.1 (1991), pp. 158–179. DOI: 10.
1137/0912009.

[4] A. Alphonse, M. Hintermüller, and C. N. Rautenberg. “Directional differentiability for elliptic
quasi-variational inequalities of obstacle type”. In: Calculus of Variations and Partial Differen-
tial Equations 58.1 (2019), p. 39. DOI: 10.1007/s00526-018-1473-0.

[5] A. Alphonse et al. A Globalized Inexact Semismooth Newton Method for Nonsmooth Fixed-point
Equations involving Variational Inequalities. 2024. arXiv: 2409.19637 [math.NA].

[6] J. Andrej et al. “High-performance finite elements with MFEM”. In: The International Journal
of High Performance Computing Applications (), p. 10943420241261981. DOI: 10.1177/
10943420241261981.

[7] H. Antil et al. “Nondiffusive variational problems with distributional and weak gradient con-
straints”. In: Advances in Nonlinear Analysis 11.1 (2022), pp. 1466–1495. DOI: 10.1515/
anona-2022-0227.

[8] T. F. R. Arndt. Variational and quasi-variational problems with gradient constraints and applica-
tions to sandpile growth. George Mason University, 2021.

[9] O. Axelsson and J. Karátson. “Equivalent operator preconditioning for elliptic problems”. In:
Numerical Algorithms 50 (2009), pp. 297–380. DOI: 10.1007/s11075-008-9233-4.

[10] I. Babuška and M. R. Dorr. “Error estimates for the combined h and p versions of the finite
element method”. In: Numerische Mathematik 37 (1981), pp. 257–277. DOI: 10 . 1007 /
BF01398256.

[11] I. Babuška and B. A. Szabó. Lecture notes on finite element analysis. 1983–1985.

[12] I. Babuska, B. A. Szabo, and I. N. Katz. “The p-version of the finite element method”. In: SIAM
Journal on Numerical Analysis 18.3 (1981), pp. 515–545. DOI: 10.1137/0718033.

[13] I. Babuška et al. “Efficient preconditioning for the p-version finite element method in two dimen-
sions”. In: SIAM Journal on Numerical Analysis 28.3 (1991), pp. 624–661. DOI: 10.1137/
0728034.

[14] S. Badia and F. Verdugo. “Gridap: An extensible Finite Element toolbox in Julia”. In: Journal of
Open Source Software 5.52 (2020), p. 2520. DOI: 10.21105/joss.02520.

[15] P. Bammer, L. Banz, and A. Schröder. A Posteriori Error Estimates for hp-FE Discretizations in
Elastoplasticity. 2024. arXiv: 2401.09105 [math.NA].

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

https://doi.org/10.1016/j.cma.2022.115034
https://doi.org/10.1137/0912009
https://doi.org/10.1137/0912009
https://doi.org/10.1007/s00526-018-1473-0
https://arxiv.org/abs/2409.19637
https://doi.org/10.1177/10943420241261981
https://doi.org/10.1177/10943420241261981
https://doi.org/10.1515/anona-2022-0227
https://doi.org/10.1515/anona-2022-0227
https://doi.org/10.1007/s11075-008-9233-4
https://doi.org/10.1007/BF01398256
https://doi.org/10.1007/BF01398256
https://doi.org/10.1137/0718033
https://doi.org/10.1137/0728034
https://doi.org/10.1137/0728034
https://doi.org/10.21105/joss.02520
https://arxiv.org/abs/2401.09105


I. P. A. Papadopoulos 24

[16] L. Banz, M. Hintermüller, and A. Schröder. “A posteriori error control for distributed elliptic opti-
mal control problems with control constraints discretized by hp-finite elements”. In: Computers
& Mathematics with Applications 80.11 (2020), pp. 2433–2450. DOI: 10.1016/j.camwa.
2020.08.007.

[17] L. Banz and A. Schröder. “A posteriori error control for variational inequalities with linear con-
straints in an abstract framework”. In: Journal of Applied & Numerical Optimization 3.2 (2021).
DOI: 10.23952/jano.3.2021.2.07.

[18] L. Banz and A. Schröder. “Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle
problems”. In: Computers & Mathematics with Applications 70.8 (2015), pp. 1721–1742. DOI:
10.1016/j.camwa.2015.07.010.

[19] L. Banz and E. P. Stephan. “A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic
obstacle problems”. In: Applied Numerical Mathematics 76 (2014), pp. 76–92. DOI: 10.1016/
j.apnum.2013.10.004.

