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Pricing American options under rough volatility using
deep-signatures and signature-kernels

Christian Bayer, Luca Pelizzari, Jia-Jie Zhu

Abstract

We extend the signature-based primal and dual solutions to the optimal stopping problem
recently introduced in [Bayer et al.: Primal and dual optimal stopping with signatures, to ap-
pear in Finance & Stochastics 2025], by integrating deep-signature and signature-kernel learning
methodologies. These approaches are designed for non-Markovian frameworks, in particular en-
abling the pricing of American options under rough volatility. We demonstrate and compare the
performance within the popular rough Heston and rough Bergomi models.

1 Introduction

Starting with the seminal paper [19], (rough) path signatures [11] have been increasingly recognized as
a powerful tool for numerical approximations to solutions of stochastic optimal control problems when
the underlying system does not have the Markov property. While the workhorse theoretical methods
for stochastic optimal control – dynamic programming / HJB equations on the one hand, Pontryagin
maximum principle / BSDEs on the other hand – can, in principle, be formulated and analysed even
when the underlying system is not Markovian, this comes at the expense of tractability.

For example, in the Markovian case, we can assume (under mild conditions) that optimal controls
are of feedback form, i.e., can be expressed as functions α∗(t,Xt) of the underlying state variable
Xt. If we do not make the Markovian assumption, we only know that optimal controls α∗

t are, say,
progressively measurable w.r.t. the governing filtration, i.e., α∗

t = α∗ (t,X|[0,t]
)
, provided that said

filtration is generated by a process X . Similar remarks can be made for the value function as well as
the solutions to the corresponding BSDE systems.

From a numerical point of view, this observation increases the computational challenge considerably
for solving non-Markovian stochastic optimal control problems. In essence, an approximation problem
for a finite-dimensional function, say, α∗ : [0, T ] × Rd → Rm, is replaced with one for a function on
pathspace, say α∗ : [0, T ]× C([0, T ];Rd) → Rm (with additional measurability constraints).

Kalsi, Lyons and Perez Arribas suggested a general framework for solving stochastic optimal control
problems in a model-free way (in particular, without assuming a Markovian problem) for the example of
an optimal execution problem, see [19]. In a nutshell, the approach consists of approximating the strat-
egy as well as the value function as linear functionals of the signature of the underlying process. The
linearization – based on the signature’s universality – allows them to rephrase the optimal execution
problem as a deterministic optimization problem in terms of the expected signature.

Full linearization as in [19] is only feasible if the unknown function (value function, control, . . . ) is
smooth enough, so as not to require a very deep degree of signature approximation – comparable to
approximations with polynomials of high degree in finite dimensional spaces. Otherwise, several other
strategies have been considered in the literature:
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■ Signatures can be interlaced with non-linear transformations of the path, e.g., deep neural net-
works, to increase the signature’s “expressivity”, see, for instance, [35].

■ Signatures – or, alternatively, log-signatures to reduce the dimension – can be used as fea-
tures for other, non-linear approximation methods, e.g., deep neural networks. In the context of
optimal stopping, this was first suggested in [5].

In addition, signature kernels, see [12], provide a classical kernel learning approach to regression
problems in general, and can also be used for stochastic optimal control, in particular. [32] observed
that the (non-truncated) signature kernel satisfies a Goursat PDE, and, hence, can be computed
numerically, without requiring the (otherwise crucial) truncations of the signature.

Rough volatility models, see [4], are a popular class of stochastic volatility models in finance, i.e., with
a stock price process following a dynamics dSt =

√
vtStdZt, where the stochastic variance process

v is “rough”, e.g., an exponential of fractional Brownian motion with Hurst index 0 < H < 1/2.
Crucially, such models (S, v) do not have the Markov property, so signature methods are ideally
suited for computing approximate solutions to the optimal stopping problem in S – in financial terms:
to compute the prices of American or Bermudan options.

This paper builds on [6], where adaptations of the classical Longstaff–Schwartz and dual algorithms for
Bermudan option pricing based on linear functionals of the signature were introduced and analysed. In
this paper, we further extend these algorithms by introducing versions based on non-linear functions
of the signature as well as signature-kernel versions. We then apply them to the Bermudan options
pricing problem for popular rough volatility models (specifically, the rough Bergomi model [3] and the
rough Heston model [15]), and numerically analyse their performance for these models under realistic
model parameters.

The goal of this paper is to to compute American (more precisely, Bermudan) option prices in the
aforementioned rough volatility models, with special emphasis on numerical performance as well as
comparisons between the methods outlined before. Specifically, we solve primal and dual formulations
of the optimal stopping problem – giving us lower and upper bounds of the option price, respectively –
using three different signature methods each:

1 linear functionals of the truncated signature;

2 deep neural networks applied to truncated signatures;

3 linear combinations of the signature kernel.

Compared to the literature (see, for instance, [6] based on linear functionals of the signature alone),
we provide considerably sharper bounds for the option price, in the sense of the length of the interval
between lower and upper bounds. More specifically, we find that for a realistic rough volatility model
(the rough Bergomi model with Hurst index H = 0.07, as suggested in [3]), we obtain a tight gap of
about 1%.

Regarding the comparison between the different methods, no method seems to consistently outper-
form the others. For the primal problem, all three methods tend to perform very well, with mild advan-
tages for the linear and the signature kernel methods. The dual formulation, however, seems to lead
to more difficult approximation and optimization problems, and the neural-network-based method has
some advantages. Overall, we see the biggest improvements compared to [6] for the dual formulation.

This conclusion is also supported by various other numerical studies performed, including a study of
the dependence of the training error on the number of training samples. We also study the relative
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Pricing American options under rough volatility using deep-signatures and signature-kernels 3

importance of the different components in the signature, specifically in the DNN-based method. For
the primal formulation, while the the most important signature components are those corresponding to
powers of the increments, generally all components matter, and there is no apparent sparse structure.
On the other hand, for the dual problem, only very few signature components actually are important,
and there seems to be great potential for dimension reduction.

Acknowledgments All authors gratefully acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – The Berlin Math-
ematics Research Center MATH+ (EXC-2046/1, project ID: 390685689). CB and PL acknowledge
support from DFG CRC/TRR 388 “Rough Analysis, Stochastic Dynamics and Related Fields”, Project
B03.

2 A review on Monte-Carlo methods for optimal stopping

In this section we introduce the optimal stopping problem in a fairly general framework, and recall
two general simulation based procedures to derive lower and upper bounds of the optimal value.
Let {Ω,F ,P} be a probability space supporting a state-process (Xt : 0 ≤ t ≤ T ), which we
only assume to be α-Hölder continuous almost surely, α ∈ (0, 1). Moreover, we consider an (FX

t )-
adapted, continuous process (Zt : 0 ≤ t ≤ T ), the cash-flow process, which for technical reasons
we assume to fulfill sup0≤t≤T |Zt|2 ∈ L1. Finally, the optimal stopping problem reads

Y0 = sup
τ∈S0

E[Zτ ], Yt = ess sup
τ∈St

E[Zτ |FX
t ], 0 < t ≤ T, (1)

where St denotes the set of (FX
t )-stopping times on [t, T ].

