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Efficient numerical framework for geothermal energy production optimization
in fracture-controlled reservoirs

Ondřej Pártl, Ernesto Meneses Rioseco

1 Abstract

We describe an open-source numerical framework for the automated search for the placements of injection and
production wells in hot fracture-controlled reservoirs that sustainably optimize geothermal energy production,
where we consider deviated multiwell layouts (smart multiwell arrangement). This search is carried out via 3D
simulations of groundwater flow and heat transfer. We model the reservoirs as discrete fracture networks (DFN)
in which the fractures are 2D manifolds with polygonal boundaries embedded in a 3D porous medium. The
wells are modeled via the immersed boundary method. The flow and heat transport in the DFN-matrix system
are modeled by solving the balance equations for mass, momentum, and energy. The fully developed numerical
framework combines the finite element method with semi-implicit time-stepping, algebraic flux correction, and
approximation of the wells via the non-matching approach. To perform the optimization, we use various gradient-
free algorithms. We present the results of verification and validation tests with DFNs of simple structure and
realistic physical parameter values.

10.20347/WIAS.PREPRINT.3169 Berlin 2025



O. Pártl, E. Meneses Rioseco 2

Figure 1: Schematic representation of a geothermal doublet concept targeting a fracture-controlled geothermal
reservoir. A geothermal doublet is composed of an injection (blue) and a production (red) well. Heat is extracted
from the produced reservoir fluid at the surface and injected at a lower temperature back into the reservoir.

2 Introduction

Decarbonizing the energy sector in Germany involves the development of diverse low-carbon technologies
and renewable energy resources in an optimal and sustainable way [20, 26]. Among the different kinds of
renewable energies, the use of deep geothermal resources has gained remarkable momentum in recent years
due to its independence from climatic variability, its baseload availability and direct-use applications, as well as
small land footprint, which makes these resources especially beneficial in highly urbanized or environmentally
sensitive regions [12, 22]. In particular, the Greater Munich region in Germany shows one of the most dynamic
developments in the use of deep geothermal resources in middle Europe [2, 25]. Numerous geothermal plants
for district heating and electricity production have been put into operation during the last decades to meet the
heat demand of several large villages in the surroundings of Munich. For illustration, see Figure 1.

With the increasing number of neighboring geothermal wells, questions related to the optimal placement of future
wells and reservoir management in a sustainable way become more and more important. These questions are
intimately linked to the kind of geothermal reservoir targeted. In particular, in sedimentary reservoir types [24],
the permeability structure and type of flow regime are among the key factors in well placement optimization and
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Efficient numerical framework for geothermal energy production optimization 3

sustainable geothermal reservoir management [7]. The successful development of deep geothermal resources
in the Greater Munich region is due to favorable hydrogeological and geothermal conditions encountered in
porous, fractured, and karstified Upper Jurassic carbonates at varying depths [9].

Some works that address the hydraulic behavior of the Upper Jurassic reservoir suggest that despite its hetero-
geneity, it can be modeled using the equivalent porous medium (EPM) approach due to its generally observed
radial flow regime [5, 6]. Other studies, however, indicate that fractured and faulted sectors of this geothermal
reservoir exhibit a linear or bilinear flow regime, highlighting the hydraulic activity of fracture- or fault-controlled
domains of the reservoir and the hydraulic interaction of the fracture-matrix system [29]. Most recently, a com-
prehensive study on a premature thermal breakthrough that occurred in a geothermal doublet in the reservoir
concluded that some fracture-dominated compartments of the reservoir cannot be modeled using the EPM
approach [11] since a previous regional thermo-hydraulic model of Upper Jurassic carbonates [9] failed to pre-
dict an early thermal breakthrough. Based on the integration of multi-scale and multi-disciplinary data, Fadel et
al.[11] proposed that in fracture-controlled sectors of the reservoir, the discrete fracture network (DFN) approach
has to be adopted to appropriately capture the dual-porosity and dual permeability character of the reservoir.
Besides, as the Upper Jurassic formation in the North Alpine Foreland Basin deepens towards the Alps, deeper
sections of the reservoir are mainly controlled by the hydraulic behavior of faults and fractures, which makes it
indispensable to implement them as discrete manifolds [23].

Fracture-controlled reservoirs that need to be modeled using the DFN approach are well known in the published
literature to be computationally intensive [10, 16]. In addition, the high heterogeneity and anisotropy involved
in such reservoirs pose a serious challenge to geothermal exploration and sustainable reservoir development
[30, 15]. In particular, well placement optimization driven by the requirement for maximum sustainable geother-
mal energy production is a challenging numerical task. Recently, Blank et al. [7] proposed a 2D numerical
framework that enables one to find optimal geothermal well placement by maximizing geothermal energy pro-
duction sustainably. This was the first time authors introduced an efficient numerical framework that involves
transient thermo-hydraulic simulation, geothermal multi-well thermo-hydraulic interaction, and a multivariate op-
timization task. However, the applicability and transferability of the work by Blank et al. is limited to sections of
the reservoir that can be modeled as an EPM. Therefore, one of the main purposes of this work is to extend
the previously proposed 2D numerical framework to reservoir domains that exhibit more complex permeability
structures under non-isothermal conditions. We aim to propose an efficient, open-source numerical framework
capable of well placement optimization driven by the requirement for maximum sustainable geothermal energy
production in 3D fracture-controlled reservoirs that need to be modeled as a DFN.

To the best of our knowledge, there is no available numerical framework that is efficient enough for perform-
ing geothermal multi-well placement optimization based on the requirement for maximum sustainable energy
production in 3D fracture-controlled reservoirs. Typically, geothermal well placement optimization tasks would
require remeshing after changing well positions, which would be excessively computationally expensive. Moti-
vated by this hindrance, we propose in this work a computational framework that solves this optimization task in
a comparatively efficient way.

The paper is structured as follows: Section 3 presents our mathematical model. Section 4 describes how we
solve the resulting mathematical problem numerically. Section 5 shows the results of several verification and
validation tests conducted with our numerical framework.

3 Mathematical model

Our mathematical model follows from those by Blank et al. [7] and Zinsalo et al. [34]: We model the DFN as
a domain Ω ∈ R3 consisting of 3D porous layers denoted by Ωla, porous fractures denoted by Ωfr (with
Ωfr ⊂ ∂Ωla), and wells, where the fractures are 2D manifolds with polygonal boundaries, and the wells are thin
cylinders.