[20] M. P. Bendsøe and O. Sigmund. Topology Optimization. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004. ISBN: 978-3-642-07698-5. DOI: 10.1007/978-3-662-05086-6.

[21] S. Beuchler and D. Braess. “Improvements for some condition number estimates for precondi-
tioned system in p-FEM”. In: Numerical Linear Algebra with Applications 13.7 (2006), pp. 573–
588. DOI: 10.1002/nla.489.

[22] J. Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM Review 59.1
(2017), pp. 65–98. DOI: 10.1137/141000671.

[23] T. Borrvall and J. Petersson. “Topology optimization of fluids in Stokes flow”. In: International
Journal for Numerical Methods in Fluids 41.1 (2003), pp. 77–107. DOI: 10.1002/fld.426.

[24] A. Brandt and C. W. Cryer. “Multigrid algorithms for the solution of linear complementarity prob-
lems arising from free boundary problems”. In: SIAM Journal on Scientific and Statistical Com-
puting 4.4 (1983), pp. 655–684. DOI: 10.1137/0904046.

[25] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. 3rd ed.
Vol. 15. Texts in Applied Mathematics. New York, NY: Springer New York, 2008. ISBN: 978-0-
387-75933-3. DOI: 10.1007/978-0-387-75934-0.

[26] H. Brezis and M. Sibony. “Equivalence de deux inéquations variationnelles et applications”. In:
Archive for Rational Mechanics and Analysis 41.4 (Jan. 1971), pp. 254–265. DOI: 10.1007/
bf00250529.

[27] H. Brézis. “Nouveaux théorèmes de régularité pour les problèmes unilatéraux”. In: Les rencon-
tres physiciens-mathématiciens de Strasbourg-RCP25 12 (1971), pp. 1–14.

[28] P. D. Brubeck and P. E. Farrell. “A Scalable and Robust Vertex-Star Relaxation for High-Order
FEM”. In: SIAM Journal on Scientific Computing 44.5 (2022), A2991–A3017. DOI: 10.1137/
21M1444187.

[29] E. Bueler and P. E. Farrell. “A full approximation scheme multilevel method for nonlinear varia-
tional inequalities”. In: SIAM Journal on Scientific Computing 46.4 (2024), A2421–A2444. DOI:
10.1137/23M1594200.

[30] L. A. Caffarelli and A. Friedman. “The free boundary for elastic-plastic torsion problems”. In:
Transactions of the American Mathematical Society 252 (1979), pp. 65–97. DOI: 10.1090/
S0002-9947-1979-0534111-0.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

https://doi.org/10.1016/j.camwa.2020.08.007
https://doi.org/10.1016/j.camwa.2020.08.007
https://doi.org/10.23952/jano.3.2021.2.07
https://doi.org/10.1016/j.camwa.2015.07.010
https://doi.org/10.1016/j.apnum.2013.10.004
https://doi.org/10.1016/j.apnum.2013.10.004
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1002/nla.489
https://doi.org/10.1137/141000671
https://doi.org/10.1002/fld.426
https://doi.org/10.1137/0904046
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/bf00250529
https://doi.org/10.1007/bf00250529
https://doi.org/10.1137/21M1444187
https://doi.org/10.1137/21M1444187
https://doi.org/10.1137/23M1594200
https://doi.org/10.1090/S0002-9947-1979-0534111-0
https://doi.org/10.1090/S0002-9947-1979-0534111-0


Hierarchical proximal Galerkin 25

[31] J. Chen, H. Stoppels, and others. IterativeSolvers.jl. Version 0.9.4. 2024. URL: https://
github.com/JuliaLinearAlgebra/IterativeSolvers.jl.

[32] C. Christof and G. Wachsmuth. “On second-order optimality conditions for optimal control prob-
lems governed by the obstacle problem”. In: Optimization 70.10 (2021), pp. 2247–2287. DOI:
10.1080/02331934.2020.1778686.

[33] C. W. Clenshaw and A. R. Curtis. “A method for numerical integration on an automatic com-
puter”. In: Numerische Mathematik 2 (1960), pp. 197–205. DOI: 10.1007/BF01386223.

[34] J. S. Dokken et al. The latent variable proximal point algorithm for variational problems with
inequality constraints. 2025. arXiv: 2503.05672 [math.OC].

