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Self-repellent Brownian bridges in an interacting Bose gas
Erwin Bolthausen, Wolfgang König, Chiranjib Mukherjee

Abstract

We consider a model of d-dimensional interacting quantum Bose gas, expressed in terms of an en-
semble of interacting Brownian bridges in a large box and undergoing the influence of all the interactions
between the legs of each of the Brownian bridges. We study the thermodynamic limit of the system
and give an explicit formula for the limiting free energy and a necessary and sufficient criterion for the
occurrence of a condensation phase transition. For d ≥ 5 and sufficiently small interaction, we prove
that the condensate phase is not empty. The ideas of proof rely on the similarity of the interaction to
that of the self-repellent random walk, and build on a lace expansion method conducive to treating paths
undergoing mutual repellence within each bridge.

1 Introduction and main results

1.1 Background.

The well-known interacting Bose gas can be written, using the Feynman–Kac formula, as a random ensemble
of many Brownian bridges of random and unbounded lengths (= particle numbers) with mutually repellent
interactions between any two legs of any of the bridges. In the thermodynamic limit, the transition from
absence to emergence of macroscopically many particles in long bridges in this ensemble as the density
increases is a prominent open problem that is strongly linked with the famous phase transition called Bose–
Einstein condensation (BEC), if not equal to that.

The starting observation of the present paper is the following: Each of these bridges, under the influence
of all the interactions between its legs alone, is a transformation of a Brownian bridge that should lie in the
class of the well-known self-repellent walk (or weakly self-avoiding walk). This class of random motions is
prominent in statistical physics and has been studied a lot since several decades, although a lot of problems
are left widely open.

However, to the best of our knowledge, a substantial connection between the Bose gas and the self-
repellent walk has not been made. In this paper, we establish this connection to study the influence of the
interactions between its legs and characterize the free energy of the system explicitly in terms of a variational
formula and find criteria for the presence of a condensate phase transition in this model. These criteria lie at
the heart of the critical properties of the self-repellent Brownian bridges.

Below in Section 1.2 we will introduce the mathematical layout of the model, in Section 1.3 we will explain
our purposes and formulate our main results in Section 1.4. In Section 2 we will discuss the necessary
background, outline the method of proof and draw conclusions from our main results. The proofs will be
given in the subsequent sections.
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E. Bolthausen, Wolfgang König, Ch. Mukherjee 2

1.2 The model.

Let us introduce the model that we are interested in. As will be explained in Section 2.1, it is indeed a version
of the interacting Bose gas. For the sake of simplicity, we prefer to formulate it as a model of a random
partition of a positive integer N ∈ N.

Indeed, denote the set of partitions of N ∈ N by

PN =
{
l = (lk)k∈N ∈ NN

0 :
∑
k∈N

klk = N
}
. (1.1)

With a parameter β ∈ (0,∞), introduce the following probability measure on PN :

P
(N)

β,Λ(l) =
1

Z(bc)

N (β,Λ)

∏
k∈N

[
|Λ|Γ(bc)

Λ,k

]lk
lk! klk

, l = (lk)k∈N ∈ PN , (1.2)

where

Z(bc)

N (β,Λ) =
∑
l∈PN

∏
k∈N

[
|Λ|Γ(bc)

Λ,k

]lk
lk! klk

(1.3)

is the partition function of the model (the normalization). It is well-known that N/
∏

k∈N lk!k
lk is equal to the

number of permutations of 1, . . . , N that have precisely lk cycles for any k ∈ N. Thus, (1.1)- (1.3) indeed
define a model of a random permutation with multiplicative weight |Λ|Γ(bc)

Λ,k for any cycle of length k; see
Section 2.4 for further details.

Let us now explain the terms appearing in (1.1) – (1.3). First, Λ ⊂ Rd denotes a centered box, and Γ(bc)

Λ,k

is defined as an integral of an exponential interaction with respect to a Brownian bridge of length k in Λ (cf.
(1.5) below). If we denote by µ(bc,β)

x,y (·) the canonical Brownian bridge measure on the time interval [0, β]
from x to y subject to the boundary condition ‘bc’ in the box Λ (the boundary condition to be specified later),
we set

µ(bc,β)

Λ (df) =
1

|Λ|

∫
Λ

dxµ(bc,β)

x,x (df). (1.4)

Thus, µ(bc,β)

Λ (·) is a Brownian bridge measure on C = C1, where Ck denotes the set of continuous functions
[0, kβ] → Rd, with uniform starting-termination site in the centered box Λ. If we write µ(f) for the integral∫
fdµ of a function f with respect to a measure µ, the weight Γ(bc)

Λ,k is defined as

Γ(bc)

Λ,k = µ(bc,kβ)

Λ

[
e−

∑
1≤i<j≤k V (Bi,Bj)

]
, (1.5)

where, for any two continuous functions f, g ∈ C, we write

V (f, g) =

∫ β

0

v(|f(s)− g(s)|) ds, (1.6)

and v : [0,∞) → [0,∞) is a bounded measurable pair interaction potential having compact support. In
(1.5), the Brownian bridge B in Ck has been decomposed into its k legs, defined as

Bj = (Bj(s))s∈[0,β] = (B((j − 1)β + s))s∈[0,β] ∈ C, j ∈ [k] = {1, . . . , k}. (1.7)
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Self-repellent Brownian bridges in an interacting Bose gas 3

Hence, the exponential interaction term in (1.12) is the pair-interaction sum of all the legs of a Brownian
bridge of length k. Therefore, Γ(bc)

Λ,k is the partition function of what can be called a variant of the self-repellent
(or weakly self-avoiding) Brownian bridge, where the usual δ-interaction between any two B(s) and B(t) is
replaced by a smooth interaction between any two legs Bi and Bj . The starting site of this motion is not the
origin as usual, but is uniformly distributed over a large box, and the endpoint is conditioned to be the initial
site. We will be studying this model in the limit N → ∞ with the box Λ = ΛN having volume ∼ N/ρ for
some ρ ∈ (0,∞), i.e., in the thermodynamic limit.

By the Feynman–Kac formula, the above model can also be represented as an ensemble of N Brownian
bridges in Λ with time-horizon [0, β] under some symmetrization condition, where each leg has an interac-
tion with each other leg. Due to the symmetrization, one can decompose the ensemble into closed loops
(bridges); see Section 2.1 for further details.

We remark that we have kept all features that come from the Bose gas in a large box, in particular the fact
that the particles are confined to a box with certain boundary conditions. Most of the existing works on the
Bose gas consider periodic boundary conditions, and focus on models of random permutations that dispense
with considerations of boundary conditions. However, we find it important to keep them in the model, since
they are physically relevant and since they might lead to additional effects. Indeed, for periodic or Dirichlet
zero boundary conditions, the asymptotics of the weight Γ(bc)

Λ,k in (1.5) for large k and boxes Λ of volume

� N are clearly different for k � N2/d and for k � N2/d.

1.3 Our purpose.

As mentioned above, we will be interested in the thermodynamic limit of the model described above. Namely,
we fix the inverse temperature β ∈ (0,∞), a density ρ ∈ (0,∞), take the box Λ = ΛN of volume
|ΛN | = N

ρ
and define the corresponding limiting free energy per volume as

f(β, ρ) := − lim
N→∞

1

|ΛN |
logZ(bc)

N (β,ΛN), β, ρ ∈ (0,∞). (1.8)

In our first main result, Theorem 1.1, we will see that this limit exists, is independent of boundary conditions
and can be expressed in terms of a characteristic variational formula that describes the statistics of all the
lengths of the Brownian bridges. Next, in this result we prove a large-deviation principle for these statistics
and identify the minimizer of the rate function. This implies in particular that the statistics of the cycle lengths
converge in distribution towards that minimizer. Now, the characterization of the minimizer involves a possible
phase transition in the density ρ – that is, a non-analyticity of the map

ρ 7→ f(β, ρ) (1.9)

emerges at some explicit critical threshold ρc(β), which may or may not be finite in general. This phase
transition underlines a loss of mass in the statistics of the finite-size cycle lengths in the spirit of the well-
known effect in the free Bose gas; it is therefore a signal for a condensation phase transition in a vicinity of
the Bose–Einstein condensation.

So far, the above statements are valid for a wide choice of the weights Γ(bc)

Λ,k in (1.3) as well as arbitrary
d ∈ N and β ∈ (0,∞). Now for our model, ρc(β) is shown to be equal to the Green’s function at the
origin of a transformed self-interacting Brownian bridge, geometrically weighted with a crucial parameter, the
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E. Bolthausen, Wolfgang König, Ch. Mukherjee 4

radius of convergence. As a consequence, finiteness of the Green’s function implies the existence of the
aforementioned non-analyticity of the map (1.9) at ρc(β).

Theorem 1.2 is our second main result, where we determine circumstances under which the aforemen-
tioned phase transition does occur. Indeed, we show that for d ≥ 5 and the interaction potential v remaining
sufficiently small, the critical density ρc(β) is actually finite. The key idea here is the observation that the
self-interacting Brownian bridge lies in the same universality class as the famous self-avoiding walk (SAW),
the uniform distribution onN -step nearest-neighbour random walks on Zd starting at zero and hitting no site
twice. Indeed, since the pair functional v is non-negative, the interaction

∑
1≤i<j≤k V (Bi, Bj) repels each

two legs from each other, in the spirit of a weak version of the SAW, the self-repellent random walk. One
main difference to the present model of the interacting quantum Bose gas is that here it is paths that undergo
a mutual repellence, not endpoints.

The restrictions to d ≥ 5 and small β are due to a continuous version of the lace expansion method that
we develop and employ in the proof of Theorem 1.2. This part is a modification of the method developed in
[BHK18]. We refer to Section 2.3 for a short survey on this method, and to Section 2.2 for precise conjectures
about the behaviour of the SAW and models in its universality class. Surprisingly, these conjectures imply the
finiteness of the Green’s function (i.e., the occurrence of the phase transition in our model) even in dimension
d = 2, not only in dimensions d ≥ 3, being aligned with conjectures about the BEC phase transition.