Since the radius of a cylindrical well is at least four orders of magnitude smaller than the size of Ω, we model
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the wells via the immersed boundary method [31, 7]. That is, we assume that the volumes of the wells are parts
of Ωla, and the well-fracture intersections are parts of Ωfr (hence, the wells are physically not there), and we
compensate for the absence of the wells by including line mass and energy sink/source terms in areas where
the wells should be placed.

In what follows, the objects related to the layers, fractures, and porous rock will be denoted by the subscripts
la, fr, r, respectively, in cases in which there may be confusion. The quantities representing the fluid properties
do not have any subscripts. We assume that all these components are non-deformable, and they are in local
thermal equilibrium with the fluid inside. In addition, only single-phase fluid flow in fully saturated conditions is
considered.

3.1 Balance equations

The fluid flow and heat transport in Ωla and Ωfr are modeled by solving the corresponding balance equations
for mass, momentum and energy. In Ωla, these equations read, respectively,

εr
∂ρ

∂t
+∇ · (ρv) = SMW, (1)

v = − 1

µ
k(∇p− ρg), (2)

(ρc)eff
∂T

∂t
+ ρcpv · ∇T −∇ · (λeff∇T ) = SEW. (3)

In (1), εr [−] stands for the porosity, ρ [kg ·m−3] represents the density, t [s] is the time, v [m · s−1] is the fluid
velocity, and SMW [kg · m−3 · s−1] denotes the sum of the mass sources/sinks due to the wells.

In (2), µ [Pa · s] is the dynamic viscosity of the fluid, and k [m2] is the permeability tensor of the rock. We
assume k to be generally isotropic and heterogeneous, i.e, k = kI , where k is a scalar function, and I is
the identity tensor. The quantity p [Pa] represents the fluid pressure, and g [m · s−2] denotes the gravitational
acceleration vector.

In (3), cp [J · kg−1 · K−1] is the specific heat at constant pressure of the fluid, T [K] denotes the common
thermodynamic temperature of the fluid and rock, and SEW [J ·m−3 · s−1] represents the energy sources/sinks
due to the wells.

The subscript eff indicates the following combination of the properties of the fluid and rock:

λeff = (1− εr)λr + εrλ, and (ρc)eff = (1− εr)ρrcr + εrρcp, (4)

where cr [J ·kg−1 ·K−1] stands for the specific heat of the rock, and λ [W ·m−1 ·K−1] is the thermal conductivity
coefficient. The terms SMW and SEW are defined in Section 3.2.

In Ωfr, our equations read

dfrεr
∂ρ

∂t
+ dfr∇t · (ρv) = SMW + (ρv)la · n+ + (ρv)la · n−, (5)

v = − 1

µ
k(∇tp− ρg), (6)

dfr(ρc)eff
∂T

∂t
+ dfrρcpv · ∇tT − dfr∇t · (λeff∇tT ) = SEW + qla · n+ + qla · n−, (7)

where

q = − (λeff∇T ) , (8)

10.20347/WIAS.PREPRINT.3169 Berlin 2025



Efficient numerical framework for geothermal energy production optimization 5

and the quantities (ρv)la ·n and qla ·n on the right-hand side of (5) and (7) represent the fluxes entering/leaving
Ωfr through ∂Ωla, where n+ and n− denote the unit outward normals to the fracture (n+ + n− = 0).

In (5)–(7), dfr [m] is the fracture aperture, which is considered piecewise constant, and the subscript t indicates
the derivative in the direction of the unit vector tangential to the fracture. For a scalar-valued function f and a
vector-valued function F , it holds

∇tf = ∇f −
(
∇f · n+

)
n+ and ∇t · F =

(
I − n+ ⊗ n+

)
: ∇F .

Note that in (5) and (7), the physical units of the source/sink terms are SMW [kg · m−2 · s−1] and SEW

[J · m−2 · s−1], although we denote them by the same symbols as those in (1) and (3).

We assume that p and T are continuous at the interface between the layers and the fractures. This means

pla|∂Ωfr
= pfr and Tla|∂Ωfr

= Tfr. (9)

On the boundaries ∂Ωla and ∂Ωfr, we consider the Dirichlet boundary conditions for p and T and the flux
boundary conditions

ρv · n = qM and q · n = qE. (10)

In Ωla, conditions (10) will be prescribed on parts Γ∂la,M,flux and Γ∂la,E,flux of ∂Ωla, respectively. In Ωfr, we set
qM = qE = 0 on the whole ∂Ωfr.

Every intersection of N fractures ω1, . . . , ωN is assumed to be a line segment. Denoting ns
∂i the unit outward

normal corresponding to the side s ∈ {+,−} of this intersection inside the fracture ωi, we prescribe
∑

i∈{1,2}

∑

s∈{+,−}

dfr,i(ρv)fr · ns
∂i = 0 and

∑

i∈{1,2}

∑

s∈{+,−}

dfr,iqfr · ns
∂i = 0. (11)

In our numerical framework, the primary variables for solving the balance equations are p and T . The fluid
properties ρ, µ, cp and λ are generally considered p- and T -dependent. The parameters of the porous matrix
are considered spatial-dependent in Ωla. In Ωfr, they are fracture-dependent constants. However, for simplicity,
the simulations presented in Section 5 will be carried out only for constant µ, cp and λ. Those in Section 5.2,
we will consider even constant ρ.

The balance equations will be solved on the time interval [tini, tfin]. The initial conditions for p and T will be
denoted by pini and Tini.

3.2 Wells

We consider 2 types of wells: an injection well (which acts as a source) and a production well (which acts as a
sink). Our model for them is basically an extension of that one by Blank et al.[7] from 2D to 3D. That is, employing
the immersed boundary method, we define the source/sink terms SMW and SEW as line sources/sinks first.
Afterward, we approximate them using the non-matching approach [31, 7] to make their subsequent numerical
approximation less mesh-dependent.

Each well w is modeled as a cylinder Sw with the height Hw [m], radius rw [m], and flow rate Qw [m3 · s−1] of
a fluid with the density ρw [kg ·m−3], temperature Tw [K], and specific heat capacity at constant pressure cp,w
[J · kg−1 · K−1]. Qw is positive for an injection well and negative for a production well.