2.1 A general Longstaff-Schwartz algorithm

Replacing the continuous time interval [0, T ] by some finite grid 0 = t0 < t1 < · · · < tN = T , the
dynammic programming principle [28, Page eq. (2.1.7)] for the discrete optimal stopping reads

YtN = ZtN , Ytn = max(Ztn ,E[Ytn+1 |FX
tn ]), 0 ≤ n ≤ N − 1, (2)

and τ ⋆ = inf{tn : Ztn ≥ E[Ytn+1|FX
tn ]} is optimal. Motivated by the famous Longstaff and Schwartz

algorithm [25], the first optimal stopping time can be obtained as τ0 of the following recursion

τN = tN , τn = tn1{Ztn≥E[Zτn+1 |F
X
tn

]} + τn+11{Ztn<E[Zτn+1 |F
X
tn

]}, 0 ≤ n ≤ N − 1. (3)

The remaining question is, how to compute the continuation values E[Zτn+1|FX
tn ] for possibly non-

Markovian state-processes X , which will be the main topic of the forthcoming Section 3. For now, as-
sume we are given a suitable family of basis-functions (ψk), such thatE[Zτn+1 |FX

tn ] ≈
∑

k α
n
kψk(X|[0,tn])

with some coefficients (αn
k). A general version of the Longstaff-Schwartz algorithm goes as follows:

1 Draw i = 1, . . . ,M samples X(i) and Z(i) and initialize τ (i)N ≡ tN .

2 Then, for n = N − 1, . . . , 1
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■ solve the minimization problem

α⋆,n := argmin
α

1

M

M∑
i=1

(
Z

(i)

τ
(i)
n+1

−
∑
k

αkψ
n
k (X|(i)[0,tn]

)

)2

■ Set τ (i)n = tn if Z(i)
tn ≥

∑
k α

⋆,n
k ψn

k (X|(i)[0,tn]
), and τ (i)n = τ

(i)
n+1 otherwise.

3 Finally, draw i = 1, . . . ,M ′ independent sample-paths X̃(i) and Z̃(i), and compute the stop-

ping times τ̃ (i) = inf
{
tn : Z̃

(i)
tn ≥

∑
k α

⋆,n
k ψn

k (X̃|(i)[0,tn]
)
}

and the lower-biased estimator

ỹ0 = max

(
Zt0 ,

1

M ′

M ′∑
i=1

Z̃
(i)

τ̃ (i)

)

Notice that the resimulation in the final step ensures, that the τ̃ (i) are indeed stopping times, since the
computed coefficients α are now independent of the samples, and thus max(Zt0 ,E[Zτ̃1 ]) is a true
lower-bound. The Monte-Carlo approximation ỹ0 is therefore lower-biased and strictly speaking not a
true lower-bound, due to the Monte-Carlo error with respect to M ′. Nevertheless, this error is typically
chosen to be very small, and we will refer to ỹ0 as lower-bound anyways.

2.2 A general dual procedure

While the Longstaff-Schwartz procedure described in the last section provides us with lower-bounds
for the optimal value, it is desirable to additionally have an algorithm producing upper-bounds. To this
end, it is useful to consider the (discretized) dual formulation of (1) due to [31]

inf
M∈M2

E[ max
0≤k≤N

(Ztk −Mtk)], (4)

where the minimization is over discrete L2-martingales with respect to the filtration Gn = FX
tn , n =

0, . . . , N . By the Martingale Representation Theorem [20, Theorem 4.5], if the underlying filtration
(FX

t ) is generated by a Brownian motion W , such martingales are of the form Mα
tk

=
∫ tk
0
αsdWs

for some (FX
t )−progressive process α. On the other hand, due to the progressive measurability, the

integrands are of the form αt = f(X|[0,t]) for some (deterministic) function f . Assume again that
we are given some family of basis-functions (ψk) such that f(X|[0,t]) ≈

∑
k βkψk(X|[0,t]) for some

coefficients β. If the family (ψk) is rich enough, it is reasonable to parametrize the space M2 by the
span of basis-martingales {Mk

t =
∫ t

0
ψk(X|[0,s])dWs : k ≥ 0}, which leads to the following dual

algorithm:

1 Draw i = 1, . . . ,M sample-paths of Z(i), X(i),W (i), and compute the basis martingales
Mk,(i) (e.g. using an Euler-scheme)

2 Solve the minimization problem (see, e.g., [13, 8])

β⋆ = argmin
β

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −

∑
k

βkM
k
tn

)
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3 Finally, draw i = 1, . . . ,M ′ independent sample-paths Z̃(i), X̃(i), W̃ (i) and compute the mar-
tingales M̃k,(i) and the upper-biased estimator

ỹ0 =
1

M ′

M∑
i=1

max
0≤n≤N

(
Z̃

(i)
tn −

∑
k

β⋆
kM̃

k,(i)
tn

)

Similar as in the primal case, the independent resimulations ensure that we get true martingales
M̃⋆ :=

∑
k β

⋆
kM̃

k, since β⋆ is independent of the samples, and therefore E[maxk(Ztk − M̃⋆
tk
)] is

a true upper-bound. By the same abuse of terminology as in the primal case, we call the Monte-Carlo
approximation ỹ0 upper-bound, keeping in mind that it is strictly speaking only upper-biased due to the
Monte-Carlo error with respect to M ′.

3 Signature stopping policies and dual martingales

To numerically solve the two algorithms presented in the last section, we require to learn functionals
f : X → R, where X is an infinite-dimensional path space. As motivated in the introduction, we will
use the path-signature, resp. the corresponding signature-kernel, to tackle this problem. For the rough
path theoretical details in this section, we refer to the excellent books [17, 16], but see also [10] with a
focus on machine learning.

Let (x(t) : 0 ≤ t ≤ T ) be an Rd-valued, α-Hölder continuous path, α ∈ (0, 1]. The rough path
signature of x is given by the path x<∞

·,· : ∆[0,T ] → T ((Rd)), defined (at least formally) as the
collection of iterated integrals

x<∞
s,t :=

∞∑
n=0

∫
s<t1<···<tn<t

dx(t1)⊗ · · · ⊗ dx(tn), 0 ≤ s ≤ t ≤ T,

taking values in the extended tensor algebra

T ((Rd)) :=
∞∏
n=0

(Rd)⊗n,

an algebra under a (naturally defined) non-commutative product ⊗. If α = 1, the meaning of the
iterated integrals is in the sense of Riemann-Stieltjes, see [17, Chapter 7.2], and less obvious becomes
the case α < 1, since dx does not have a meaning a-priori. However, Lyons’ theory of rough paths
[26] allows us to give the latter a meaning, but higher-order information of the path is required. More
precisely, we have to lift x to a so-called x = (x(1), . . . ,x(N)) ∈

∏N
n=0(Rd)⊗n, whereN = ⌊ 1

α
⌋ and

x(1) = x, see [17, Chapter 9]. Having such a rough path lift x at hand, the notion of rough integration
allows to make sense of integrating against dx, and a signature lift of x can be defined, sharing all
the properties of the path-signature for smooth paths, which is due to Lyons’ extension theorem [26,
Theorem 3.7].

