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Additive splitting methods for the generalized nonlinear
Schrödinger equation

Shalva Amiranashvili, Uwe Bandelow, Raimondas Čiegis

Abstract

Splitting methods provide an efficient approach to solving evolutionary wave equations, es-
pecially in situations where dispersive and nonlinear effects on wave propagation can be sepa-
rated, as in the generalized nonlinear Schrödinger equation (GNLSE). However, such methods
are explicit and can lead to numerical instabilities. We study these instabilities in the context of
the GNLSE. Results previously obtained for multiplicative splitting methods are extended to ad-
ditive splittings. An easy-to-use estimate of the largest possible integration step is derived and
confirmed by numerical experiments.

1 Split-step methods

Split-step methods are numerical techniques that solve evolutionary equations by separating complex
problems into simpler, more manageable parts. They are widely used in both engineering and scientific
computing [1, 2, 3, 4, 5, 6]. The minimal example is a linear differential equation

∂zψ = (B + A)ψ, (1)

where the unknown vector ψ(z) has n components andA,B are constant n×n matrices. The exact
relation that involves the matrix exponential

ψ(z + h) = eh(B+A)ψ(z), (2)

is replaced by its splitting
Ψ(z + h) = ehBehAΨ(z). (3)

Here Ψ(z) approximates ψ(z) for h→ 0 because for square matrices

eh(B+A) = ehBehA +O(h2), (4)

where h denotes the integration step.

In a general context, ψ(z) belongs to an appropriate functional space and B, A denote possibly
unbounded operators acting on this space. Both operators do not depend explicitly on z in what follows.
The exponential eh(B+A) is understood as the evolution operator for the equation

∂zψ = B(ψ) + A(ψ), (5)

such that Eq. (2) holds by construction. In the same way, ehB and ehA denote the evolution operators
for the reduced equations

∂zψ = B(ψ) and ∂zψ = A(ψ). (6)

It is assumed that the reduced equations and their evolution operators are easier to handle than
Eq. (5).

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024



Sh. Amiranashvili, U. Bandelow, R. Čiegis 2

1.1 Multiplicative methods

Approximation (4) is generalized in a natural way. A multiplicative splitting M of order p with s stages,
which then involves 2s real or complex splitting coefficients a1≤n≤s and b1≤n≤s, is defined by

eh(B+A) = M(h) +O(hp+1) with M(h) = ebshBeashA · · · eb1hBea1hA. (7)

The splitting coefficients are selected so that the formal Taylor expansions of M(h) and eh(B+A)

coincide as prescribed, in particular
∑

1≤n≤s an =
∑

1≤n≤s bn = 1. Equation (7) imposes further
restrictions onto the splitting coefficients when the commutator [A,B] = AB − BA ̸= 0. The
simplest (Lie-Trotter) splitting with s = p = 1 is given by Eq. (4). The classical Strang splitting with
s = p = 2 reads [7, 8]

eh(B+A) = e
1
2
hAehBe

1
2
hA +O(h3). (8)

Here, the so-called first same as last property (bs = 0) indicates that the number of stages is effec-
tively reduced by 1. Another famous example with s = p = 4 reads

eh(B+A) = e
σ
2
hAeσhBe

1−σ
2
hAe(1−2σ)hBe

1−σ
2
hAeσhBe

σ
2
hA +O(h5), σ =

2 + 2−1/3 + 21/3

3
, (9)

and is referred to as the Suzuki-Yoshida splitting [9, 10].

To get a better idea of the local error term, one transforms Eq. (7) to the equivalent form [10]

eh(B+A)+∆(h) = ebshBeashA · · · eb1hBea1hA with ∆(h) = O(hp+1). (10)

The Baker-Campbell-Hausdorff formula [3], which can be step by step applied to the product in
Eq. (10), indicates that ∆(h) is a linear combination of commutators involving A and B. The leading
term in ∆(h) consists of commutators of the length p+ 1. All commutators with shorter lengths must
cancel each other out, which gives a system of algebraic equations for the splitting coefficients.

