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Solvability and optimal control of a multi-species
Cahn–Hilliard–Keller–Segel tumor growth model

Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

This paper investigates an optimal control problem associated with a two-dimensional multi-
species Cahn–Hilliard–Keller–Segel tumor growth model, which incorporates complex biological
processes such as species diffusion, chemotaxis, angiogenesis, and nutrient consumption, result-
ing in a highly nonlinear system of nonlinear partial differential equations. The modeling derivation
and corresponding analysis have been addressed in a previous contribution. Building on this foun-
dation, the scope of this study involves investigating a distributed control problem with the goal of
optimizing a tracking-type cost functional. This latter aims to minimize the deviation of tumor cell
location from desired target configurations while penalizing the costs associated with implement-
ing control measures, akin to introducing a suitable medication. Under appropriate mathematical
assumptions, we demonstrate that sufficiently regular solutions exhibit continuous dependence on
the control variable. Furthermore, we establish the existence of optimal controls and characterize
the first-order necessary optimality conditions through a suitable variational inequality.

1 Introduction

This paper investigates an optimal control problem associated with a multi-species Cahn–Hilliard–
Keller–Segel tumor growth model in a two-dimensional spatial domain Ω ⊂ R2 over a given final time
T > 0. The problem we aim to analyze consists of a distributed optimal control problem associated
with an initial-boundary value problem:

∂tϕ−∆µ+ χ
ϕ∆n = −mϕ+ h(ϕ) in Q := Ω× (0, T ), (1.1)

−∆ϕ+ F ′(ϕ) = µ in Q, (1.2)

∂ta−∆a+ χ
a div(a∇σ) = a− a2 + u in Q, (1.3)

∂tn−∆n− χϕn = Sn in Q, (1.4)

∂tσ −∆σ − χaa = Sσ in Q, (1.5)

∂nϕ = ∂nµ = ∂na = ∂nn = ∂nσ = 0 on Σ := ∂Ω× (0, T ), (1.6)

ϕ(0) = ϕ0, a(0) = a0, n(0) = n0, σ(0) = σ0 in Ω. (1.7)

The primary variables in the system are ϕ, µ, a, n, and σ. These represent the density of tumor cells
ϕ, the chemical potential µ, an angiogenetic phase composed of tumor-induced new vasculature
with volume fraction a, a nutrient or signaling molecule n, and a concentration σ affecting tumor
growth dynamics. The positive constants χϕ and χa represent chemotaxis parameters quantifying the
sensitivity of biological entities to chemical gradients. In the second equation (1.2), F ′ denotes the
derivative of a configuration potential F characterized by a double-well shape. Prototypical choices
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 2

for this latter include the so-called classical regular potential and the logarithmic potential defined as
follows:

Freg(r) :=
c1

4
r2(r − 1)2, r ∈ R, (1.8)

Flog(r) := r ln r + (1− r) ln(1− r) + c2 r(1− r), r ∈ (0, 1), (1.9)

where c1, c2 are two positive real coefficients. The mass of the tumor, represented by ϕ, is not con-
served, as indicated by the presence of a source term −mϕ + h(ϕ) on the right-hand side of the
first equation, where h represents a smooth real function and m is a positive constant. Chemotaxis
is modeled via a Keller–Segel type (cf., e.g., [20]) coupling, specifically through the nonlinear term
χ
a div(a∇σ) in the third equation. The logistic source term a − a2 in (1.3) for the nutrient vari-

able a is a common choice in Keller–Segel models to prevent solution blow-up in finite times, see,
e.g., [12,18,19,25,29] and the references therein. Finally, ϕ0, a0, n0, and σ0 denote prescribed initial
data for these variables, whereas Sn and Sσ stand for suitable source terms depending on the solution
variables, details of which will be provided later on.

The model (1.1)–(1.7) originates from variational principles and was introduced in [2]. The postulated
free energy of the system, which is defined as the internal energy minus the entropy, is given by

E(ϕ, a, n, σ) =

∫
Ω

a(ln a− 1)− χϕ
∫

Ω

nϕ− χa
∫

Ω

aσ

+
1

2

∫
Ω

|∇n|2 +
1

2

∫
Ω

|∇σ|2 +
1

2

∫
Ω

|∇ϕ|2 +

∫
Ω

F (ϕ). (1.10)

In [2], the modeling derivation and numerical simulations (cf. [1]) aim to optimize model parameters
and support clinical decision-making, whereas the corresponding mathematical analysis is addressed
in [3], where the existence of weak solutions was shown in two and three dimensions, and regularity
results and uniqueness of regular enough solutions were proved in the two-dimensional setting. Here,
we aim at considering an optimal control problem, where the distributed control u enters in the form
of a source term in (1.3). The minimization problem we want to study consists in minimizing a suitable
cost functional that we postulate to be of tracking type form, and expressed by

J(ϕ, u) :=
b1

2

∫
Q

|ϕ− ϕQ|2 +
b2

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3

2

∫
Q

|u|2 , (1.11)

where the coefficients bi are given nonnegative numbers, with b3 > 0, and ϕQ and ϕΩ are given
functions on Q and Ω, respectively, representing clinical targets. Besides, we constrain the control
variables to belong to the set of admissible controls defined by

Uad :=
{
u ∈ U := L∞(Q) : 0 ≤ u ≤ umax a.e. in Q

}
, (1.12)

where umax ∈ L∞(Q) is a prescribed nonnegative function. Then the control problem under investi-
gation can be formulated as follows:

Minimize J(ϕ, u) subject to u ∈ Uad and to the constraint that

(ϕ, µ, a, n, σ) is the solution to the system (1.1)–(1.7). (1.13)

Tumor growth models based on the phase field approach have gained significant popularity. While
not exhaustive, we refer interested readers to [4, 10, 15, 16] and the references therein. Several stud-
ies within this framework consider the influence of velocity effects on the mixture dynamics, utilizing
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Darcy’s law and the Brinkman equation. For detailed discussions on these topics, see [7, 13, 15, 21].
The incorporation of chemotaxis, particularly through the Keller–Segel coupling, represents a rela-
tively recent advancement in phase field models. This coupling has been explored in studies such
as [2, 18, 25]. Finally, regarding the optimal control problem, we refer readers to [5, 8, 9, 14, 17, 27, 28]
for comprehensive discussions and analyses.

The plan of the paper is as follows. In the next section, we state the problem in a precise form and
present our results. The existence and the uniqueness of the solution to the state system, as well as
proper stability and continuous dependence estimates, are proved in Sections 3 and 4. A technical
result is given in Section 5, preparing the study of the control problem made in the last two sections,
where we prove the existence of an optimal control and we establish first-order necessary conditions
for optimality in terms of the solution to the adjoint problem.

2 Statement of the problem and results

Throughout the paper, Ω is a bounded open subset of R2 having a smooth boundary Γ := ∂Ω. The
symbols |Ω| and ∂n denote the measure of Ω and the derivative in the direction of the outward unit
normal vector n on Γ, respectively. With a prescribed final time T > 0, we set

Q := Ω× (0, T ), Σ := Γ× (0, T ). (2.1)

Given a Banach spaceX , we denote by ‖ · ‖X both its norm and the norm in any power ofX , with the
exceptions of the space H introduced below and of the Lebesgue spaces Lp(Ω) (1 ≤ p ≤ +∞), for
which we use the symbol ‖ · ‖p. Sometimes, this symbol also denotes the norm in Lp(Q). Moreover,
in order to simplify the notation, we still write X (i.e., we avoid the exponent) when dealing with some
power of X . Then, we introduce the shorthands

H := L2(Ω), V := H1(Ω) and W := {v ∈ H2(Ω) : ∂nv = 0 a.e. on Γ}, (2.2)

and endow these spaces with their natural norms. For simplicity, we write ‖ · ‖ instead of ‖ · ‖H .
Moreover, we denote by V ∗ and 〈 · , · 〉 the dual space of V and the duality pairing between V ∗ and V ,
respectively, and we identifyH with a subspace of V ∗ in the usual way, i.e., such that 〈w, v〉 =

∫
Ω
wv

for every w ∈ H and v ∈ V . Hence, we have the continuous, dense, and compact embeddings

V ↪→ H ↪→ V ∗ ,

yielding that (V,H, V ∗) is a Hilbert triple.

At this point, we are ready to introduce our assumptions on the structure of the state system which
involve, in particular, a specific choice of the functions Sn and Sσ that appear in equations (1.4)
and (1.5). We assume that

m ∈ (0,+∞), χ
ϕ, χa ∈ (0, 1), cϕ, cn, cσ, c0 ∈ R, (2.3)

h : R→ R is such that h ∈ W 2,∞(R), (2.4)

Sn := cϕϕ+ cnn+ cσσ + c0, Sσ := 1− σ − a σ. (2.5)

As for the potential F , we confine ourselves to some conditions that generalize the cases of the
classical and logarithmic potentials (1.8) and (1.9). In particular, we ignore the possibility of extending
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the latter to [0, 1] by continuity and prescribe suitable regularities on F in the open interval that is taken
as the domainD(F ) in any case and is actually the effective domain of the derivative F ′. We assume:

Either D(F ) = R or D(F ) = (0, 1), and it holds that

F = F1 + F2 with functions F1 , F2 : D(F )→ R of class C4,

where F1 is convex and F ′2 is Lipschitz continuous. (2.6)

If D(F ) = R, then F satisfies lim
|r|→+∞

r−2F (r) = +∞ ; (2.7)

if D(F ) = (0, 1), then lim
r↘0

F ′(r) = −∞, lim
r↗1

F ′(r) = +∞, and there is

a constant CF such that |F ′′1 (r)| ≤ eCF (|F ′1(r)|+1) for all r ∈ (0, 1). (2.8)

We notice that these assumptions imply that F is bounded from below and also ensure the existence
of some r0 ∈ R satisfying

r0 ∈ D(F ) and F ′1(r0) = 0 . (2.9)

As the reader can directly check, it turns out that the growth condition in (2.8) is satisfied by the convex
part of the logarithmic potential in (1.9).

For the control variable u, we assume that

u ∈ L∞(Q) satisfies 0 ≤ u ≤ umax a.e. in Q , (2.10)

where

umax ∈ L∞(Q) is nonnegative. (2.11)

To introduce our assumptions on the initial data, we use the following general notation for the mean
value: we set

v :=
1

|Ω|

∫
Ω

v for v ∈ L1(Ω) . (2.12)

The same symbol will be used in the sequel even for time-dependent functions. Then, denoting by
( · )± the positive and negative parts, we assume that

ϕ0 ∈ W with range in D(F ); moreover, ϕ0 ∈ H3(Ω) if D(F ) = R,

ϕ0 ∈ H4(Ω) and µ0 := −∆ϕ0 + F ′(ϕ0) ∈ W if D(F ) = (0, 1). (2.13)

r0 − (ϕ0 − r0)−−R and r0 + (ϕ0 − r0)++R belong to D(F ),

where R :=
1

m
sup
r∈R
|h(r)−mr0| . (2.14)

a0 ∈ V and a0 > 0 a.e. in Ω . (2.15)

n0, σ0 ∈ W and 0 ≤ σ0 ≤ 1 in Ω . (2.16)

Of course, the assumption in (2.14) yields a restriction only in the case when D(F ) is bounded.

Finally, we are in a position to introduce our formulation of the state system. Even though some of the
equations could be written in the strong form used in the Introduction, we prefer to present the whole
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problem in a variational framework. We look for a quintuple (ϕ, µ, a, n, σ) with the properties

ϕ ∈ Y1 := H1(0, T ;V ) ∩ L∞(0, T ;W ∩H3(Ω)) ∩ C0(Q)

and ϕ ∈ D(F ) a.e. in Q , (2.17)

µ ∈ Y2 := L∞(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω)) , (2.18)

a ∈ Y3 := H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

and a > 0 a.e. in Q , (2.19)

n ∈ Y4 := H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ L2(0, T ;H3(Ω)) ∩ Z

where Z := W 1,4(0, T ;L4(Ω)) ∩ L4(0, T ;W 2,4(Ω)) , (2.20)

σ ∈ Y4 and 0 ≤ σ ≤ 1 a.e. in Q , (2.21)

that solves the variational equations∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v − χϕ
∫

Ω

∇n · ∇v = −m
∫

Ω

ϕv +

∫
Ω

h(ϕ) v , (2.22)∫
Ω

∇ϕ · ∇v +

∫
Ω

F ′(ϕ) v =

∫
Ω

µv , (2.23)∫
Ω

∂ta v +

∫
Ω

∇a · ∇v − χa
∫

Ω

a∇σ · ∇v =

∫
Ω

(
a− a2 + u

)
v , (2.24)∫

Ω

∂tn v +

∫
Ω

∇n · ∇v − χϕ
∫

Ω

ϕv =

∫
Ω

Sn v

where Sn = cϕϕ+ cnn+ cσσ + c0 , (2.25)∫
Ω

∂tσ v +

∫
Ω

∇σ · ∇v =

∫
Ω

(
(1− σ) + a(χa − σ)

)
v , (2.26)

for every v ∈ V and a.e. in (0, T ), and satisfies the initial condition

(ϕ, a, n, σ)(0) = (ϕ0, a0, n0, σ0) a.e. in Ω . (2.27)

Remark 2.1. We notice that the regularity properties (2.19) and (2.21) imply that both a and ∇σ are
L4 functions (see the forthcoming (2.36)), so that all of the terms occurring in (2.24) are meaningful.
We also point out that by virtue of (2.17)–(2.21) all of the above equations may be written in their
strong form. From (2.17) we also have that

ϕ ∈ L∞(0, T ;H3(Ω)) , whence ∇ϕ ∈ L∞(Q) , (2.28)

with the corresponding norms that are estimated by a constant like K1 below.