Remark 3.1 The authors of [9] show that the map x 7→ x<∞ is injective up to a certain equivalence
class on path spaces, which can be eliminated when adding a monotone component to the path,
e.g. the time-augmentation x̂(t) = (t, x(t)). Moreover, by applying a so-called tensor-normalization
λ : T ((Rd)) → T ((Rd)) to the signature, the authors of [12] introduce the notion of robust signa-
tures λ(x<∞), which can be seen as a bounded version of the signature, sharing all of its structural
properties. For the theoretical results in this section, we always assume that our underlying process
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X is already augmented by some monotone function, and this pair can be lifted to a geometric rough
path X, see [17, Definition 9.16], and we denote by X<∞ the unique robust rough path signature for
some fixed normalization λ.

3.1 Linear signature learning

One of the most important algebraic properties of the signature is the following: For any two linear
functionals on the tensor-algbera, that is ℓ1, ℓ2 ∈ T ((Rd)⋆), we can find ℓ3 (in fact, a closed-form
expression can be given), such that

〈
ℓ1,X

<∞
0,T

〉〈
ℓ2,X

<∞
0,T

〉
=
〈
ℓ3,X

<∞
0,T

〉
, for all signatures X<∞

0,T .
In words, the space of linear functionals of the signature forms an algbera, which is point-seperating
(since we assume to have a unique signature, see Remark 3.1). An application of a general Stone-
Weierstrass result, see [12, Section 2.1], tells us that the set of linear functional of the robust signature
is dense in the set of bounded continuous functions on the corresponding path space. This fact can be
used to deduce a global Lp-approximation for linear functionals of the signature, see [6, Theorem 2.8],
which then yields the following convergence results. We will always assume to be in the framework
described in the beginning of Section [6, Section 3.1], where certain assumptions on the path space,
as well as on the payoff process are made precise. The following proposition summarizes the results
[6, Proposition 3.3 and 3.8], to which we refer for more precise statements and detailed proofs.

Proposition 3.2 Using the same notation from Section 2, we consider i = 1, . . . ,M independent
sample-paths of X,Z,W , and we define the martingales M ℓ

t =
∫ t

0

〈
ℓ,X≤K

0,s

〉
dWs for some trunca-

tion level K ∈ N. We define the estimators

ℓ⋆,nP = argmin
ℓ,|ℓ|≤K

1

M

M∑
i=1

(
Z

(i)

τ
(i)
n+1

−
〈
ℓ,X

≤K,(i)
0,tn

〉)2

,

ℓ⋆D = argmin
ℓ,|ℓ|≤K

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −M

ℓ,(i)
tn

)
.

(5)

Then, for new samples X̃, Z̃, W̃ , independent of X,Z,W , define the (FX
t )−stopping times τ̃ (i) =

inf
{
tn : Z̃

(i)
tn ≥

〈
ℓ⋆,nP ,X

≤K,(i)
0,tn

〉}
and martingales M̃ ℓ⋆D,(i). Then

max

(
Z̃t0 ,

1

M

M∑
i=1

Z̃
(i)

τ̃ (i)

)
↗ Y0,

1

M

M∑
i=1

max
0≤n≤N

(
Z̃

(i)
tn − M̃

ℓ⋆D,(i)
tn

)
↘ Y0, (6)

as M,K → ∞, where the convergence with respect to M is almost sure convergence.

While the last result ensures converges for the primal and dual procedures, is does not come with
quantitative statements about convergence rates. Additionally, these algorithms can become compu-
tationally expensive, as the size of the signature grows exponentially with K . In [6] several numerical
experiments were performed for these two algorithms in non-Markovian frameworks, in particular for
models driven by fractional Brownian motion with small Hurst parameters. The accuracy of the method
can be measured by the duality gap between lower and upper bounds, and in some examples these
gaps were observed to be quite significant even for high truncation levels. Two important sources for
this gap can be described as follows: First, especially in very rough regimes, the considered signature
levels might not suffice to capture the relevant past of the non-Markovian processes, so that infor-
mation is lost when truncating the signature. Secondly, the functionals on the path spaces we try to
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learn are highly non-linear, so that more sophisticated learning technologies are required to improve
the performance. The goal of the next sections is to introduce non-linear extensions of the primal and
dual algorithm, based on deep-, resp. kernel-learning methodologies, with the objective of improving
the duality gap.

3.2 Deep signature learning

Applying Deep Neural Networks (DNNs) on top of the signature was considered several times in the
literature, see for instance [21], where even more generally, the signature can act as a layer in a
network. Here, we simply consider the truncated signature as the input for a DNN of the form

θ = β ◦ σ ◦ A1 ◦ σ · · · ◦ AI ,

where β,A0, . . . , AI are affine, β : Rm → R, AI : T (Rd) → Rm, AI−i : Rm → Rm, for
i = 1, . . . , I−1, and σ is an activation function. We call θ a signature DNN with I hidden layers, each
of which havingm neurons. The signature map x|[0,t] 7→ x<∞

0,t represents the input layer, and the first
hidden layer acting on the signature, can be seen as a vector of linear functionals AI = (ℓ1, . . . , ℓm),
and AI(x

<∞) = (
〈
ℓ1,x

<∞〉, . . . , 〈ℓm,x<∞〉)⊤ ∈ Rm. The remaining hidden layers are all of the
formAj(x) = Ajx+ bj , whereAj ∈ Rm×m, bj ∈ Rm, and the output layer is given by β ∈ Rm. We
denote by DNNσ,I

sig the set of all such signature DNNs θ with I hidden layers, and activation function
σ.