When a basis set in the space of commutators is chosen, the local error can be characterized by the
ℓ2 norm of the leading term in ∆(h), where

∥∆(h)∥ = κ
hp+1

(p+ 1)!
+O(hp+2), κ = const. (11)

The numerical value of κ is used to compare splittings of the same order to each other. When Eq. (7)
is satisfied on a manifold in the space of all splitting coefficients, the final choice of a1≤n≤s and b1≤n≤s
is made in favor of the minimal κ. For example, the splittings with p = 4 reported in [11] require
s = 6, but have a local error which an order of magnitude smaller than that for the splitting (9). A
comprehensive list of known splittings and their local errors can be found in [12].

1.2 Additive methods

Searching for more precise splittings, one naturally increases the number of stages s. If a larger set of
splitting coefficients is not sufficient to increase p in Eq. (7), one can still reduce κ in Eq. (11). Another
option is to use multiple splittings of the form (7) and then to combine their predictions with appropriate
weights. This procedure yields an additive splitting scheme.

Each multiplicative component of an additive splitting will be referred to as a thread, implying that
different threads can be calculated independently on a multi-core machine before taking their weighted
sum to accomplish an integration step. The simplest additive splitting is the second Strang splitting [7]

eh(B+A) =
1

2

(
ehBehA + ehAehB

)
+O(h3). (12)
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Figure 1: The stability domain for 2 × 2 matrix M, which generates a discrete map rn+1 = Mrn
on R2. If the point (detM, TrM) is inside the triangle, the eigenvalues of M are inside the unit
circle. It is the root condition, e.g., see [15]. The same applies to a mapping on C2 generated by UM,
where U is a unitary matrix. In the area-preserving case (detM = 1), the root condition reduces to
|TrM| ≤ 2.

Another example is the splitting with four threads and p = 3 derived by Burstein and Mirin [13]

eh(B+A) =
2

3

(
e

1
2
hAehBe

1
2
hA + e

1
2
hBehAe

1
2
hB
)
− 1

6

(
ehBehA + ehAehB

)
+O(h4). (13)

As a third example, we follow [14] and consider an additive splitting with four threads and p = 4

eh(B+A) =
2

3

(
e

1
2
hBe

1
2
hAe

1
2
hBe

1
2
hA + e

1
2
hAe

1
2
hBe

1
2
hAe

1
2
hB
)
− 1

6

(
ehBehA + ehAehB

)
+O(h5),

(14)
that should be compared to the Suzuki-Yoshida splitting (9). For example, the local error parameter is
κ = 3.35 for Eq. (9), it reduces to κ = 0.36 for Eq. (14). The additive method (14) will be referred to
as ARBBC splitting.

1.3 The root condition

Both multiplicative and additive splitting methods are explicit schemes, and while they are easy to
implement and very fast [16, 17], they can suffer from numerical instabilities. Our goal is to study the
numerical stability of the additive splitting methods (12–14) for a certain class of evolution equations.
Before tackling the complete problem, it is helpful to begin with a simple toy example. Consider Eq. (1)
with

A =

[
0 −1
0 0

]
, B =

[
0 0
1 0

]
,

such that

ehA =

[
1 −h
0 1

]
, ehB =

[
1 0
h 1

]
, eh(A+B) =

[
cosh − sinh
sinh cosh

]
. (15)

Equation (2) describes, for the case at hand, the rotation of a two-component vector. For any split-
ting method, the exact rotation matrix in Eq. (15) is approximated by a certain 2 × 2 matrix M(h).
The approximation is stable when both eigenvalues of M(h) are inside the unit circle. This require-
ment imposes restrictions on detM(h) and TrM(h), the so-called root condition (Fig. 1). Table 1
shows the stability domains for the additive methods and, for comparison, for the simplest (Lie-Trotter)
multiplicative method.
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Equation (4) (12) (13) (14)

M(h)

(
1 −h
h 1− h2

) (
1− h2

2 −h

h 1− h2

2

) (
1− h2

2 −h+ h3

6

h− h3

6 1− h2

2

) (
1− h2

2 + h4

24 −h+ h3

6

h− h3

6 1− h2

2 + h4

24

)
Condition h2 ≤ 4 h = 0 h2 ≤ 3 h2 ≤ 8

Table 1: Constraints on h that guarantee that both eigenvalues of M(h) are inside the unit circle.
We consider additive splittings, the multiplicative Lie-Trotter splitting (4) is shown for reference. The
second Strang splitting (12) cannot be used. The Burstein and Mirin splitting (13) is more restrictive
than the Lie-Trotter splitting but gives better accuracy. The ARBBC splitting (14) is both more accurate
and less restrictive.