[35] L. C. Evans. “A second order elliptic equation with gradient constraint”. In: Communications in
Partial Differential Equations 4.5 (1979), pp. 555–572. DOI: 10.1080/03605307908820103.

[36] L. C. Evans. Partial Differential Equations. 2nd ed. American Mathematical Society, 2010. ISBN:
978-0821849743.

[37] G. Fichera. Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue
condizioni al contorno. Accademia nazionale dei Lincei, 1964.

[38] D. Fortunato and A. Townsend. “Fast Poisson solvers for spectral methods”. In: IMA Journal of
Numerical Analysis 40.3 (2020), pp. 1994–2018. DOI: 10.1093/imanum/drz034.

[39] J. Fuhrmann, J. J. Taraz, and others. ExtendableSparse.jl. Version 1.5.1. 2024. URL: https:
//github.com/j-fu/ExtendableSparse.jl.

[40] E. Gagliardo. “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni
in n variabili”. In: Rendiconti del seminario matematico della universita di Padova 27 (1957),
pp. 284–305.

[41] C. Gräser and R. Kornhuber. “Multigrid methods for obstacle problems”. In: Journal of Compu-
tational Mathematics (2009), pp. 1–44.

[42] T. Gustafsson, R. Stenberg, and J. Videman. “On finite element formulations for the obstacle
problem–mixed and stabilised methods”. In: Computational Methods in Applied Mathematics
17.3 (2017), pp. 413–429. DOI: 10.1515/cmam-2017-0011.

[43] J. Gwinner. “hp-FEM convergence for unilateral contact problems with Tresca friction in plane
linear elastostatics”. In: Journal of computational and applied mathematics 254 (2013), pp. 175–
184. DOI: 10.1016/j.cam.2013.03.013.

[44] W. Hackbusch and H. D. Mittelmann. “On multi-grid methods for variational inequalities”. In:
Numerische Mathematik 42 (1983), pp. 65–76. DOI: 10.1007/BF01400918.

[45] M. Hintermüller and M. Hinze. “Moreau–Yosida regularization in state constrained elliptic control
problems: error estimates and parameter adjustment”. In: SIAM Journal on Numerical Analysis
47.3 (2009), pp. 1666–1683. DOI: 10.1137/080718735.

[46] M. Hintermüller, K. Ito, and K. Kunisch. “The primal-dual active set strategy as a semismooth
Newton method”. In: SIAM Journal on Optimization 13.3 (2002), pp. 865–888. DOI: 10.1137/
S1052623401383558.

[47] M. Hintermüller and K. Kunisch. “Feasible and noninterior path-following in constrained min-
imization with low multiplier regularity”. In: SIAM Journal on Control and Optimization 45.4
(2006), pp. 1198–1221. DOI: 10.1137/050637480.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl
https://doi.org/10.1080/02331934.2020.1778686
https://doi.org/10.1007/BF01386223
https://arxiv.org/abs/2503.05672
https://doi.org/10.1080/03605307908820103
https://doi.org/10.1093/imanum/drz034
https://github.com/j-fu/ExtendableSparse.jl
https://github.com/j-fu/ExtendableSparse.jl
https://doi.org/10.1515/cmam-2017-0011
https://doi.org/10.1016/j.cam.2013.03.013
https://doi.org/10.1007/BF01400918
https://doi.org/10.1137/080718735
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1137/050637480


I. P. A. Papadopoulos 26

[48] M. Hintermüller and M. Ulbrich. “A mesh-independence result for semismooth Newton meth-
ods”. In: Mathematical Programming 101 (2004), pp. 151–184. DOI: 10.1007/s10107-
004-0540-9.

[49] I. Hlavácek et al. Solution of variational inequalities in mechanics. Vol. 66. Springer Science &
Business Media, 1988. ISBN: 978-0-387-96597-0.

[50] R. H. Hoppe. “Multigrid algorithms for variational inequalities”. In: SIAM Journal on Numerical
Analysis 24.5 (1987), pp. 1046–1065. DOI: 10.1137/0724069.

[51] R. H. Hoppe and R. Kornhuber. “Adaptive multilevel methods for obstacle problems”. In: SIAM
Journal on Numerical Analysis 31.2 (1994), pp. 301–323. DOI: 10.1137/0731016.

[52] P. Houston and E. Süli. “A note on the design of hp-adaptive finite element methods for elliptic
partial differential equations”. In: Computer Methods in Applied Mechanics and Engineering
194.2-5 (2005), pp. 229–243. DOI: 10.1016/j.cma.2004.04.009.