It is well known, that already I = 1 hidden layer DNNs are universal, see, e.g. [24]. For this reason,
and to ease the notation for the theoretical results, in the remainder of this section we fix I = 1.
Nevertheless, all the results trivially extend to multiple hidden layers I > 1, and in the numerical
experiments we mostly choose more than one hidden layer. Setting DNNσ

sig := DNNσ,1
sig , we can

explicitly write the set as

DNNσ
sig =

{
x|[0,t] 7→

m∑
j=1

βjσ
(〈
ℓj,x

<∞
0,t

〉)
: (β, ℓ) ∈ Rm ×Wm,m ≥ 1

}
, (7)

where W denotes the set of all linear functionals, and x|[0,t] are stopped α-Hölder rough paths, see
[6, Section 2] for details. For fixed (m, k) ∈ N2 and any pair (β, ℓ) ∈ Rm × (W≤k)m, where W≤k

are linear functionals on the k-step signature x≤k, denote by θ(β,ℓ) the corresponding functional in the
set DNNσ

sig. Revisiting the Longstaff & Schwartz algorithm presented in Section 2.1, it is tempting to

define a sequence of deep stopping times (τ
(m,k)
n : 1 ≤ n ≤ N), recursively defined similar to (3),

but with conditional expectations replaced by θ(β
⋆,n
P ,ℓ⋆,nP )(X|[0,tn]), where for 0 ≤ n ≤ N

(β⋆,n
P , ℓ⋆,nP ) = argmin

(β,ℓ)∈Rm×(W≤k)m
E
[(
Z

τ
(k,m)
n+1

− θ(β,ℓ)(X|[0,tn])
)2]

. (8)

In words, we recursively learn the continuation values as neural networks of truncated signatures.
Similarly, we approximate the Doob-martingale from Section 2.2 by deep martingales M (k,m)

t =∫ t

0
θ(β

⋆
D,ℓ⋆D)(X|[0,s])dWs, where

(β⋆
D, ℓ

⋆
D) = argmin

(β,ℓ)∈Rm×(W≤k)m
E
[
max

0≤n≤N

(
Ztn −

∫ tn

0

θ(β,ℓ)(X|[0,s])dWs

)]
. (9)

Thanks to the universality of both signatures and DNNs, the following result should not come as a
surprise. Similar as in the last section, we adopt the assumptions described in the beginning of [6,
Section 3.1].
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Proposition 3.3 Assuming that the filtration is Brownian, that is FX = FW , and the activation func-
tion σ is non-polynomial, we have

Y N
0 = lim

k,m→∞
max

(
Zt0 ,E[Zτ

(k,m)
1

]
)
= lim

k,m→∞
E
[
max

0≤n≤N
(Ztn −M

(k,m)
tn )

]
.

An outline of the proof can be found in Appendix A. Similar to the linear case, in practice we solve the
sample average approximation of (8)-(9), that is

(β⋆,n
P , ℓ⋆,nP ) = argmin

(β,ℓ)∈Rm×(W≤k)m

1

M

M∑
i=1

(
Z

(i)

τ
(i)
n+1

− θ(β,ℓ)(X(i)|[0,tn])
)2

,

(β⋆
D, ℓ

⋆
D) = argmin

(β,ℓ)∈Rm×(W≤k)m

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −M

(β,ℓ),(i)
tn

)
,

(10)

for i.i.d sample-paths Z(i),X(i),W (i). The latter (non-convex) optimization problems can then be
solved using stochastic gradient descent. More details about this and the DNN architecture will be
discussed in Section 4. Let us conclude this section with a remark.

Remark 3.4 To address the complexity issue coming from the size of the signature, it can be helpful
to consider the so-called log-signature. The latter is defined by L<∞

s,t := log⊗(X<∞
s,t ), where log⊗ is

the bijection

log⊗(1 + x) :=
∑
k≥0

(−1)k+1

k
x⊗k ∈ T ((Rd)), x ∈ T ((Rd)),x(0) = 0.

It can be shown that the dimension of the truncated log-signature L≤K , grows much slower than the
one ofX≤K , see, e.g., [29], and denoting by exp⊗ the inverse of log⊗, we haveX≤K = exp⊗(L≤K).
Although the log-signature itself is not longer universal, Proposition 3.3 remains through for log-
signature DNNs, that is replacing the signature in (7) by its log-signature transform. In Remark A.1,
after the proof of Proposition 3.3, we briefly explain why this is true and how to modify the proof.

3.3 Signature-kernel learning

Let us start by recalling some notions from general RKHS theory, see, e.g. [34]. Given a feature map
ϕ : X → H, where H is a Hilbert space (the so-called feature space), one can define the associated
kernel

k : X × X → R, k(x, y) :=
〈
ϕ(x), ϕ(y)

〉
H. (11)

If the kernel is positive-definite, there exists a unique RKHS with reproducing kernel k, see [34, The-
orem 4.21], in the sense that k reproduces elements f ∈ H, that is f(x) =

〈
k(·, x), f

〉
H, and it

generates the Hilbert space, H = span{k(·, x) : x ∈ X}. In our case, the feature map ϕ, maps a
path x ∈ X to its path-signature x<∞, and therefore signature kernel is naturally defined by

ks,t(x, y) :=
〈
x<∞
0,s ,y

<∞
0,t

〉
, 0 ≤ s, t ≤ T

where
〈
·, ·
〉

is the natural extension of the inner products (Rd)⊗k to the tensor algebra T ((Rd)),
see [10, Definition 2.1.1]. It has been shown in [32], that the signature-kernel solves a Goursat-type
PDE with respect to the time variables. This kernel trick allows us to evaluate the signature-kernel,
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representing the whole signature, by numerically solving a second-order PDE. An important extension,
designed for rougher inputs, was discussed in the recent work [23].

An important observation is that universality of the signature feature map is equivalent to the univer-
sality of the signature-kernel, see for instance [12, Section 6], but also [10, Chapter 2.1]. Returning to
optimal stopping, this motivates us to seek for functionals in the primal and dual problems, solving the
regularized minimizing problems on the RKHS

fλ = argmin
f∈H

L(f) + λ∥f∥2H, λ > 0, (12)

where the loss L is either the primal or the dual loss function. More precisely, in the primal case, at
each exercise date n, the loss is simply the mean-square error Ln(f) = ∥Ztn − f(X|[0,tn])∥22. In

the dual case, it is given by L(f) = ∥max1≤k≤N(Ztk −M f
tk
)∥1, where M f

t =
∫ t

0
f(X|[0,s])dWs.

Then, replacing the losses by their sampled version, the general representer theorem [33, Theorem
1] reveals that the minimizers are of the form fα(x) =

∑M
i=1 αik(X

(i), x). Thus, let us define the
minimizers

α⋆,n
P := argmin

α∈RM

1

M

M∑
i=1

(
Z

(i)

τ
(i)
n+1

−
M∑
j=1

αjktn,tn(X
(i), X(j))

)2

+ λ∥fα∥2H, λ > 0, (13)

for all exercise date n = 1, · · · , N − 1. Similarly,

α⋆
D := argmin

α∈RM

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −

M∑
j=1

αjM
(i),(j)
tn

)
+ λ∥fα∥2H, λ > 0, (14)

for the kernel-martingalesM (i),(j)
t =

(∫ t

0
ks,s(X

j, X)dWs

)(i)
. The algorithms in Section 2 can then

easily be translated to the kernel-learning framework, by replacing the minimizers in the second step
accordingly.