In what follows we will extend these results from a simple linear oscillator to a model equation that
is relevant in fiber-optics. The problem breaks into an one-parametric set of two dimensional sub-
problems and the root condition in Fig. 1 applies to each sub-problem. An additional difficulty is that
the system in question can experience “true” instabilities that are addressed by the continuous model
equations. These instabilities should be properly recovered by a splitting scheme and separated from
the unwanted numerical instabilities.

2 Model equation

In the reminder of the manuscript, we will use splitting methods to describe the evolution of nonlinear
dispersive waves, which are important in many physical systems [18, 19]. We assume that the waves
are forced to propagate in one direction (along z axis) by the geometry of the system, like pulses
in optical fibers. The wave field is given by the real part of the expression ψei(k0z−ω0t), where k0
and ω0 are the carrier wave vector and circular carrier frequency, respectively. The complex envelope
ψ describes wave modulations. Except for extremely short pulses, ψ evolves on a time scale much
longer than 2π/ω0, which is the slowly varying envelope approximation (SVEA).

If ψ is constant and sufficiently small, the resulting wave is linear and monochromatic. It exists only if
a certain dispersion relation k = β(ω) is satisfied. In the vicinity of ω = ω0, the dispersion relation is
typically approximated by a polynomial, e.g., of order J = 10 like in [20]. Note that an envelope oscil-
lation at the frequency Ω is translated into a field oscillation at the frequency ω0+Ω. The approximate
dispersion law is written as

β(ω0 + Ω) = k0 +
Ω

Vgr
+D(Ω), D(Ω) =

J∑
j=2

βj
j!
Ωj, (16)

where Vgr is the group velocity at carrier frequency,D(Ω) is called the dispersion function. The disper-
sion coefficients βj formally refer to the derivatives β(j)(ω) at ω = ω0. In practice, they may be fitting
parameters. The simplest nontrivial example of Eq. (16) is for J = 2, the parameter β2 describes the
group velocity dispersion. In an ideal material with constant index of refraction, D(Ω) vanishes.

Equation (16) cannot hold for all possibleΩ, no matter how large the parameter J is [21]. In a numerical
solution, however, we are always dealing with a limited bandwidth. Moreover, SVEA implies that Ω ≪
ω0 for the main part of the spectrum, in which case all pulses propagate with velocities close to Vgr. It is
convenient to setψ = ψ(z, τ), where τ = t−z/Vgr is the delay variable. The limited bandwidth refers

to the Fourier transform of ψ(z, τ) with respect to τ . In the following ψ̃(z,Ω) denotes the transformed
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Additive splitting methods 5

envelope, its bandwidth is given by

|Ω| ≤ ΩN with ΩN =
π

∆τ
, (17)

where ∆τ is the step size on the τ -axis and ΩN is the circular Nyquist frequency. It is sufficient to
require that Eq. (16) holds on the interval (17). In practice, only a finite number of points, say N, can
be used on the τ axis. Therefore we impose a periodicity condition

ψ(z, τ + T ) = ψ(z, τ) with ∆τ = T/N, (18)

where N is also the number of harmonics after the discrete Fourier transform of the envelope. The
harmonics are subject to the inequality (17) with the peculiarity that two limiting physical modes with
Ω = ±ΩN correspond to one discrete mode. The period T must be much larger than the temporal
width of all pulses.

The evolution equation for the complex envelope ψ is derived using one or another form of multiscale
expansion [22]. The result is the so-called generalized nonlinear Schrödinger equation (GNLSE) [23]

i∂zψ +
J∑
j=2

βj
j!
(i∂τ )

jψ + γ|ψ|2ψ = 0. (19)

The γ parameter accumulates contributions by the cubic nonlinear interactions, which are assumed to
be instantaneous. Equation (19) reduces to the nonlinear Schrödinger equation (NLSE) when J = 2.

The simplest nontrivial solution of Eq. (19) reads

ψ =
√
P0e

iγP0z with P0 = const. (20)

Equation (20) describes an unperturbed carrier wave with power proportional to P0. It is convenient to
introduce the dimensionless parameter

ε = hγP0 ≪ 1, (21)

which will appear later in the stability analysis of the solution (20) by the numerical schemes with the
evolution step h.