We assume the boundary of each intersection of a fracture and a well to be an ellipse with the center Se and
semi-axes of the lengths L1 [m] and L2 [m]. The intersection is equipped with a local coordinate system given
by Se and an orthonormal basis consisting of vectors parallel with the above semi-axes. For a point x lying in
the considered fracture, we define

‖x‖inter =

√
L2

2 |x1|2 + L2
1 |x2|2

L1L2
, (12)
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Figure 2: Well w and its artificial extension wε cut by a fracture that divides both w and wε into 3 segments
Sw,1,Sw,2, andSw,3 with the heightsHw,1 = |TC|,Hw,2 = |CB|, andHw,3 = fracture aperture, where the
points T , B, and C are the centers of the top and bottom of w, and the center of the intersection, respectively.
Since |TB| � Hw,3, the fact thatHw,1+Hw,2+Hw,3 > |TB| is negligible. lw is the line segment connecting
the points T and B.

where x1 and x2 are the coordinates of x in the above basis. Hence, the intersection is formed by points x in
the fracture satisfying ‖x− Se‖inter ≤

√
L1L2.

Although such an intersection has zero thickness, we assume in the following computations that its thick-
ness is dfr, the fracture aperture. These intersections divide a well w (see Figure 2) into Nw,la segments
Sw,1, . . . ,Sw,Nla

in Ωla and into Nfr segments Sw,Nla+1, . . . ,Sw,Nla+Nfr
in Ωfr. We may define additional

segments in Ωla to increase the precision of the model, e.g., if the porous medium is highly heterogeneous. The
segments have the heights Hw,1, . . . ,Hw,Nla+Nfr

, respectively, where the heights of the segments in Ωla are
measured along the line segment lw in Figure 2. This divides the flow rate Qw into Nw := Nw,la +Nw,fr por-

tions Qi (Qw =
∑Nw

i=1Qw,i) that are approximated based on the lateral surface area |Sw,i| and permeability
kw,i of the segments as follows:

Qw,i = kw,i |Sw,i|C for C = Qw/(kavr |S tot|),

where

|S tot| =
Nw∑

i=1

|Sw,i| and kavr =

Nw∑

i=1

kw,i |Sw,i| / |S tot| . (13)

Using the portions Qw,i, the source/sink terms in our balance equations are approximated as

SMW =
∑

w∈Winj∪Wpro

ρwCwδw and SEW = Cpen

∑

w∈Winj

Cw(ρcp)w (Tw − T ) δw, (14)

where Winj and Wpro are the sets of the injection and production wells, respectively, δw [m−2] denotes the
Dirac delta function, and Cpen [-] is a positive penalty parameter. Setting Cpen to a large value makes SEW in
(3) and (7) dominant, enforcing T ≈ Tw. The functions Cw [m2/s] in Ωla and Cw [m3/s] in Ωfr depend only
on the portions Qw,i and the shape of the segments Sw,i. Both Cw and δw are defined in Sections 3.2.1 and
3.2.2.

10.20347/WIAS.PREPRINT.3169 Berlin 2025
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3.2.1 Cw and δw for wells in Ωla

In Ωla, we consider δw to be the Dirac delta function with respect to the line segment lw in Figure 2. Thus,∫
Sw

δw = Hw =
∑Nw,la

i=1 Hw,i.

To apply the non-matching approach, we surround w by an artificial well wε (see Figure 2) with the artificial
radius rε [m] (rε � rw), and we approximate δw via

δw(x) ≈ π

r2
ε (π2 − 4)

θ

(
dist(x, lw)

rε

)
ISwε

(x), (15)

where θ is the cut-off function

θ(x) =

{
cos(πx) + 1, x < 1

0, otherwise
, (16)

dist(x, lw) denotes the distance between x and lw, and ISwε
represents the indicator function of the artificial

cylinder Swε corresponding to wε.

The function Cw is defined as

Cw =

Nw,la∑

i=1

Cw,iISwε,i
, (17)

where ISwε,i
is the indicator function of Swε,i, and each Cw,i [m2/s] is a constant computed as follows:

In steady-state, (1) reduces to∇ · (ρv) = SMW. Integrating both sides of this equation over Sw, applying the
Gauss theorem, and neglecting the flow through the bases of Sw yields

∫

Sw

∇ · (ρv) =

∫

∂Sw

ρv · n ≈
Nw,la∑

i=1

(ρv)|Sw,i
· |Sw,i| =

Nw,la∑

i=1

ρw,iQw,i, (18)

where we set v|Sw,i
= Qw,i/ |Sw,i|, and

∫

Sw

SMW =

∫

Sw

∑

w′∈Winj∪Wpro

ρw′Cw′δw′ =

∫

Sw

ρwCwδw =

Nw,la∑

i=1

ρw,iCw,iHw,i. (19)

Comparing both integrals reveals Cw,i = Qw,i/Hw,i.

3.2.2 Cw and δw for wells in Ωfr

For an intersection of a fracture with a well w, δw is the Dirac delta function with respect to the center of the
intersection (the pointC in Figure 2). Similarly as in Section 3.2.1, we utilize the artificial wellwε to approximate
δw as

δw(x) ≈ π

L1,εL2,ε (π2 − 4)
θ

(
‖x− Se‖inter√

L1,εL2,ε

)
ISwε

(x), (20)

where L1,ε and L2,ε are the artificial lengths of the semi-axes (L1,ε � L1, L2,ε � L2), θ and ISwε
have the

same meaning as in (15), and ‖·‖inter is defined by (12). We set

Cw =

Nw∑

i=Nw,la+1

Cw,iISwε,i
. (21)

Assuming that the intersection has the thickness dfr, the constants Cw,i [m3/s] are computed similarly as in
Section 3.2.1 to be Cw,i = Qw,i.
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3.3 Optimization

We assume that for a given time interval [tini, tfin], the optimal placement of the wells is the one maximizing
the power P [W] of the geothermal facility that we compute using the following formulas from Blank et al.[7]. For
given sets of injection and production wellsWinj andWpro, we set

P(Winj,Wpro) =
1

tfin − tini

∫ tfin

tini

(Eprod(t,Winj,Wpro)− Epump(t,Winj,Wpro)) dt, (22)

where Eprod [J/s] denotes the flux of energy through the wells,

Eprod(t,Winj,Wpro) =
∑

w∈Wpro

(ρcpT )|w (t) |Qw| −
∑

w∈Winj

ρwcp,wTwQw, (23)

and Epump [J/s] stands for the energy needed for the operation of the water pumps,

Epump(t,Winj,Wpro) =
∑

w∈Winj∪Wpro

|Qw|
εw
|∆p|w (t)| . (24)

In (24), εw [-] represents the efficiency of the pump, and ∆p|w [Pa] denotes the average of p− pini over Sw.