Remark 3.5 We expect that the convergence results in Proposition 3.2 can be obtained analogously
in this kernel-learning framework, when sending M → ∞ and λ → 0. For instance in the the
dual case, it follows by universality of the signature-kernel, that the closure of the span of the family
of kernel-martingales MK =

{∫
ks,s(x,X)dWs : x ∈ X

}
corresponds to the space of L2(FW )-

martingales. For the sample average approximation and existence of minimizers, one can then argue
similar as in [6, Appendix A.2.], and use the representer theorem to conclude.

Remark 3.6 The obvious advantage of this method is that no truncation for the feature map is neces-
sary, and therefore theoretically it does not suffer from a loss of information, see Remark 3.1. Modulo
evaluation of the signature-kernel, the approximation error only depends on the regularization λ and
the number of samples M . Moreover, at least for the mean-square loss, it seems possible to theoreti-
cally study convergence rates of such algorithms. This, however, involves a more precise understand-
ing of the signature RKHS H and integral operators therein, a problem that is outside the scope of this
paper, but planned for future research.

Having mentioned the theoretical advantages of the kernel-method, evaluating the signature-kernel,
which means solving the Goursat-PDE [32], becomes the main difficulty in this procedure. Due to the
recursive nature of the regression problems in the Longstaff and Schwartz algorithm in Section 2.1,
typically large sample size are required to ensure stability. Moreover, as we are especially interested
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in paths of low regularity, a fine discretization grid is required to solve the Goursat PDE. Combining
these observations with the fact, that the kernel-ridge-regressions involve computing and inverting the
Gram-matrices (ktn,tn(X

(i), X(j))i,j), it becomes clear that a reduction of the computational costs is
required.

To this end, we propose the following approach, related to the so-called Nyström-method for kernel-
learning [14, 37]. We randomly select L ≪ M subsamples, denoting by IL the set of those indices,
and in both the primal and dual optimization problems we restrict the minimization to functions of the
form f(·) =

∑
i∈IL βik(x

i, ·). It follows that we only need to compute the (M × L)-matrices

Ktn = (ktn,tn(X
j, X i) : i ∈ IL, j = 1, . . . ,M), n = 1, . . . , N.

For the primal example, that is, for the kernel ridge regression, we can additionally observe that the
explicit solutions is given by

α⋆,n
P = (KT

tnKtn +MλRtn)
−1KT

tnZτn+1

where Rtn = (ktn,tn(x
i, xj) : i, j ∈ IL). Further details about the implementation will be presented

in the next section.

4 Pricing American options under rough volatility

In this section we test the signature-based procedures for the problem of pricing American options in
rough volatility models. In such models, the asset-price dynamics is given by

S0 = s0, dSt = rStdt+ Stvt

(
ρdWr +

√
1− ρ2dBt

)
, 0 < t ≤ T, (15)

where W and B are two independent Brownian motions, the volatility (vt)t∈[0,T ] is (FW
t )−adapted

and continuous, ρ ∈ [−1, 1] and r > 0 the interest rate. We denote by X the log-price, that is Xt =
log(St). Compared to classical diffusion models, we are interested in volatility process (vt) driven by
fractional Brownian motion, turning both the volatility and the price into non-Markovian processes. We
will focus on the following two, arguably most popular examples of rough volatility specifications.

Example 1 (Rough Bergomi [3]) The rough Bergomi volatility is given by

vt = ξ0E
(
η

∫ t

0

(t− s)H− 1
2dWs

)
,

where E denotes the stochastic exponential. In all the numerical examples, we will choose η = 1.9
and ξ0 = 0.09.

Example 2 (Rough Heston [15]) The rough Heston volatility, resp. its variance V = v2, is defined
as (weak) solution to the Volterra-tye CIR equation

Vt = V0 +

∫ t

0

(t− s)H− 1
2λ(θ − Vs)ds+

∫ t

0

(t− s)H− 1
2ν
√
VsdWs. (16)

In all the numerical examples, we will choose V0 = θ = 0.02, ν = λ = 0.3.
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The problem of pricing American (resp. Bermudan) options consists of solving the discrete optimal
stopping problem

Y N
0 = sup

τ∈SN
0

E[e−rτϕ(Sτ )], (17)

where SN
0 is the set of (FS

t )−stopping times taking values in the set of possible exercise-dates
{t0, . . . , tN}, and ϕ is the payoff function. We will focus on so-called put-options, which corresponds
to the payoff function ϕ(x) = (K − x)+ for a given strike price K .

4.1 Implementation details

The code accompanying this section can be found inhttps://github.com/lucapelizzari/
Optimal_Stopping_with_signatures. Before discussing numerical experiments, let us
specify in detail how the procedures introduced in Section 3 are implemented. All the signatures are
computed using the package iisignature, see [30]. For the signature kernel, we rely on the PDE
solvers from the package sigkernel to obtain the kernel as finite-difference solution to the Goursat
PDE derived in [32]. For the simulation of the rough Bergomi, we use https://github.com/
ryanmccrickerd/rough_bergomi related to [27], and for the simulation of rough Heston
https://github.com/SimonBreneis/approximations_to_fractional_stochastic_
volterra_equations related to [2].

Linear signature stopping

This approach was already studied in detail in [6], and we adopt the choices made there. In particular,
for the primal procedure we use the signature of X̂t = (t,Xt), and for the dual procedure the signa-
ture of Ẑt = (t,Xt, ϕ(Xt)), and in both we add Laguerre polynomials L(Xt, vt) to the set of basis
functions. For more details about this choice we refer to [6, Section 4].

Deep signature stopping

Here we make a slightly different choice for the basis compared to the linear approach, exploiting
both the universality of the DNNs and the signature. First, it was observed for instance in [1], that
the price X has a partial Markovian nature in B, and only depends on the past through the non-
Markovian volatility process (vt)t∈[0,T ]. Leaving rigorous arguments to [1], one can for instance note
that Law(Xt+h|Ft) = Law(X t,x

t+h|Fv
t )|x=Xt , so that conditional expectations E[ϕ(Xt+∆t)|Ft) =

f(Xt, (vs)s≤t] for some measurable function f . To capture the relevant memory of the dynamics, in
the primal case we lift the variance-augmented process v̂t = (⟨X⟩t, vt) = (

∫ t

0
v2udu, vt) the the

standard signature V̂<∞. In the dual case we simply lift the time-augmentation v̂t = (t, vt). The
partial Markovianity motivates to simply apply DNNs on {Xt, V̂≤K

0,t }.