GNLSE (19) is a bit special because it is solved along the space variable, while the time variable
serves as the coordinate. Given ψ(z, τ) at a fixed z and all τ , we want to calculate ψ(z + h, τ).
For example, given the input pulse at one end of the fiber, we look for the outgoing pulse at the other
end. This means, of course, that all waves propagate in the same direction and there are no reflected
waves, which is a unidirectional approximation. The latter replaces SVEA in modern derivations of
GNLSE-type models [24, 25, 26]. Such models get a more complex nonlinear term than in Eq. (19)
and are beyond the scope of this study.

2.1 GNLSE Splitting

An important feature of Eq. (19) is that GNLSE is well suited for splitting methods. By separating
linear and nonlinear terms in Eq. (19), we see that the reduced equations (6) are easy to handle. The
nonlinear one has a simple analytical solution

∂zψ = iγ|ψ|2ψ ⇒ ψ(z + h, τ) = eihγ|ψ(z,τ)|
2

ψ(z, τ). (22)

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024
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The linear one is solved by transforming ψ(z, τ) to its frequency components

ψ̃(z,Ω) =

∫ ∞

−∞
ψ(z, τ)eiΩτdτ,

where

∂zψ = i
J∑
j=2

βj
j!
(i∂τ )

jψ ⇒ ∂zψ̃ = iD(Ω)ψ̃ ⇒ ψ̃(z + h,Ω) = eihD(Ω)ψ̃(z,Ω). (23)

Calculation of the nonlinear and linear evolution operators is then limited by the rounding errors and
by the properties of the discrete Fourier transform [27].

Equations (22) and (23) are formally exact. Nevertheless, the solution of NLSE and GNLSE by splitting
methods can suffer from numerical instabilities. The latter are typically weak, but can be observed at
longer propagation distances, see [28]. With respect to NLSE, for example, the classical study [29]
(see also [30]) established that the simplest first-order splitting (4) is stable if the evolution step h
obeys the inequality

h ≤ 2∆τ 2

π|β2|
. (24)

These results were generalized for GNLSE in [31, 32]. An extension to the fourth-order Suzuki-Yoshida
splitting (9) was reported in [33], and to an arbitrary multiplicative splitting in [34]. The extension for
the additive splitting methods (12), (13), and (14) will be reported below.

2.2 Modulation instability

Following the pioneering work of Weideman and Herbst [29], the correctness of splitting methods is
tested using modulation instability (MI), which is a fundamental phenomenon in the field of nonlinear
waves [35]. MI occurs when small spontaneous modulations of the initially uniform carrier wave begin
to grow, leading to the emergence of various localized structures, such as robust solitary pulses [36]
or spontaneous rogue waves [37].

The initial stage of MI is described by considering a small perturbation of the solution (20)

ψ(z, τ) =
(√

P0 + ξ(z, τ)
)
eiγP0z with |ξ| ≪

√
P0.

Equation (19) is linearized with respect to ξ, which gives

i∂zξ +
J∑
j=2

βj
j!
(i∂τ )

jξ + γP0(ξ + ξ∗) = 0. (25)

The entire solution space of Eq. (25) can be divided into two-dimensional subspaces parameterized
by the offset frequency Ω. For this, use substitution

ξ(z, τ) = u(z)e−iΩτ + v∗(z)eiΩτ , (26)

which gives a system of two coupled ODEs for each Ω

∂z

[
u
v

]
= i

[
D(Ω) + γP0 γP0

−γP0 −D(−Ω)− γP0

] [
u
v

]
. (27)

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024
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It is convenient to split the dispersion function into odd and even components

D(Ω) =M(Ω) +N(Ω), M(−Ω) =M(Ω), N(−Ω) = −N(Ω). (28)

The standard analysis shows that the equilibrium state u = v = 0 of the system (27) is unstable
if [38]

M(Ω)
(
M(Ω) + 2γP0

)
< 0. (29)

The inequality (29) gives offsets Ω for which spontaneous growth of the perturbations (26) is expected.
The offsets with the fastest growth are determined by M(Ω) = −γP0, in which case u, v grow
as e|γ|P0z.

Analogous to ε from Eq. (21), it is convenient to introduce a dimensionless phase parameter

ϕ = hM(Ω), (30)

where a “small” evolution step h is multiplied by a polynomial, which can take “large” values at the
end of the frequency interval (17). This is a potential source of numerical instability. The main idea of
the pioneer study [29] was that a correct splitting scheme should reproduce the true instability domain
from Eq. (29)

ϕ(ϕ+ 2ε) < 0, (31)

while no other instabilities should appear. This idea will be applied to additive splitting schemes in the
following.