[53] C. Kanzow and D. Steck. “Quasi-variational inequalities in Banach spaces: theory and aug-
mented Lagrangian methods”. In: SIAM Journal on Optimization 29.4 (2019), pp. 3174–3200.
DOI: 10.1137/18M1230475.

[54] G. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid dynamics.
Oxford University Press on Demand, 2005. ISBN: 9780198528692. DOI: 10.1093/acprof:
oso/9780198528692.001.0001.

[55] D. Karrasch et al. LinearMaps.jl. Version 3.11.3. 2024. URL: https://github.com/
JuliaLinearAlgebra/LinearMaps.jl.

[56] J. Keiner. Fast Polynomial Transforms. Logos Verlag Berlin GmbH, 2011. ISBN: 978-3-8325-
2850-8.

[57] B. Keith and T. M. Surowiec. “Proximal Galerkin: A structure-preserving finite element method
for pointwise bound constraints”. In: Foundations of Computational Mathematics (2024), pp. 1–
97. DOI: 10.1007/s10208-024-09681-8.

[58] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their appli-
cations. SIAM, 2000. ISBN: 978-0-89871-466-1. DOI: 10.1137/1.9780898719451.

[59] R. C. Kirby and D. Shapero. “High-order bounds-satisfying approximation of partial differential
equations via finite element variational inequalities”. In: Numerische Mathematik (2024), pp. 1–
21. DOI: 10.1007/s00211-024-01405-y.

[60] K. Knook, S. Olver, and I. P. A. Papadopoulos. Quasi-optimal complexity hp-FEM for Poisson
on a rectangle. 2024. arXiv: 2402.11299 [math.NA].

[61] V. G. Korneev and S. Jensen. “Domain decomposition preconditioning in the hierarchical p-
version of the finite element method”. In: Applied Numerical Mathematics 29.4 (1999), pp. 479–
518. DOI: 10.1016/S0168-9274(98)00077-4.

[62] R. Kornhuber. “Monotone multigrid methods for elliptic variational inequalities I”. In: Numerische
Mathematik 69 (1994), pp. 167–184. DOI: 10.1007/BF03325426.

[63] R. Kornhuber. “Monotone multigrid methods for elliptic variational inequalities II”. In: Numerische
Mathematik 72.4 (1996), pp. 481–499. DOI: 10.1007/s002110050178.

[64] A. Krebs and E. P. Stephan. “A p-version finite element method for nonlinear elliptic variational
inequalities in 2D”. In: Numerische Mathematik 105 (2007), pp. 457–480. DOI: 10.1007/
s00211-006-0035-0.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

https://doi.org/10.1007/s10107-004-0540-9
https://doi.org/10.1007/s10107-004-0540-9
https://doi.org/10.1137/0724069
https://doi.org/10.1137/0731016
https://doi.org/10.1016/j.cma.2004.04.009
https://doi.org/10.1137/18M1230475
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://doi.org/10.1093/acprof:oso/9780198528692.001.0001
https://github.com/JuliaLinearAlgebra/LinearMaps.jl
https://github.com/JuliaLinearAlgebra/LinearMaps.jl
https://doi.org/10.1007/s10208-024-09681-8
https://doi.org/10.1137/1.9780898719451
https://doi.org/10.1007/s00211-024-01405-y
https://arxiv.org/abs/2402.11299
https://doi.org/10.1016/S0168-9274(98)00077-4
https://doi.org/10.1007/BF03325426
https://doi.org/10.1007/s002110050178
https://doi.org/10.1007/s00211-006-0035-0
https://doi.org/10.1007/s00211-006-0035-0


Hierarchical proximal Galerkin 27

[65] M. Kunze and J.-F. Rodrigues. “An elliptic quasi-variational inequality with gradient constraints
and some of its applications”. In: Mathematical Methods in the Applied Sciences 23.10 (2000),
pp. 897–908. DOI: 10.1002/1099-1476(20000710)23:10<3C897::AID-
MMA141>3E3.0.CO;2-H.

[66] J.-L. Lions and G. Stampacchia. “Variational inequalities”. In: Communications on Pure and
Applied Mathematics 20.3 (1967), pp. 493–519. DOI: 10.1002/cpa.3160200302.

[67] F. W. J. Olver et al. https://dlmf.nist.gov/, Release 1.2.1 of 2024-06-15. URL:
https://dlmf.nist.gov/.