Let us now specify the DNN architecture: For the Longstaff and Schwartz algorithm, similar to [22], we
rely on the Leaky ReLu activation function σ(x) = 1{x≥0}x + 1{x<0}0.3x and the ADAM optimizer
to fit the models at each exercise date, with a batch-size of b = 128 and learning rate λ = 10−3.
Inspired by [22], we use e = 15 epochs to learn the conditional expectation at the last exercise date
(first regression in the algorithm), and then use the trained weights to initialize the DNN at the next
exercise-date. Doing this allows to reduce the epochs to e = 1 for 1 ≤ n < N − 1, which in turn
reduces the computation time significantly. It is sufficient to consider I = 2 hidden layers with each
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Di ≡ (dim(V̂≤K)+1)+32 neurons. For the dual algorithm we rely on the classical ReLu activation
function σ(x) = max(x, 0), and again using the ADAM optimizer with batch size b = 128 and
learning rate 10−3 to fit the model. Compared to the primal algorithm, deeper neural networks with
I = 6 layers and Di ≡ (dim(V̂≤K) + 1) + 32 are required, which is due to the non-linear nature of
the integrand of the Doob-martingale.

Signature-kernel stopping

For the kernel ridge regressions in the Longstaff and Schwartz algorithm based methods, we choose
the kernel of the time-augmented path N̂t = (⟨X⟩t,Wt, Xt). At each exercise date n, we randomly

selectL = 32 subsamples, where the i-th sample is selected with probability pi =
ktn,tn (N̂

(i),N̂(i))∑M
j=1 ktn,tn (N̂

(j),N̂(j))
,

noting that the latter only requires the diagonal of the Gram matrix K.

For the dual procedure, we randomly select the subsamples according to the probabilities, build on
the quadratic variation of the kernel martingales ⟨

∫ ·
0
ks,s(N̂

(i), N̂)dWs⟩(i)T =
∫ T

0
ks,s(N̂

(i), N̂ (i))2ds,
that is

pi =

∫ T

0
ks,s(N̂

(i), N̂ (i))2ds∑M
j=1

∫ T

0
ks,s(N̂ (j), N̂ (j))2ds

.

Having K ∈ RM×L at hand, we noticed that best performance can be achieved when solving (14)
using a simple version of the neural network technology before, with 1 hidden-layer and ReLu activa-
tion.

4.2 American put option prices in rough Bergomi and rough Heston

In this section we compare all the signature-based methods to price Bermudan put options. In Table
1-2, we present the rough Bergomi model with Hurst parameters H = 0.8, resp. H = 0.07, and
for a range of strikes K ∈ {70, 80, . . . , 120} and S0 = 100. We choose the contract duration of
T = 1 year and J = 12 early exercise options and interest rate r = 0.05 and correlation ρ = −0.9.
In the first column we report the European price, that is, the price for no early exercise opportunity,
E = E(e−rT (K−ST )

+). The second columns correspond to lower-bounds obtained in [18], see also
[7]. Finally, in the remaining columns, we compare the point estimate, which is the biased-estimator
from the Longstaff and Schwartz algorithm based on the training samples, with the lower- and upper-
bounds obtained from independent testing samples. While the intervals in the linear case are taken
from [6], we derive the intervals for the deep signature using truncation level K = 4, discretization
for the signature and martingales N = 600, and both M = 1218 samples for training and testing, to
ensure stability of the procedure. For the signature-kernel, we use M = 217 samples, with N = 240
discretization points for solving the Goursat PDE. For each strike, we highlight the best lower-, resp.
upper-bound, and in the last column present the relative duality gap with respect to these two values.
In Table 3 we present the same considerations for the rough Heston model with H = 0.1, r = 0.06
and ρ = −0.7, a choice motivated in [2], with smaller regularization parameter. The trainings were
repeated 20 times and the overall Monte-Carlo error is below 0.01. Finally, in Table 4 we compare
the computational time (in seconds) of one training each, as well as the offline computation of the
signature, resp. signature-kernel. In Figure 1 we present the dependence of the lower-bounds, resp.
point estimates with respect to λ ∈ [0, 2]. The optimal choice is made for highest possible lower
bounds (blue lines), so that the distance to the point estimate is reasonable, since larger difference
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(a) Rough Heston with H = 0.1 (b) Rough Bergomi with H = 0.07

Figure 1: Primal put option prices with strike K = 100 and signature-kernel procedure, with respect
to the penalization parameters λ.

suggest overfitting. According to this remark, we choose λ = 10−3 for rough Bergomi, and λ = 10−8

in the rough Heston model.

First and most visibly, we observe that the the deep signature method delivers significantly better
upper-bounds than both other methods, with reasonable training and offline costs, see Table 4. More-
over, the deep method also mostly produces the smallest duality gap, that is the smallest distance
between lower- and upper-bound. However, one can also observe that for both the point estimates and
lower-bounds, the linear and kernel methods, which are based on conventional convex optimization
problems, slightly outperform the deep signature method in general. It should be noted that, however,
this comes at the price of offline computational costs, see Table 4, where we recall that the DNNs allow
to only lift the augmented volatility process. As discussed in [6], for the linear procedure it is necessary
to lift the three-dimensional path (t,Xt, ϕ(Xt)) and add polynomials of the state, which explains the
increased computational time in the linear case. While the signature-kernel method improves the lin-
ear approach, the complexity of deriving the Gram-matrix, i.e. solving the Goursat-PDE, see Table 4,
leaves the signature-kernel procedure as the most expensive approach to solve the optimal stopping
problem. To handle large data sets, it is therefore necessary to solve the complexity issue for the ker-
nel, and a potential direction could be the random Fourier signature features by [36], but this is outside
the scope of this paper.

In summary, for our goal of achieving minimal duality gaps for arbitrary large sample sizes, the best
possible results can be achieved by combining a Longstaff & Schwartz algorithm based on the linear
signature or the signature-kernel, exploiting the simplicity of the training procedure, together with the
deep-signature approach for the upper-bounds, to capture the non-linearity of the Doob martingale
integrand. If one has to choose one method, we recommend the deep-signature method, simply as it
shows the smallest duality gaps and overall computational times.

On the other hand, it is important to note that we observe the primal signature-kernel method to
be more stable compared to deep-signatures, with respect to smaller data sets. This unsurprising
advantage of the kernel-method can become important when one works with real-word rather than
synthetic data, where the number of samples cannot be arbitrary large, in which case the signature-
kernel might be favorable. This is illustrated in Figure 2 (a) for the rough Bergomi model with H =
0.07, where we can observe more severe instability for the neural network training for smaller M ,
both in the sense of small lower-bounds and high training variance. The Monte-Carlo errors reflect this
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Strike E [18] Linear [6] Deep signature Signature kernel Best Gap

Point est. C.I. Point est. C.I. Point est. C.I.