For convenience, we set the state space as (cf. (2.17)–(2.21))

Y := Y1 × Y2 × Y3 × Y4 × Y4. (2.29)

Our first result regards well-posedness and stability of system (1.1)–(1.7).

Theorem 2.2. Assume (2.3)–(2.8) on the structure, and (2.10)–(2.11) and (2.13)–(2.16) on the data.
Then there exists a unique quintuple (ϕ, µ, a, n, σ) that satisfies (2.17)–(2.21) and solves problem
(2.22)–(2.27). Moreover, the stability estimate and separation property

‖(ϕ, µ, a, n, σ)‖Y ≤ K1 , (2.30)

r− ≤ ϕ ≤ r+ a.e. in Q , (2.31)
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 6

hold true with constants K1 > 0 and r± ∈ D(F ) that depend only on Ω, T , the structure of the
system, the initial data, and umax. In particular, they are independent of u.

Next, we have the following continuous dependence result.

Theorem 2.3. Suppose the assumptions of Theorem 2.2 regarding the structure and the initial data
are fulfilled, and let ui, i = 1, 2, satisfy (2.10) and (ϕi, µi, ai, ni, σi) ∈ Y be the corresponding
solution. Then the inequality

‖ϕ1 − ϕ2‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ1 − µ2‖L2(0,T ;V )

+ ‖a1 − a2‖H1(0,T ;V ∗)∩L∞(0,T ;H)∩L2(0,T ;V ) + ‖n1 − n2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

+ ‖σ1 − σ2‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ K2 ‖u1 − u2‖L2(0,T ;H) (2.32)

holds true with a constant K2 > 0 that depends only on Ω, T , the structure of the system, the initial
data, and umax.

Once well-posedness is established, we can deal with the control problem presented in the Introduc-
tion (see (1.11)–(1.13)). Let us refer to the last two sections for the precise statements. Here, we just
mention that we first prove the existence of an optimal control, i.e., of an element u∗ ∈ Uad that
satisfies

J(ϕ∗, u∗) ≤ J(ϕ, u) for every u ∈ Uad (2.33)

where ϕ∗ and ϕ are the first components of the solutions corresponding to u∗ and u, respectively.
Then, we derive a first-order necessary optimality condition for a given u∗ ∈ Uad to be an optimal
control in terms of a suitable variational inequality. Namely, u∗ is an optimal control whether it fulfills∫

Q

(p3 + b3u
∗)(u− u∗) ≥ 0 for every u ∈ Uad , (2.34)

where p3 is the third component of the solution to the adjoint problem introduced and discussed in
Section 7.

In performing our proofs, we often make use of Hölder’s inequality, as well as of Young’s inequality

yz ≤ δ

p
|y|p +

1

p′
δ−p

′/p |z|p′ for every y, z ∈ R and δ > 0 , (2.35)

with 1 < p, p′ <∞ conjugate exponents, i.e., p+p′ = p p′. Moreover, we recall the two-dimensional
embeddings

V ↪→ Lp(Ω) for p ∈ [1,+∞), W ↪→ C0(Ω),

and L∞(0, T ;H) ∩ L2(0, T ;V ) ↪→ L4(Q), (2.36)

and the corresponding inequalities

‖v‖p ≤ CΩ,p ‖v‖V for every v ∈ V , ‖v‖∞ ≤ CΩ ‖v‖W for every v ∈ W
and ‖v‖L4(Q) ≤ CΩ,T ‖v‖L∞(0,T ;H)∩L2(0,T ;V )

for every v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), (2.37)
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where CΩ depend only on Ω and CΩ,p and CΩ,T depend on p and T , in addition. Furthermore, since
the embeddings V ⊂ H andH ⊂ V ∗ are compact, we obtain from Ehrling’s lemma the compactness
inequality

‖v‖ ≤ δ ‖∇v‖+ Cδ ‖v‖V ∗ for every v ∈ V and δ > 0, (2.38)

with someCδ > 0 that depends only on Ω and δ. We also account for the Poincaré–Wirtinger inequal-
ity, an inequality from the elliptic regularity theory, and the two-dimensional Ladyžhenskaya inequality.
Namely, we sometimes owe to

‖v − v‖ ≤ CΩ ‖∇v‖ for every v ∈ V , (2.39)

‖∇v‖ ≤ CΩ (‖v‖+ ‖∆v‖) for every v ∈ W, (2.40)

‖v‖2
4 ≤ CΩ ‖v‖ ‖v‖V for every v ∈ V ,

and ‖∇v‖2
4 ≤ CΩ ‖v‖V (‖v‖+ ‖∆v‖) for every v ∈ W, (2.41)

with the same constant CΩ as before, without loss of generality. We aim to point out that v 7→ ‖v‖+
‖∆v‖ provides a norm in W which is equivalent to the standard norm in H2(Ω).

We conclude this section by stating a convention that regards the constants appearing in the proofs
of the forthcoming sections. The small-case symbol c denotes a generic constant that depends only
on the structure of the system, Ω, T , the initial data, and umax (see (2.11)). In particular, the values
of c are independent of u. Notice that the meaning of c may vary from line to line and even within the
same line. We use capital letters for precise constants we could refer to.

3 Existence and stability

This section is devoted to the existence of a solution (ϕ, µ, a, n, σ) to problem (2.22)–(2.27) that
satisfies estimates (2.30) and (2.31). We mention that the well-posedness of a similar system can be
compared with the analysis developed in [3]. The system studied there has a slightly more general
structure, but it does not contain the control variable u, acting as a source term. The authors of [3]
prove the existence of a (unique regular) solution, satisfying the restrictions on the values of a and
σ given in our statement, by means of a proper argument based on regularization, truncation and
discretization (see [3, Theorems 2.8–2.11]). On the other hand, here we construct our argumentation
without giving the full detail of approximation and just perform formal a priori estimates on the solution
(ϕ, µ, a, n, σ) to motivate the expected regularity and the stability estimates. In particular, we point
out the treatment of the new terms involving the control u, which do not appear in the paper [3]. In
agreement with the specific form of the energy E in (1.10), we assume in the following the component
a to be positive.

Boundedness property. We first prove that σ attains its values in [0, 1]. To this end, we fix a mono-
tone C1 function G : R → R that grows linearly at infinity and satisfies G(r) < 0 for r < 0,
G(r) = 0 for r ∈ [0, 1], and G(r) > 0 for r > 1, and we test (2.26) by G(σ). If Ĝ is the antideriva-
tive of G that vanishes at zero, we obtain that

1

2

d

dt

∫
Ω

Ĝ(σ) +

∫
Ω

G′(σ)|∇σ|2 =

∫
Ω

(
(1− σ) + a(χa − σ)

)
G(σ) a.e. in (0, T ).

Since a is nonnegative and χa ∈ (0, 1), the right-hand side is nonpositive. We then integrate over
time and observe that our assumptions on σ0 (see (2.16)) imply that Ĝ(σ0) = 0. Since both Ĝ and
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G′ are nonnegative, we conclude that Ĝ(σ) vanishes identically, entailing that

0 ≤ σ ≤ 1 a.e. in Q. (3.1)

Control of the mean value. The next estimate regards the mean value of ϕ. We test (2.22) by the
constant 1/|Ω| and obtain that

d

dt
ϕ+mϕ = g , where g := h(ϕ) . (3.2)

In addition, recalling (2.9) we note that the constant function v(t) = r0 fulfills the equation

d

dt
v +mv = mr0 in (0, T ) (3.3)

and the initial condition v(0) = r0. Hence, taking the difference between (3.2) and (3.3), and solving
the resulting Cauchy problem for ϕ− v, we easily find that

ϕ(t)− r0 = (ϕ0 − r0) e−mt +

∫ t

0

e−m(t−s) (g(s)−mr0) ds for every t ∈ [0, T ].

Since |g(s) − mr0| ≤ supr∈R |h(r) − mr0| = mR for all s ∈ [0, T ] (see (2.14)), we easily
conclude that

r0 − (ϕ0 − r0)−−R ≤ ϕ(t) ≤ r0 + (ϕ0 − r0)++R for every t ∈ [0, T ]. (3.4)

Finally, by recalling (2.14), we claim that there are positive constants δ0 and C0 such that

F ′1(r)(r − r′) ≥ δ0 |F ′1(r)| − C0

for every r ∈ D(F ) and r′ ∈ [r0 − (ϕ0 − r0)−−R, r0 + (ϕ0 − r0)++R]. (3.5)

This is a generalization of the inequality proved in [23, Appendix, Prop. A.1] in the case of a fixed r′.
However, the proof also works in the present case with only minor changes since the values of r′ we
are considering belong to a compact subset of the open interval D(F ).

At this point, we start performing the estimates in the direction of the expected regularity of the solution.
In each step, we test our equations at the time t by suitable test functions evaluated at the same time t.
However, we do not write the symbol t for simplicity, and it is understood that the equalities we obtain
hold a.e. in (0, T ). For the reader’s convenience, we recall the definition of the energy E (see (1.10))
related to the system

E(ϕ, a, n, σ) =

∫
Ω

a(ln a− 1)− χϕ
∫

Ω

nϕ− χa
∫

Ω

aσ

+
1

2

∫
Ω

(
|∇ϕ|2 + |∇n|2 + |∇σ|2

)
+

∫
Ω

F (ϕ) (3.6)

and notice that its time derivative is given by

d

dt
E(ϕ, a, n, σ)

=

∫
Ω

∂ta ln a− χϕ
∫

Ω

∂tnϕ− χϕ
∫

Ω

n ∂tϕ− χa
∫

Ω

∂ta σ − χa
∫

Ω

a ∂tσ

+
1

2

d

dt

∫
Ω

(
|∇ϕ|2 + |∇n|2 + |∇σ|2

)
+
d

dt

∫
Ω

F (ϕ) . (3.7)
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Solvability and optimal control of a multi-species Cahn–Hilliard–Keller–Segel tumor growth model 9

First a priori estimate. We test (2.22) by µ and −χϕn to obtain the equalities∫
Ω

∂tϕµ+

∫
Ω

|∇µ|2 − χϕ
∫

Ω

∇n · ∇µ =

∫
Ω

(
−mϕ+ h(ϕ)

)
µ,

− χϕ
∫

Ω

∂tϕn− χϕ
∫

Ω

∇µ · ∇n+ χ2
ϕ

∫
Ω

|∇n|2 = χ
ϕm

∫
Ω

ϕn− χϕ
∫

Ω

h(ϕ)n .

Now, we recall the definition of R in (2.14) and set

M :=
1

δ0

(mR + 1) , (3.8)

where δ0 is the same as in (3.5). We notice at once that the value of M depends only on the structure
of the original system, so that it can be absorbed in the notation c for the generic constants in per-
forming estimates. Thus, we keep M explicitly only when it is needed. Then, we test (2.23) by ∂tϕ,
M(ϕ− ϕ), and mϕ− h(ϕ) to infer that

1

2

d

dt

∫
Ω

|∇ϕ|2 +
d

dt

∫
Ω

F (ϕ) =

∫
Ω

µ ∂tϕ ,

M

∫
Ω

|∇ϕ|2 +M

∫
Ω

F ′(ϕ)(ϕ− ϕ) = M

∫
Ω

µ(ϕ− ϕ) ,

m

∫
Ω

|∇ϕ|2 −
∫

Ω

h
′(ϕ)|∇ϕ|2 +m

∫
Ω

F ′(ϕ)ϕ−
∫

Ω

F ′(ϕ)h(ϕ) =

∫
Ω

µ
(
mϕ− h(ϕ)

)
.

Next, we test (2.24) by ln a − χ
aσ. By noting the identity ∇a − χ

aa∇σ = a∇(ln a − χ
aσ), we

have that∫
Ω

∂ta ln a− χa
∫

Ω

∂ta σ +

∫
Ω

a|∇(ln a− χaσ)|2 =

∫
Ω

(a− a2 + u)(ln a− χaσ) .

Finally, we test (2.25) and (2.26) by ∂tn and ∂tσ, respectively, leading to∫
Ω

|∂tn|2 +
1

2

d

dt

∫
Ω

|∇n|2 − χϕ
∫

Ω

ϕ∂tn =

∫
Ω

Sn∂tn ,∫
Ω

|∂tσ|2 +
1

2

d

dt

∫
Ω

|∇σ|2 − χa
∫

Ω

a∂tσ =

∫
Ω

(
(1− σ)− aσ

)
∂tσ .

At this point, we add all the above equalities to each other and to the sides of the resulting identity the
equal terms d

dt

∫
Ω
|n|2 and 2

∫
Ω
n∂tn, respectively. Notice that four terms cancel out and that nine of

the contributions on the left-hand side yield those of the time derivative (3.7) of the energy. By also
rearranging terms, we conclude that

d

dt
E(ϕ, a, n, σ) +

∫
Ω

|∇µ|2 + χ2
ϕ

∫
Ω

|∇n|2

+M

∫
Ω

|∇ϕ|2 +M

∫
Ω

F ′1(ϕ)(ϕ− ϕ) +m

∫
Ω

|∇ϕ|2

+m

∫
Ω

F ′1(ϕ) (ϕ− r0) +

∫
Ω

a|∇(ln a− χaσ)|2

+

∫
Ω

|∂tn|2 +

∫
Ω

|∂tσ|2 +

∫
Ω

a2(ln a− χaσ) +
d

dt

∫
Ω

|n|2
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= 2χϕ

∫
Ω

∇µ · ∇n− χϕ
∫

Ω

(
h(ϕ)−mϕ

)
n

−M
∫

Ω

F ′2(ϕ)(ϕ− ϕ) +M

∫
Ω

µ(ϕ− ϕ)

+

∫
Ω

h
′(ϕ)|∇ϕ|2 +

∫
Ω

F ′1(ϕ)
(
−mr0 + h(ϕ)

)
+

∫
Ω

F ′2(ϕ)
(
−mϕ+ h(ϕ)

)
+

∫
Ω

(a+ u)(ln a− χaσ) +

∫
Ω

Sn∂tn

+

∫
Ω

(
(1− σ)− aσ

)
∂tσ + 2

∫
Ω

n∂tn . (3.9)

We consider the terms on the left-hand side of (3.9) that involve F ′1. The second one is nonnegative,
since F ′1 is monotone and vanishes at r0. As for the other, we recall (3.4) and apply (3.5) to obtain that

M

∫
Ω

F ′1(ϕ)(ϕ− ϕ) ≥Mδ0

∫
Ω

|F ′1(ϕ)| − c . (3.10)

Since χa ∈ (0, 1) and (3.1) holds, we have that∫
Ω

a2(ln a− χaσ) ≥
∫

Ω

a2(ln a− 1) ,

and we notice that the last integrand is bounded from below.