2.3 Split-step framework for modulation instability

To apply Eq. (27) to the analysis of split-step methods, we must write its solution in the form (2). For
this purpose, we introduce the matrix notations

I =

[
1 0
0 1

]
, J =

[
1 0
0 −1

]
, K =

[
1 1
−1 −1

]
, (32)

such that Eq. (27) takes the form

∂z

[
u
v

]
= i

(
N(Ω)I +M(Ω)J + γP0K

)[
u
v

]
.

For the case at hand, Eq. (2) reads[
u(z + h)
v(z + h)

]
= eihN(Ω)eihM(Ω)J+ihγP0K

[
u(z)
v(z)

]
. (33)

Note that the expressions for ε and ϕ, which were defined in advance in Eq. (21) and (30), appear nat-
urally in Eq. (33). The stability properties of the discrete map (33) depend only on the matrix eiϕJ+iεK .

Furthermore, by separating contributions arising from linear and nonlinear terms in GNLSE (19), we
see that, e.g., the simplest Lie-Trotter scheme (3) corresponds to the approximation[

U(z + h)
V (z + h)

]
= eihN(Ω)eiϕJeiεK

[
U(z)
V (z)

]
, (34)

where U(z) and V (z) denote numerical approximations to u(z) and v(z). This approximation is
inexact because Eq. (32) gives [J ,K] ̸= 0.

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024
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Figure 2: Given ε, inequality (37) gives two instability domains for the angle parameter ϕ. The true
MI domain (31) is red, the numerical instability domain is blue. To avoid the numerical instability, we
impose restrictions on ϕ, they are shown at the bottom of the figure. For simplicity, the restrictions are
combined in a single sufficient condition (38).

A generic multiplicative splitting (7) gives the approximation[
U(z + h)
V (z + h)

]
= eihN(Ω)

( ∏
n≥s≥1

eibsϕJeiasεK

)[
U(z)
V (z)

]
, (35)

and for, e.g., the second Strang splitting (12) we get[
U(z + h)
V (z + h)

]
= eihN(Ω)

(
1

2
eiϕJeiεK +

1

2
eiεKeiϕJ

)[
U(z)
V (z)

]
. (36)

The remaining additive splittings (13) and (14) give similar, only more cumbersome formulas. These
formulas will be used in the next section to investigate the applicability of the splitting methods.

3 Applications

We are in a good position to note that the standard MI analysis, normally performed with ODEs (27),
can be performed with the matrix solution (33). To this end, one calculates

det(eiϕJ+iεK) = 1 and Tr(eiϕJ+iεK) = 2 cos
(√

ϕ2 + 2εϕ
)
,

and applies the root condition from Fig. 1. The instability in this case occurs when

| cos(
√
ϕ2 + 2εϕ)| > 1.

The result agrees with the MI condition (31).

Similar analysis can be done with any multiplicative or additive splitting that approximates Eq. (33).
There may be several areas of instability. One should agree with Eq. (31), the others should disappear
as h→ 0.

3.1 Lie-Trotter splitting

It is instructive to revisit the Lie-Trotter approximation [29, 30, 31, 32, 33, 34], which is described by
Eq. (34) with

det(eiϕJeiεK) = 1 and Tr(eiϕJeiεK) = 2(cosϕ− ε sinϕ).

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024
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Figure 1 shows that the instability occurs when

| cosϕ− ε sinϕ| > 1. (37)

Considering ε ≪ 1, the instability can be expected where | cosϕ| ≈ 1. Expanding Eq. (37) near
ϕ = 0, one gets the true MI domain (31). Expanding near ϕ = ±π, one gets the second domain with
the numerical instability. The latter is avoided when ϕ is properly bounded, see Fig. 2.

For the simplest focusing NLSE, where ε > 0 and ϕ < 0, it is sufficient to require that |ϕ| ≤ π. This
results in Eq. (24) from Ref. [29]. In general, the even part of the dispersion function in Eq. (30) can
change its sign and we impose the constraint [32]

|ϕ| ≤ π − 2|ε|. (38)

It should be satisfied for any offset Ω within the total bandwidth (17). Equations (21) and (30) finally
give

h ≤ π

max
|Ω|≤ΩN

|M(Ω)|+ 2|γ|P0

.