4 Numerical schemes

This section describes how we solve the balance equations and optimization problem numerically.

4.1 Balance equations

We solve our balance equations via a numerical scheme that combines the semi-implicit time discretization with
the finite element method (FEM), considering P1 elements both for p and T . The primary reason for using the
semi-implicit time discretization and P1 elements is to reduce the computational costs because each evaluation
of the powerP during the optimization requires the solution of the balance equations over [tini, tfin]. To stabilize
the resulting numerical scheme, we employ the algebraic flux correction (AFC), which we consider an easy and
effective stabilization method for transport problems [4, 17].

To carry out the time discretization in Ωla, we denote the value of a function f at time tn by fn (where tini = t0

and tfin = tNt for Nt ∈ N), and we set ∆tn := tn+1 − tn. Considering (1)–(3) at time tn+1, using the chain
rule for ∂ρ/∂t, approximating the time derivatives by the backward differences, replacing some terms from tn+1

with their counterparts from time tn to get a linear scheme for p and T , and employing a Taylor expansion for
ρn+1, leads to

εr

(
∂ρ

∂p

)n pn+1 − pn
∆tn

+ εr

(
∂ρ

∂T

)n Tn+1 − Tn

∆tn
+∇ · (ρnvn+1) = Sn+1

MW, (25)

(ρc)neff

Tn+1 − Tn

∆tn
+ ρncnpv

n · ∇Tn+1 −∇ ·
(
λneff∇Tn+1

)
= Sn+1

EW , (26)

where

vn+1 = − 1

µn
k
(
∇pn+1 − ρn+1g

)
, (27)

Sn+1
MW =

∑

w∈Winj∪Wpro

ρn+1Cwδw, (28)

Sn+1
EW = Cpen

∑

w∈Winj

Cw(ρcp)w
(
Tw − Tn+1

)
δw, (29)

ρn+1 = ρn + ∆tn
((

∂ρ

∂p

)n pn+1 − pn
∆tn

+

(
∂ρ

∂T

)n Tn+1 − Tn

∆tn

)
. (30)
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Hence, in every time step, we solve (26) first to obtain Tn+1. Afterward, we solve (25) to get pn+1.

The spatial discretization via the FEM is carried out in the ordinary way: We derive the weak formulation by
multiplying each term in (25) and (26) by a test function, integrating the result over Ωla, and applying the Gauss
theorem and the boundary conditions (10) to the last term on each left-hand side.

In Ωfr, we employ the same procedure as for (1)–(3) to discretize (5)–(7), but we also utilize (11).

Afterward, we triangulate Ωla by a boundary-conforming mesh of tetrahedra and Ωfr by a boundary-conforming
mesh of triangles, where each triangle in Ωfr is a face of a tetrahedron in Ωla. Then, we approximate all functions
using the corresponding P1 elements.

Denoting the test functions by ϕh, the finite element approximation of a function by the subscript h, and the
standard inner products in L2(Ωla), L2(Ωfr), L2(∂Ωla) and L2(∂Ωfr) by (·, ·)la, (·, ·)fr, (·, ·)∂la and (·, ·)∂fr,
respectively, we obtain

(
εr,h

(
∂ρ

∂p

)n

h

pn+1
h − pnh

∆tn
, ϕh,la

)

la

+

(
εr,h

(
∂ρ

∂T

)n

h

Tn+1
h − Tn

h

∆tn
, ϕh,la

)

la

+
(
qn+1

M,h , ϕh,la

)
Γ∂la,M,flux

−
(
ρnh,v

n+1
h · ∇ϕh,la

)
la

=
(
Sn+1

MW,h, ϕh,la

)
la
,

(31)

(
(ρc)nh,eff

Tn+1
h − Tn

h

∆tn
, ϕh,la

)

la

+
(
ρnhc

n
p,hv

n
h · ∇Tn+1

h , ϕh,la

)
la

+
(
qn+1

E,h , ϕh,la

)
Γ∂la,E,flux

+
(
λnh,eff ,∇Tn+1

h · ∇ϕh,la

)
la

=
(
Sn+1

EW,h, ϕh,la

)
la
,

(32)

(
dfr,hεr,h

(
∂ρ

∂p

)n

h

pn+1
h − pnh

∆tn
, ϕh,fr

)

fr

+

(
dfr,hεr,h

(
∂ρ

∂T

)n

h

Tn+1
h − Tn

h

∆tn
, ϕh,fr

)

fr

+
(
dfr,hq

n+1
M,h , ϕh,fr

)
Γ∂fr,M,flux

−
(
dfr,hρ

n
h,v

n+1
h · ∇tϕh,fr

)
fr

=
(
Sn+1

MW,h, ϕh,fr

)
fr

+
(
(ρv)h,la · n+ + (ρv)h,la · n−, ϕh,fr

)
fr
,

(33)

(
dfr,h(ρc)nh,eff

Tn+1
h − Tn

h

∆tn
, ϕh,fr

)

fr

+
(
dfr,hρ

n
hc

n
p,hv

n
h · ∇tT

n+1
h , ϕh,fr

)
fr

+
(
dfr,hq

n+1
E,h , ϕh,fr

)
Γ∂fr,E,flux

+
(
dfr,hλ

n
h,eff ,∇tT

n+1
h · ∇tϕh,fr

)
fr

=
(
Sn+1

EW,h, ϕh,fr

)
fr

+
(
qh,la · n+ + qh,la · n−, ϕh,fr

)
fr

(34)

for all ϕh,la and ϕh,fr.

We add each equation (33) for the test function ϕh,i,fr to each equation (31) for the test function ϕh,j,la if the
supports ofϕh,i,fr andϕh,j,la overlap. This means that the integrals in equations in (33) containing (ρv)h,la·n±
and the integrals over Ωfr ⊂ ∂Ωla in equations in (31) cancel each other. For (32) and (34), we do the same,
which results in the same cancellation of integrals.

We denote the sets of equations obtained by modifying (31) and (32) in the aforementioned way by EMla and
EEla, respectively.

The next step of the discretization procedure is the application of the AFC to the system EEla, where the new
system will be denoted by EEla. We apply it only to EEla because EMla does not need any stabilization.
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The AFC requires that EEla is written in the vector form

M
(
(1/∆tn)(un+1 − un)

)
+ Aun+1 = F , (35)

where u represents the solution vector, and M and A are the matrices of the coefficients in front of the
components of un+1. M contains all coefficients originating from the approximation of the time derivatives,
and A contains the rest. All remaining terms are in the vector F .