1.4 Main results.

The formulation of our results will require setting up some further notation, which will subsequently be used
in the entire sequel. As before, C will denote the space of continuous functions [0, β]→ Rd. The canonical
Brownian bridge measure is defined for any measurable A ⊂ C as

µ(β)

x,y(A) =
Px(B ∈ A;Bβ ∈ dy)

dy
. (1.10)

Its total mass is given by

µ(β)

x,y(C) = ϕβ(x, y) :=
Px(Bβ ∈ dy)

dy
= (2πβ)−d/2e−

1
2β
|x−y|2 , (1.11)

where B = (Bt)t∈[0,β] is a Brownian motion in Rd with generator 1
2
∆, starting from x under Px. Hence, the

total mass of µ(kβ)

0,0 is equal to (2πβk)−d/2.

We fix a bounded mesurable function v : [0,∞)→ [0,∞) with compact support. Let us set

Γk = µ(kβ)

0,0

[
e−

∑
1≤i<j≤k V (Bi,Bj)

]
= E0

[
e−

∑
1≤i<j≤k V (Bi,Bj) 1l{B(kβ) ∈ dx}

]/
dx
∣∣∣
x=0

,
(1.12)

with V (·, ·) defined in (1.6), compare to (1.5). Then the sequence (Γk(2πβk)d/2)k∈N is sub-multiplicative.
Consequently, by Fekete’s lemma, the limit (known as the connective constant)

λc(β) = lim
k→∞

Γ
−1/k
k exists and satisfies

λc(β)kΓk ≥ (2πβk)−d/2 ∀k ∈ N.
(1.13)
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Self-repellent Brownian bridges in an interacting Bose gas 5

λc(β) is the radius of convergence of the power series with coefficients Γk. It will turn out to capture the
limiting behaviour of the coefficients Γ(bc)

ΛN ,k
of the model. Finally, introduce

I(p) =
∑
k∈N

pk log
pkk

Γke
, p = (pk)k∈N ∈ [0,∞)N. (1.14)

The function I will turn out to play the role of a large-deviation rate function – it is the relative entropy of p
with respect to the sequence (Γk/k)k∈N plus the sum of the Γk/k.

Here is the identification of the free energy f(β, ρ) defined in (1.8), which is the first main result of our
article.

Theorem 1.1 (Free energy and cycle lengths). Fix β, ρ ∈ (0,∞) and consider the model defined in (1.3)
and (1.2) in the centred box ΛN with volume N/ρ with Dirichlet boundary conditions bc ∈ {Dir}. Then the
following hold.

(i) With λ(cβ) defined in (1.13), the limiting free energy f(β, ρ) defined in (1.8) exists and is identified
as

f(β, ρ) = inf
p∈[0,∞)N :

∑
k kpk≤ρ

[
I(p) +

(
ρ−

∑
k∈N

kpk

)
log λc(β)

]
. (1.15)

(ii) Let (Lk)k∈N be a random variable under P(N)

β,ΛN
, then the distribution of (Lk/|ΛN |)k∈N satisfies a

large-deviations principle (LDP) 21 on the set Xρ = {p ∈ [0,∞)N :
∑

k∈N kpk ∈ [0, ρ]} on the
scale |ΛN | with rate function J given by

J(p) = I(p) +
(
ρ−

∑
k∈N

kpk

)
log λc(β)− f(β, ρ). (1.16)

(iii) Put

ρc(β) =
∑
k∈N

λc(β)kΓk ∈ [0,∞]. (1.17)

Then the unique minimizer p∗ of the formula on the right-hand side of (1.15) is given as

p∗k =
1

k
λc(β)kΓk ×

{
e−c(ρ)k, if ρ ≤ ρc(β),

1 if ρ > ρc(β),
k ∈ N, (1.18)

12 This means the following: A sequence (XN )N∈N of random variables taking values in a topological space X satisfies an
LDP on the scale γN with rate function J : X → [0,∞] if J is lower-semicontinuous and for any open subset G and any closed
subset F of X ,

lim inf
N→∞

1

γN
logP(XN ∈ G) ≥ − inf

G
J and lim sup

N→∞

1

γN
logP(XN ∈ F ) ≤ − inf

F
J.

If J has a unique minizer x∗ ∈ X , then it follows thatXN converges weakly towards x∗. We refer to [DZ98] for the general theory
of large deviations.
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where c(ρ) ∈ [0,∞) is such that ∑
k∈N

λc(β)kΓke
−c(ρ)k = ρ.

In particular, ρ 7→ c(ρ) is strictly decreasing with c(ρc(β)) = 0. Furthermore,
∑

k∈N kp
∗
k = ρ∧ρc(β)

for any ρ ∈ (0,∞).

(iv)

f(β, ρ) = ρ log λc(β)−

{
ρc(ρ) +

∑
k∈N

1
k
Γkλc(β)ke−c(ρ)k if ρ ≤ ρc(β),∑

k∈N
1
k
Γkλc(β)k if ρ > ρc(β).

(1.19)

In particular, f(β, ·) has a phase transition (non-analyticity) in ρc(β) if this point is finite.

The proof of Theorem 1.1 is provided in Section 3. Let us make some remarks about the assertions
appearing there. First note that the rate function of the LDP there has two terms, the entropic term I , which
describes the statistics of the finite cycle lengths, and the energy term, (ρ −

∑
k kpk) log λc(β), which is

the contribution from the condensate part. Unlike in the free Bose gas (see, e.g., [KVZ23]), the condensate
yields here an explicit contribution on the leading scale, but not an entropic one. While each cycle of length
k comes with an energetic term Γk, the condensate comes with the logarithm of the connective constant of
the sequence (Γk)k∈N. The convergence of (Lk/ΛN)k∈N towards the minimizer p∗ shows that the model
has a phase transition at the critical density ρc(β) if this quantity is finite. In (1.17) we see that ρc(β) is the
Green’s function of the transformed Brownian motion geometrically weighted with parameter λ = λc(β),
taken at the origin, and λc(β) is the radius of convergence. If the Green’s function is finite at this point, then
the free energy f(β, ·) is not analytic here, since all the coefficients in the series in (1.15) are positive.

Now the question of course arises, under what circumstances this phase transition occurs. We give a
positive answer in our next main result.

Theorem 1.2 (Phase transition in d ≥ 5). Assume that d ≥ 5 and that the interaction potential v (cf. (1.5)
and (1.6)) is bounded and continuous and has a bounded support. Let ρc(v, β) = ρc(β) be the critical
density defined in (1.17). Then, for any β ∈ (0,∞), there is αβ > 0 such that ρc(αv, β) < ∞ for any
α ∈ (0, αβ].

The proof of Theorem 1.2 is spanned through Section 4 – Section 7. As we will explain in Section 2, the
restriction to d ≥ 5 is related to the question that lies at the heart of a famous and fundamental question
that is notoriously difficult to answer in dimensions d ∈ {2, 3, 4}: the question whether or not the Green’s
function of the weakly self-avoiding walk is finite at the critical point.

The organization of the remainder of this paper is as follows. In Section 2 we discuss several aspects of
our main results, in Section 3 we prove Theorem 1.1, in Section 4 we give the proof of Theorem 1.2, subject
to the proof of two crucial results that we prove in Sections 5 and 6, respectively. In Section 7, we prove
some technical estimates, which are used in the two sections preceding to that.
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Self-repellent Brownian bridges in an interacting Bose gas 7

2 Background and discussion

In this section we discuss the background, proof method and conclusions of our main results. More con-
cretely, in Section 2.1 we explain the relation between the well-known interacting Bose gas and the model
that we study in this paper, in Section 2.2 we summarize what is known and what is conjectured about the
weakly self-avoiding walk, and we draw conjectural conclusions about the occurrence of the phase transi-
tion in those dimensions that we do not handle in this paper. Some elements and outline of our main proof
method for Theorem 1.2 is presented and commented on in Section 2.3. Finally, we comment on our model
from the viewpoint of random permutations in Section 2.4, and in Section 2.5 we comment on the role of the
boundary conditions carried in our model.

2.1 The interacting Bose gas.

The model that we are interested in and described in Section 1.2 is strongly inspired by an investigation of
an interacting quantum gas at positive temperature 1/β ∈ (0,∞) in the thermodynamic limit, the setup for
which can be briefly described as follows. As before, let Λ ⊂ Rd be a centered box and

H(bc)

N,Λ = −1

2

N∑
i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj|), x1, . . . , xN ∈ Λ,

is the Hamiltonian operator for N particles located at x1, . . . , xN in Λ ⊂ Rd with a prescribed boundary
condition. Again v : [0,∞) → [0,∞) is some pair-interaction functional, which is assumed to be bounded
with bounded support. We are interested in bosons, and in this vein a key object of interest is the symmetrized
trace

Z(bc)

N (β,Λ) := Tr+

(
e−βH

(bc)
N,Λ
)
, β ∈ (0,∞), (2.1)

where the index + stands for symmetrization – that is, application of the projection operator on the set of all
permutation invariant wave functions.

We are going to rewrite this trace in terms of many interacting Brownian bridges, which is a well-known
manipulation since the early 1970s and builds on Feynman’s intuition from 1953. We refer to [ACK11,
Lemma 2.1] for a proof and further details for the following, and to [U06b] for a non-technical and physics-
related introduction to the rewrite of the Bose gas in terms of Brownian bridges.

Using well-known trace formulas [G70], (2.1) can be rewritten in probabilistic terminology using Brownian
bridges as

Z(bc)

N (β,Λ) =
1

N !