Let us come to the right-hand side of (3.9), where just some terms need an accurate treatment. Since
ϕ−ϕ has zero mean value, by also applying the Poincaré–Wirtinger inequality and recalling (3.4), we
derive that

M

∫
Ω

µ(ϕ− ϕ) = M

∫
Ω

(µ− µ)(ϕ− ϕ)

≤ 1

4

∫
Ω

|∇µ|2 + c

∫
Ω

|ϕ− ϕ|2 ≤ 1

4

∫
Ω

|∇µ|2 + c

∫
Ω

|ϕ|2 + c .

As for the term involving F ′1, we recall (2.14) and observe that∫
Ω

F ′1(ϕ)
(
−mr0 + h(ϕ)

)
≤ sup

r∈R
|h(r)−mr0|

∫
Ω

|F ′1(ϕ)| = mR

∫
Ω

|F ′1(ϕ)| .

Thus, due to the choice (3.8) of M , this term can be absorbed on the left-hand side. By (3.10), we
have indeed

M

∫
Ω

F ′1(ϕ)(ϕ− ϕ)−
∫

Ω

F ′1(ϕ)
(
−mr0 + h(ϕ)

)
≥ (M δ0 −mR)

∫
Ω

|F ′1(ϕ)| − c =

∫
Ω

|F ′1(ϕ)| − c .

The integral involving a and u is treated by recalling that a, σ, and u are nonnegative and that u is
bounded by umax. Namely, we have that∫

Ω

(a+ u)(ln a− χaσ) ≤
∫

Ω

(a+ u) ln a ≤ 1

4

∫
Ω

a2(ln a− 1) + c .
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Solvability and optimal control of a multi-species Cahn–Hilliard–Keller–Segel tumor growth model 11

Finally, we observe that∫
Ω

(
(1− σ)− aσ

)
∂tσ ≤

∫
Ω

(1 + a)|∂tσ|

≤ 1

2

∫
Ω

|∂tσ|2 +

∫
Ω

|a|2 + c ≤ 1

2

∫
Ω

|∂tσ|2 +
1

4

∫
Ω

a2(ln a− 1) + c .

By recalling the definition of Sn given in (2.25), that both F ′2 and h are Lipschitz continuous, and that
h is even bounded, the other terms on the right-hand side of (3.9) can easily be treated using Young’s
inequality. Hence, collecting all the above estimates and (3.9) itself, and ignoring some nonnegative
terms on the left-hand side, we conclude that

d

dt
E(ϕ, a, n, σ) +

1

2

∫
Ω

|∇µ|2 +

∫
Ω

|F ′1(ϕ)|+
∫

Ω

a|∇(ln a− χaσ)|2

+
1

2

∫
Ω

|∂tn|2 +
1

2

∫
Ω

|∂tσ|2 +
1

2

∫
Ω

a2(ln a− 1) +
1

2

d

dt

∫
Ω

|n|2

≤ c

∫
Ω

|∇ϕ|2 + c

∫
Ω

|ϕ|2 + c

∫
Ω

|∇n|2 + c

∫
Ω

|n|2 + c .

At this point, we integrate the resulting inequality over (0, t), where t ∈ (0, T ) is arbitrary. The left-
hand side contains two terms with no prescribed sign, specifically those of E involving the products
nϕ and aσ. Consequently, we cannot directly apply the Gronwall lemma. We therefore move them to
the right-hand side and estimate them. To this end, recall that χϕ, χa ∈ (0, 1) and that 0 ≤ σ ≤ 1.
Moreover, we observe that

r2 ≤ 1

2
F (r) + c for every r ∈ D(F ). (3.11)

This readily follows from (2.7) in the case of regular potentials, and it is trivially satisfied in the case of
potentials satisfying (2.8). Hence, we have that

χ
ϕ

∫
Ω

n(t)ϕ(t) + χ
a

∫
Ω

a(t)σ(t) ≤ 1

4

∫
Ω

|n(t)|2 +

∫
Ω

|ϕ(t)|2 +

∫
Ω

a(t)

≤ 1

4

∫
Ω

|n(t)|2 +
1

2

∫
Ω

F (ϕ(t)) +
1

2

∫
Ω

a(t)(ln a(t)− 1) + c ,

and this can be absorbed on the left-hand side. Moreover, there is one more term on the right-hand
side to be treated, namely, the term arising from the time integration of

∫
Ω
|ϕ|2. This latter can be

estimated by using (3.11) once more. Now recall that our assumptions on F imply that F is bounded
from below. We therefore can apply Gronwall’s lemma, owing also to the assumptions on the initial
data, and conclude that

‖ϕ‖L∞(0,T ;V ) + ‖F (ϕ)‖L∞(0,T ;L1(Ω)) + ‖∇µ‖L2(0,T ;H)

+ ‖a(ln a− 1)‖L∞(0,T ;L1(Ω)) + ‖a2(ln a− 1)‖L1(Q) + ‖a1/2∇(ln a− χaσ)‖L2(Q)

+ ‖n‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖σ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c . (3.12)

The bound in (3.12) also implies that

‖a‖L∞(0,T ;L1(Ω))∩L2(Q) ≤ c . (3.13)
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Consequences. At this point, it is rather straightforward to infer that

‖∂tϕ‖L2(0,T ;V ∗) + ‖n‖L2(0,T ;W ) + ‖σ‖L2(0,T ;W ) ≤ c . (3.14)

Indeed, for the first of these estimates, one tests (2.22) by any v ∈ L2(0, T ;V ), integrates over (0, T ),
and accounts for (3.12), to obtain that∫ T

0

〈∂tϕ(t), v(t)〉 dt ≤ c ‖v‖L2(0,T ;V ) .

By rewriting (2.25) and (2.26) as partial differential equations

∂tn−∆n = χ
ϕϕ+ cϕϕ+ cnn+ cσσ + c0 a.e. in Q , (3.15)

∂tσ −∆σ = (1− σ) + a(χa − σ) a.e. in Q , (3.16)

and comparing the terms, we infer from (3.12), (3.13) and (3.1) that

‖∆n‖L2(0,T ;H) + ‖∆σ‖L2(0,T ;H) ≤ c ,

whence we obtain (3.14) with the help of the elliptic regularity theory.

Second a priori estimate. We test (2.23) by ϕ − ϕ and owe to (3.10) divided by M . By also
accounting for the Poincaré–Wirtinger and Young inequalities and (3.4), we obtain that

δ0

∫
Ω

|F ′1(ϕ)| ≤
∫

Ω

F ′1(ϕ)(ϕ− ϕ) + c ≤
∫

Ω

|∇ϕ|2 +

∫
Ω

F ′1(ϕ)(ϕ− ϕ) + c

= −
∫

Ω

F ′2(ϕ)(ϕ− ϕ) +

∫
Ω

µ(ϕ− ϕ) + c

= −
∫

Ω

F ′2(ϕ)(ϕ− ϕ) +

∫
Ω

(µ− µ)(ϕ− ϕ) + c

≤ c

∫
Ω

|ϕ|2 + c ‖∇µ‖ ‖ϕ− ϕ‖+ c . (3.17)

Now we square, integrate over (0, T ), and apply (3.12). This yields that

‖F ′1(ϕ)‖L2(0,T ;L1(Ω)) ≤ c , whence ‖F ′1(ϕ)‖L2(0,T ) ≤ c .

Therefore, by testing (2.23) by 1/|Ω| and comparing, we infer that

‖µ‖L2(0,T ) ≤ c .

By combining with (3.12), and using once more inequality (2.39), we conclude that

‖µ‖L2(0,T ;V ) ≤ c . (3.18)

Consequence. Now, we consider (2.23). By splitting F as F = F1 +F2, moving the term involving
F ′2 to the right-hand side and applying a usual argument based on the monotonicity of F ′1 (i.e., one
can test (2.23) by F ′1(ϕ)), we deduce that both F ′1(ϕ) and ∆ϕ are estimated in H by the H norm of
the right-hand side. Therefore, we conclude from elliptic regularity that

‖ϕ‖L2(0,T ;W ) + ‖F ′1(ϕ)‖L2(0,T ;H) ≤ c . (3.19)
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Third a priori estimate. We take v = a in (2.24) and, using the positivity of a and Young’s inequality,
we have that

1

2

d

dt
‖a‖2 +

∫
Ω

|∇a|2 +

∫
Ω

|a|3

≤ χ
a

∫
Ω

a∇σ · ∇a+
3

2
‖a‖2 +

1

2
‖umax‖2

∞|Ω|. (3.20)

Now, in order to deal with the first integral on the right-hand side, we invoke Hölder’s inequality and
the Ladyžhenskaya inequalities in (2.41), and find out that

χ
a

∫
Ω

a∇σ · ∇a ≤ ‖a‖4‖∇σ‖4‖∇a‖2

≤ c‖a‖1/2‖a‖1/2
V ‖σ‖

1/2
V (‖σ‖+ ‖∆σ‖)1/2‖a‖V

≤ c‖a‖1/2‖σ‖1/2
L∞(0,T ;V )‖σ‖

1/2
W ‖a‖

3/2
V

≤ 1

2
‖a‖2

V + c‖σ‖2
W‖a‖2, (3.21)

where (3.12) and the Young inequality (2.35), with exponents 4/3 and 4, have been exploited. Note
that the function t 7→ ‖σ(t)‖2

W is known to be bounded in L1(0, T ) by (3.14). Then, combining (3.20)
and (3.21), we can integrate the resultant over (0, t) with the help of the initial condition for a, see
(2.27) and (2.15). Next, we apply the Gronwall lemma and deduce that

‖a‖L∞(0,T ;H)∩L2(0,T ;V )∩L3(Q) ≤ c , whence also (cf. (2.37)) ‖a‖L4(Q) ≤ c . (3.22)

Regularity for two variables. We set g := (1 − σ) + a(χa − σ) for a while. Then, we have that
g ∈ L4(Q) by (3.1) and (3.22). Moreover, since

∇g = −∇σ +∇a(χa − σ)− a∇σ

and ∇σ ∈ L4(Q) by (3.12), (3.14), and (2.36), we see that ∇g ∈ L2(Q), so that g belongs to
L2(0, T ;V ) as well. We also recall the property σ0 ∈ W from (2.16). Therefore, on the one hand, a
comparison in (3.16) and maximal parabolic regularity (see [11, Thm. 2.1]) yield that

‖σ‖W 1,4(0,T ;L4(Ω))∩L4(0,T ;W 2,4(Ω)) ≤ c . (3.23)

On the other hand, by the abstract regularity theory for parabolic problems contained, e.g., in [22], we
also infer that

‖σ‖H1(0,T ;V )∩C0([0,T ];W )∩L2(0,T ;H3(Ω)) ≤ c . (3.24)

In view of (2.16) and (3.15), a similar conclusion holds for n since the right-hand side (χϕ + cϕ)ϕ +
cnn+ cσσ + c0 is bounded both in L4(Q) and in L2(0, T ;V ) due to (3.12). Thus, we have that

‖n‖W 1,4(0,T ;L4(Ω))∩L4(0,T ;W 2,4(Ω)) + ‖n‖H1(0,T ;V )∩C0([0,T ];W )∩L2(0,T ;H3(Ω)) ≤ c . (3.25)

Fourth a priori estimate. From (2.24) and integration by parts, it follows that∫
Ω

∂ta v +

∫
Ω

∇a · ∇v = −χa
∫

Ω

(∇a · ∇σ + a∆σ)v +

∫
Ω

(
a− a2 + u

)
v (3.26)
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for every v ∈ V , a.e. in (0, T ). Note that the first integral on the right-hand side makes sense since
∇σ is bounded in L4(0, T ;L∞(Ω)) by (3.23) and the Sobolev embedding W 2,4(Ω) ⊂ L∞(Ω),
whereas a and ∆σ are bounded in L4(Q). We formally take v = ∂ta in (3.26) and, by the Hölder and
Young inequalities, we easily obtain

‖∂ta‖2 +
1

2

d

dt
‖∇a‖2

≤ ‖∇a‖‖∇σ‖∞‖∂ta‖+ ‖a‖4‖∆σ‖4‖∂ta‖+ ‖a− a2 + u‖2‖∂ta‖

≤ 1

2
‖∂ta‖2 + c‖σ‖2

W 2,4(Ω)‖∇a‖2 + c‖a‖2
L4(Ω)‖σ‖2

W 2,4(Ω) + c
(
‖a‖4

L4(Ω) + 1
)
. (3.27)

Then, in view of (3.22) and (3.23), we are allowed to integrate over (0, t) and apply the Gronwall
lemma as t 7→ ‖σ(t)‖2

W 2,4(Ω) is bounded in L2(0, T ) to conclude that

‖a‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c . (3.28)