The components M i,j , Ai,j , and F i of the matrices M , A, and the vector F can be calculated to be

M i,j =
((
εr,hρ

n
hc

n
p,h + (1− εr,h)ρr,hcr,h

)
ϕh,j,la, ϕh,i,la

)
la

+
((
εr,hρ

n
hc

n
p,h + (1− εr,h)ρr,hcr,h

)
ϕh,j,fr, dfr,hϕh,i,fr

)
fr
,

(36)

Aij =
(
ρnhc

n
p,hv

n
h · ∇ϕh,j,la, ϕh,i,la

)
la

+
(
λnh,eff ,∇ϕh,j,la · ∇ϕh,i,la

)
la

+
(
dfr,hρ

n
hc

n
p,hv

n
h · ∇tϕh,j,fr, ϕh,i,fr

)
fr

+
(
λnh,effdfr,h,∇tϕh,j,fr · ∇tϕh,i,fr

)
fr

+


Cpen

∑

w∈Winj

Cw(ρcp)wδwϕh,j,la, ϕh,i,la




la

+


Cpen

∑

w∈Winj

Cw(ρcp)wδwϕh,j,fr, ϕh,i,fr




fr

,

(37)

F i =−
(
qn+1

E,h , ϕh,i,la

)
∂la,E,flux

+


Cpen

∑

w∈Winj

Cw(ρcp)wTwδw, ϕh,i,la




la

−
(
dfr,hq

n+1
E,h , ϕh,i,fr

)
∂fr,E,flux

+


Cpen

∑

w∈Winj

Cw(ρcp)wδwTw, ϕh,i,fr




fr

.

(38)

Once M , A, and F are known, the application of the AFC consists of modifying

1 M by applying mass lumping,

2 A by adding artificial diffusion in such a way that A becomes an M-matrix,

3 F by adding carefully designed anti-diffusive fluxes that compensate for the excessive diffusion in A in
regions where the solution is expected to be smooth.

We perform this via the algorithm with the Zalesak limiter[4, 17], which does not contain any user-defined tuning
parameters.

At the end, we modify EMla and EEla by utilizing conditions (9) to prescribe p and T at mesh nodes on ∂Ωla

that coincide with nodes in Ωfr, and by employing the Dirichlet boundary conditions. Then, we solve the resulting
systems of linear algebraic equations.

4.2 Wells and optimization

When computing the average permeability kavr in (13), the permeability kw,i of a segment Sw,i is computed
as follows:

� For Sw,i ⊂ Ωfr, we set kw,i = (1/NP )
∑NP

j=1 k(Pj), where the points Pj are given in Figure 3, and
NP ∈ N is a fixed number that is the same for all Sw,i.
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C
α

α

α

α

P1P2

P3
P4

Figure 3: Definition of points P1, . . . , PNP
for NP = 4 for a well-fracture intersection Sw,i ⊂ Ωfr. The

coordinates of the vector
−−→
CP1 in the local base used in (12) are (L1, 0). The angle is α = 360◦/NP .

� Each Sw,i ⊂ Ωla corresponds to a part of lw between certain points B and C (e.g., those in Figure 2).
The intersection of Sw with a plane that is perpendicular to Sw and goes through the midpoint of the line
segment BC is a circle on which we can define points P1, . . . , PNP

in the same way as on the ellipse

in Figure 3. With these points, we set kw,i = (1/NP )
∑NP

j=1 k(Pj). Again, NP has the same value for
all Sw,i.

The average T |w in (23) at time t is computed as the weighted average of the values T (t, Pj) for all Pj from

the previous paragraph, where the weight of T (t, Pj) for Pj ∈ Sw,i is |Qw,i| /
(
Np
∑Nw

k=1 |Qw,k|
)

. The

averages ρ|w and cp|w in (23), and ∆p|w in (24) are computed in the same way as T |w.

The integral in (22) is computed via the trapezoidal rule with the step ∆tn from Section 4.1.

As for the problem of maximizing the power P for a given definition of P , we solve it via gradient-free global
optimization algorithms from the library NLopt[18]. Specifically, we will show the results for two deterministic
algorithms:

� DIRECT, which searches for the optimum by dividing the parametric space into hyperrectangles of de-
creasing size,

� the AGS, which approximates the parametric space via the Hilbert curve that is searched iteratively by
utilizing the information from previous iterations.

In the NLopt, the AGS is the only gradient-free global optimization algorithm that supports nonlinear constraints
and evaluates the objective function only at feasible points. Hence, it is our only choice if the optimization
problem description leads to nonlinear constraints.

5 Verification and validation

The following sections describe several tests that we carried out to verify and validate our optimization frame-
work. Unless stated otherwise, all physical quantities mentioned here are in the SI units, which correspond to
the units stated in Section 3.

We implemented the numerical solver in C++ using Deal.II[1] and NLopt[18], and performed the computations
sequentially on the computer HPE Synergy 480 Gen10 Plus with 2 Xeon eighteen-core processors, 3000
MHz, 768 GB RAM. The computer models of the spatial domains used in this section were created using
Frackit[14] and visualized using VisIt[8] and ParaView[3]. The spatial meshes were generated using Gmsh[13]
and TetGen[32].
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5.1 Test of solver for fluid flow and heat transport

We tested the numerical solver for the fluid flow and heat transport through a convergence study with a pre-
scribed analytical solution and realistic values of physical parameters.

The domain considered in this test is depicted in Figure 4: It consists of a reservoir containing 3 fractures of
different populations and two wells. The corresponding constant material properties and the other parameter
values are listed in Table 1. The density was defined as by Zinsalo et al.[34]:

ρ(T ) = 1.0335 · 10−5T 3 − 0.01339T 2 + 4.9692T + 432.2571. (39)

The problem was solved for tini = 0 s and tfin = 60 · 60 · 24 · 365 s ≈ 1 year.

On the right-hand sides of (1), (3), (5), and (7), we added additional sources SM and SE that assure that the
resulting system has the solution

pana(t, x, y, z) = sin (4πx/lsc − π/2) · sin (4πy/lsc − π/2) · sin (π(z + 3200)/(lsc · 0.3))

· sin (0.5πt/(tfin − tini)) · pmult + pshift − pgrad · (z + 3200)/lsc,
(40)

Tana(t, x, y, z) = sin (4πx/lsc − π/2) · sin (4πy/lsc − π/2) · sin (π(z + 3200)/(lsc · 0.3))

· sin (0.5πt/(tfin − tini)) · Tmult + Tshift − Tgrad · (z + 3200)/lsc.
(41)

Note that in (40) and (41), the factors composed of trigonometric functions do not vanish on any of the fractures.