∑
σ∈SN

∫
ΛN

dx1 · · · dxN
N⊗
i=1

µ(bc,β)

xi,xσ(i)

[
exp

{
−

∑
1≤i<j≤N

V (B(i), B(j))
}]
. (2.2)

Next, it is well-known that each permutation σ ∈ SN can be decomposed into cycles – that is, each σ can
be represented by a partition ofN . For each σ there is an l ∈ PN such that σ consists of precisely lk cycles
of length k, for any k. Using the Markov property of the Brownian motion (or, equivalently, the semigroup
property of the family of Brownian bridge measures), we can identify each sequence of legs that lie within
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one cycle of length k as one Brownian bridge starting and ending at the same site and having the time
interval [0, βk]. Hence, for any k ∈ N, σ gives rise to lk bridges of length k, labeled

B(k,1), . . . , B(k,lk), (2.3)

and any bridge B(k,i) has the legs

B(k,i)

j = (B(k,i)

j (s))s∈[0,β] = (B(k,i)((j − 1)β + s))s∈[0,β]. (2.4)

Then, writing [m] = {1, . . . ,m}, our ensemble of legs is the collection{
(B(k,i)

j )k,i,j : k ∈ [N ], i ∈ [lk], j ∈ [k]

}
sampled under the measure

⊗
k∈N(|Λ|µ(bc,kβ)

Λ )⊗lk . Furthermore, observe that, for any l ∈ PN , the number
of permutations of 1, . . . , N such that lk is the number of its cycles of length k for any k ∈ N is equal
to N !/

∏
k∈N lk! k

lk [C02, Th. 12.1]. As a result, the partition function of the interacting Bose gas may be
written ∑

l∈PN

(∏
k∈N

|Λ|lk
lk! klk

)[⊗
k∈N

(
µ(bc,kβ)

Λ

)⊗lk][e−GN,β], (2.5)

where the entire interaction can be written as

GN,β =
∑

(k1,i1,j1)6=(k2,i2,j2)

V
(
B(k1,i1)

j1
, B(k2,i2)

j2

)
. (2.6)

Hence, in the standard form of the interacting Bose gas, every leg of every bridge interacts with any other
leg of a bridge. If we drop all interactions between two legs of different bridges, that is, if we replace GN,β

on the right-hand side of (2.5) by the interaction

HN,β =
N∑
k=1

lk∑
i=1

∑
1≤j1<j2≤k

V
(
B(k,i)

j1
, B(k,i)

j2

)
, (2.7)

then, for this interaction, the expectation over the product of the µ(bc,kβ)

Λ decomposes into a product of ex-
pectations, and we see that in (2.5), the partition function of our model, Z(bc)

N (β,Λ), defined in (1.3) arises.
This is our motivation to study this model. Although different cycles do not interact and it is a simplification
compared to the scenario of the interacting Bose gas, the self-interactions within each cycle already man-
ifest into an interesting phase transition, as highlighted by Theorem 1.1 and Theorem 1.2, confirming the
conjecture that we will now be discussing in Section 2.2.

2.2 Self-repellent random motions.

In our model (1.3) of a partially interacting Bose gas, it turned out in Theorem 1.1 that the occurrence
of a condensation phase transition is equivalent to the summability of λc(β)kΓk on k ∈ N. This in turn
is equivalent to the finiteness of the Green’s function at zero for the corresponding self-repellent random
path model in the critical point. This model is of the type of the weakly self-avoiding walk, however, for
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Self-repellent Brownian bridges in an interacting Bose gas 9

a Brownian bridge instead of a free (i.e., open-end) path, and with a different type of mutually repellent
interaction, which has not yet been studied in the literature on self-interacting path models. Indeed, the
interaction

∑
1≤i<j≤k V (Bi, Bj) for a Brownian motion B is in the same spirit as the interaction Hk =∑

1≤i<j≤k 1l{Si = Sj} (the self-intersection local time) for a random walk (Si)i∈N0 in Zd, since V > 0.
The two differences between these two models are that (1) precise intersections do almost surely not appear
for the Brownian-motion model, and (2) the entire legBi : [0, β]→ Rd is involved in the interaction, not only
its endpoint Bi(β). But we find it obvious that both models should lie in the same universality class of
transformed path measures. Hence let us briefly summarize what is known for the weakly self-avoiding walk.

See [S11] for a brief survey on the weakly self-avoiding walk, the random walk measure on k-
step nearest-neighbour paths (S0, S1, . . . , Sk) in Zd starting from the origin with probability weight
exp{−α

∑
1≤i<j≤k 1l{Si = Sj}} and partition function Zk. We restrict to dimensions d ≥ 2. The main

conjecture is that the expected end-to end distance |Sk − S0| after k steps should be of size ≈ kνd , with
νd ∈ [1

2
, 1] a critical power that is believed to be ν2 = 3

4
, ν3 ≈ 0.5876, and νd = 1

2
in d ≥ 4, with loga-

rithmic corrections in d = 4. Furthermore, Zk is conjectured to be � λ−kkµd−1 for some µd. The powers
νd and µd are believed to be universal, i.e., not to depend on details of the underlying random walk. Their
conjectured values are µ2 = 43

32
and µ3 ≈ 1.1568 and µ4 = 1 and µd = 3− d for d ≥ 5. This implies that

the partition function in the critical point should satisfy Zk ≈ λ−kc kµd−1 as k → ∞, where λc is the critical
parameter (the connective constant, defined analogously to (1.13)).

Conjectures about the finiteness of the Green’s function in the critical point can be deduced from the
above conjectures. Recall that the prediction is that |Sk| ≈ kνd and Zk ≈ λ−kkµd−1 as k →∞, where we
remark that Zk is the experctation of e−αHk for the random walk with a free end, while Γk is the same for
the random walk bridge. Assuming even that Skk−νd converges in distribution under the (free-end) weakly
self-avoiding walk model towards some non-degenerate variable (and neglecting the logarithmic corrections
that are expected in d = 4), we would then obtain that

Γkλ
k ≈ kµd−1 1

Zk
E
[
e−αHk1l{Skk−νd∈dx}

]
/dx|x=0 ≈ kµd−1−dνd .

That is, if the right-hand side is summable, then the model with bridge instead of free end should have a
finite Green’s function in the critical point. This is the case precisely if µd < dνd. Surprisingly, this should be
true in any dimension d ∈ {2, 3, 4}, also for d = 2.

Hence, we conjecture that the condensation phase transition appears in our model in (1.3) also in d =
2. This is surprising, since in the original interacting quantum Bose gas (see Section 2.1) it is generally
conjectured that the phase transition exists only in dimensions d ≥ 3, but not in d = 2. For the two-
dimensional free (i.e., non-interacting) quantum Bose gas, the non-existence of the phase transition relies
on the non-summability of 1/k, which is ‘just at the boundary’ of the validity of this statement.

2.3 Lace expansion.

Let us comment on the method that we use in the proof of Theorem 1.2, the lace expansion. This is a dia-
grammatic expansion of the exponential interaction term e−α

∑
1≤i<j≤k 1l{Si=Sj} in terms of a procedure that

reminds of the inclusion-exclusion principle from basic probability theory. Since diagrammatic illustrations of
the method remind of the laces on the edge of a tablecloth, this method got its name “lace expansion”. It was

DOI 10.20347/WIAS.PREPRINT.3110 Berlin 2024



E. Bolthausen, Wolfgang König, Ch. Mukherjee 10

introduced in the mid-eighties in statistical mechanics and was first applied to the (weakly) self-avoiding walk
in [HS92] and was several times extended and improved, see [vdHS02, HvdHS03] and, more recently [S22].

The method is perturbative and needs a simple, but non-trivial model to expand around, which is most
often simple random walk. Since (at least conjecturally) the weakly self-avoiding walk is similar to the simple
random walk only in dimensions d ≥ 5, the method has been successful only in these dimensions, and only
for sufficiently small values of α. For these values of α, rather strong assertions could be proved, among
which are the following: the endpoint satisfies a central limit theorem (even a local one), i.e., the distribution
of Sk/

√
k under the transformed measure converges towards a Gaussian distribution with an appropriate

non-trivial variance. Furthermore, the Green’s function is finite in the critical parameter value λc.

Besides many other extensions, in recent years the lace expansion was extended to models in continuous
space, where self-intersections almost surely do not occur. In [ABR16], which gave us the leading idea for
the proof in the present paper, the following model is successfully handled in this vein. Here the energy
V (f, g) defined in (1.6) is replaced by

VSAW(f, g) = α1l{|f(β)− g(β)| ≤ r}, f, g ∈ C, (2.8)

where r, α > 0 are parameters, with a free end of the motion. Then the model is the weakly self-avoiding
walk for a Gaussian random walk on Rd, whose steps have mean zero and variance β. In [ABR16], it was
proved that the local central limit theorem holds:

lim
k→∞

1

Zk
E0

[
e−α

∑
1≤i<j≤k V (Si,Sj) 1l{k−1/2Sk ≈ x}

]
= gD(0, x), x ∈ Rd \ U, (2.9)

for sufficiently small α > 0 and some neighbourhood U of 0, where Zk is the partition function, gD is the
Gaussian transition kernel with D = Dα > 0 a suitable diffusion constant, and “≈” needs to be adjusted to
a proper transition from discrete to continuous space. Along the proof, it was also shown that Zk ∼ Cλ−k

for some C, λ > 0, implying of course that λ = λc(γ) is the critical parameter. For x = 0, we have only
“≤” in (2.9), which says that Γk ≤ O(λ−kk k−d/2), which implies that Γkλ

k is summable, i.e., the Green’s
function in the critical point is finite. This implies that Theorem 1.2 holds for this model for sufficiently small
interaction parameter α.

The novelty of the present paper is to extend it to the interaction V defined in (1.6). This is a substantial
non-trivial step since the interaction depends now on the entire leg Bi, not only on its endpoint Bi(β). The
new ideas needed in the present context, for which we will draw on the lace expansion method using Banach
algebras introduced in [BHK18], will be discussed along the way of proving Theorem 1.2.

2.4 Random permutations.

The model that we study in this paper is a probability measure on the set PN of all integer partitions of N
of the form

PN(l) =
1

ZN

∏
k∈N

[θ(N)

k ]lk

lk! klk
, l = (lk)k∈N ∈ PN . (2.10)

Here ZN is the normalisation constant that turns PN into a probability measure, and θ(N)

k ∈ (0,∞) are
positive weights. Such measures are also known as models of random permutations, i.e., as a probability
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measure on the set SN of all permutations σ of 1, . . . , N , giving the weight θ(N)

k to any cycle of σ with
length k, independently over all cycles. Note that one can freely multiply θ(N)

k by a factor eαk for fixed k
without changing PN , since this factor drops out in the normalisation.

For θ(N)

k = θk not depending onN , such distributions have been studied in recent years for many choices
of the weights θk, and various limiting regimes and limiting distributions have been identified and studied in
great detail, producing a rich picture. This line of research goes under the name random (spatial resp. geo-
metric) permutations and was initiated in [BU09] as a simplified model for the interacting Bose gas (it appears
after interchanging the logarithm with a certain sum in the partition function). See [RZ20] for one of the latest
contributions and a host of references on this line of research, which has departed considerably from the
spirit of the interacting Bose gas in the last decade.