Then, going back to (3.26) and emphasizing that now the whole term∇a · ∇σ + a∆σ is bounded in
L2(0, T ;H), by comparison and elliptic regularity we infer that

‖a‖L2(0,T ;W ) ≤ c . (3.29)

Fifth a priori estimate. We proceed formally and take v = ∂tµ in (2.22). Coincidently, we differenti-
ate (2.23) and test the resulting equation by ∂tϕ. Then, we sum up, noting that a cancellation occurs,
and integrate also by parts over (0, t). We obtain

1

2

∫
Ω

|∇µ(t)|2 +

∫
Qt

|∇∂tϕ|2 +

∫
Qt

F ′′1 (ϕ)|∂tϕ|2

=
1

2

∫
Ω

|∇µ(0)|2 + χ
ϕ

∫
Ω

∇n(t) · ∇µ(t)− χϕ
∫

Ω

∇n0 · ∇µ(0)

−
∫
Qt

∇∂tn · ∇µ+

∫
Ω

(h(ϕ)−mϕ)(t)µ(t)−
∫

Ω

(h(ϕ0)−mϕ0)µ(0)

−
∫
Qt

(h′(ϕ)−m)∂tϕµ−
∫
Qt

F ′′2 (ϕ)|∂tϕ|2, (3.30)

where we employed the notation Qt = Ω × (0, t). We point out that the third term on the left-hand
side is nonnegative due to the monotonicity of F ′1. About the value µ(0), we recover it from (2.23) and
realize from (2.13) that µ(0) = µ0 is bounded in V . Then, recalling also (2.16) and (2.4), it is clear
that the first, third and sixth terms on the right-hand side of (3.30) are under control. The second one
can be easily treated as

χ
ϕ

∫
Ω

∇n(t) · ∇µ(t) ≤ 1

8

∫
Ω

|∇µ(t)|2 + c‖n‖2
L∞(0,T ;V ) ≤

1

8

∫
Ω

|∇µ(t)|2 + c

by the Young inequality and (3.25). The fourth term on the right-hand side of (3.30) is already bounded
due to (3.25) and (3.18). On the other hand, as the functions h′ and F ′′2 are bounded, by virtue of the
Young inequality, the compactness inequality (2.38), and (3.14), we deduce that

−
∫
Qt

(h′(ϕ)−m)∂tϕµ−
∫
Qt

F ′′2 (ϕ)|∂tϕ|2 ≤ c+ c

∫
Qt

|∂tϕ|2

≤ c+
1

2

∫
Qt

|∇∂tϕ|2 + ‖∂tϕ‖2
L2(0,T ;V ∗) ≤ c+

1

2

∫
Qt

|∇∂tϕ|2.
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Now, in (3.30) it remains to control one term, for which we use the boundedness of h and the esti-
mate (3.12), along with the Poincaré–Wirtinger inequality (2.39) and, once more, the equation (2.23)
with v = 1/|Ω|. It follows that∫

Ω

(h(ϕ)−mϕ)(t)µ(t) ≤ c‖µ(t)‖ ≤ c‖µ(t)− µ(t)‖+ c
∣∣µ(t)

∣∣
≤ c‖∇µ(t)‖+ c

∫
Ω

|F ′1(ϕ(t))|+ c‖ϕ(t)‖+ c.

Now, we recall (3.17) and arrive at∫
Ω

(h(ϕ)−mϕ)(t)µ(t)

≤ c‖∇µ(t)‖
(
1 + ‖ϕ(t)− ϕ(t)‖

)
+ c‖ϕ(t)‖2 + c ≤ 1

8

∫
Ω

|∇µ(t)|2 + c.

Then, collecting the above computations in (3.30) and invoking (3.14) lead to the estimate

‖∇µ‖L∞(0,T ;H) + ‖∂tϕ‖L2(0,T ;V ) ≤ c . (3.31)

Hence, recalling (3.17) again, at this point we can infer that

‖F ′1(ϕ)‖L∞(0,T ;L1(Ω)) ≤ c ,

whence, testing (2.23) by 1/|Ω| and comparing, it holds that ‖µ‖L∞(0,T ) ≤ c, and, consequently,
using once more inequality (2.39), we conclude that

‖µ‖L∞(0,T ;V ) ≤ c . (3.32)

Moreover, by (3.31) and a comparison of terms in the strong form of (2.22), i.e.,

∂tϕ−∆(µ− χϕn) = −mϕ+ h(ϕ) a.e. in Q, (3.33)

we find out that ∆(µ − χϕn) is bounded in L2(0, T ;V ), whence, by elliptic regularity, µ − χϕn is
bounded in L2(0, T ;W ∩H3(Ω)) and, consequently, in view of (3.25), it holds that

‖µ‖L2(0,T ;W∩H3(Ω)) ≤ c . (3.34)

Now, we can argue in the same way as for (3.19) and find as well that

‖ϕ‖L∞(0,T ;W ) + ‖F ′1(ϕ)‖L∞(0,T ;H) ≤ c . (3.35)

The information given by the estimates (3.31) and (3.35) is enough to conclude that ϕ ∈ C0(Q) so
that the values assumed by ϕ range in a compact subset of R, and in the case D(F ) = R we have
already proved the separation property (2.31).

Further estimate. From now on, we restrict ourselves to the case D(F ) = (0, 1) and argue simi-
larly as in the proof of [6, Proposition 2.6] in order to obtain the estimate

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;W ) + ‖µ‖L∞(Q) ≤ c . (3.36)
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In fact, the technique is as follows. From (2.22), considered at the initial time t = 0, and (2.13), (2.16)
we recover that

∂tϕ(0) = ∆(µ0 − χϕn0)−mϕ0 + h(ϕ0)

is bounded in H . Next, we differentiate both (2.22) and (2.23) and test by ∂tϕ and−∆(∂tϕ), respec-
tively. Then, we sum up and integrate by parts and over (0, t), paying attention to the cancellation of
two terms. The integrals on the right-hand side

χ
ϕ

∫
Qt

∇∂tn · ∇∂tϕ+

∫
Qt

(h′(ϕ)−m)|∂tϕ|2

are readily controlled thanks to (3.25) and (3.31). Then we arrive at some inequality similar to [6,
formula (5.16) and following]. From this point we can proceed along the same line as in [6, pp. 2160-
2162], by exploiting the inequality in (2.8), which gives a control for F ′′1 , along with the Trudinger
inequality (see, e.g., [24]) ∫

Ω

e|v| ≤ cΩ e
cΩ ‖v‖2V for every v ∈ V ,

which holds in two dimensions. Let us omit the full proof here: this proof permits to arrive at the
estimate

‖∂tϕ‖L∞(0,T ;H) + ‖∆(∂tϕ)‖L2(0,T ;H) ≤ c,

from which by the elliptic regularity theory and (3.31), (3.35) we achieve the estimate (3.36) for the
term involving ϕ. Next, a comparison argument in (3.33) reveals that ∆(µ − χ

ϕn) is bounded in
L∞(0, T ;H), whence by elliptic regularity and (3.25), µ is shown to be bounded in L∞(0, T ;W ) ⊂
L∞(Q), which completes the proof of (3.36).

Separation property. Up to now, we have completely proved the stability estimate (2.30), which
holds true with a constant K1 satisfying the properties given in the statement, since the constants c
we have introduced in the various steps enjoy these properties. We still have to check the separation
property (2.31) in the case D(F ) = (0, 1). To this aim, we start from the bound for µ in L∞(Q)
in (3.36). Then, a Moser type procedure in (2.23) provides a bound for F ′1(ϕ). Let us sketch this
argument by proceeding formally and acknowledging that a truncation argument would suffice to obtain
a rigorous proof. To simplify notation, we set ψ := F ′1(ϕ) and g := µ − F ′2(ϕ). The argument just
deals with the elliptic equation at the time t, which however is not written for simplicity. We take any
p > 2 and test (2.23) by |ψ|p−2ψ to obtain that

(p− 1)

∫
Ω

|ψ|p−2|∇ϕ|2 +

∫
Ω

|ψ|p =

∫
Ω

g|ψ|p−2ψ .

By the Young inequality (2.35) we deduce that

‖ψ‖pp ≤
∫

Ω

|g| |ψ|p−1 ≤ ‖g‖p ‖|ψ|p−1‖p′ = ‖g‖p ‖ψ‖p/p
′

p ≤ 1

p
‖g‖p +

1

p′
‖ψ‖pp .

By rearranging, we infer that ‖ψ‖p ≤ ‖g‖p. Then, letting p tend to infinity, we conclude that ‖ψ‖∞ ≤
‖g‖∞, which entails ‖F ′1(ϕ(t))‖∞ ≤ ‖µ(t)− F ′2(ϕ(t))‖∞ for a.a. t ∈ (0, T ), whence

‖F ′1(ϕ)‖L∞(Q) ≤ ‖µ− F ′2(ϕ)‖L∞(Q) ≤ c .

By accounting for assumption (2.8), we deduce that (2.31) holds true with some values r± as in the
statement.
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4 Uniqueness and continuous dependence

In this section, we prove the uniqueness part of Theorem 2.2 and the continuous dependence es-
timate (2.32). We just prove the latter for arbitrary solutions corresponding to the control variables,
so that uniqueness follows as a consequence of the case of the same control. In this direction, we fix
ui ∈ Uad, i = 1, 2, and any two corresponding solutions (ϕi, µi, ai, ni, σi) with the regularity and the
properties stated in Theorem 2.2, in particular, the separation property (2.31). We set for convenience

u := u1 − u2 , ϕ = ϕ1 − ϕ2 , µ = µ1 − µ2 ,

a = a1 − a2 , n := n1 − n2 , σ := σ1 − σ2 .

Then, we write all the equations (2.22)–(2.26) for both solutions and take the differences to obtain that∫
Ω

∂tϕv +

∫
Ω

∇µ · ∇v − χϕ
∫

Ω

∇n · ∇v = −m
∫

Ω

ϕv +

∫
Ω

(
h(ϕ1)− h(ϕ2)

)
v , (4.1)∫

Ω

∇ϕ · ∇v +

∫
Ω

(
F ′(ϕ1)− F ′(ϕ2)

)
v =

∫
Ω

µv , (4.2)∫
Ω

∂ta v +

∫
Ω

∇a · ∇v − χa
∫

Ω

(
a∇σ1 + a2∇σ

)
· ∇v =

∫
Ω

(
a− (a1 + a2)a+ u

)
v , (4.3)∫

Ω

∂tn v +

∫
Ω

∇n · ∇v − χϕ
∫

Ω

ϕv =

∫
Ω

(
cϕϕ+ cnn+ cσσ

)
v , (4.4)∫

Ω

∂tσ v +

∫
Ω

∇σ · ∇v =

∫
Ω

(
−σ + χ

aa− aσ1 − a2σ
)
v , (4.5)

for every v ∈ V and a.e. in (0, T ).

Remark 4.1. In our computations, we allow the values of the generic constants c to also depend on
the solutions we are considering. However, at the end of the proof, since uniqueness follows as a con-
sequence as already said before, one realizes that the solutions taken into account are exactly those
provided by the already proved existence part of Theorem 2.2. This implies that the norms of the solu-
tions considered in the present proof are bounded by the constant K1 of the stability estimate (2.30),
and thus they depend only on Ω, T , the structure of the system, the initial data, and umax.

First estimate. We test the above equations by ϕ, −∆ϕ, a, ∂tn, and ∂tσ − ∆σ, respectively.
More precisely, we test (4.1) and (4.3) as said, while we write (4.2), (4.4) and (4.5) in their strong
form, multiply them by −∆ϕ, ∂tn, and ∂tσ − ∆σ, and integrate over Ω. Notice that the regularity
(2.17)–(2.21) for both solutions allows this procedure. After some rearrangement, we obtain that

1

2

d

dt

∫
Ω

|ϕ|2 +m

∫
Ω

|ϕ|2 = −
∫

Ω

∇µ · ∇ϕ+ χ
ϕ

∫
Ω

∇n · ∇ϕ+

∫
Ω

(
h(ϕ1)− h(ϕ2)

)
ϕ ,∫

Ω

|∆ϕ|2 = −
∫

Ω

(
F ′(ϕ1)− F ′(ϕ2)

)
(−∆ϕ) +

∫
Ω

∇µ · ∇ϕ ,

1

2

d

dt

∫
Ω

|a|2 +

∫
Ω

|∇a|2 = χ
a

∫
Ω

(
a∇σ1 + a2∇σ

)
· ∇a+

∫
Ω

(
a2 − (a1 + a2)a2 + ua

)
,∫

Ω

|∂tn|2 +
1

2

d

dt

∫
Ω

|∇n|2 = χ
ϕ

∫
Ω

ϕ∂tn+

∫
Ω

(
cϕϕ+ cnn+ cσσ

)
∂tn ,∫

Ω

|∂tσ|2 +
d

dt

∫
Ω

|∇σ|2 +

∫
Ω

|∆σ|2 =

∫
Ω

(
−σ + χ

aa− aσ1 − a2σ
)
(∂tσ −∆σ) .
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At this point, we take the sum of these identities. Moreover, we add

1

2

d

dt

∫
Ω

|n|2 and
d

dt

∫
Ω

|σ|2

to the left-hand side of the resulting equality and the same terms, written in the form
∫

Ω
n∂tn and

2
∫

Ω
σ∂tσ, to its right-hand side. The new left-hand side then becomes

1

2

d

dt

∫
Ω

|ϕ|2 +m

∫
Ω

|ϕ|2 +

∫
Ω

|∆ϕ|2 +
1

2

d

dt

∫
Ω

|a|2 +

∫
Ω

|∇a|2

+

∫
Ω

|∂tn|2 +
1

2

d

dt

∫
Ω

(
|n|2 + |∇n|2

)
+

∫
Ω

|∂tσ|2 +
d

dt

∫
Ω

(
|σ|2 + |∇σ|2

)
+

∫
Ω

|∆σ|2 ,

and we have to estimate the terms on the corresponding right-hand side. However, two of them cancel
each other, and most of the others can be simply dealt with by means of Young’s inequality, possibly
on account of the Lipschitz continuity of both h and F ′ in the interval [r−, r+], considering that we
want to apply (after time integration) the Gronwall lemma. Hence, we only estimate the terms that
need some treatment. On account of (2.40), we have that

χ
ϕ

∫
Ω

∇n · ∇ϕ ≤ ‖∇ϕ‖ ‖∇n‖ ≤ 1

4

∫
Ω

(
|ϕ|2 + |∆ϕ|2

)
+ c

∫
Ω

|∇n|2 .