70 0.78 1.84 1.847 [1.83, 1.90] 1.831 [1.82, 1.85] 1.835 [1.83, 1.89] 1.08 %

80 1.55 3.10 3.101 [3.08, 3.19] 3.086 [3.07, 3.12] 3.080 [3.08, 3.16] 1.28 %

90 3.11 5.08 5.086 [5.07, 5.17] 5.058 [5.04, 5.08] 5.061 [5.06, 5.15] 0.78 %

100 6.10 8.19 8.188 [8.15, 8.27] 8.132 [8.11, 8.17] 8.159 [8.15, 8.26] 0.24 %

110 11.41 13.00 12.991 [12.97, 13.09] 12.922 [12.87, 12.98] 12.944 [12.94, 13.03] 0.07 %

120 18.65 20.28 20.219 [20.21, 20.51] 20.161 [20.14, 20.25] 20.162 [20.16, 20.27] 0.19 %

Table 1: Comparison of Put option prices in rough Bergomi with H = 0.8

Strike E [18] Linear [6] Deep signature Signature kernel Best Gap

Point est. Interval Point est. Interval Point est. Interval

70 0.88 1.88 1.929 [1.92, 1.99] 1.921 [1.91, 1.95] 1.926 [1.92, 2.01] 1.53 %

80 1.67 3.25 3.289 [3.27, 3.37] 3.281 [3.26, 3.31] 3.286 [3.27, 3.36] 1.20 %

90 3.11 5.34 5.394 [5.37, 5.50] 5.383 [5.35, 5.44] 5.397 [5.37, 5.53] 1.28 %

100 5.83 8.53 8.586 [8.57, 8.77] 8.555 [8.52, 8.66] 8.589 [8.56, 8.75] 1.03 %

110 10.94 13.28 13.314 [13.29, 13.59] 13.281 [13.21, 13.45] 13.326 [13.27, 13.46] 1.18 %

120 18.37 20.20 20.267 [20.24, 20.66] 20.163 [20.14, 20.63] 20.276 [20.24, 20.44] 0.97 %

Table 2: Comparison of Put option prices in rough Bergomi with H = 0.07.

Strike E Linear [6] Deep signature Signature kernel Best Gap

Point est. Interval Point est. Interval Point est. Interval

70 0.16 0.438 [0.42, 0.53] 0.426 [0.42, 0.44] 0.430 [0.43, 0.46] 2.27 %

80 0.42 0.966 [0.94, 1.11] 0.961 [0.95, 0.97] 0.960 [0.96, 1.01] 1.03 %

90 1.02 2.034 [1.99, 2.28] 2.031 [2.02, 2.07] 2.027 [2.02, 2.11] 2.42 %

100 2.66 4.245 [4.16, 4.66] 4.248 [4.24, 4.36] 4.219 [4.21, 4.44] 2.75 %

110 8.05 9.715 [9.63, 10.52] 9.660 [9.66, 10.42] 9.693 [9.68, 10.14] 4.53 %

120 16.68 19.500 [19.49, 20.04] 19.487 [19.48, 20.00] 19.502 [19.50, 19.56] 0.30 %

Table 3: Comparison of Put option prices in rough Heston with H = 0.1.

Method Training primal Training dual Offline costs

Linear 1.73 610.10 508.32

Deep 100.23 520.34 50.92

Kernel 1.69 390.98 5564.53

Table 4: Computational times (in seconds) for training and evaluation, and offline computation times
(in seconds) for signatures and kernels
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variance, which is obtained after independently repeating the training 20 times for each sample size.
For completeness, we show a similar plot in the dual case in Figure 2 (b), where it is confirmed again
that the deep-signature method heavily outperforms the signature-kernel approach, also in every data-
size regime. The variance in the dual procedure is much smaller, as we only solve one optimization
problem in the training, rather than at each exercise date.

(a) Primal (b) Dual

Figure 2: Put option prices for H = 0.07 and strike K = 100, with respect to training sample size
M .

In Figure 3 we compare the options prices in the rough Bergomi model, with respect to the correlation
parameter ρ ∈ [−1, 1], for the two (very different regimes) regimes H = 0.07 and H = 0.8. The
blue region reflects the pricing interval derived from the deep-signature approach, and once again we
present the point-estimates of all methods. In both cases we can observe, that the pricing method
perform worse – in the sense of duality gap – when we come closer to the no-correlation case ρ = 0,
while the intervals get tighter in more correlated regimes.

(a) H = 0.07

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

8.0

8.2

8.4

8.6

8.8

9.0

linear point estimate
deep point estimate
kernel point estimate
true price region

(b) H = 0.8

Figure 3: Point-estimates and pricing intervals for put option with K = 100 in the rough Bergomi
model, with respect to the correlation parameters ρ ∈ [−1, 1].

In Figure 4 we compare the duality gap in the deep-signature method, with respect to the number of
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Figure 4: Linearly fitted duality gaps with respect to time-discretization and different Hurst regimes in
the rough Bergomi model.

discretization points and different Hurst regimes. More precisely, let us define the relative duality gap

ϵ = ϵ(N,H) =
yD0 (N,H)− yP0 (N,H)

yD0 (N,H)
,

where yD0 (N,H) (resp. yP0 (N,H)) is the upper (resp. lower) bound obtained from the deep-signature
method in the rough Bergomi model with Hurst parameter H ∈ (0, 1) and N ∈ N. All the other pa-
rameters are chosen the same as in the Tables 1-2. We can observe that in general higher Hurst pa-
rameters show smaller duality gaps and also faster convergence with respect to N . Notice that, apart
from optimization and Monte-Carlo errors, the two main sources for the gap here are the discretization
error from approximating iterated and stochastic integrals, and the non-Markovianity for H ̸= 1/2
regimes. WhenH is close to 1/2, the convergence rate seems to be aroundH , and since this regime
is älmost Markovian"(and Markovian forH = 1/2), this can be interpreted as the strong error occuring
when approximating the stochastic integrals

∫
f(vt, Xt)dWt with an Euler-scheme and rough inte-

grand. In general, however, it is not possible to seperate these two error sources, so that it becomes
more difficult to interpret the observed convergence rate. Finally, in Figure 5 we compare the impor-

(a) Primal (b) Dual

Figure 5: Feature importance in the rough Bergomi model with H = 0.07 and ρ = −0.9.

tance of different entries of the level-3 signature in the deep-signature pricing methodologies. This is
simply done by first training the primal and dual model, and then for each fixed feature, we shuffle the
corresponding samples and measure the error between the point-estimate and the shuffled-estimate.
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This procedure we repeat independently 20 times for each feature and in Figures 5 we plot the aver-
aged error errors. Notice that the higher this value is, the more influence the corresponding feature has
for computing the options price. In both methods, we observe that the "Markovianßtate features Xt,
vt =

〈
2, V̂0,t

〉
, v2t =

〈
22, V̂0,t

〉
appear to have the biggest influence. Apart from that, we can observe

that the integrals
〈
21, V̂0,t

〉
=
∫ t

0
vud⟨X⟩u (resp.