This is how the largest possible integration step h appears. In practice, one can simply require

|ϕ| ≤ π ⇒ h ≤ π

max
|Ω|≤ΩN

|M(Ω)|
, (39)

and consider the result with a grain of salt. We now have everything we need to generalize Eq. (39)
for the additive methods (12–14).

3.2 The second Strang splitting

The second Strang splitting (12) leads to Eq. (36), so we should study the following evolution matrix

M =
1

2
eiϕJeiεK +

1

2
eiεKeiϕJ ⇒

detM = 1 + (ε sinϕ)2,

TrM = 2(cosϕ− ε sinϕ).

The root conditions from Fig. 1 are violated because detM > 1. Therefore, the second Strang
splitting scheme cannot be used at all, as one would expect from the Table 1.

Consider, for example, a GNLSE with only β4 ̸= 0

i∂zψ +
β4
24
∂4τψ + γ|ψ|2ψ = 0, (40)

which applies to pulses in fibers with a specially managed dispersion law [39]. For what follows, it is
convenient to normalize Eq. (40). We indicate the dimensionless variables by dashes and define

ψ′ = ψ/
√
P0, z′ = |γ|P0z, τ ′ = 2πτ/T, (41)

such that the amplitude is normalized using the base solution (20), the space using the so-called
nonlinear length |γ|−1P−1

0 , and the delay is scaled such that τ ′ ∈ [−π, π]. The normalized discrete
frequencies Ω′ are then integers −N/2 ≤ Ω′ < N/2. Recall that the number of harmonics N and
period T were introduced in Eq. (18). Equation (21) indicates that h′ = |ε|.

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024
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Figure 3: Normalized representation of the power |ψ(z, τ)|2 (3D plots) and the spectral power

|ψ̃(z,Ω)|2 (density plots) that describes two numerical solutions of Eq. (40) for a slightly perturbed
continuous wave (20) and with the same h′. The parameters are given in Eq. (42), the wave is physi-
cally stable. The solution (a,c) by the Lie-Trotter splitting is stable, because the integration step is below
the limiting value (39). The solution (b,d) by second Strang splitting method is numerically unstable. A
reduction in h′ does not help here.

The normalized Eq. (40) depends on a single parameter β′
4 = (2π)4β4/(T

4|γ|P0) and on the sign of
γ, we assume γ > 0. The continuous wave solution (20) has the form ψ′ = eiz

′
. The MI condition (29)

reduces to 1
24
β′
4Ω

′4 ∈ (−2, 0), i.e., the continuous wave should be stable for β′
4 > 0. Let us check

this numerically.

Figure 3 shows solutions of Eq. (40) obtained by two different splitting methods, where in both cases

h′ = 0.005, γ′ = 1, β′
4 = 2 · 10−7, N = 210, ψ′|z′=0 = 1 + (random signal), (42)

and noise amplitude is 10−3. The Lie-Trotter method is stable, see Fig. 3(a,c). Here, Eq. (39) requires
h′ < 0.0055, which is satisfied. For, e.g., h′ = 0.006, the Lie-Trotter solution is destroyed by a
numerical instability (not shown). The second Strang method is numerically unstable in any case, see
Fig. 3(b,d). This instability cannot be repaired by decreasing h′.

3.3 Burstein and Mirin splitting

By analogy with Eq. (12) and (36), the Burstein and Mirin splitting (13) is related to the evolution matrix

M =
2

3

(
e

iε
2
KeiϕJe

iε
2
K + e

iϕ
2
JeiεKe

iϕ
2
J
)
− 1

6

(
eiϕJeiεK + eiεKeiϕJ

)
,

with

detM = 1− 2η2

9
(1 + 5 cosϕ− 4ε sinϕ),

TrM = 2(cosϕ− ε sinϕ),

DOI 10.20347/WIAS.PREPRINT.3144 Berlin 2024



Additive splitting methods 11

−20−40−60−80

Spectral power (dB)

0−100

(d)

(b)

(c)

(a)