The initial and boundary conditions were defined to correspond to the above analytical solution, where we pre-
scribed the Neumann boundary conditions everywhere on ∂Ωfr and for z = −3200.0 m and z = −3800.0 m
on ∂Ωla. On the rest of ∂Ωla \ Ωfr, we prescribed the Dirichlet boundary conditions.

Thanks to the alignment of the wells, the time-dependent parts of (40) and (41) are zero along the line segments
lw (see Figure 2). Hence, if we consider (ρcpT )|w (t) in (23) and ∆p|w (t) in (24) to be functions evaluated
along lw, we can compute the quantities in (22)–(24) analytically as well to getEprod(t) = 9453461.69 J/s and
Epump(t) = 0 J/s for all t, and P = 9453461.69 W.

We solved the above system numerically using a spatial mesh that was successively refined by uniform splitting
3 times, yielding 4 refinement levels 0, 1, 2, and 3, where the coarsest mesh (level 0) for Ωfr is shown in Figure
4. The numbers of tetrahedra in these meshes were 2091, 16728, 133824, and 1070592. For a level i, we used
the time step ∆ti = 0.1 · (tfin − tini) · 4−i s, numbers of segments (used in Section 3.2) Nw,la = 2 · 2i (all
segments having the same size) and Nw,fr = 1, numbers of points Np,i = 4 · 2i (used in Section 4.2), and
artificial well radii rε,i = rw + 6.93 · 2−i m (that is, when refining the mesh, the difference between rw and
rε is halved). Note that the definitions of the above additional sources SM and SE depend on rε. This means
that the balance equations corresponding to different refinement levels are not exactly the same. One time step
for the levels 0, . . . , 3 took our numerical solver for the balance equations roughly 0.1 s, 0.5 s, 3.5 s, and 28 s,
respectively.

The resulting errors in p, T ,Eprod(tfin),Epump(tfin), andP are summarized in Tables 2–4. They clearly indicate
convergence at least of the first order, the convergence in P being the fastest.

5.2 Test of solver for optimization problem

We tested the numerical solver for the optimization problem using a setup with realistic values of physical
parameters that is simplified enough for us to assess the plausibility of the results.

We considered Ωla = [0.0, 5200.0]× [0.0, 4350.0]× [−3350.0,−2450.0]. There were 41 rectangular frac-
tures inside, 40 of them being parallel and aligned in a column as depicted in Figure 5. The vertices of each

10.20347/WIAS.PREPRINT.3169 Berlin 2025



Efficient numerical framework for geothermal energy production optimization 13

-3200

-3300

-3400

-3500

-3600

-3700

-3800

z

0
200

400
600

800
1000

y
0

200

400

600

800
1000

x

Figure 4: Outline of the domains Ωla = [0, 1000] × [0, 1000] × [−3800, −3200] and Ωfr used in the
convergence test. The fractures are the rectangles [250, 750]× [250, 750]×{−3375} (green), [250, 750]×
{500}×[−3250,−3750] (brown), and {500}×[250, 750]×[−3500,−3750] (blue). Note that the perception
of the position of the fractures inside the frame is distorted by the rotation of the whole domain; the spatial
coordinates are correct. The colors indicate to which population (1, 2, or 3) the fractures belong (green = 1,
brown = 2, blue = 3). The cylinders represent the injection (blue) and production (red) wells. The centers of the
upper and lower bases of the wells are, respectively, (641.42, 375.0, -3483.58) and (358.58, 375.0, -3766.42)
for the injection well, and (625.0, 625.0, -3275.0) and (625.0, 625.0, -3475.0) for the production well.
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Parameters in (1)–(3) and (5)–(7) Parameters in Sections 3.2 and 3.3
Parameter Value Unit Parameter Value Unit

εr 0.1 − ρw 983.75 kg · m−3

εr,1 0.035 − ρw 983.75 kg · m−3

εr,2 0.05 − Qw ±0.06 m−3 · s−1

εr,3 0.02 − Tw 333.15 K

µ 2.23 · 10−4 Pa · s cp,w 4169.7 J · kg−1 · K−1

k 3.0 · 10−14 m2 rw 0.07 m

k1 1.3 · 10−10 m2 Cpen 103 −
k2 5.21 · 10−10 m2 εw 0.6 −
k3 2.08 · 10−11 m2

g −9.81 m · s−2 Parameters in Section 5.1

ρr 2730.0 kg · m−3 Parameter Value Unit

cr 2230.0 J · kg−1 · K−1 lsc 103 m

cp 4169.7 J · kg−1 · K−1 pmult 2.0 · 106 Pa

λr 4.07 W · m−1 · K−1 pshift 30.94 · 106 Pa

λ 0.71 W · m−1 · K−1 pgrad 9.3 · 106 Pa · m−1

dfr,1 5.0 · 10−5 m Tmult 50.0 K

dfr,2 1.0 · 10−4 m Tshift 379.15 K

dfr,3 2.0 · 10−5 m Tgrad 0.03 K · m−1

Table 1: Values of those constant physical parameters that were the same for all refinement levels. They were
defined based on real DFN parameters [27, 21, 33, 28, 23]. The parameters εr, k, and dfr were fracture-
population-specific, where the population number is indicated in the subscript. The values ki were computed
from dfr,i via the cubic law. The values of µ, cp, and λ correspond to those of water at 130◦C[19]. ρw is the
density given by (39) at Tw. Tgrad represents a normal geothermal temperature gradient in the ground, and
Tshift is the corresponding temperature at a depth of −3.2 km. pshift and pgrad represent, respectively, the
hydrostatic pressure at a depth of −3.2 km and the average hydrostatic pressure gradient in the reservoir, both
corresponding to (39) and the above temperature distribution. Qw is a typical well flow rate, and εw is a typical
pump efficiency.