[68] S. Olver, J. Bhattacharya, and others. MatrixFactorizations.jl. Version 3.0.1. 2024. URL: https:
//github.com/JuliaLinearAlgebra/MatrixFactorizations.jl.

[69] S. Olver and I. P. A. Papadopoulos. PiecewiseOrthogonalPolynomials.jl. Version 0.5.0. 2024.
URL: https://github.com/JuliaApproximation/PiecewiseOrthogonalPolynomials.
jl.

[70] S. Olver, R. M. Slevinsky, and A. Townsend. “Fast algorithms using orthogonal polynomials”. In:
Acta Numerica 29 (2020), pp. 573–699. DOI: 10.1017/S0962492920000045.

[71] I. P. A. Papadopoulos. HierarchicalProximalGalerkin.jl. Version 0.0.1. 2024. URL: https://
github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.
jl.

[72] I. P. A. Papadopoulos. HierarchicalProximalGalerkin.jl, v0.0.1 (Zenodo). Version v0.0.1. 2024.
DOI: 10.5281/zenodo.14499625.

[73] I. P. A. Papadopoulos. “Numerical analysis of a discontinuous Galerkin method for the Borrvall–
Petersson topology optimization problem”. In: SIAM Journal on Numerical Analysis 60.5 (2022),
pp. 2538–2564. DOI: 10.1137/21M1438943.

[74] I. P. A. Papadopoulos. “Numerical analysis of the SIMP model for the topology optimization
problem of minimizing compliance in linear elasticity”. In: Numerische Mathematik (2024), pp. 1–
36. DOI: 10.1007/s00211-024-01438-3.

[75] I. P. A. Papadopoulos, P. E. Farrell, and T. M. Surowiec. “Computing multiple solutions of topol-
ogy optimization problems”. In: SIAM Journal on Scientific Computing 43.3 (2021), A1555–
A1582. DOI: 10.1137/20M1326209.

[76] I. P. A. Papadopoulos and S. Olver. A sparse hierarchical hp-finite element method on disks
and annuli. 2024. arXiv: 2402.12831 [math.NA].

[77] I. P. A. Papadopoulos and E. Süli. “Numerical analysis of a topology optimization problem for
Stokes flow”. In: Journal of Computational and Applied Mathematics 412 (2022), p. 114295.
DOI: 10.1016/j.cam.2022.114295.

[78] K. Porwal and R. Singla. “A Posteriori Error Analysis of Hybrid High-Order Methods for the
Elliptic Obstacle Problem”. In: Journal of Scientific Computing 102.1 (2025), pp. 1–20. DOI:
10.1007/s10915-024-02744-6.

[79] L. Prigozhin. “On the Bean critical-state model in superconductivity”. In: European Journal of
Applied Mathematics 7.3 (1996), 237–247. DOI: 10.1017/S0956792500002333.

[80] L. Prigozhin. “Variational model of sandpile growth”. In: European Journal of Applied Mathemat-
ics 7.3 (1996), 225–235. DOI: 10.1017/S0956792500002321.

[81] A. N. Riseth, P. K. Mogensen, et al. LineSearches.jl. Version 7.3.0. 2024. URL: https://
github.com/JuliaNLSolvers/LineSearches.jl.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

https://doi.org/10.1002/1099-1476(20000710)23:10<3C897::AID-MMA141>3E3.0.CO;2-H
https://doi.org/10.1002/1099-1476(20000710)23:10<3C897::AID-MMA141>3E3.0.CO;2-H
https://doi.org/10.1002/cpa.3160200302
https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://github.com/JuliaLinearAlgebra/MatrixFactorizations.jl
https://github.com/JuliaLinearAlgebra/MatrixFactorizations.jl
https://github.com/JuliaApproximation/PiecewiseOrthogonalPolynomials.jl
https://github.com/JuliaApproximation/PiecewiseOrthogonalPolynomials.jl
https://doi.org/10.1017/S0962492920000045
https://github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.jl
https://github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.jl
https://github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.jl
https://doi.org/10.5281/zenodo.14499625
https://doi.org/10.1137/21M1438943
https://doi.org/10.1007/s00211-024-01438-3
https://doi.org/10.1137/20M1326209
https://arxiv.org/abs/2402.12831
https://doi.org/10.1016/j.cam.2022.114295
https://doi.org/10.1007/s10915-024-02744-6
https://doi.org/10.1017/S0956792500002333
https://doi.org/10.1017/S0956792500002321
https://github.com/JuliaNLSolvers/LineSearches.jl
https://github.com/JuliaNLSolvers/LineSearches.jl


I. P. A. Papadopoulos 28

[82] J.-F. Rodrigues. Obstacle problems in mathematical physics. Elsevier, 1987. ISBN: 978-0444701879.