0

1

2

3

0

1

2

3

|Ψʹ|2|Ψʹ|2

2 4 6 10×10310×104

0

π

τʹ0

π

τʹ

0 2.5 5.00 2.5 5.0

0
51
2

Ω
ʹ

zʹzʹ

zʹzʹ

0
51
2

Ω
ʹ

85.02.5
7.5

7.5×104 7.5×103

Figure 4: Normalized representation of the power |ψ(z, τ)|2 (3D plots) and the spectral power

|ψ̃(z,Ω)|2 (density plots) describes two numerical solutions of Eq. (44) by the Burstein and Mirin
splitting method for a physically stable continuous wave (20). The parameters are given in Eq. (45),
here β′

2 > 0. Left column: the integration step h′ = 0.001 obeys Eq. (43), the numerical solution is
stable. Right column: the stability is destroyed for h′ = 0.002.

where, for brevity, we use the notation η = ε sin(ϕ/2). The full analysis of the root conditions from
Fig. 1 is not useful here. Instead, we note that (for |ε| < 0.25, which is always met in practice) the
root conditions are satisfied when |ϕ| ≤ π/2. This gives the sufficient condition

h ≤ π/2

max
|Ω|≤ΩN

|M(Ω)|
, (43)

cf. Eq. (39). Roughly speaking, the Burstein and Mirin method (13) requires a two times smaller inte-
gration step than the simplest multiplicative splitting.

Consider, for example, the standard optical NLSE [23]

i∂zψ − β2
2
∂2τψ + γ|ψ|2ψ = 0, (44)

which we normalize following Eq. (41). The normalized NLSE depends on β′
2 = (2π)2β2/(T

2|γ|P0)
and on the sign of γ, we assume γ > 0. The MI condition (29) reduces to 1

2
β′
2Ω

′2 ∈ (−2, 0), such
that MI is expected for β′

2 < 0. Specifically, we consider the following parameters

γ′ = 1, β′
2 = ±0.01, N = 210, ψ′|z′=0 = 1 + (random signal), (45)

noise amplitude is 10−3. Equation (43) gives h′ < 0.0012, we then consider h′ = 0.001 and h′ =
0.002.

Figure 4 uses β′
2 = 0.01, the solution (20) is then physically stable. This agrees with the numerical

solution for h′ = 0.001 in Fig. 4(a,c). For h′ = 0.002 the wave is destroyed by the numerical instability,
see Fig. 4(b,d).

Figure 5 uses β′
2 = −0.01. The onset of MI is observed in Fig. 5(a,b), which was calculated for

h′ = 0.002. This solution is destroyed by the numerical instability as z increases, see Fig. 5(c). The
numerical instability is removed and MI is unaffected for h′ = 0.001 (not shown).
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Figure 5: Normalized representation of the power |ψ(z, τ)|2 (the 3D plot) and the spectral power

|ψ̃(z,Ω)|2 (density plots) that describes a numerical solution of Eq. (44) by the Burstein and Mirin
splitting for an unstable continuous wave (20). The parameters are given in Eq. (45), here β′

2 < 0.
The onset of MI (a,b) is later destroyed by numerical instability (c) because the chosen h′ = 0.002
violates Eq. (43).

3.4 ARBBC splitting

By analogy with Eq. (12) and (36), the ARBBC splitting (14) is related to the evolution matrix

M =
2

3

(
e

iϕ
2
Je

iε
2
Ke

iϕ
2
Je

iε
2
K + e

iε
2
Ke

iϕ
2
Je

iε
2
Ke

iϕ
2
J
)
− 1

6

(
eiϕJeiεK + eiεKeiϕJ

)
,

with

detM = 1− 2η2

9
(1− cosϕ+ 2ε sinϕ) +

4η4

9
,

TrM = 2(cosϕ− ε sinϕ) +
4η2

3
,

(46)

where we recall that η = ε sin(ϕ/2).

By expanding detM and TrM in the vicinity of ϕ = ±π and applying the root conditions from
Fig. 1, we deduce that numerical stability is ensured when

ϕ ∈

{
(−π − 2ε

3
, π − 4ε

3
), ε > 0,

(−π − 4ε
3
, π − 2ε

3
), ε < 0,

(47)

cf., the conditions at the bottom of Fig. 2. The sufficient criterion (38) is then replaced by

|ϕ| ≤ π − 4|ε|
3
. (48)

In practical terms, Eq. (48) means that to a good approximation Eq. (39) also applies to the ARBBC
splitting, which is confirmed by numerical experiments similar to those from the previous sections.