As for the terms involving the product of three factors, we first employ (2.20) to find that

χ
a

∫
Ω

a∇σ1 · ∇a ≤ ‖a‖4‖∇σ1‖4 ‖∇a‖2

≤ 1

8

∫
Ω

|∇a|2 + c ‖σ1‖2
L∞(0,T ;W ) ‖a‖ (‖a‖+ ‖∇a‖) ≤ 1

4

∫
Ω

|∇a|2 + c ‖a‖2 .

Moreover, using the Sobolev inequality in (2.37) and the second Ladyžhenskaya inequality in (2.41)
after Young’s inequality, we have that

χ
a

∫
Ω

a2∇σ · ∇a ≤ ‖a2‖4‖∇σ‖4 ‖∇a‖2

≤ 1

4

∫
Ω

|∇a|2 + c ‖a2‖2
4 ‖σ‖V (‖σ‖+ ‖∆σ‖)

≤ 1

4

∫
Ω

|∇a|2 + c ‖a2‖2
4 ‖σ‖2

V +
1

4

∫
Ω

|∆σ|2 + c ‖a2‖4
4 ‖σ‖2

V ,

and we observe that the function t 7→ ‖a2(t)‖4 belongs toL4(0, T ) (cf. (2.19) and (2.37)). In addition,
it is clear that

−
∫

Ω

(a1 + a2)a2 ≤ ‖a1 + a2‖4 ‖a‖4 ‖a‖2 ≤
1

4
‖a‖2

V + c ‖a1 + a2‖2
4 ‖a‖2

2 ,

where the function t 7→ ‖(a1 + a2)(t)‖4 belongs to L4(0, T ). The terms involving aσ1 and a2σ are
treated in a similar way. Finally, from Young’s inequality it follows that∫

Ω

ua ≤ 1

2

∫
Ω

|a|2 +
1

2

∫
Ω

|u|2 .
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Therefore, collecting all these inequalities and those we have omitted, we estimate the right-hand side
we are considering in a form that is suitable for the application of the Gronwall lemma. After time inte-
gration, using the assumptions on the initial data as well as elliptic regularity theory, we conclude that

‖ϕ‖L∞(0,T ;H)∩L2(0,T ;W ) + ‖a‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖n‖H1(0,T ;H)∩L∞(0,T ;V )

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c ‖u‖L2(0,T ;H) . (4.6)

Notice that this implies that

‖a‖L4(Q) + ‖∇σ‖L4(Q) ≤ c ‖u‖L2(0,T ;H) , (4.7)

thanks to the third inequality in (2.37).

Consequence. A comparison argument in equations (4.4) and (4.2), along with elliptic regularity
theory, thus yields that

‖n‖L2(0,T ;W ) ≤ c ‖u‖L2(0,T ;H) and ‖µ‖L2(0,T ;H) ≤ c ‖u‖L2(0,T ;H) . (4.8)

Second estimate. We test (4.1) by µ and (4.2) by ∂tϕ and add the resulting equalities. Noting a
cancellation, we have that∫

Ω

|∇µ|2 +
1

2

d

dt

∫
Ω

|∇ϕ|2 = χ
ϕ

∫
Ω

∇n · ∇µ−m
∫

Ω

ϕµ

+

∫
Ω

(
h(ϕ1)− h(ϕ2)

)
µ−

∫
Ω

(
F ′(ϕ1)− F ′(ϕ2)

)
∂tϕ , (4.9)

and just the last term needs some attention as the others can be easily controlled using Young’s
inequality. To deal with it, we recall the Lipschitz continuity of F in the interval [r−, r+] and test (4.1)
by −(F ′(ϕ1)− F ′(ϕ2)). We obtain that

−
∫

Ω

(
F ′(ϕ1)− F ′(ϕ2)

)
∂tϕ

=

∫
Ω

∇µ · ∇
(
F ′(ϕ1)− F ′(ϕ2)

)
+ χ

ϕ

∫
Ω

∆n
(
F ′(ϕ1)− F ′(ϕ2)

)
+

∫
Ω

(
mϕ− (h(ϕ1)− h(ϕ2))

) (
F ′(ϕ1)− F ′(ϕ2)

)
. (4.10)

In view of (4.6) and (4.8), and using Young’s inequality and the Lipschitz continuity of both h and F ′

on [r−, r+], we easily conclude that the sum of the second and third terms on the right-hand side is
bounded by c‖u‖2

L2(0,T ;H). Regarding the first term on the right-hand side, we recall the regularity of
ϕ1 and ϕ2 given by Theorem 2.2 and (2.28), to infer that∫

Ω

∇µ · ∇
(
F ′(ϕ1)− F ′(ϕ2)

)
=

∫
Ω

∇µ ·
((
F ′′(ϕ1)− F ′′(ϕ2)

)
∇ϕ1 + F ′′(ϕ2)∇ϕ

)
≤ c ‖∇µ‖2

(
c ‖ϕ‖2 ‖∇ϕ1‖∞ + ‖F ′′(ϕ2)‖∞ ‖∇ϕ‖2

)
≤ c ‖∇µ‖ (‖ϕ‖+ ‖∇ϕ‖) .

Now, by combining it with (4.9) and (4.10), then applying the Young inequality and integrating over
(0, t), we arrive at

1

2

∫
Qt

|∇µ|2 +
1

2

∫
Ω

|∇ϕ(t)|2 ≤ c

∫
Qt

(
|∇n|2 + |∆n|2 + |ϕ|2 + |∇ϕ|2

)
,
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so that, in view of (4.6) and (4.8), we conclude that

‖∇µ‖L2(0,T ;H) + ‖∇ϕ‖L∞(0,T ;H) ≤ c ‖u‖L2(0,T ;H) .

From this, (4.6) and (4.8), we deduce that

‖µ‖L2(0,T ;V ) + ‖ϕ‖L∞(0,T ;V )L2(0,T ;W ) ≤ c ‖u‖L2(0,T ;H) . (4.11)

Consequence. A comparison argument in equation (4.1) then readily yields that

‖∂tϕ‖L2(0,T ;V ∗) ≤ c ‖u‖L2(0,T ;H) . (4.12)

Third estimate. Next, we take an arbitrary v ∈ L2(0, T ;V ), test (4.3) by v, and integrate over
(0, T ). We have that∫

Q

∂ta v = −
∫
Q

∇a · ∇v

+ χ
a

∫
Q

(
a∇σ1 + a2∇σ

)
· ∇v +

∫
Q

(
a− (a1 + a2)a+ u

)
v .

Just some of the terms on the right-hand side need some treatment. The first one is the following:

χ
a

∫
Q

a∇σ1 · ∇v ≤ ‖a‖L4(Q) ‖∇σ1‖L4(Q) ‖∇v‖L2(Q) ≤ c ‖u‖L2(0,T ;H) ‖v‖L2(0,T ;V ) ,

where the last inequality is due to the regularity of σ1 and (4.7). For analogous reasons we have that

χ
a

∫
Q

a2∇σ · ∇v ≤ ‖a2‖L4(Q) ‖∇σ‖L4(Q) ‖∇v‖L2(Q) ≤ c ‖u‖L2(0,T ;H) ‖v‖L2(0,T ;V ) ,

as well as

−
∫
Q

(a1 + a2) a v ≤ ‖a1 + a2‖L2(0,T ;L4(Ω)) ‖a‖L∞(0,T ;L2(Ω)) ‖v‖L2(0,T ;L4(Ω))

≤ c ‖a1 + a2‖L2(0,T ;V ) ‖a‖L∞(0,T ;H) ‖v‖L2(0,T ;V ) ≤ c ‖u‖L2(0,T ;H) ‖v‖L2(0,T ;V ) .

Since the other terms on the right-hand side can be estimated in a straightforward way, we conclude
that ∫

Q

∂ta v =

∫ T

0

〈∂ta(t), v(t)〉 dt ≤ c ‖u‖L2(0,T ;H) ‖v‖L2(0,T ;V ) ,

whence, due to the arbitrariness of v, this entails that

‖∂ta‖L2(0,T ;V ∗) ≤ c ‖u‖L2(0,T ;H) . (4.13)

By recalling Remark 4.1, we see that the proof of the uniqueness part of Theorem 2.2 and of (2.32) is
complete.
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5 An auxiliary result

This section is devoted to stating and proving an auxiliary result that will be used twice in the sequel.
In the following sections, we will repeatedly analyze systems related to the state system (1.1)–(1.7).
Since these share a very similar mathematical structure, we have decided to introduce an abstract
result that encompasses both cases to be analyzed later. Theorem 5.1, proved below, will be used
to show the well-posedness of the linearized system and the Fréchet differentiability of the solution
operator. We fix some u∗ satisfying (2.10) and the corresponding solution (ϕ∗, µ∗, a∗, n∗, σ∗) given
by Theorem 2.2, and we recall at once that h′(ϕ∗) and F ′′(ϕ∗) are bounded, since ϕ∗ satisfies the
separation property (2.31). Moreover, we fix

g1 , g4 , g5 ∈ L2(Q), g2 ∈ L2(0, T ;V ) and g3 ∈ (L2(Q))2 , (5.1)

and we notice that g3 is a vector-valued function. Nevertheless, we often prefer to write g3 (i.e., we do
not use the boldface character) for uniformity. Then, we look for the solution (ϕ, µ, a, n, σ) to the prob-
lem stated below. We remark that the notation (ϕ, µ, a, n, σ) adopted in this section is unrelated to
the original problem (2.22)–(2.27). We look for a quintuple (ϕ, µ, a, n, σ) with the regularity properties

ϕ ∈ X1 := H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (5.2)

µ ∈ X2 := L2(0, T ;V ) , (5.3)

a ∈ X3 := H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (5.4)

n ∈ X4 := H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (5.5)

σ ∈ X4 , (5.6)

that solves the variational equations

〈∂tϕ, v〉+

∫
Ω

∇µ · ∇v − χϕ
∫

Ω

∇n · ∇v

= −m
∫

Ω

ϕv +

∫
Ω

h
′(ϕ∗)ϕv +

∫
Ω

g1 v , (5.7)∫
Ω

∇ϕ · ∇v = −
∫

Ω

F ′′(ϕ∗)ϕv +

∫
Ω

µv +

∫
Ω

g2 v , (5.8)

〈∂ta, v〉+

∫
Ω

∇a · ∇v − χa
∫

Ω

(a∇σ∗ + a∗∇σ) · ∇v

= −
∫

Ω

g3 · ∇v +

∫
Ω

(a− 2a∗a)v +

∫
Ω

g4 v , (5.9)∫
Ω

∂tn v +

∫
Ω

∇n · ∇v − χϕ
∫

Ω

ϕv =

∫
Ω

(cϕϕ+ cnn+ cσσ)v , (5.10)∫
Ω

∂tσ v +

∫
Ω

∇σ · ∇v =

∫
Ω

(−σ + χ
aa− aσ∗ − a∗σ)v +

∫
Ω

g5 v , (5.11)

for every v ∈ V and a.e. in (0, T ), and satisfies the initial condition

(ϕ, a, n, σ)(0) = (0, 0, 0, 0) a.e. in Ω . (5.12)

Let us introduce the space (cf. (5.2)–(5.6))

X := X1 × X2 × X3 × X4 × X4 (5.13)

for the solutions to (5.7)–(5.12).
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Theorem 5.1. Let the assumptions of Theorem 2.2 and (5.1) be fulfilled, and assume that u∗ satisfies
(2.10) and (ϕ∗, µ∗, a∗, n∗, σ∗) is the corresponding solution. Then the problem (5.7)–(5.12) has a
unique solution (ϕ, µ, a, n, σ) satisfying (5.2)–(5.6), and the estimate

‖(ϕ, µ, a, n, σ)‖X ≤ K3

( 5∑
i=1

‖gi‖L2(Q) + ‖∇g2‖L2(Q)

)
(5.14)

holds true with a constant K3 > 0 that depends only on Ω, T , the structure of the original system,
the initial data, and umax.

Proof. To establish existence, we just prove formal estimates for the solution, but those computations
do suggest that the same estimates can be performed on the solution to the k-dimensional system ob-
tained from the Faedo–Galerkin scheme constructed by using the first k eigenfunctions of the Laplace
operator with homogeneous boundary conditions. These bounds can then be used to pass to the limit
as k tends to infinity and to construct a solution to the problem satisfying (5.2)–(5.6) and (5.14).