Error in
l2 l∞

level p in Ωla p in Ωfr p in Ωla p in Ωfr

0 2.87 · 1013 8.53 · 1011 2.77 · 105 2.61 · 105

1 1.26 · 1013 2.91 · 1011 1.22 · 105 8.93 · 104

2 4.53 · 1012 9.10 · 1010 4.38 · 104 2.79 · 104

3 1.45 · 1012 3.00 · 1010 1.40 · 104 9.18 · 103

Table 2: Errors in p for considered mesh refinement levels measured either in l∞-norm both in time and space
or in l2-norm both in time and space. The time step for these measurements was always (tfin − tini)/10 s.
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Error in
l2 l∞

level T in Ωla T in Ωfr T in Ωla T in Ωfr

0 8.20 · 108 2.92 · 107 8.58 · 100 1.03 · 101

1 3.77 · 108 9.00 · 106 3.99 · 100 3.20 · 100

2 1.39 · 108 2.90 · 106 1.48 · 100 9.78 · 10−1

3 4.81 · 107 1.17 · 106 5.46 · 10−1 3.41 · 10−1

Table 3: Errors in T for considered mesh refinement levels measured either in l∞-norm both in time and space
or in l2-norm both in time and space. The time step for these measurements was always (tfin − tini)/10 s.

Error in
level Eprod(tfin) Epump(tfin) P

0 1.21 · 105 1.19 · 104 4.84 · 105

1 1.09 · 105 7.76 · 103 6.41 · 104

2 4.06 · 104 2.57 · 103 8.83 · 103

3 1.79 · 104 1.12 · 103 1.91 · 103

Table 4: Errors in Eprod(tfin), Epump(tfin), and P for considered mesh refinement levels.

fracture in the column were

(1979.26, 2000.0, −3067.65 + 10i), (1979.26, 2350.0, −3067.65 + 10i),

(2220.74, 2350.0, −3132.35 + 10i), (2220.74, 2000.0, −3132.35 + 10i) for i = 0, 1, 2, . . . , 39.

The last fracture had vertices

(3220.74, 2000.0, −2867.65), (3220.74, 2350.0, −2867.65),

(2979.26, 2350.0, −2932.35), (2979.26, 2000.0, −2932.35).

There was one couple of vertical wells depicted in Figure 5 inside the domain. The first well, w1, had the center
of the top (3100.0, 2175.0, -2895.0), i.e., 5 m above the last fracture center, and length 10 m. The second
well, w2, went through the above column of fractures, intersecting each fracture in its center, and the vertical
coordinate of its top, denoted by z, and length l were used as the optimization parameters. The center of its top
was Cup = (2100.0, 2175.0, z) for z ∈ [−3095.0, −2705.0], and its length was l ∈ [10.0, 3105.0 + z].
That is, Cup lay on the line going through the centers of the fractures, and its vertical position ranged from 5 m
above the uppermost fracture to 5 m above the lowermost fracture.

The system was simulated for tini = 0 s and tfin = 60·60·24·365·50 s≈ 50 years, and the constant material
properties and parameters had the same values as in Section 5.1, see Table 1, where all fractures belonged to
population 2. To reduce the computational costs, the water density was constant, ρ = 954.20 kg/m3, which
made p and v time-independent.

The initial conditions were

pini(x, y, z) = 101325.0− ρgz, Tini(x, y, z) = 283.15− 0.03z. (42)

We prescribed the homogeneous Neumann boundary conditions everywhere on ∂Ωfr and for z = −3350.0 m
and z = −2450.0 m on ∂Ωla. On the rest of ∂Ωla \ Ωfr, we prescribed the Dirichlet boundary conditions.

The domains were covered by 3 spatial meshes (denoted as refinement levels 0, 1, and 2): the original mesh
and its two successive refinements. The numbers of tetrahedra in these meshes were 170357, 446870, and
3190032, respectively. The original mesh in Ωfr is depicted in Figure 5.

We used this setup to carry out the studies described in the next two sections.
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100m

Figure 5: Alignment of the fractures and positions of the first well, w1 (blue, on the right-hand side) and second
well, w2 (red). The olive-colored lines indicate the coarsest mesh.

5.2.1 Sensitivity study

We tested the dependence of the resulting power P on the fineness of the spatial mesh, artificial well radius rε,
exact position of the well, and time step ∆t. Employing the above setup, we performed an artificial optimization
consisting of the following 720 steps with prescribed settings of wells (i being the step number):

1 i = 1, . . . , 40: We consider w1 ∈ Winj and w2 ∈ Wpro. The well w2 has z = −2705.0 m and
l = 10im. This means that w2 has its top fixed 5 m above the column of fractures and lengthens,
crossing i fractures.

2 i = 41, . . . , 80: Same as in item 1 but with z = −3095.0 m and l = 10(81− i) m. That is, w2 has its
bottom fixed 5 m below the column of fractures and shortens, crossing (81− i) ∈ [1, 40] fractures.

3 i = 81, . . . , 120: Same as in item 1 but with z = −2705.0 − 10(i − 81) m and l = 10 m. That is,
when increasing i, we put w2 deeper, letting it cross only one fracture.

4 i = 121, . . . , 240: We perform the same as in items 1–3 but with Cup = (2100.0, 2175.0 + 1.0, z).
That is, we test how the previous results change when shifting the well by 1 m. Therefore, we have
i(in items 1–3) = i(in item 4) − 120.

5 i = 241, . . . , 360: We conduct the same as in item 4 but with Cup = (2100.0, 2175.0 + 10.0, z).
That is, we shift the well even farther. It holds i(in items 1–3) = i(in item 5) − 240.

6 i = 361, . . . , 720: We carry out the same as in items 1–5 but with the well types swapped, that is,
w1 ∈ Wpro and w2 ∈ Winj. Hence, i(in items 1–5) = i(in item 6) − 360.

We carried out the above artificial optimization for the time step ∆t3 = (tfin − tini)/50 and all combinations
of 3 mesh refinement levels and artificial radii rε ∈ {3.5, 7, 14}. For the refinement level 0 and rε = 7 m, we
also tested the time steps ∆t1 = ∆t3/4, ∆t2 = ∆t3/2, ∆t4 = 2∆t3, and ∆t5 = 5∆t3. For the time step
∆t3 and all values of rε, one solution of the balance equations on [tini, tfin] took our numerical solver roughly
43 s, 106 s, and 790 s for the refinement levels 0, 1 and 2, respectively.