The weights that we study in this paper, are roughly of the form

θ(N)

k = N(γN,k + o(1)), N →∞, k ∈ N, (2.11)

with some γN,k ∈ (0,∞), whose behaviour as N →∞ is a priori not easy to determine. Indeed, for fixed
k, it converges, as N →∞ towards γk = 1

ρ
Γk defined in (1.12), and this is also true for k � N2/d, but for

k � N2/d, other effects emerge in the asymptotics, and a proof of the necessary asymptotics for deriving
an LDP are not so easy to get, and actually in the case of periodic boundary condition we do not. Note that
Γk is exponentially fast in k, but this exponential terms drops out of the question about the phase transition,
and the second term is decisive. For the free Bose gas, γk = 1

ρ
(2πβk)−d/2 with ρ, β ∈ (0,∞) are the

particle density and inverse temperature.

2.5 Influence of boundary conditions.

The technical difficulties in deriving an LDP in Theorem 1.1 stem from the precise form of γN,k in (2.11),
which depend on the boundary conditions that we use in our interacting Bose gas model.

The by far most often used condition (in the standard interacting Bose gas and in practically all variants)
is the periodic one, which is a mathematical idealisation that gives simpler formulas and less technicalities.
Many papers on the free Bose gas (e.g. [Sü93, Sü02, BCMP05]) concentrate either on this choice or on the
even simpler free boundary conditions, where the starting and termination sites of the bridges stay inside the
box, but not necessarily the entire path (this does not come from a quantum mechanical model). However, for
zero boundary condition, (2.11) is actually not satisfied in the free Bose gas for k coupled with N , since for
k � N2/d, the probability to stay in the box with diameter� N1/d decays to zero exponentially in kN−2/d.
To the best of our knowledge, this seems to be a fact that has not been noticed nor handled in the study of
the free Bose gas before 2023, even though this case is highly relevant from the physics point of view. In
the recent paper [KVZ23], this gap is closed by deriving asymptotics for the reduced one-particle matrix of
the free Bose gas for all these well-known boundary conditions, also including Neumann conditions, to prove
off-diagonal long-range order, which is considered to be the equivalent to the occurrence of BEC.

In our present paper, however, the technicalities arising in the proof of the LDP turned out serious for
the case of periodic boundary condition and we decided to complete the proof only for Dirichlet boundary
condition. Indeed, we were not able to prove the upper bound Γ(per)

ΛN ,k
≤ λc(β)k(1 + ε)k for any k ∈

{1, . . . , N} and all sufficiently large N , precisely for the reason mentioned above (the asymptotics for
k � N2/d are difficult to handle). We elaborate on this point in Remark 1 towards the end of Section 3.1.
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3 Proof of Theorem 1.1

The proof of Theorem 1.1 is split into three steps: In Section 3.1 we will show that the limiting free energy
exists as N →∞ and is independent of the Dirichlet boundary conditions imposed. The assertions (i) and
(ii) of Theorem 1.1 will be shown in Section 3.2, while assertions (iii) and (iv) will be proved in Section 3.3.

3.1 Approximation of Γ(bc)

ΛN ,k
with Γk.

Recall from (1.12) and from (1.5) that

Γk = E0

[
e−Hk(B) 1l{B(kβ) ∈ dx}

]/
dx
∣∣∣
x=0

, (3.1)

Γ(Dir)

ΛN ,k
=

1

|ΛN |

∫
ΛN

dxEx
[
e−Hk(B)1l{B(s) ∈ ΛN ∀s ∈ [0, βk]}1l{B(kβ) ∈ dx}

]/
dx, (3.2)

where we put

Hk(B) =
∑

1≤i<j≤k

V (Bi, Bj) =
∑

1≤i<j≤k

∫ β

0

ds v
(
|Bi(s)−Bj(s)|

)
and recall that Bi = (B((i− 1) + s))s∈[0,β] is the i-th leg of the Brownian motion B on [0, kβ].

In our proof of the LDP in Section 3.2 below, we will need upper bounds for Γ(Dir)

ΛN ,k
in terms of Γk for any

k ∈ {1, . . . , N}, but lower bounds only for any k ≤ kN for some kN → ∞. In this section, we formulate
and prove these assertions in (3.3) and (3.4).

For convenience, we put ΛN = [−1
2
LN ,

1
2
LN)d. For x ∈ Rd, we define z(x) ∈ Zd by x ∈ z(x)LN and

[x] = x− z(x)LN ∈ ΛN .

First we note that
Γk ≥ Γ(Dir)

ΛN ,k
, N, k ∈ N, (3.3)

which follows from dropping the indicator on the event {B(s) ∈ ΛN ∀s ∈ [0, βk]} in (3.2) and noting the
shift-invariance of Hk(B).

We now turn to a lower bound for Γ(Dir)

ΛN ,k
for k’s that are fixed or diverging slowly. Pick some integer

kN →∞ such that kN ≤ o(N1/d). Then we claim that for any ε ∈ (0, 1), there is N0 such that

Γ(Dir)

ΛN ,k
≥ Γk(1− ε), N ≥ N0, k ∈ {1, . . . , kN}. (3.4)

Indeed, with a small η ∈ (0, 1), split the integration in (3.2) into (1− η)ΛN and ΛN \ (1− η)ΛN to see that

Γ(Dir)

ΛN ,k
≥ Γk −

1

|ΛN |

∫
(1−η)ΛN

dxµ(βk)

x,x

[
e−Hk(B)1l{B(s) ∈ Λc

N for some s ∈ [0, βk]}
]

− 1

|ΛN |

∫
ΛN\(1−η)ΛN

dxµ(βk)

x,x

[
e−Hk(B)

]
≥ Γk − e−CN

2/d/k − |ΛN \ (1− η)ΛN |
|ΛN |

Γk

≥ Γk − e−CN
2/d/k − CηΓk,
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Self-repellent Brownian bridges in an interacting Bose gas 13

where we first used an estimate for the probability that a Brownian bridge on the time interval [0, kβ] reaches
a site that is ηN1/d away (with some suitable C > 0, not depending on N ) and then used the maximal
growth of k. Now use that Γk = λc(β)−k(1+o(1)) has a nontrivial exponential behaviour in k to see that the
latter bound can be lower estimated against Γk(1 − ε) for any N ≥ N0, if η and N0 are picked suitably.
This proves (3.4).

Remark 1 For the periodic boundary conditions, we are not able to derive the corresponding bounds for
the following reason: Indeed, by shift-invariance of the interaction

H (per)

ΛN ,k
(B) =

∑
z∈Zd

∑
1≤i<j≤k

∫ β

0

v
(
|Bi(s)−Bj(s) + zLN |

)
ds,

we see that
Γ(per)

ΛN ,k
=
∑
z∈Zd

E0

[
e
−H(per)

ΛN,k
(B)

1l{B(kβ) ∈ dy}
]∣∣∣
y=zLN

.

Now we can invoke the lower bound Γ(per)

Λ,k ≥ Γ(Dir)

Λ,k and use our lower-bound proof for the latter. We can
also estimate H (per)

ΛN ,k
(B) ≥ Hk(B). However, the problem that we encounter now is to upper-estimate the

expectation density on {B(kβ) ∈ LNZd} against the one on {B(kβ) = 0}. In fact, this seems to be
a rather deep issue, since the behavior of the self-repellent walk depends on the spread of the path in a
complicated manner that is currently not understood. However, under the assumptions that we imposed in
Theorem 1.2, an extension of that proof might very well be sufficient to derive suitable asymptotics, but we
have refrained from pursuing this here.

3.2 Proof of the LDP.

In this section we will prove assertions (i) and (ii) of Theorem 1.1. Recall the set of partitions, PN = {l =
(lk)k∈N ∈ NN

0 :
∑

k klk = N} and the state space Xρ = {p ∈ [0,∞)N :
∑

k kpk ∈ [0, ρ]}. We are
going to prove that, for any p ∈ Xρ,

lim
δ↓0

lim
N→∞

1

|ΛN |
log P(N)

β,ΛN

(
(Lk/|ΛN |)k∈N ∈ Bδ(p)

)
= −J(p), (3.5)

where the rate function J(p) is introduced in (1.16), and Bδ(p) is the δ-ball around p in some metric that
induces the product topology on [0,∞)N. Since the state space Xρ is compact, from (3.5) the LDP in (ii)
and the identification of the free energy in (i) of Theorem 1.1 follow along some standard arguments from
LDP theory.

Fix p ∈ Xρ. From a combinatorial argument [A76] it follows that #PN = eo(N) as N →∞. Hence, the
upper bound in (3.5) will follow from

lim sup
δ↓0

lim sup
N→∞

1

|ΛN |
log

(
sup

l∈PN : l/|ΛN |∈Bδ(p)

∏
k∈N

[
|ΛN |Γ(bc)

ΛN ,k

]lk
lk!klk

)
≤ −I(p)−

(
ρ−

∑
k∈N

kpk

)
log λc(β),

(3.6)
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and the lower bound will follow from

lim inf
δ↓0

lim inf
N→∞

1

|ΛN |
log

(∏
k∈N

[
|ΛN |Γ(bc)

ΛN ,k

]l(δ,N)
k

l(δ,N)

k !kl
(δ,N)
k

)
≥ −I(p)−

(
ρ−

∑
k∈N

kpk

)
log λc(β), (3.7)

for some l(δ,N) ∈ Bδ(p). Then combining (3.6) and (3.7) will imply (3.5).

Proof of (3.6): Pick δ > 0 and l ∈ PN such that l/|ΛN | ∈ Bδ(p). We need a large auxiliary parameter
L ∈ N. We split the product on k on the left-hand side of (3.6) into the products on k ≤ L and on k > L.
We substitute

p(N,L)

k =
lk
|ΛN |

, k ∈ {1, . . . , L}. (3.8)

Using Stirling’s formula and (3.3)-(3.4), the first partial product can be asymptotically identified as

L∏
k=1

[ 1

lk!