First a priori estimate. We test the above equations (5.7)–(5.11), in the order, by ϕ, −∆ϕ, a, ∂tn
and ∂tσ −∆σ, respectively. We obtain that

1

2

d

dt

∫
Ω

|ϕ|2 +

∫
Ω

∇µ · ∇ϕ+m

∫
Ω

|ϕ|2

= χ
ϕ

∫
Ω

∇n · ∇ϕ+

∫
Ω

h
′(ϕ∗)|ϕ|2 +

∫
Ω

g1 ϕ ,∫
Ω

|∆ϕ|2 =

∫
Ω

F ′′(ϕ∗)ϕ∆ϕ+

∫
Ω

∇µ · ∇ϕ−
∫

Ω

g2 ∆ϕ ,

1

2

d

dt

∫
Ω

|a|2 +

∫
Ω

|∇a|2 − χa
∫

Ω

(a∇σ∗ + a∗σ) · ∇a

=

∫
Ω

|a|2 − 2

∫
Ω

a∗|a|2 −
∫

Ω

g3 · ∇a+

∫
Ω

g4 a ,∫
Ω

|∂tn|2 +
1

2

d

dt

∫
Ω

|∇n|2 = χ
ϕ

∫
Ω

ϕ∂tn+

∫
Ω

(cϕϕ+ cnn+ cσσ) ∂tn ,∫
Ω

|∂tσ|2 +
d

dt

∫
Ω

|∇σ|2 +

∫
Ω

|∆σ|2

=

∫
Ω

(−σ + χ
aa− aσ∗ − a∗σ)(∂tσ −∆σ) +

∫
Ω

g5 (∂tσ −∆σ) .

Then, we take the sum of these identities and add (1/2)d/dt
∫

Ω
|n|2 and d/dt

∫
Ω
|σ|2 to the left-hand

side of the resulting equality and the same terms, written in the form
∫

Ω
n∂tn and 2

∫
Ω
σ∂tσ, to the

right-hand side. The left-hand side then becomes

1

2

d

dt

∫
Ω

|ϕ|2 +m

∫
Ω

|ϕ|2 +

∫
Ω

|∆ϕ|2 +
1

2

d

dt

∫
Ω

|a|2 +

∫
Ω

|∇a|2

+

∫
Ω

|∂tn|2 +
1

2

d

dt

∫
Ω

(
|n|2 + |∇n|2

)
+

∫
Ω

|∂tσ|2 +
d

dt

∫
Ω

(
|σ|2 + |∇σ|2

)
+

∫
Ω

|∆σ|2 ,
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and we have to estimate the terms on the corresponding right-hand side. However, two of these cancel
each other, one is nonpositive, and most of the others can be easily dealt with using Young’s inequality.
So, we discuss only the most delicate terms. As usual, we intend to apply Gronwall’s lemma after time
integration. The first term we consider is the following:

χ
a

∫
Ω

a∇σ∗ · ∇a ≤ ‖a‖2 ‖∇σ∗‖∞ ‖∇a‖2 ≤
1

4

∫
Ω

|∇a|2 + ‖∇σ∗‖2
∞

∫
Ω

|a|2 .

To deal with the next one, we owe to the second inequality in (2.41) to find that

χ
a

∫
Ω

a∗∇σ · ∇a ≤ ‖a∗‖4 ‖∇σ‖4 ‖∇a‖2 ≤
1

4

∫
Ω

|∇a|2 + ‖a∗‖2
4 ‖∇σ‖2

4

≤ 1

4

∫
Ω

|∇a|2 + ‖a∗‖2
4 ‖σ‖V (‖σ‖+ ‖∆σ‖)

≤ 1

4

∫
Ω

|∇a|2 +
1

4

∫
Ω

|∆σ|2 + c
(
‖a∗‖2

4 + ‖a∗‖4
4

)
‖σ‖2

V .

We notice that the functions t 7→ ‖∇σ∗(t)‖2
∞ and t 7→ (‖a∗(t)‖2

4 + ‖a∗(t)‖4
4) belong to L1(0, T ).

The last integral we consider is the following:∫
Ω

a∗σ(∂tσ −∆σ) ≤ ‖a∗‖4 ‖σ‖4 (‖∂tσ‖2 + ‖∆σ‖2)

≤ 1

8

∫
Ω

(
|∂tσ|2 + |∆σ|2

)
+ c ‖a∗‖2

4 ‖σ‖2
V .

By collecting, rearranging, and applying the Gronwall lemma, we conclude that

‖ϕ‖L∞(0,T ;H)∩L2(0,T ;W ) + ‖a‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖n‖H1(0,T ;H)∩L∞(0,T ;V )

+ ‖σ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c
5∑
i=1

‖gi‖L2(Q) . (5.15)

Consequence. Notice that (5.15) also yields an estimate for a and ∇σ in L4(Q), thanks to (2.37).
Moreover, by comparison, first in (5.10) and then in (5.8), and elliptic regularity, we derive estimates
for n and µ. In conclusion, we have that

‖a‖L4(Q) + ‖∇σ‖L4(Q) + ‖n‖L2(0,T ;W ) + ‖µ‖L2(0,T ;H) ≤ c

5∑
i=1

‖gi‖L2(Q) . (5.16)

Second a priori estimate. We test (5.9) by an arbitrary v ∈ L2(0, T ;V ) and integrate over (0, T )
to obtain that ∫ T

0

〈∂ta(t), v(t)〉 dt = −
∫
Q

∇a · ∇v + χ
a

∫
Q

(a∇σ∗ + a∗∇σ) · ∇v

−
∫
Q

g3 · ∇v +

∫
Q

(a+ g4)v −
∫
Q

2a∗av .
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Just some of the terms on the right-hand side need a treatment. We have that

χ
a

∫
Q

(a∇σ∗ + a∗∇σ) · ∇v

≤ ‖a‖L4(Q) ‖∇σ∗‖L4(Q) ‖∇v‖L2(Q) + ‖a∗‖L4(Q) ‖∇σ‖L4(Q) ‖∇v‖L2(Q)

≤ c ‖v‖L2(0,T ;V )

5∑
i=1

‖gi‖L2(Q) ,

and we similarly obtain that

−
∫
Q

2a∗av ≤ c ‖v‖L2(0,T ;V )

5∑
i=1

‖gi‖L2(Q) .

Hence, it turns out that∫ T

0

〈∂ta(t), v(t)〉 dt ≤ c ‖v‖L2(0,T ;V )

5∑
i=1

‖gi‖L2(Q) ,

and, since v is arbitrary in L2(0, T ;V ), this means that

‖∂ta‖L2(0,T ;V ∗) ≤ c
5∑
i=1

‖gi‖L2(Q) . (5.17)

Third a priori estimate. We test (5.7) by both µ and g2−F ′′(ϕ∗)ϕ. At the same time, we test (5.8)
by ∂tϕ. We obtain that∫

Ω

∂tϕµ+

∫
Ω

|∇µ|2 = χ
ϕ

∫
Ω

∇n · ∇µ−m
∫

Ω

ϕµ+

∫
Ω

h
′(ϕ∗)ϕµ+

∫
Ω

g1µ ,∫
Ω

∂tϕ
(
g2 − F ′′(ϕ∗)ϕ

)
=

∫
Ω

(
−∇µ+ χ

ϕ∇n
)
· ∇
(
g2 − F ′′(ϕ∗)ϕ

)
+

∫
Ω

(
−mϕ+ h

′(ϕ∗)ϕ+ g1

)(
g2 − F ′′(ϕ∗)ϕ

)
,

1

2

d

dt

∫
Ω

|∇ϕ|2 =

∫
Ω

µ ∂tϕ+

∫
Ω

(
g2 − F ′′(ϕ∗)ϕ

)
∂tϕ .

At this point, we add these equalities to each other and notice several cancellations. The left-hand
side then becomes ∫

Ω

|∇µ|2 +
1

2

d

dt

∫
Ω

|∇ϕ|2 , (5.18)

and we need to estimate the terms on the corresponding right-hand side. However, we only treat the
most delicate of them, since the others are simple to handle. By recalling, in particular, that ∇ϕ∗ is
bounded owing to the regularity in (2.28), we have that∫

Ω

(
−∇µ+ χ

ϕ∇n
)
· ∇
(
g2 − F ′′(ϕ∗)ϕ

)
≤ 1

4

∫
Ω

|∇µ|2 + c

∫
Ω

|∇n|2 + c

∫
Ω

|∇g2|2 + c

∫
Ω

|ϕF ′′′(ϕ∗)∇ϕ∗|2 + c

∫
Ω

|F ′′(ϕ∗)∇ϕ|2

≤ 1

4

∫
Ω

|∇µ|2 + c

∫
Ω

|∇n|2 + c

∫
Ω

|∇g2|2 + c

∫
Ω

|ϕ|2 + c

∫
Ω

|∇ϕ|2 ,
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and we account for (5.15). By combining it with the already proved estimates, we conclude that

‖µ‖L2(0,T ;V ) + ‖ϕ‖L∞(0,T ;V ) ≤ c

5∑
i=1

‖gi‖L2(Q) + c ‖∇g2‖L2(Q) . (5.19)

Conclusion. Now that µ is estimated in L2(0, T ;V ), a comparison argument in (5.7), using also
(5.19), yields a similar estimate for ∂tϕ in L2(0, T ;V ∗), and the existence part of the proof is com-
plete.

Uniqueness. By linearity, we consider only the homogeneous problem. We want to come back to
the proof of (5.15) and show that the procedure used there can be made rigorous. On account of the
regularity (5.2)–(5.6), we notice that the equations (5.8), (5.10), and (5.11), can be written in strong
form. For instance, (5.8) with g2 = 0 becomes

−∆ϕ = −F ′′(ϕ∗)ϕ+ µ a.e. in Q . (5.20)

Hence, instead of testing (5.8) by−∆ϕ, we can multiply (5.20) by−∆ϕ and integrate over Ω. There-
fore, we can still arrive at (5.15), which yields (ϕ, a, n, σ) = (0, 0, 0, 0), from which, (5.20) implies
that µ = 0 as well.

6 The control problem

In this section, we give the first result on the control problem presented in the Introduction. For the
reader’s convenience, we recall the definitions of the cost functional J and of the set Uad of the
admissible controls:

J(ϕ, u) :=
b1

2

∫
Q

|ϕ− ϕQ|2 +
b2

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3

2

∫
Q

|u|2

for ϕ ∈ C0([0, T ];H) and u ∈ L2(Q), (6.1)

Uad :=
{
u ∈ U : 0 ≤ u ≤ umax a.e. in Q

}
, where U := L∞(Q). (6.2)

We make the following assumptions:

bi ∈ [0,+∞) for i = 1, 2, 3, with b3 > 0; ϕQ ∈ L2(Q), ϕΩ ∈ V. (6.3)

umax ∈ L∞(Q) is nonnegative. (6.4)

Then the control problem is given by:

Minimize J(ϕ, u) subject to u ∈ Uad and to the constraint that

(ϕ, µ, a, n, σ) is the solution to the system (2.22)–(2.27). (6.5)

In the remainder of the paper, it is understood that the above assumptions are in force, as well as those
on the structure and the data (with the same umax as here, of course) that ensure well-posedness for
the state system (see Theorem 2.2). We therefore do not recall them in any of the following statements.
Besides, by virtue of Theorem 2.2, we can introduce the control-to-state operator S as

S := (S1, S2, S3, S4, S5) mapping u ∈ Uad into (ϕ, µ, a, n, σ) ∈ Y,

where Y is the regularity space defined in (2.29). The same operator is Lipschitz continuous from Uad

into the space X specified by (5.13), in the sense of the continuous dependence estimate (2.32).
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Theorem 6.1. The control problem (6.5) has at least one solution, that is, there exists at least one
u∗ ∈ Uad that satisfies

J(ϕ∗, u∗) ≤ J(ϕ, u) for every u ∈ Uad, (6.6)

where ϕ∗ and ϕ are the first components of the solutions to the state system (2.22)–(2.27) corre-
sponding to u∗ and u, respectively.

Proof. We use the direct method of the calculus of variations. To begin with, we recall (6.1) and
observe that J(ϕ, u) is bounded from below as it is nonnegative. Thus, we term Λ the infimum of
the cost functional under the constraints of the control problem and fix a minimizing sequence {uk}
and the sequence of the corresponding solutions (ϕk, µk, ak, nk, σk) ∈ Y as given by Theorem 2.2.
Namely, we have that

lim
k→∞

J(ϕk, uk) = Λ .

Now, Uad is bounded in L∞(Q), and all of the solutions (ϕk, µk, ak, nk, σk) satisfy the stability esti-
mate (2.30). Hence, we can use well-known compactness results to obtain that, possibly for a nonre-
labeled subsequence, as k →∞,

uk → u∗ weakly star in L∞(Q), (6.7)

(ϕk, µk, ak, nk, σk)→ (ϕ∗, µ∗, a∗, n∗, σ∗) weakly star in Y, (6.8)

for some limiting functions u∗ and ϕ∗, µ∗, a∗, n∗, σ∗. At this point, strong convergence properties
are needed, and we apply [26, Sect. 8, Cor. 4] several times. First, we notice that {ϕk} weakly star
converges in Y1 that is compactly embedded in C0(Q). We thus infer that, as k →∞,

ϕk → ϕ strongly in C0(Q), whence also

F ′(ϕk)→ F ′(ϕ) and h(ϕk)→ h(ϕ∗) strongly in C0(Q),

since the functions ϕk satisfy the separation property (2.31) and F ′ and h are Lipschitz continu-
ous in the interval [r−, r+]. Moreover, (6.8) (cf. (2.19)) implies that ak converges to a∗ strongly in
C0([0, T ];H) ∩ L2(0, T ;V ). In view of (2.37), we deduce that, as k → ∞, ak → a∗ strongly in
L4(Q) and consequently

(ak)
2 → (a∗)2 strongly in L2(Q) .

Next, from (6.8) and (2.21) it follows that, as k →∞,

σk → σ∗ strongly in C0(Q) ∩ L4(0, T ;W 1,4(Ω)),

whence

akσk → a∗σ∗ and ak∇σk → a∗∇σ∗ strongly in L2(Q) and L2(Q)2.