Consider, for example, GNLSE of the form

i∂zψ − β2
2
∂2τψ +

β4
24
∂4τψ + γ|ψ|2ψ = 0, (49)

with β2γ > 0. If Eq. (49) is carelessly reduced to the standard NLSE (44), the continuous wave
solution (20) appears to be stable, but the stability is destroyed by a negative β4 term, see [40, 41, 42,
43]. In fiber optics, this situation is sometimes called four-wave mixing instability [38].
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Figure 6: Normalized representation of the power |ψ(z, τ)|2 (the 3D plot) and the spectral power

|ψ̃(z,Ω)|2 (density plots) that describes numerical solutions of Eq. (49) by ARBBC splitting. The
parameters are given in Eq. (50). The onset of the four-wave mixing instability is shown in (a). It is
also calculated in the presence of two small seed waves at Ω′ = ±1973 indicated by arrows in (b,c).
The evolution step in (b) satisfies Eq. (47) and the seed waves do not grow. For the calculation in (c),
Eq. (47) is violated and the numerical instability is developing, although very slowly.

Following Eq. (41), the normalized Eq. (49) depends on β′
j = (2π)jβj/(T

j|γ|P0) with j = 2, 4. The
MI condition (29) reduces to 1

2
β′
2Ω

′2 + 1
24
β′
4Ω

′4 ∈ (−2, 0). Specifically, we consider the following
parameters

h′ = 0.004, γ′ = 1, β′
2 = 9 · 10−7, β′

4 = −10−9, N = 212,

ψ′|z′=0 = 1 + (random signal),
(50)

noise amplitude is 10−6. Equation (48) requires h′ < 0.0043, which is satisfied.

Figure 6a shows the onset of the four-wave mixing instability. Figure 6b, gives the spectral picture, the
initial condition in this calculation was modified by two small seed waves located at Ω′ = ±1973. The
seed waves, which are indicated by arrows, are not growing. Now we perform the same calculation for
the overcritical h′ = 0.005, which makes the additional seed waves unstable in accord with Eq. (47).
The numerical instability is recognized in Fig. 6c. However, the instability, which is present where
expected, is much less pronounced than in the previous calculations.

Last but not least, in the case of ARBBC splitting we face a new numerical instability. Indeed, expand-
ing Eq. (46) at ϕ = 0, we get

detM
∣∣∣
ϕ=O(ε)

= 1 +O(ε4) and TrM
∣∣∣
ϕ=O(ε)

= 2− ϕ(ϕ+ 2ε) +O(ε4).

The root conditions give the MI domain (31). However, a more accurate expansion of detM in Eq. (46)
yields

detM
∣∣∣
ϕ=O(ε)

= 1− ε2ϕ3(ϕ+ 4ε)/36 +O(ε8),

such that | detM| > 1 for ϕ(ϕ+4ε) < 0. This indicates the existence of numerical instability, its do-
main overlaps the MI domain (31). Although such numerical instability is always present, its increment
is extremely small. We were unable to identify a single instance in which the effect of this instability
was observed. Although we cannot rigorously prove this, it appears that this numerical instability can
be disregarded without any risk.
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4 Conclusions

In conclusion, we have studied the restrictions on the numerical integration step h that provide a
numerically stable split-step solution of the GNLSE (19). We used the technique originally developed
for NLSE and for the simplest Lie-Trotter splitting [29] and subsequently extended to GNLSE and to
various multiplicative splittings [30, 31, 32, 33, 34]. The technique has been applied here to three
additive splittings (12)–(14), which are of interest because different threads of such splitting schemes
can be computed independently on a multi-core machine.

The main idea is to study the fundamental problem of continuous wave stability directly for the splitting
method in question and then to compare the output with the well-known results based on GNLSE.
The fundamental fact is that both multiplicative and additive splitting schemes can lead to numerical
instabilities, which tend to disappear with the decrease of h. This is how the limitation of the integration
step appears.

The second Strang splitting [7] is numerically unstable for any h. The splitting reported by Burstein
and Mirin [13] requires, roughly speaking, a two times smaller integration step than the multiplicative
splittings. The additive splitting proposed in Ref. [14] can be used with the same integration step as the
multiplicative splittings. With a small correction, the critical step is given by Eq. (39). The latter criterion
should be an integral part of any implementation of splitting solvers for GNLSE. This is especially
important when the dispersion function in Eq. (16) and therefore the differential operator in GNLSE
are approximated by a higher-order polynomial.
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