(1

k
|ΛN |Γ(bc)

Λn,k

)lk]
= eo(|ΛN |)

L∏
k=1

(Γk/k)p
(N,L)
k |ΛN |

(p(N,L)

k /e)p
(N,L)
k |ΛN |

= eo(|ΛN |) exp
{
− |ΛN |IL(p(N,L))

}
,

(3.9)

where IL(p) =
∑L

k=1 pk log pkk
Γke

is the “L-cutoff"version of the rate function I given in (1.14). Hence, we
see from the preceding argument that

lim sup
N→∞

1

|ΛN |
log

(
sup

l∈PN : l/|ΛN |∈Bδ(p)

L∏
k=1

[
|ΛN |Γ(bc)

ΛN ,k

]lk
lk!klk

)
≤ − inf

p̃∈Bδ(p)
IL(p̃). (3.10)

Now the product on k > L on the left-hand side of (3.6) is decomposed into the product of the Γ-terms
and the remainder. Indeed, we are going to show, for any δ ∈ (0, 1),

lim sup
L→∞

lim sup
N→∞

1

|ΛN |
log

(
sup

l∈PN : l/|ΛN |∈Bδ(p)

∏
k>L

[ 1

lk!

(1

k
|ΛN |

)lk])
≤ 0. (3.11)

Concerning the remainder product of the Γ-terms, we will show that

lim sup
δ↓0

lim sup
L→∞

lim sup
N→∞

1

|ΛN |
log

(
sup

l∈PN : l/|ΛN |∈Bδ(p)

∏
k>L

[
Γ(bc)

ΛN ,k

]lk) ≤ −
(
ρ−

∑
k∈N

kpk

)
log λc(β).

(3.12)

For proving (3.11), we use the Stirling bound( l
e

)−l
c

1√
l
≤ 1

l!
≤
( l

e

)−l
C

1√
l

l ∈ N,

for some c, C ∈ (0,∞. Then we see that the left-hand side of (3.11) can be bounded as follows.

1

|ΛN |
log
∏
k>L

[ 1

lk!

(1

k
|ΛN |

)lk]
≤ ρ

N

∑
k>L

lk log
Ne

ρklk
+

1

N
ρ logC
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Now use that
∑

k>L
lk
N
≤ 1

L

∑
k>L

klk
N
≤ 1

L
and apply Jensen’s inequality to the logarithm and the sum

over lk/
∑

n>L ln, to see that (3.11) holds.

Let us turn to a proof of (3.12). Recall from (1.13) that limk→∞ Γ
−1/k
k = λc(β). Pick an ε > 0, then we

may assume that L is so large that Γk ≤ (λc(β)−1 + ε)k for any k > L. Recall that by (3.3) we have
Γ(Dir)

ΛN ,k
≤ Γk. Thus we can bound the left-hand side of (3.12) as follows, for any l ∈ PN and for N > N0.

1

|ΛN |
log
∏
k>L

[
Γ(bc)

ΛN ,k

]lk ≤ 1

|ΛN |
∑
k>L

lk log
([

(λc(β)−1 + ε)
]k)

≤ log
[
(λc(β)−1 + ε)

]∑
k>L

klk
|ΛN |

= log
[
(λc(β)−1 + ε)

](
ρ−

L∑
k=1

kp(N,L)

k

)
,

(3.13)

with p(N,L)

k as in (3.8).

Collecting (3.10), (3.11) and (3.13), we see that, for any L ∈ N and δ, ε ∈ (0, 1),

lim sup
N→∞

1

|ΛN |
log sup

l∈PN : l/|ΛN |∈Bδ(p)

∏
k∈N

[
|ΛN |Γ(bc)

ΛN ,k

]lk
lk!klk

≤ − inf
p̃∈Bδ(p)

IL(p̃) +
(
ρ− inf

p̃∈Bδ(p)

L∑
k=1

kp̃k

)
log
[
(λc(β)−1 + ε)

]
.

(3.14)

Letting δ ↓ 0 and ε ↓ 0, we obtain, for any L ∈ N,

lim sup
δ↓0

(
l.h.s. of (3.14)

)
≤ −IL(p)−

(
ρ−

L∑
k=1

kpk

)
log λc(β).

Passing to the limit L→∞, we complete the proof of (3.6). Now let us turn to the

Proof of (3.7). Again, we pick a large auxiliary parameter L and define l(δ,N) = (l(δ,N)

k )k∈{1,...,N} (also
depending on L) by

l(δ,N)

k =


b|ΛN |pkc for k ≤ L,

Ap,L,N for k = kN = bN1/2dc,
0 otherwise,

were Ap,L,N is picked such that
∑N

k=1 kl
(δ,N)

k = |ΛN |ρ. Then l(δ,N)

k /|ΛN | → pk as N → ∞ for k ∈
{1, . . . , L}, and l(δ,N)

kN
/|ΛN | = Ap,L,N/|ΛN | = (ρ−

∑L
k=1 kpk)(1 + o(1)) 1

kN
as N → ∞. We see that

l(δ,N)/|ΛN | ∈ Bδ(p) for N and L sufficiently large.

As in (3.9), we see that

lim
N→∞

1

|ΛN |
log

L∏
k=1

[
|ΛN |Γ(bc)

ΛN ,k

]l(δ,N)
k

l(δ,N)

k !kl
(δ,N)
k

≥ −IL(p)
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Furthermore, it is easy to see that

lim inf
L→∞

lim inf
N→∞

1

|ΛN |
log
∏
k>L

[ 1

l(δ,N)

k !

(1

k
|ΛN |

)l(δ,N)
k
]

= 0.

Finally, usin the assertion around (3.4) (which holds for both bc=per and bc=Dir) and recalling that Γk =
λc(β)−k(1+o(1)), we get that

lim inf
L→∞

lim inf
N→∞

1

|ΛN |
log
∏
k>L

[
Γ(bc)

ΛN ,k

]l(δ,N)
k ≥ −

(
ρ−

∑
k∈N

kpk

)
log λc(β).

Putting together the last three displays, we see that (3.7) holds.

Hence, (3.5) has been proved, and this finishes the proof of the LDP in the assertions (i) and (ii) of
Theorem 1.1.

3.3 Analysis of the rate function

Now we prove assertions (iii) and (iv) of Theorem 1.1. It is clear that the state space Xρ is compact and
that J is continuous and strictly convex on Xρ. Hence, it suffices to derive the Euler–Lagrange equations for
minimisers. Abbreviate αk = k/Γk and α = (αk)k, then J(p) = ρ log λc(β) + 〈p, log(pα/e)− idλc(β)〉
for any p ∈ Xρ. Assume that p is a minimizer for J . It is easy to see that pk > 0 for any k, since otherwise
adding a small weight would clearly make the J -value smaller. Then, for any perturbator δ = (δk)k ∈ RN,
we have

0 = ∂ε

∣∣∣
ε=0

J(p+ εδ) = 〈δ, log(pα/e)− idλc(β)〉+ 〈p, δ
p
〉 = 〈δ, log(pα)− idλc(β)〉. (3.15)

Let us assume that the minimizer p satisfies
∑

k kpk = ρ. Then we may assume that the perturbator δ
satisfies 0 =

∑
k kδk = 〈δ, id〉, and the right-hand side of (3.15) is equal to 〈δ, log(pα)〉. Hence, we have

derived that any δ that is perpendicular to the vector id = (k)k is also perpendicular to the vector log(pα).
Hence, there is some constant C such that Ck = log(pkαk) for any k, which reads

kpk = e−CkΓk, k ∈ N. (3.16)

Now check the constraint
∑

k kpk = ρ. In the first case, where
∑

k Γkλc(β)k is finite, the smallest C that
can ever make the sum of e−CkΓk finite is C = − log λc(β), and the largest ρ that can ever be realized by
that sum is ρc(β). Substituting e−Ck = λc(β)ke−c(ρ)k we arrive at the Euler-Lagrange equations in (1.18)
with c = c(ρ) as in the text below (1.18). In the case where

∑
k Γkλc(β)k = ∞, then any ρ > 0 can be

realized by that choice of C = c(ρ) + log λc(β).

Now, if the minimizer p satisfies
∑

k kpk < ρ, then the perturbator δ is arbitrary, and from (3.15) we get
that log(pα) − idλc(β) = 0, i.e., that (3.16) holds with e−Ck replaced by λc(β)k, which proves (1.18) as
well. In particular,

∑
k kpk = ρc(β). The formula in (iv) is proved by substituting what we have derived.
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4 Proof of Theorem 1.2: Estimates on the Green function

This section is devoted to the proof of Theorem 1.2. Without loss of generality, we are going to do the proof
only for β = 1 (otherwise, consider a simple rescaled version of v).

In Section 4.1 we introduce some notation, formulate the main steps of the proof and prove Theorem 1.2,
subject to these steps. In Section 4.2 we prove explain the main one of them, and prove it finally in Sec-
tion 4.3.

4.1 Some notation, and the main steps

Recall that ϕt(x) = (2πt)−d/2 exp[− |x|
2

2t
] denotes the Gaussian kernel with variance t, and we write

ϕ := ϕ1. We define

G(x) :=
∞∑
n=1

ϕn(x), x ∈ Rd, (4.1)

which is, up to the missing summand for n = 0 (which is often formally written as the delta function at x),
equal to the Green function of the random walk with standard normal increments. (It is not to be confused
with the Green function Gc(x) =

∫∞
0
ϕt(x) dt for Brownian motion. See Lemma 7.3 and its proof for some

relation between them.) In spite of the missing summand for n = 0, we will call G the Green function
from now. Note that G(x) is finite in d ≥ 3, and G(·) is rotational symmetric, bounded, and infinitely often
differentiable with all derivatives in the set C0(Rd) of continuous functions Rd → R vanishing at infinity.
Recall that v is a bounded continuous function R+ → R+ with compact support, i.e., we assume that there
exists L,R > 0 such that v(r) ≤ L for every r, and v(r) = 0 for r ≥ R.