Collecting all this information, and passing to the limit in the variational equalities (2.22)–(2.26) written
for (ϕk, µk, ak, nk, σk), we deduce that (ϕ∗, µ∗, a∗, n∗, σ∗) solves the state system corresponding
to u∗. This shows that (ϕ∗, µ∗, a∗, n∗, σ∗) is actually S(u∗). Thus, we have that

J(ϕ∗, u∗) ≤ lim inf
k→∞

J(ϕk, uk) = Λ ,

so that J(ϕ∗, u∗) = Λ and u∗ is an optimal control.
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7 Necessary conditions for optimality

To obtain significant necessary optimality conditions, we prove some differentiability property of the
control-to-state operator S. To this end, recall the definitions of the spaces Yi and Xi, i = 1, ..., 4,
given in (2.17)–(2.21) and (5.2)–(5.6), respectively. Notice that Yi ↪→ Xi for every i = 1, ..., 4. We
then recall the definition (5.13) of X and consider the mapping S : Uad → X by observing that

for u ∈ Uad, S(u) = (ϕ, µ, a, n, σ) is the solution to (2.22)–(2.27). (7.1)

Often, it is possible to extend S to an open subset of U and prove the differentiability of this extension.
However, we cannot develop this idea in our scenario. Indeed, although the constraint u ≤ umax could
be replaced by ‖u‖∞ < K (with any prescribed K > ‖umax‖∞) without any significant change in
our previous proofs, we cannot avoid the constraint u ≥ 0. Therefore, we can only prove some kind of
sectorial differentiability that is close to Fréchet differentiability but intrinsically involves a constraint for
the increments. Also in the present case, a crucial role is played by the linearized system we introduce
at once. To this end, we fix u∗ ∈ Uad and (ϕ∗, µ∗, a∗, n∗, σ∗) := S(u∗). By accounting for the
separation property (2.31) and for the smoothness of F on the interval [r−, r+], we infer that

F (j)(ϕ∗) ∈ L∞(Q) and ‖F (j)(ϕ∗)‖∞ ≤ K ′1 for j ∈ {0, ..., 4}, (7.2)

where K ′1 is similar to the constant K1 appearing in (2.30).

Let us come to the linearized problem associated with u∗. For a given h ∈ L2(Q), it consists in
looking for a quintuple (ψ, η, α, ν, ω) with the regularity

(ψ, η, α, ν, ω) ∈ X (7.3)

that solves the variational equations

〈∂tψ, v〉+

∫
Ω

∇η · ∇v − χϕ
∫

Ω

∇ν · ∇v

= −m
∫

Ω

ψ v +

∫
Ω

h
′(ϕ∗)ψv , (7.4)∫

Ω

∇ψ · ∇v +

∫
Ω

F ′′(ϕ∗)ψv =

∫
Ω

ηv , (7.5)

〈∂tα, v〉+

∫
Ω

∇α · ∇v − χa
∫

Ω

(α∇σ∗ + a∗∇ω) · ∇v

=

∫
Ω

(α− 2a∗α)v +

∫
Ω

hv , (7.6)∫
Ω

∂tν v +

∫
Ω

∇ν · ∇v − χϕ
∫

Ω

ψv =

∫
Ω

(cϕψ + cnν + cσω)v , (7.7)∫
Ω

∂tω v +

∫
Ω

∇ω · ∇v =

∫
Ω

(−ω + χ
aα− ασ∗ − a∗ω)v , (7.8)

for every v ∈ V and a.e. in (0, T ), and satisfies the initial condition

(ψ, α, ν, ω)(0) = (0, 0, 0, 0) . (7.9)

We have the following result concerning well-posedness.
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Theorem 7.1. Let u∗ ∈ Uad be given and (ϕ∗, µ∗, a∗, n∗, σ∗) := S(u∗). Then, for every h ∈ L2(Q),
problem (7.4)–(7.9) has a unique solution (ψ, η, α, ν, ω) satisfying (7.3), and the estimate

‖(ψ, η, α, ν, ω)‖X ≤ K3 ‖h‖L2(Q) (7.10)

holds true with a constant K3 > 0 that depends only on Ω, T , the structure and the data of the state
system, and umax.

Proof. It suffices to apply Theorem 5.1. Indeed, problem (7.4)–(7.9) is the particular case of problem
(5.7)–(5.12), where g4 = h and g1 = g2 = g3 = g5 = 0.

Let us move to prove some differentiability property of the solution operator S. As said before, we
cannot speak of Fréchet differentiability. However, the above result implies that the linear mapping
h 7→ (ψ, η, α, ν, ω) is continuous from L2(Q) into X, and we are now going to see that it plays a
similar role as a Fréchet derivative. Indeed, we can prove the following result.

Theorem 7.2. Let u∗ ∈ Uad and (ϕ∗, µ∗, a∗, n∗, σ∗) := S(u∗). For every h ∈ L2(Q), let (ψ, η, α, ν, ω)
be the solution to the corresponding linearized system (7.4)–(7.9). Then we have that

‖S(u∗ + h)− S(u∗)− (ψ, η, α, ν, ω)‖X
‖h‖L2(Q)

tends to zero

as ‖h‖L2(Q) tends to zero under the constraint that u∗ + h ∈ Uad. (7.11)

Proof. We assume that u∗+h belongs to Uad and introduce (ϕh, µh, ah, nh, σh) := S(u∗+h) and
the quintuplet (φ, ρ, γ, λ, ξ) ∈ X defined by

φ := ϕh − ϕ∗ − ψ , ρ := µh − µ∗ − η , γ := ah − a∗ − α ,
λ := nh − n∗ − ν and ξ := σh − σ∗ − ω , (7.12)

so that
S(u∗ + h)− S(u∗)− (ψ, η, α, ν, ω) = (φ, ρ, γ, λ, ξ) .

Then, (φ, ρ, γ, λ, ξ) satisfies the variational equations

〈∂tφ, v〉+

∫
Ω

∇ρ · ∇v − χϕ
∫

Ω

∇λ · ∇v

= −m
∫

Ω

φv +

∫
Ω

[
h(ϕh)− h(ϕ∗)− h′(ϕ∗)ψ

]
v , (7.13)∫

Ω

∇φ · ∇v =

∫
Ω

ρv −
∫

Ω

[
F ′(ϕh)− F ′(ϕ∗)− F ′′(ϕ∗)ψ

]
v , (7.14)

〈∂tγ, v〉+

∫
Ω

∇γ · ∇v − χa
∫

Ω

[
ah∇σh − a∗∇σ∗ − α∇σ∗ − a∗∇ω

]
· ∇v

=

∫
Ω

γv −
∫

Ω

[
(ah)2 − (a∗)2 − 2a∗α

]
v , (7.15)∫

Ω

∂tλ v +

∫
Ω

∇λ · ∇v − χϕ
∫

Ω

φv =

∫
Ω

(cϕφ+ cnγ + cσξ)v , (7.16)∫
Ω

∂tξ v +

∫
Ω

∇ξ · ∇v =

∫
Ω

(
−ξ + χ

aγ −
[
ahσh − a∗σ∗ − ασ∗ − a∗ω

])
v , (7.17)
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all for every v ∈ V and a.e. in (0, T ), and the initial condition

(φ, γ, λ, ξ)(0) = (0, 0, 0, 0) a.e. in Ω . (7.18)

We transform some terms on the right-hand sides, using Taylor expansions in three cases. We have that

h(ϕh)− h(ϕ∗)− h′(ϕ∗)ψ = h
′(ϕ∗)φ+R1(ϕh − ϕ∗)2

with R1 =

∫ 1

0

(1− s)h′′(ϕ∗ + s(ϕh − ϕ∗)) ds ,

F ′(ϕh)− F ′(ϕ∗)− F ′′(ϕ∗)ψ = F ′′(ϕ∗)φ+R2(ϕh − ϕ∗)2

with R2 =

∫ 1

0

(1− s)F ′′′(ϕ∗ + s(ϕh − ϕ∗)) ds ,

ah∇σh − a∗∇σ∗ − α∇σ∗ − a∗∇ω = (ah − a∗)(∇σh −∇σ∗) + γ∇σ∗ + a∗∇ξ ,

(ah)2 − (a∗)2 − 2a∗α = 2a∗γ +R3(ah − a∗)2

with R3 =

∫ 1

0

(1− s) 2(ϕ∗ + s(ϕh − ϕ∗)) ds ,

ahσh − a∗σ∗ − ασ∗ − a∗ω = (ah − a∗) (σh − σ∗) + γσ∗ + a∗ξ . (7.19)

We notice that both ϕ∗ and ϕh satisfy the separation condition (2.31), so that the same holds for
ϕ∗ + s(ϕh − ϕ∗) for every s ∈ [0, 1]. Hence, the quantities under the above integrals over (0, 1)
are bounded, and all the remainders R1, ..., R3 are uniformly bounded. At this point, we notice that
problem (7.13)–(7.18) takes the form (5.7)–(5.12) with

g1 = R1 (ϕh − ϕ∗)2 , g2 = −R2 (ϕh − ϕ∗)2 , g3 = −χa(ah − a∗)∇(σh − σ∗) ,
g4 = −R3 (ah − a∗)2 and g5 = −(ah − a∗) (σh − σ∗) .

Hence, we can apply Theorem 5.1, to infer that

‖(φ, ρ, γ, λ, ξ)‖X ≤ K3

( 5∑
i=1

‖gi‖L2(Q) + ‖∇g2‖L2(Q)

)
. (7.20)

Thus, it remains to estimate the right-hand side of (7.20). In doing this, we also account for Theo-
rem 2.3 and apply (2.32) to (ϕh, µh, ah, nh, σh) and (ϕ∗, µ∗, a∗, n∗, σ∗), possibly combined with the
last inequality in (2.37). We have that

‖g1‖2
L2(Q) + ‖g2‖2

L2(Q) ≤ c

∫
Q

|ϕh − ϕ∗|4 ≤ c ‖h‖4
L2(Q) ,

‖g3‖2
L2(Q) ≤

∫
Ω

|ah − a∗|2 |∇(σh − σ∗)|2

≤ ‖ah − a∗‖2
L4(Q) ‖∇(σh − σ∗)‖2

L4(Q) ≤ c ‖h‖4
L2(Q) ,

‖g4‖2
L2(Q) ≤ c

∫
Q

|ah − a∗|4 ≤ c ‖h‖4
L2(Q) ,

‖g5‖2
L2(Q) ≤

∫
Ω

|ah − a∗|2 |σh − σ∗|2

≤ ‖ah − a∗‖2
L4(Q) ‖σh − σ∗‖2

L4(Q) ≤ c ‖h‖4
L2(Q) .
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Finally, since it turns out that |∇R2| ≤ c(|∇ϕ∗|+ |∇ϕh|) ≤ c, we also have that

‖∇g2‖2
L2(Q) = ‖(ϕh − ϕ∗)2∇R2 + 2R2(ϕh − ϕ∗)∇(ϕh − ϕ∗)‖2

L2(Q)

≤ c
(
‖ϕh − ϕ∗‖4

L4(Q) + ‖ϕh − ϕ∗‖2
L4(Q) ‖∇(ϕh − ϕ∗)‖2

L4(Q) ≤ c ‖h‖4
L2(Q) .

Therefore, (7.20) implies that

‖(φ, ρ, γ, λ, ξ)‖X ≤ c ‖h‖2
L2(Q) ,

and (7.11) readily follows.

Thanks to the above result and the convexity of Uad, a standard argument leads to the following
necessary condition for an element u∗ ∈ Uad to be an optimal control:

b1

∫
Q

(ϕ∗ − ϕQ)ψ + b2

∫
Ω

(
ϕ∗(T )− ϕΩ

)
ψ(T ) + b3

∫
Q

u∗ (u− u∗) ≥ 0

for every u ∈ Uad , (7.21)

where ψ is the first component of the solution to the linearized problem (7.4)–(7.9) corresponding to
h := u − u∗. However, this condition is problematic, since it requires to solve the linearized problem
infinitely many times because u is arbitrary in Uad. As usual, this trouble is overcome by introducing a
proper adjoint problem associated with a given u∗ ∈ Uad. In order to simplify its presentation, we use
some abbreviations: for some pairs (i, j), with i, j ∈ {0, ..., 5}, we define fi,j as follows:

f1,0 = b1(ϕ∗ − ϕQ) , f1,1 = m− h′(ϕ∗) , f1,2 = F ′′(ϕ∗) , f1,4 = −χϕ − cϕ , (7.22)

f3,3 = −1 , f3,5 = σ∗ − χa , (7.23)

f5,4 = −cσ , f5,5 = 1 , (7.24)

and put to zero all the other cases. We notice that f1,0 ∈ L2(Q) and that every other fi,j is a bounded
function. At this point, we can write the adjoint problem associated with u∗. It consists in looking for a
quintuple (p1, p2, p3, p4, p5) with the regularity properties

p1 ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω)) , (7.25)

p2 ∈ L2(0, T ;V ) , (7.26)

p3 ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (7.27)

p4 ∈ H1(0, T ;V ) ∩ L2(0, T ;W ∩H3(Ω)) , (7.28)

p5 ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ) , (7.29)
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that solves the variational equations

− 〈∂tp1, v〉+

∫
Ω

∇p2 · ∇v +
5∑
j=1

∫
Ω

f1,j pj v =

∫
Ω

f1,0 v , (7.30)∫
Ω

∇p1 · ∇v =

∫
Ω

p2 v , (7.31)

−
∫

Ω

∂tp3 v +

∫
Ω

∇p3 · ∇v − χa
∫

Ω

(∇σ∗ · ∇p3)v

+

∫
Ω

2a∗ p3 v +
5∑
j=1

∫
Ω

f3,j pj v = 0 , (7.32)

−
∫

Ω

∂tp4 v +

∫
Ω

∇p4 · ∇v − χϕ
∫

Ω

∇p1 · ∇v − cn
∫

Ω

p4 v = 0 , (7.33)

− 〈∂tp5, v〉+

∫
Ω

∇p5 · ∇v − χa
∫

Ω

a∗∇p3 · ∇v

+

∫
Ω

a∗ p5 v +
5∑
j=1

∫
Ω

f5,jpj v = 0 , (7.34)

for every v ∈ V and a.e. in (0, T ), and the final conditions

p1(T ) = b2

(
ϕ∗(T )− ϕΩ

)
and (p3, p4, p5)(T ) = (0, 0, 0) . (7.35)

Theorem 7.3. Let u∗ ∈ Uad. Then, the adjoint problem (7.30)–(7.35) has a unique solution satisfying
(7.25)–(7.29).