∫ t

0
vudu), and

〈
212, V̂0,t

〉
=
∫ t

0

∫ u

0
vrd⟨X⟩rdXu

(resp.
〈
212, V̂0,t

〉
=
∫ t

0

∫ u

0
vrdrdXu) seem to carry the most important information about the past of

the volatility.

A Proof deep-signature optimal stopping

Proof of Proposition 3.3 The first step is to generalize the global approximation result [6, Theorem
2.8]. Leaving details to [6, Section 2], we are given a measure space (X ,B(X ), µ), where X is the
space of stopped, time-augmented, geometric α-Hölder rough paths ([6, Definition 2.1]), B(X ) the
Borel σ-algebra, and µ a measure fulfilling certain assumptions ([6, Assumption 2.6]). Thanks to [6,
Theorem 2.8], for any f ∈ Lp(X , µ) and ϵ > 0, we can find a linear functional on the signature
f ϵ(x|[0,t]) =

〈
lϵ,x<∞

0,t

〉
, such that ∥f − fn∥Lp ≤ ϵ/2. But due to Lp-universality of DNNs, see

[24, Proposition 2], denoting by kϵ the truncation level of lϵ in W , for m large enough we can find
(β, ℓ̃) ∈ Rm × (W≤kϵ)m such that ∥θ(β,ℓ̃)(x|[0,t]) − f ϵ∥Lp ≤ ϵ/2. An application of the triangle
inequality then proves that for any f ∈ Lp(X , µ), we can find a sequence (θn)n∈N ⊆ DNNσ

sig such
that ∥f − θn∥Lp → 0 as n→ ∞.

Now in the primal case, it is in fact possible to show that for all 0 ≤ n ≤ N , we have E[Z
τ
(m,k)
n

|Ftn ] →
E[Zτn|Ftn ] as (m, k) → ∞ in L2, from which the result follows immediately. Using backward induc-
tion, one can notice that the result clearly holds true for n = N . Assuming that the claim holds for
n+1, we denote by θ(m,k)

n the element θ(β
⋆,n
P ,ℓ⋆,nP ) with respect to the minimizer (β⋆,n

P , ℓ⋆,nP ) in (8). We
can estimate ∥E[Z

τ
(m,k)
n

−Zτn|Ftn ]∥L2 exactly as it was done [6, Appendix A.1] until equation (A.1),
to reduce the claim to the convergence of

L(m,k) =
∥∥θ(m,k)(X|[0,tn])− E[Zτn+1|Ftn ]

∥∥
L2 .

There is, however, a subtle difference here compared to the conclusion used in the linear case: The
space DNNσ

sig is not convex, which means that θ(m,k)(X|[0,tn]) with respect to (8) is not necessary

the orthogonal projection of Z
τ
(k,m)
n+1

. We can still conclude by introducing the minimizer (β̂⋆,n
P , ℓ̂⋆,nP )

similar to (8), but replacing Z
τ
(k,m)
n+1

by E[Zτn+1|Ftn ]. Then we have

L(m,k) ≤
∥∥θ(m,k)(X|[0,tn])− E[Z

τ
(m,k)
n+1

|Ftn ]
∥∥
L2 +

∥∥E[Z
τ
(m,k)
n+1

− Zτn+1 |Ftn ]
∥∥
L2

≤
∥∥θ̂(m,k)(X|[0,tn])− E[Z

τ
(m,k)
n+1

|Ftn ]
∥∥
L2 +

∥∥E[Z
τ
(m,k)
n+1

− Zτn+1 |Ftn ]
∥∥
L2

≤
∥∥θ̂(m,k)(X|[0,tn])− E[Zτn+1 |Ftn ]

∥∥
L2 + 2

∥∥E[Z
τ
(m,k)
n+1

− Zτn+1|Ftn ]
∥∥
L2

≤
∥∥θ̂(m,k)(X|[0,tn])− E[Zτn+1 |Ftn ]

∥∥
L2 + 2

∥∥E[Z
τ
(m,k)
n+1

− Zτn+1|Ftn+1 ]
∥∥
L2 ,

where we used the triangle inequality in the first and third inequality, the fact that θ(m,k) minimizes the
L2 distance to E[Z

τ
(m,k)
n+1

|Ftn ] in the second inequality, and the contraction property of conditional ex-

pectations in the last inequality. Now the last term in the inequality converges by induction hypothesis,
while the first one converges thanks to the global approximation result as m, k → ∞.
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Finally, let us outline also the proof of the dual case, which closely follows the techniques used in [6,
Appendix A.2]. First, an application of the global approximation allows us to equivalently write (4) as

Y N
0 = inf

θ∈DNNσ
sig

E
[
max

0≤n≤N
(Ztn −M θ

tn)
]
, M θ

tn =

∫ tn

0

θ(X|[0,s])dWs (18)

Indeed, leaving the detailed technique to the proof of [6, Theorem 3.7], this follows from the following
observation: As already discussed in the beginning of Section 2.2, since FX = FW , by martingale
representation it is enough to minimize (4) over L2-progressive processes, which in turn can by ap-
proximated arbitrary well by θ ∈ DNNσ

sig thanks to the global approximation result. Next we define

Y
N,(m,k)
0 = E[max0≤n≤N(Ztn −M

(m,k)
tn )], where we recall M (m,k) was defined with respect to the

minimizer (9), and note that Y N,(m,k)
0 ≥ Y N

0 . Then, by (18), for every ϵ > 0, there exists an element
θϵ ∈ DNNσ

sig such that Y N
0 + ϵ ≥ E[max0≤n≤N(Ztn −M θϵ

tn )], so that

0 ≤ Y
N,(m,k)
0 − Y N

0 ≤ ϵ+ Y
N,(m,k)
0 − E

[
max

0≤n≤N
(Ztn −M θϵ

tn )
]
≤ ϵ,

where the last inequality holds for (m, k) large enough, such that θϵ = θ(β̃,ℓ̃) for some (β̃, ℓ̃) ∈
Rm × (W≤k)m.

2

Remark A.1 The same results remain true when working with the log-signature introduced in Remark
3.4. For the global approximation result, one can simply note that for any f ∈ Lp(X , µ), we know that

f
Lp

≈
〈
ℓ,X≤K

〉
=
〈
ℓ, exp⊗(L≤K)

〉
for K large enough, where exp⊗ is the (continuous!) inverse of

the log⊗ introduced in Remark 3.4. Using again [24, Proposition 2], we can approximate this expo-

nential on the truncated log-signature by a DNN. In summary, f
Lp

≈
∑

j βjσ(
〈
ℓ̃j,L<∞〉) in the sense

of the global approximation result discussed in the beginning of the proof. Then, all the arguments can
be repeated, relying on the set DNNσ

log, which replaces the signature with the log-signature.
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