Let us introduce the main object of the proof, a version of the self-repellent Brownian motion. Recall the
Hamiltonian on CN :

HN(B) :=
∑

1≤i<j≤N

V (Bi, Bj), where V (f, g) =

∫ 1

0

v(|f(s)− g(s)|) ds for f, g ∈ C1,

where we recall from (1.7) thatBj = (Bj(s))s∈[0,1] := (B((j−1)+s))s∈[0,1] is the j-th leg of the Brownian
motionB. Then 0 ≤ HN(B) ≤ LN since 0 ≤ v ≤ L. Also recall that µ(1)

x,y denotes the canonical Brownian
bridge measure in the time interval [0, 1]. We write PN for the standard Wiener measure on CN . Then the
tilted measure Qα,N on CN is defined by

Qα,N(dB) := e−αHN (B) PN(dB), N ∈ N, α ∈ [0,∞). (4.2)

Note that Qα,N is not normalized. Its normalized version is the announced variant of the self-repellent Brow-
nian motion. For N = 1, there is no interaction, so we have Qα,1 = P1. The finite dimensional marginals of
Qα,N have continuous Lebesgue densities. In particular, we define

Γα,N(x) :=
Qα,N(BN ∈ dx)

dx
. (4.3)

Then Γk defined in (1.12) for v replaced by αv (and β = 1) is equal to Γα,k(0). Note that e−αLNϕN(x) ≤
Γα,N(x) ≤ ϕN(x) for any N ∈ N and x ∈ Rd. Now define the Green function for the self-repellent
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Brownian motion as follows: for λ > 0, let

G(Γ)

α,λ(x) :=
∞∑
N=1

λNΓα,N(x) and put λcr(α) := sup
{
λ > 0: ‖G(Γ)

α,λ‖1 <∞
}
. (4.4)

Then λcr(α) is equal to λc(1) defined in (1.13) for v replaced by αv.

Our main result in the present section is:

Theorem 4.1. Assume d ≥ 5. Then there exists α0 = α0(v, d) > 0 such that for α ∈ (0, α0)

G(Γ)

α,λcr(α)(x) ≤ 5G(x), x ∈ Rd.

In particular,
∑∞

N=1 λcr(α)NΓα,N(0) <∞ for α ∈ (0, α0).

Theorem 4.1 evidently implies Theorem 1.2. The rest of the article is devoted to the proof of Theorem 4.1.

For λ < λcr(α), consider

G
(Γ)

α,λ := G(Γ)

α,λ ? ϕ, (4.5)

so that G
(Γ)

α,λ is evidently integrable, and has bounded and continuous derivatives of all orders. We first
observe the following simple fact:

Lemma 4.2. Fix α ∈ (0,∞) such that eαL ≤ 2. Then the function

fα(λ) := sup
x∈Rd

G
(Γ)

α,λ(x)

G(x)

is continuous and increasing in λ ∈ [0, λcr(α)).

Proof. It is clear that fα is increasing. For the continuity, it suffices to prove that fα(·) is continuous on
[λ′0, λ0] for any 0 < λ′0 < λ0 < λcr(α).

We first prove that there exists R(λ′0, λ0) such that for λ ∈ [λ′0, λ0]

fα(λ) = sup
|x|≤R(λ′0,λ0)

G
(Γ)

α,λ(x)

G(x)
. (4.6)

Since e−αLNϕN ≤ Γα,N , and since
∑

n λ
nϕn does not converge for λ > 1, we get that λcr(α) ≤

eαL ≤ 2, by the choice of α. Note that the lower bound λcr(α) ≥ 1 is evident as HN(B) ≥ 0. Define
λ1 := (λ0 + λcr(α))/2. For any N ∈ N, using that λcr(α) ≤ 2 and Γα,n(·) ≤ ϕn(·),

G
(Γ)

α,λ(x) =
N−1∑
n=1

λn(Γα,n ? ϕ)(x) +
∞∑
n=N

( λ
λ1

)n
λn1 (Γα,n ? ϕ)(x)

≤
N−1∑
n=1

2nϕn+1(x) +
∞∑
n=N

(λ0

λ1

)n
λn1 (Γα,n ? ϕ)(x)

≤
N−1∑
n=1

2n
1

(2π(n+ 1))
d
2

exp[−|x|2/2(n+ 1)] +
(λ0

λ1

)N
‖G(Γ)

α,λ1
‖∞.

(4.7)
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Remark that by definition of λ1 we have G(Γ)

α,λ1
∈ L1(Rd) and therefore ‖G(Γ)

α,λ1
‖∞ = ‖G(Γ)

α,λ1
? ϕ‖∞ <∞.

By choosing

N :=
|x|

2
√

2 log 2

one sees that there are constants c, C , depending on λ0, such that for λ ≤ λ0

G
(Γ)

α,λ(x) ≤ C exp[−c|x|].

As G
(Γ)

α,λ(0) is bounded away from 0 for λ ≥ λ′0, and the Green function G(x) decays like const× |x|−d+2

as |x| → ∞, (4.6) follows.

To prove the desired continuity, we appeal to the representation of G
(Γ)

α,λ in the first identity in (4.7). Then
(Γα,n ? ϕ)(x) is continuous, and therefore uniformly continuous on BR := {x : |x| ≤ R}. Therefore, for
any N, the first part

∑N−1
n=1 λ

n(Γα,n ? ϕ)(·) is uniformly continuous, also uniformly in λ ∈ [λ′0, λ0]. Now
since λ0 < λcr, by definition of λcr(α), the second summand

∑∞
n=N λ

n
0 (Γα,n ? ϕ)(x) converges to 0 as

N →∞ uniformly in x and λ ∈ [λ′0, λ0], we conclude that G
(Γ)

α,λ(x) is uniformly continuous in x ∈ BR and

λ ∈ [λ′0, λ0]. The same remains true for G
(Γ)

α,λ(x)/G(x). Therefore supx∈BR G
(Γ)

α,λ(x)/G(x) is continuous
in λ ∈ [λ′0, λ0], as claimed.

The key to proof of Theorem 4.1 is the following.

Proposition 4.3. There exists α0 > 0 such that for α ≤ α0, there is no λ < λcr(α) with fα(λ) ∈ (2, 3].

The proof is based on two main lemmas, namely Lemma 4.4 and Lemma 4.6, which will be proved in the
next two sections. Let us first note that the above proposition, together with Lemma 4.2, implies Theorem
4.1:

Proof of Theorem 4.1 (assuming Proposition 4.3). We will show Theorem 4.1 with α0 replaced by
min{α0,

1
L

log 2}, where α0 is from Proposition 4.3.

Fix α ∈ (0, α0) so small that λcr(α) ≤ 2. As Γα,n ≤ ϕn for any n ∈ N, it is evident that fα(λ) ≤ 1
for λ ≤ 1. Then Proposition 4.3 and the continuity in λ shown in Lemma 4.2 imply that fα(λ) ≤ 2 for

λ < λcr(α). This means that G
(Γ)

α,λ(x) ≤ 2G(x) for any x ∈ Rd. As Γα,n(x) ≥ 0 for all x, it follows that

G
(Γ)

α,λcr(α)(x) ≤ 2G(x). Observe now that from Hn(B) ≤ Hn+1(B), it follows that

Γα,n ? ϕ ≥ Γα,n+1.

This implies

G
(Γ)

α,λcr(α) ≥
G(Γ)

α,λcr
− ϕ

λcr(α)
,

and therefore, using G
(Γ)

α,λcr(α)(x) ≤ 2G(x), and λcr(α) ≤ 2, it follows that

G(Γ)

α,λcr(α) ≤ λcr(α)G
(Γ)

α,λcr(α) + ϕ ≤ 4G+ ϕ ≤ 5G, (4.8)

which implies Theorem 4.1.
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4.2 Outline of the proof of Proposition 4.3.

We outline the arguments for Proposition 4.3. We have to show that if α is small enough, then the following
implication is true for all λ < λcr(α):

fα(λ) ≤ 3 =⇒ fα(λ) ≤ 2.

So, we assume fα(λ) ≤ 3. For the ease of notation, we drop the parameter α. The proof then splits into
three main steps: First, by the argument leading to (4.8) we see that this leads to

G(Γ)

λ ≤ λG
(Γ)

λ + ϕ ≤ 7G(x). (4.9)

Next, we build on a modification of the lace expansion technique. This provides a complicated but rather
explicit bound for an inverse of I + G(Γ)

λ , under convolution, where I is the identity operator (formally given
by the Dirac δ function). This inverse is of the form

(I +G(Γ)

λ )−1 = I + λϕ+G(Π)

λ , where G(Π)

λ (x) =
∞∑
N=2

λNΠN(x)

for some functions ΠN(x) that we will soon describe below. The crucial point is that under the condition
G(Γ)

λ (x) ≤ 7G(x) for all x ∈ Rd, we obtain good decay properties forG(Π)

λ (x). AlsoG(Π)

λ (x) is in a suitable
sense small if α is small.

In the final step, which is quite orthogonal to lace expansion used in the preceding step, we just show that
if G(Π)

λ is small, in a sense that will be made precise, we can invert I + λϕ + G(Π)

λ under convolution using
a Neumann series. This then gives an estimate of G(Γ)

λ in terms of “smallness properties” of G(Π)

λ , and in
particular it gives the estimate G(Γ)

λ (x) ≤ 2G(x) if α is small enough, implying

G
(Γ)

λ = G(Γ)

λ ? ϕ ≤ 2G(x) ? ϕ ≤ 2G.

This will subsequently complete the proof of Proposition 4.3.