[83] J. F. Rodrigues and L. Santos. “Variational and quasi-variational inequalities with gradient type
constraints”. In: Topics in Applied Analysis and Optimisation: Partial Differential Equations,
Stochastic and Numerical Analysis. Springer. 2019, pp. 319–361.

[84] L. Santos. “Variational problems with non-constant gradient constraints”. In: Portugaliae Mathe-
matica, Nova Séri 59.2 (2002), pp. 205–248. URL: http://dml.mathdoc.fr/item/
01782991.

[85] C. Schwab. p-and hp-finite element methods: Theory and applications in solid and fluid me-
chanics. Clarendon Press, 1998. ISBN: 9780198503903.

[86] J. Shen. “Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equa-
tions using Legendre polynomials”. In: SIAM Journal on Scientific Computing 15.6 (1994),
pp. 1489–1505. DOI: 10.1137/0915089.

[87] R. M. Slevinsky, S. Olver, and others. FastTransforms.jl. Version 0.16.4. 2024. URL: https:
//github.com/JuliaApproximation/FastTransforms.jl.

[88] G. Stampacchia. “Formes bilineaires coercitives sur les ensembles convexes”. In: Comptes
Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258.18 (1964), p. 4413.

[89] B. Szabó and I. Babuška. Introduction to finite element analysis: formulation, verification and
validation. Vol. 35. John Wiley & Sons, 2011. ISBN: 9780470977286.

[90] T. W. Ting. “Elastic-plastic Torsion of Convex Cylindrical Bars”. In: Journal of Mathematics and
Mechanics 19.6 (1969), pp. 531–551.

[91] T. W. Ting. “Elastic-plastic torsion problem over multiply connected domains”. In: Annali della
Scuola Normale Superiore di Pisa-Classe di Scienze 4.2 (1977), pp. 291–312.

[92] A. Townsend, M. Webb, and S. Olver. “Fast polynomial transforms based on Toeplitz and Hankel
matrices”. In: Mathematics of Computation 87.312 (2018), pp. 1913–1934. DOI: 10.1090/
mcom/3277.

[93] L. N. Trefethen. “Is Gauss quadrature better than Clenshaw–Curtis?” In: SIAM Review 50.1
(2008), pp. 67–87. DOI: 10.1137/060659831.

[94] L. W. White. “Control of a hyperbolic problem with pointwise stress constraints”. In: Journal of
Optimization Theory and Applications 41.2 (Oct. 1983), 359–369. DOI: 10.1007/bf00935231.

[95] B. I. Wohlmuth and R. H. Krause. “Monotone multigrid methods on nonmatching grids for non-
linear multibody contact problems”. In: SIAM Journal on Scientific Computing 25.1 (2003),
pp. 324–347. DOI: 10.1137/S1064827502405318.

DOI 10.20347/WIAS.PREPRINT.3189 Berlin 2025

http://dml.mathdoc.fr/item/01782991
http://dml.mathdoc.fr/item/01782991
https://doi.org/10.1137/0915089
https://github.com/JuliaApproximation/FastTransforms.jl
https://github.com/JuliaApproximation/FastTransforms.jl
https://doi.org/10.1090/mcom/3277
https://doi.org/10.1090/mcom/3277
https://doi.org/10.1137/060659831
https://doi.org/10.1007/bf00935231
https://doi.org/10.1137/S1064827502405318

	Introduction
	Motivation
	Contributions

	Setup
	LVPP: obstacle problem
	LVPP: gradient-type constraint

	Hierarchical p-FEM basis
	Proximal Galerkin
	Obstacle problem
	Gradient-type constraint
	The matrices A, B, D, and E
	Block preconditioning
	Obstacle problem: a Schur complement preconditioner
	Gradient-type constraints: a Schur complement preconditioner

	Adaptive hp-refinement
	Notes for fast implementation
	Examples
	Oscillatory data
	Oscillatory obstacle
	A gradient-type constrained problem
	An obstacle-type quasi-variational inequality

	Conclusions