The results are depicted in Figures 6–8: Figure 6 confirms that the pressure differences in (24) behave as
expected: During steps 1–120,

∆p|w1

 remains approximately constant, and
∆p|w2

 is inversely propor-
tional to the number of fractures intersecting w2. The oscillations in steps 81–120, during which w2 crossed
only 1 fracture, are most probably just due to the non-uniformity of the spatial mesh. Although these oscillations
are even around 2 MPa in some cases, their influence on the resulting maximum P is small because Epump is
at least by one order of magnitude smaller than the maxima of Eprod for realistic parameter values (see Figure
7, steps 81–120, where the increase in P is mostly monotone). We can also see that the magnitude of these
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oscillations decreases when increasing rε or refining the spatial mesh. Shifting w2 by 1 m or 10 m (steps 121–
240 and 241–360) seems not to significantly change the results, although it can increase the magnitude of the
oscillations for small rε on coarse meshes. Switching the well types (steps 361–720) yields results very similar
to those for steps 1–360.

Due to the temperature gradient prescribed by (42), the production temperature T |w2
is an increasing function

of the step i for i ∈ [1, 40)∪ [41, 80)∪ [81, 120)∪ . . .∪ [321, 360). SinceEprod is an increasing function of
T |w2

too, and as mentioned above, Epump is usually much smaller than Eprod, we expect P to increase on the
above mentioned intervals for i as well. Figure 7 shows that this is indeed the case, except for approximately the
intervals [76, 80), [196, 200) and [316, 320) in the case of small rε and refined mesh for which the increase
in
∆p|w2

 is large enough for its effect on P to be comparable to that of the increased T |w2
(see Figure 6).

In steps 361–720, the length and position of the production well,w1, were fixed (which kept T |w1
and

∆p|w1


approximately constant), and P should depend mainly on

∆p|w2

, increasing with decreasing
∆p|w2

.
Figures 6 and 7 clearly show this behavior.

Figure 7 also indicates that P generally decreases when decreasing rε or refining the mesh. The results for
the refinement level 0 and rε = 3.5 m seem to contradict this tendency, but in this case, rε was almost 3
times smaller than the smallest 2D cell diameter, resulting in at least 3 times less cells covering the well-fracture
intersections than in all other cases. Consequently, we consider the approximation of the wells in this case poor,
and we expect the result to be inaccurate.

Figure 8 indicates that the resulting P increases when making the time step smaller.

To summarize, the power P seems to decrease when refining the spatial mesh, making the artificial radius rε
smaller, or making the time step ∆t larger. However, larger values of rε appear to make the numerical scheme
more robust. Moreover, the results do not seem to be sensitive to small changes in the positions of the wells.
The difference in the maximum P between all the considered setups is up to 6%, which we consider sufficiently
small for the intended application.

5.2.2 Optimization study

We tested our framework in a real optimization in which we considered w1 ∈ Winj and w2 ∈ Wpro. To simplify
the constraints on the optimization parameters, the set of admissible couples (z, l) was bijectively mapped to
a unit square in coordinates u and v, where (z, l) = (−3095 + 390u, 10 + 390uv) for u, v ∈ [0, 1], and
these variables u and v were used as the optimization parameters for the algorithms DIRECT and AGS. The
simulations were performed for the refinement level 1, rε = 7 m, and ∆t = (tfin − tini)/50.

Moreover, we considered the following two situations:

1 We employed exactly the setup described at the beginning of Section 5.2. In view of the results displayed
in Figure 7, we expect the maximum of P to be attained for w2 of a length and position similar to the one
in step 78 in Section 5.2.1. That is, w2 should intersect only a few lowermost fractures.

2 We modified the above setup by setting Tini(x, y, z) = 400 K for all (x, y, z) ∈ Ωla. Because of the ab-
sence of the temperature gradient, we expectP to be the highest for the smallest

∆p|w1

+
∆p|w2

,
that is, for the largest number of fractures intersecting w2. According to Figure 6, this corresponds to the
length and position of the well similar to the one in steps 40 and 41, which describe the same scenario,
in Section 5.2.1.

The results displayed in Figures 9–11 confirm our predictions: Figure 9 shows that the optimization algorithms
concentrated mainly on searching the parts of the parametric space in which we expect the optimal point to
lie. Figures 10 and 11 display the progress of the optimizations. In case 1, both algorithms found solutions
that were even better than the one corresponding to step 78 in Section 5.2.1. In case 2, both algorithms found
approximately the same solution.
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Figure 6: Sum of pressure differences,
∆p|w1

+
∆p|w2

, in the sensitivity study. In steps 1–360, we had
w1 ∈ Winj and w2 ∈ Wpro. In steps 361–720, the well types were swapped.

6 Conclusions

We introduced an efficient numerical framework that enables us to find placements of deviated multiwell layouts
(smart multiwell arrangements) in fracture-controlled reservoirs that optimize geothermal energy production.
We designed our numerical scheme with a view to creating a fast numerical solver because one solution of the
balance equations on [tini, tfin] represents merely one evaluation of the power P in the process of solving the
problem of maximizing P .

We tested our framework using scenarios that considered realistic values of physical parameters but were
simplified enough for us to assess the plausibility of the results. Our numerical scheme seems to be at least of
the first order, and the results of the optimization tests agree with our expectations. As for the estimated error in
the resulting P , we consider it tolerable.

The next step of our work is to apply our framework to reservoirs in the form of large geologically consistent
randomly generated DFNs.
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Figure 7: Dependence of the power P on the artificial radius rε and the fineness of the spatial mesh in the
sensitivity study. In steps 1–360, we had w1 ∈ Winj and w2 ∈ Wpro. In steps 361–720, the well types were
swapped.
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Figure 9: Parametric space of couples (z, l), and points indicating the couples tested during the optimization.
As expected, in case 1, the concentration of the points is the highest near the point (−3075, 30) of the triangle,
which represents step 78 in Section 5.2.1. In case 2, the concentration of the points is the highest near the
vertex (−2705, 400), which corresponds to step 40 in Section 5.2.1.
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Figure 10: Optimization progress in case 1. Only the part of the graph for P ≥ 9.3 MW is displayed, the lowest
P being 7.08 MW. DIRECT found a local maximum 9.4043 MW for z = −3074.938 m and l = 29.979 m,
and the AGS discovered a maximum 9.4046 MW for z = −3070.958 m and l = 33.974 m. Both algorithms
found solution better than the one in step 78 in Section 5.2.1 (which was 9.3972 MW). However, in view of the
sensitivity of the numerical scheme indicated by Figures 7 and 8, these differences in P may be considered
negligible.
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Figure 11: Optimization progress in case 2. Only the part of the graph forP ≥ 15.25 MW is displayed, the lowest
P being 14.99 MW. DIRECT found maximum P = 15.304 MW for z = −2705.046 m and l = 399.912 m.
The optimal point for the AGS was z = −2705.048 m and l = 399.905 m with P = 15.304 MW.
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