4.3 The main lemmas, and proof of Proposition 4.3.

For the purposes mentioned above, let us first define the functions ΠN : For 1 ≤ k < m, k,m ∈ N, let
Gk,m be the set of simple graphs on the set {k, k + 1, . . . ,m}. We also write Gm := G1,m and set

Uα(f, g) = 1− e−αV (f,g) f, g ∈ C1 and U (α)

i,j = Uα(Bi, Bj) i, j ∈ N. (4.10)

Then with HN(B) =
∑

1≤i<j≤N V (Bi, Bj) we can expand

e−αHN (B) =
∏

1≤i<j≤N

(1− U (α)

i,j ) =
∑
g∈GN

∏
(i,j)∈g

(−U (α)

i,j ),

where we identify the graph g with its vertex set. For notational convenience, from now on we will suppress
the dependence on α on the function ΓN = Γα,N defined in (4.3), on the tilted measure QN = Qα,N
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defined in (4.2) and on the functions U = Uα and Ui,j = U (α)

i,j defined in (4.10). Then QN can be rewritten
as

QN(dB) =
∑
g∈GN

∏
(i,j)∈g

(−Ui,j)PN(dB). (4.11)

We call an index k ∈ {1, . . . , N} a breakpoint of a graph g ∈ GN if there is no edge (i, j) ∈ g with
i ≤ k < j. If a graph has no breakpoint, we call it irreducible. Remark that we use the notion in a way that
is slightly different from the standard one in lace expansions: For instance, if g contains a bond (k, j) with
j > k, then k is not a breakpoint. We write JN for the set of irreducible graphs in GN . This makes sense
only for N ≥ 2. For g ∈ GN\JN , we denote by b(g) the smallest breakpoint of g, and write G(k)

N for the set
of graphs in GN\JN for which k is the smallest breakpoint. For convenience, we set b(g) := N for g ∈ JN ,
and accordingly G(N)

N := JN .
If EN denotes expectation with respect to the Wiener measure PN on CN , we define

Π(α)

N (x) = ΠN(x) :=
∑
g∈JN

EN
[ ∏

(i,j)∈g

(−Ui,j)1l{BN∈dx}

]/
dx, N ≥ 2, (4.12)

and define the Green function of Π by

G(Π)

α,λ(x) :=
∞∑
N=2

λNΠN(x), (4.13)

provided the series is absolutely summable. The precise formulation for the second step sketched above is
provided by the following lemma.

Lemma 4.4. Fix α ∈ (0,∞) and pick λ > 0 such that

G(Γ)

α,λ(x) ≤ 7G(x), x ∈ Rd. (4.14)

Then the right-hand side of (4.13) is absolutely summable and there is a C = Cα,λ > 0 such that

∞∑
N=2

λN |ΠN(x)| ≤ Cα(1 + |x|)6−3d, x ∈ Rd. (4.15)

In particular
|G(Π)

α,λ(x)| ≤ Cα(1 + |x|)6−3d, x ∈ Rd. (4.16)

The proof of Lemma 4.4 can be found in Section 5. The reason to consider G(Π)

λ is that I + λϕ+G(Π)

λ is
essentially an inverse of I +G(Γ)

λ under convolution. This is based on the following simple result:

Lemma 4.5. With Γ0 := δ0 and Γ1 = ϕ we have

ΓN = ϕ ? ΓN−1 +
N∑
k=2

Πk ? ΓN−k, N ≥ 2. (4.17)
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Proof. Using (4.11), we have

ΓN(x) = EN
[ ∑
g∈GN

∏
(i,j)∈g

(−Uij)1l{BN∈dx}

]/
dx =

N∑
k=1

EN
[ ∑
g∈G(k)

N

∏
(i,j)∈g

(−Uij)1l{BN∈dx}

]/
dx.

The summand for k = N restricts the summation over g to g ∈ JN , which gives ΠN = ΠN ? δ. We next
consider the summand for k = 1. We remark that 1 is a break point of g if and only if there is no edge in
g starting in 1. In the product

∏
(i,j)∈g(−Ui,j) there is then no interaction between the first leg B1 and any

other leg. Using translation invariance, we get∑
g∈G(1)

N

EN
[ ∏

(i,j)∈g

(−Ui,j)1l{BN∈dx}

]/
dx =

∫
ϕ(y)ΓN−1(x− y) dy.

This argument can simply be extended to handle the summation over graphs in G(k)

N , for 2 ≤ k ≤ N − 1.
A graph g is in G(k)

N if and only if it is the union of an irreducible graph on {1, . . . , k} and an arbitrary graph
on {k + 1, . . . , N}. Summing over all the possibilities, we get for 2 ≤ k ≤ N − 1∑

g∈G(k)
N

EN
[∏

(i,j)∈g
(−Ui,j)1l{BN∈dx}

]/
dx =

∫
Πk(y)ΓN−k(x− y) dy.

We remark that for k = N − 1, there is no graph on {N}, and we get ΠN−1 ? ϕ. Summing over k we
conclude the proof of the lemma.

Remark 2 A consequence of the convolution equation (4.17) is that

G(Γ)

λ =
∞∑
N=1

λNΓN =
∞∑
N=1

λN
N∑
k=1

Πk ? ΓN−k = λϕ+

( ∞∑
k=1

λkΠk ?

( ∞∑
N=k

λN−kΓN−k

))
= (λϕ+G(Π)

λ ) ? (I +G(Γ)

λ ),

that is,
(I − λϕ−G(Π)

λ ) ? (I +G(Γ)

λ ) = I. (4.18)

As we want to work only with smooth functions, we write this equation as

−(λϕ+G(Π)

λ ) ? G(Γ)

λ +G(Γ)

λ − (λϕ+GΠ
λ ) = 0. (4.19)

♦

The precise formulation of the third step for the proof of Proposition 4.3 is provided by the following lemma.

Lemma 4.6. Assume that α ∈ (0,∞) is such that G(Π)

α,λ satisfies (4.16) for λ < λcr(α), where C = Cα
does not depend on λ. If α is small enough, then there exists a unique continuous, bounded, rotational
symmetric function F (depending on α) that satisfies

−(λϕ+G(Π)

α,λ) ? F + F = λϕ+G(Π)

α,λ (4.20)

and
F (x) ≤ 2G(x), x ∈ Rd. (4.21)
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The proof of Lemma 4.6 can be found in Section 6.

Proof of Proposition 4.3 (assuming Lemma 4.4 and Lemma 4.6). If fα(λ) ≤ 3, then we have already
observed in (4.14) that G(Γ)

α,λ ≤ 7G. By Lemma 4.4, G(Π)

λ is finite and satisfies ‖G(Π)

α,λ‖ ≤ Cα for some
C = Cα that does not depend on λ. By Lemma 4.6, if α is small enough, there is, for any λ < λcr(α),
a unique F (depending on λ) that satisfies (4.20). By (4.19), we have F = G(Γ)

α,λ, and then by (4.21),

G(Γ)

λ ≤ 2G. This implies that fα(λ) ≤ 2 and finishes the proof.

5 Proof of Lemma 4.4: lace expansion

In the standard version of lace expansions, one considers sets of paths that visit a single point on the lattice
possibly several times. This is not the case in our situation, since the steps of our random walk have a
Lebesgue density. What we do instead is to consider continuous-time paths that on time intervals of order
one can be close together. The closeness is measured by the following functions un,α, n ≥ 2, depending
on 2n locations:

un(x) = un,α(x) :=

∫
Cn1

n−1∏
i=1

U(fi, fi+1)
n∏
i=1

µ(1)

x2i−1,x2i
(dfi) for x ∈ (Rd)2n, (5.1)

with U = Uα defined in (4.10). In words, this is (up to normalization) the expectation over a vector of
n independent Brownian bridges from x2i−1 to x2i for i = 1, . . . , n with interactions between each two
subsequent ones of them. Clearly, un,α is invariant under shifting the components of x = (x1, . . . , x2n) by a
single vector y ∈ Rd. Also, U(f, g) is close to 0 unless f and g are close together. Therefore, un,α(x) ≈ 0
unless the components of x are close together. The quantitative estimates are expressed in Lemma 7.1 in
Section 7.

Again for notational simplicity, we will usually drop the parameter α appearing in un,α (as we did for the
terms Γα,N , Qα,N , Uα and U (α)

ij ), but the reader should be aware that the parameter is present in essentially
every expression.

5.1 The set of laces LN and their characterization. Recall from Section 4.3 that GN denotes the set of
simple graphs on {1, . . . , N} and JN denotes the set of irreducible graphs (i.e., graphs with no breakpoint)
in GN for N ≥ 2. We also recall the function ΠN defined in (4.12). For the estimation of ΠN , we are
going to introduce now a decomposition (called a lace expansion) of JN according to the minimal number
of edges the graph has so that it is still irreducible. Any corresponding minimal subgraph is called a lace,
i.e., a subgraph that is not irreducible if any edge is removed. Every non-irreducible graph may have many
laces, but we are going to construct now for any g ∈ JN a particular lace lace(g) that will be crucial in our
expansion of ΠN . Indeed, the starting point of our lace expansion is∑

g∈JN

∏
(i,j)∈g

(−Uij) =
∑
`∈LN

∑
g∈JN : lace(g)=`

∏
(i,j)∈g

(−Uij), (5.2)

where LN denotes the set of laces.
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Evidently, if the graph on {1, . . . , N} contains the edge (1, N) then it is irreducible. We denote the set
of graphs that contain this particular edge by J (1)

N .

For other irreducible graphs, the construction of its lace is more complicated. If g ∈ JN \ J (1)

N , we define
its lace, denoted by lace(g), as a subgraph of g in the following way: Let g contain an edge (1, j) (as
otherwise it is not irreducible). We take the largest such j (which is not N , as otherwise we would have
g ∈ J (1)

N ), and denote it by j1. This edge (1, j1) is the first member of lace(g). For the next, we know that
there is an edge (i′, j′) with i′ ≤ j < j′, as otherwise g would not be connected. We take the largest
possible j′ and afterwards the smallest possible i′ to this j′. We denote this edge by (i2, j2) ∈ g. If j2 = N
we are finished with the construction of lace(g). Otherwise, we go on in this way. Finally, we end up with a
collection

` =
{

(i1 = 1, j1), (i2, j2), . . . , (ik, jk = N)
}
. (5.3)

This is the uniquely defined lace(g). We write J (k)

N for the set of irreducible graphs whose lace has k edges.
We write LN for the set of laces, i.e., irreducible graphs that are no longer irreducible when leaving out any
edge.

Lemma 5.1 (Characterization of laces). Let ` ∈ LN and g ∈ JN . Then lace(g) = ` if and only if all the
edges (i, j) ∈ g\` have the property that

lace(` ∪ {(i, j)}) = `.

Proof. If lace(g) = ` then evidently all edges (i, j) ∈ g\` satisfy lace(` ∪ {(i, j)}) = `.