Proof. As for the existence of a solution, also for this problem one can start from a Faedo–Galerkin
scheme constructed by means of the eigenfunctions of the Laplace operator with homogeneous Neu-
mann boundary conditions. However, for brevity, we just perform the relevant formal estimates.

First a priori estimate. We test the above equations by p1, p1 − p2, p3, p4, and p5, respectively. In
addition, we test (7.32) by −∆p3. We obtain the identities

− 1

2

d

dt

∫
Ω

|p1|2 +

∫
Ω

∇p2 · ∇p1 +
5∑
j=1

∫
Ω

f1,j pj p1 =

∫
Ω

f1,0 p1 ,∫
Ω

|∇p1|2 −
∫

Ω

∇p1 · ∇p2 +

∫
Ω

|p2|2 =

∫
Ω

p2 p1 ,

− 1

2

d

dt

∫
Ω

|p3|2 +

∫
Ω

|∇p3|2 − χa
∫

Ω

(∇σ∗ · ∇p3)p3 +

∫
Ω

2a∗ |p3|2 +
5∑
j=1

∫
Ω

f3,j pj p3 = 0 ,

− 1

2

d

dt

∫
Ω

|p4|2 +

∫
Ω

|∇p4|2 − χϕ
∫

Ω

∇p1 · ∇p4 − cn
∫

Ω

|p4|2 = 0 ,

− 1

2

d

dt

∫
Ω

|p5|2 +

∫
Ω

|∇p5|2 − χa
∫

Ω

a∗∇p3 · ∇p5 +

∫
Ω

a∗ |p5|2 +
5∑
j=1

∫
Ω

f5,j pj p5 = 0 ,
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− 1

2

d

dt

∫
Ω

|∇p3|2 +

∫
Ω

|∆p3|2 + χ
a

∫
Ω

(∇σ∗ · ∇p3)∆p3

−
∫

Ω

2a∗ p3 ∆p3 −
5∑
j=1

∫
Ω

f3,j pj ∆p3 = 0 .

Now, we sum up, notice some cancellations, and rearrange a little. Then we obtain the left-hand side

− 1

2

d

dt

∫
Ω

(
|p1|2 + |p3|2 + |∇p3|2 + |p4|2 + |p5|2

)
+

∫
Ω

(
|∇p1|2 + |p2|2 + |∇p3|2 + |∆p3|2 + |∇p4|2 + a∗ |p5|2 + |∇p5|2

)
, (7.36)

where we recall that a∗ is nonnegative. We now have to estimate the terms of the corresponding
right-hand side, with the intention of applying the (backward-in-time) Gronwall lemma. However, since
for many of them it suffices to apply Young’s inequality, we just deal with the ones that need some
other treatment. We consider only one of the easy integrals, using the assumption that χϕ ∈ (0, 1):
we have

χ
ϕ

∫
Ω

∇p1 · ∇p4 ≤
1

2

∫
Ω

|∇p1|2 +
1

2

∫
Ω

|∇p4|2 ,

and the last two integrals are dominated by the corresponding expressions occurring in (7.36). As for
the nontrivial terms, we recall the regularity for ∇σ∗ ensured by (2.21) and that a∗ ∈ L4(Q), which
implies that the function t 7→ ‖a∗(t)‖4 belongs toL4(0, T ). We also account for the second inequality
in (2.41). Hence, we have that

χ
a

∫
Ω

(∇σ∗ · ∇p3)p3 ≤ ‖∇σ∗‖∞ ‖∇p3‖2 ‖p3‖2 ≤ c‖σ∗‖H3(Ω)

(∫
Ω

|∇p3|2 +

∫
Ω

|p3|2
)
,

χ
a

∫
Ω

a∗∇p3 · ∇p5 ≤ ‖a∗‖4 ‖∇p3‖4 ‖∇p5‖2

≤ 1

2

∫
Ω

|∇p5|2 + c ‖a∗‖2
4 ‖p3‖V

(
‖p3‖+ ‖∆p3‖

)
≤ 1

2

∫
Ω

|∇p5|2 + c ‖a∗‖2
4 ‖p3‖2

V + c ‖a∗‖2
4 ‖p3‖V ‖∆p3‖

≤ 1

2

∫
Ω

|∇p5|2 +
1

4

∫
Ω

|∆p3|2 + c
(
‖a∗‖2

4 + ‖a∗‖4
4

) ∫
Ω

(|p3|2 + |∇p3|2),

− χa
∫

Ω

(∇σ∗ · ∇p3)∆p3 ≤ ‖∇σ∗‖∞ ‖∇p3‖2 ‖∆p3‖2

≤ 1

4

∫
Ω

|∆p3|2 + c‖σ∗‖2
H3(Ω)

∫
Ω

|∇p3|2 .

By combining the above estimates, observing that the function t 7→ ‖σ∗(t)‖2
H3(Ω) is bounded in

L1(0, T ), integrating over (t, T ) with respect to time, and applying Gronwall’s lemma, we conclude that

‖p1‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖p2‖L2(0,T ;H) + ‖p3‖L∞(0,T ;V )∩L2(0,T ;W )

+ ‖p4‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖p5‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c , (7.37)

and a comparison in (7.31) and in (7.32), along with elliptic regularity, yields that also

‖p1‖L2(0,T ;W ) + ‖p3‖H1(0,T ;H) ≤ c . (7.38)
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Second a priori estimate. We test (7.30) by p2 and (7.31) by−∂tp1 and sum up. Since a cancella-
tion occurs, we obtain that∫

Ω

|∇p2|2 −
1

2

d

dt

∫
Ω

|∇p1|2 = −
5∑
j=1

∫
Ω

f1,j pj p2 +

∫
Ω

f1,0 p2 .

By virtue of the last assumption in (6.3), we notice that p1(T ) ∈ V . Thus, integrating with respect to
time, and applying the Gronwall lemma, we immediately infer that

‖∇p1‖L∞(0,T ;H) + ‖∇p2‖L2(0,T ;H) ≤ c .

Therefore, we can conclude from (7.37) that

‖p1‖L∞(0,T ;V ) + ‖p2‖L2(0,T ;V ) ≤ c . (7.39)

Consequences. Next, we recall that p1(T ) ∈ V and p4(T ) = 0. Hence, we can first compare in
(7.31), and then apply the parabolic regularity in (7.32) and (7.33), to see that

‖p1‖L2(0,T ;H3(Ω)) + ‖p3‖H1(0,T ;H) + ‖p4‖H1(0,T ;V )∩L2(0,T ;H3(Ω)) ≤ c . (7.40)

Further a priori estimates. Finally, we test (7.30) and (7.34) by a generic v ∈ L2(0, T ;V ) and
integrate over (0, T ). Owing to the previous estimates, we easily conclude that

‖∂tp1‖L2(0,T ;V ∗) + ‖∂tp5‖L2(0,T ;V ∗) ≤ c . (7.41)

We just comment on a term involved in the second test: we have that

χ
a

∫
Q

a∗∇p3 · ∇v ≤ ‖a∗‖L4(Q) ‖∇p3‖L4(Q) ‖∇v‖L2(Q) ≤ c ‖v‖L2(0,T ;V ) .

This concludes the formal proof of the existence of a solution (p1, p2, p3, p4, p5) satisfying (7.25)–
(7.29).

Uniqueness. By linearity, we just have to consider the homogeneous problem, i.e., we replace f1,0

by zero and assume p1(T ) = 0 in place of the first terminal value condition in (7.35). Once more, we
make one of the formal estimates rigorous. Namely, we come back to the derivation of (7.37), where we
have tested (7.32) by −∆p3. Instead of doing this, we account for the regularity of the solution, write
(7.32) in its strong form, multiply it by −∆p3, and integrate over Ω. Then, the same estimates can be
performed. After applying the Gronwall lemma, we conclude that (p1, p2, p3, p4, p5) = (0, 0, 0, 0, 0).

Our final result is the first-order necessary optimality condition, expressed in the following theorem.

Theorem 7.4. Let u∗ ∈ Uad be an optimal control, and let (p1, p2, p3, p4, p5) be the solution to the
associated adjoint problem (7.30)–(7.35). Then, there holds the following variational inequality:∫

Q

(p3 + b3u
∗)(u− u∗) ≥ 0 for every u ∈ Uad . (7.42)

In particular, being b3 > 0, the optimal control u∗ is the L2-orthogonal projection of −p3/b3 on Uad.
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Proof. We fix u ∈ Uad, set h := u − u∗, and consider both the linearized problem (7.4)–(7.9)
associated with u∗ and h and the adjoint problem. We test the equations of the former by p1, p2, p3,
p4 and p5, respectively, and those of the latter by −ψ, −η, −α, −ν and −ω, respectively. By also
recalling (7.22)–(7.24), we have that

〈∂tψ, p1〉+

∫
Ω

∇η · ∇p1 − χϕ
∫

Ω

∇ν · ∇p1 = −m
∫

Ω

ψ p1 +

∫
Ω

h
′(ϕ∗)ψ p1 ,∫

Ω

∇ψ · ∇p2 +

∫
Ω

F ′′(ϕ∗)ψ p2 =

∫
Ω

η p2 ,

〈∂tα, p3〉+

∫
Ω

∇α · ∇p3 − χa
∫

Ω

(α∇σ∗ + a∗∇ω) · ∇p3 =

∫
Ω

(α− 2a∗α + h)p3 ,∫
Ω

∂tν p4 +

∫
Ω

∇ν · ∇p4 − χϕ
∫

Ω

ψ p4 =

∫
Ω

(cϕψ + cnν + cσω)p4 ,∫
Ω

∂tω p5 +

∫
Ω

∇ω · ∇p5 =

∫
Ω

(−ω + χ
aα− ασ∗ − a∗ω)p5 ,

and

〈∂tp1, ψ〉 −
∫

Ω

∇p2 · ∇ψ −
∫

Ω

(
(m− h′(ϕ∗))p1 + F ′′(ϕ∗) p2 − (χϕ + cϕ)p4

)
ψ

= −b1

∫
Ω

(ϕ∗ − ϕQ)ψ ,

−
∫

Ω

∇p1 · ∇η = −
∫

Ω

p2 η ,∫
Ω

∂tp3 α−
∫

Ω

∇p3 · ∇α + χ
a

∫
Ω

(∇σ∗ · ∇p3)α

−
∫

Ω

2a∗ p3 α−
∫

Ω

(
−p3 + (σ∗ − χa)p5

)
α = 0 ,∫

Ω

∂tp4 ν −
∫

Ω

∇p4 · ∇ν + χ
ϕ

∫
Ω

∇p1 · ∇ν + cn

∫
Ω

p4 ν = 0 ,

〈∂tp5, ω〉 −
∫

Ω

∇p5 · ∇ω + χ
a

∫
Ω

a∗∇p3 · ∇ω −
∫

Ω

a∗ p5 ω −
∫

Ω

(
−cσ p4 + p5

)
ω = 0 .

At this point, we take the sum of all these identities. Just a few terms do not cancel out. Namely, we
find that

〈∂tψ, p1〉+ 〈∂tp1, ψ〉+ 〈∂tα, p3〉+ 〈∂tp3, α〉+ 〈∂tν, p4〉+ 〈∂tp4, ν〉

+ 〈∂tω, p5〉+ 〈∂tp5, ω〉 =

∫
Ω

h p3 − b1

∫
Ω

(ϕ∗ − ϕQ)ψ .

Now, we integrate over (0, T ) and apply the well-known integration-by-parts formula for functions
belonging to H1(0, T ;V ∗) ∩ L2(0, T ;V ). On account of the initial and final conditions (7.9) and
(7.35), and recalling the choice of h, we then conclude that

b2

∫
Ω

(
ϕ∗(T )− ϕΩ

)
ψ(T ) =

∫
Q

(u− u∗) p3 − b1

∫
Q

(ϕ∗ − ϕQ)ψ .

Combining this identity with (7.21), we obtain (7.42), and the proof is complete.
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Remark 7.5. Since the optimal control problem under study is nonconvex, it may have many local
minima. We claim that the variational inequality (7.42) has to be valid also for all such locally optimal
controls. In this connection, recall that a control u∗ ∈ Uad is termed locally optimal in the sense of
Lp(Q) for 1 ≤ p ≤ ∞ if and only if there exists some ε > 0 such that

J(u∗, S1(u∗)) ≤ J(u, S1(u)) for all u ∈ Uad with ‖u− u∗‖Lp(Q) ≤ ε.

Note also that every locally optimal control in the sense of Lp(Q) for some 1 ≤ p <∞ is also locally
optimal in the sense of L∞(Q). Now, it is easily seen that any locally optimal control in the sense of
L∞(Q) satisfies the variational inequality (7.21). Hence, by the same argument as in the preceding
proof, it must satisfy also (7.42).
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