For the other direction, assume ` ∈ LN satisfies ` ⊂ g, and lace(` ∪ {(i, j)}) = ` for all (i, j) ∈ g\`.
We want to prove that lace(g) = `. (we remind the reader that g may have many subsets which are laces).
Write ` in the form (5.3). If (1, j1) /∈ lace(g), then g would have to contain an edge (1, k) with k > j1, and
then lace(` ∪ {(1, k)}) 6= `. So (1, j1) ∈ lace(g). Next, if (i2, j2) /∈ lace(g), we would have an edge
(i′, j′) with either j′ > j2, or (j′ = j2 and i′ < i2). In both cases lace(`∪{(i′, j′)}) 6= `, and we conclude
(i2, j2) ∈ lace(g). In this way it follows that all edges in ` are members of lace(g), i.e., ` ⊂ lace(g). But
then, if lace(g) would contain an edge /∈ `, it would not be a lace, by the minimality property of laces.

We write for ` ∈ LN
CN(`) :=

{
(i, j) /∈ ` : lace(` ∪ {(i, j)}) = `

}
,

and call each bond in CN(`) compatible with `. In this terminology, Lemma 5.1 can therefore be rephrased
by saying

lace(g) = ` ⇐⇒ g\` ⊂ CN(`). (5.4)

In particular, (5.4) implies that for a fixed lace ` ∈ LN ,∑
g : lace(g)=`

∏
(i,j)∈g

(−Uij) =

[∏
(i,j)∈`

(−Uij)
] ∑

g⊂CN (`)

∏
(i,j)∈g

(−Uij)

=

[∏
(i,j)∈`

(−Uij)
] ∏

(i,j)∈CN (`)

(1− Uij).
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Now define

Π(k)

N (x) :=
∑

g∈J (k)
N

EN
[∏

(i,j)∈g
(−Uij)1l{BN∈dx}

]/
dx, so that ΠN =

∞∑
k=1

Π(k)

N . (5.5)

Since Π(k)

N = 0 for large enough k, the above sum is finite, and

∞∑
N=1

λN |ΠN(x)| ≤
∞∑
k=1

∞∑
N=1

λN |Π(k)

N (x)|.

We are going to estimate the summands on the right-hand side individually for every k. To control the higher
order terms, we first characterise the structure of a lace. The simple proof of the following lemma is left to
the reader.

Lemma 5.2. Any lace
` =

{
(i1, j1), (i2, j2), . . . , (in, jn)

}
with n ≥ 3 edges, where i1 = 1, jn = N and ik < jk for all k, satisfies

1 = i1 < i2 ≤ j1 < i3 ≤ j2 <≤ · · · < in−1 ≤ jn−2 < in ≤ jn−1 < jn = N. (5.6)

Remark 3 The statement of the above lemma is in disagreement with the corresponding ones for the stan-
dard used lace expansions. In our case, there is the possibility to have ik+1 = jk, but there are no other
possibilities for equality. To see the point: In the usually used expansions, one can have for a lace with 3
edges (starting with i1 = 1)

1 = i1 < i2 < j1 = i3 < j2 < j3 = N.

This is not possible in our case, as {(i1, j1), (i3, j3)} would be irreducible, and therefore it would be the
lace in this situation. For essentially a similar reasoning, ik+1 = jk is not possible in the standard versions,
but it is indeed the case according to our definition. ♦

5.2 Types of laces and their classification.

We need to make a finer disctinction of laces, on base of Lemma 5.2. We say that two neighboring edges
(ik, jk), (ik+1, jk+1) in the lace touch if jk = ik+1. Then we say that (ik+1, jk+1) touches (ik, jk) from the
right. Otherwise, i.e., when ik+1 < jk, we say that the edges intersect.

According to Lemma 5.2, we classify the laces on {1, . . . , N} of length n into different types, dictated by
(5.6). Given a lace ` with n edges, we order the set of edges increasingly according to the left end, writing
e1, . . . , en for the edges. We split the set of edges into disjoint chains

χj = (enj−1+1, . . . , enj), j = 1, . . . , k, with 0 = n0 < n1 < n2 < · · · < nk = n. (5.7)

Within a chain, and if a chain has at least two elements, ei+1 touches ei from the right, but enj+1 intersects
enj , j = 1, . . . , k − 1. We write

τ := (n1, n2 − n1, . . . , nk − nk−1)
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and call it the type of the lace. In case τ = (1, . . . , 1), there are no touching edges, and if τ = (n), the
lace is a chain of n touching edges. The set of types is denoted by Tn. We write L(n,τ)

N for the set of laces of
type τ on {1, . . . , N} with n edges. We split Π(n)

N defined in (5.5) according to the different types by writing

Π(n)

N =
∑
τ∈Tn

Π(n,τ)

N ,

where Π(n,τ)

N is the sum over graphs whose lace have n edges and are of type τ .

Given a lace ` with n edges, the set of endpoints of its edges can be written as increasing sequence:

s(`) := (si)i=1,...,m, where 1 = s1 < s2 < · · · < sm−1 < sm = N, (5.8)

and m depends on n and the type of the lace. If all neighboring edges intersect, then m = 2n. For every
touching of neighbor edges, m is reduced by one.22

Any e ∈ ` is written e = (sτ?(e), sτ?(e)) with τ?(e) < τ ?(e). Then ` = ((sτ?(e), sτ?(e)))e∈`. In an abuse
of notation, we write ` also as a sequence

((τ?(i), τ
?(i)))i=1,...,n (5.9)

where i stands for the i-th edge, these being ordered increasingly.33

We define `(n,τ,s)

N to be the unique lace of type τ that has endpoints s(`) = s with given s = (si)i=1,...,m

as in (5.8). We will also write t =(t1, . . . , tm) where ti := si − si−1 and s0 = 0. We will use t and s
according to what is more convenient, but they are tied in the described way.

5.3 Proof of Lemma 4.4.

With the notation set up in the previous section, we want to estimate

Π(n,τ)

N (y) =
∑

`∈L(n,τ)
N

EN
[( ∏

(i,j)∈`

(−Uij)
∏

(i,j)∈CN (`)

(1− Uij)
)

1l{BN∈dy}

]/
dy.

Recalling that t = (t1, . . . , tm) with ti = si − si−1 and hence
∑m

i=1 ti = N , we see that

λNΠ
(n,τ)
N (y) =

∑
t

[∏m

i=1
λti
]
Π

(n,τ,s)
N (y), (5.10)

where

Π(n,τ,s)

N (y) :=
∑

`∈L(n,τ,s)
N

EN
[ ∏

(i,j)∈`

(−Uij)
∏

(i,j)∈CN (`)

(1− Uij)1l{BN∈dy}

]/
dy.

22For instance, if the type is (2, 3, 1, 2), then n = 8 and m = 12.
33For instance if a lace of n = 5 edges has type type (1, 3, 1) then the sequence of pairs ((τ?(i), τ

?(i)))5i=1 is
((1, 3), (2, 4), (4, 5), (5, 7), (6, 8)).
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We start with estimating

∣∣Π(n,τ,s)

N (y)
∣∣ ≤ ∑

`∈L(n,τ,s)
N

EN

[(∏
(i,j)∈`

Uij

)m−1∏
j=1

∏
sj<u<v≤sj+1−1

(1− Uuv)1l{BN∈dy}

]/
dy

=: g(n,τ,s)

N (y).

(5.11)

We are now going to represent Π(n,τ,s)

N (y) in terms of an integration over 2m−2 variables x2, . . . , x2m−1 ∈
Rd representing the positions of the Brownian motion at times s1 = 1, s2 − 1, s2, . . . , sm − 1 = N − 1.
Thus, s1− 1 = 0 and also, B0 = 0 and at time sm = N, the Brownian motion is fixed to be at y. We define

P(x,y)

N,τ,s(·) := PN
(
·
∣∣Bsi−1 = x2i−1, Bsi = x2i for i = 1, . . . ,m

)
and integrate over the density of the event in the conditioning. By the time-structure, the Markov inequality
can be used at the times si − 1, si for i = 1, . . . ,m, which decomposes the path into pieces of time length
1 and si − 1− si−1, with s0 = 0. Recall that ϕt is the Gaussian density with variance t. Then

g(n,τ,s)

N (y) =

∫
(Rd)2m−2

dx E(x,y)

N,τ,s

[∏
(i,j)∈`(n,τ,t)N

Uij

]
×

m∏
j=1

E(x,y)

N,τ,s

[∏
sj−1<u<v≤sj−1

(1− Uij)
]

×
m∏
j=1

ϕ1(x2j − x2j−1)
m∏
j=2

ϕsj−1−sj−1
(x2j−1 − x2(j−1)).

(5.12)

Here we followed the convention that x1 := 0, x2m = y and the integration is only over x2, . . . , x2m−1 and
used that under the conditional law P(x,y)

N,τ,s, the first product and the factors
∏m−1

j=1 appearing in the definition

of g(n,τ,s)

N on the right hand side of (5.11) are independent. Also, we have made the following convention: it
is not excluded that sj = sj−1 + 1 in which case, the conditional law would not be defined, except when
x2j = x2j−1. This is taken care of by interpreting ϕ0 as the Dirac function.

Let us now handle factors appearing on the right hand side of (5.12). First we observe that

E(x,y)
N,τ,t

[∏
sj−1<u<v≤sj−1

(1− Uij)
]
ϕsj−1−sj−1

(x2j − x2j−1) = Γsj−sj−1−1(x2j − x2j−1), (5.13)

if sj ≥ sj−1 + 2. In case sj ≥ sj−1 + 1, the product is over the empty set and therefore equal to 1, and so
we have to interpret Γ0 as δ, too. Actually, also for sj = sj−1 + 2, the product is empty, in which case we
arrive at Γ1 = ϕ1.

We next express the factor involving theUij appearing on the right-hand side of (5.12) in terms of the func-
tion un defined in (5.1). This factor depends on the type τ = (v1, . . . , vk) ∈ Nk of the lace. If χ1, . . . , χk
are the chains (recall (5.7)) then the terms

∏
(i,j)∈χr Uij, r = 1, . . . , k are independent under the condi-

tional measure P(x,y)
N,τ,t. Let a chain χ contain b edges, labelled (si1 , si2), (si2 , si3), . . . , (sib , sib+1

). Then
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ik+1 − ik = 1, 2 or 3, depending whether the chain is in relation to the others. In any case, if b ≥ 3, then
ik+1 − ik = 1 for k = 2, . . . , b− 1. Then by recalling the definition of un(·) from (5.1),

E(x,y)
N,τ,t

[∏
(i,j)∈χ

Uij

] b+1∏
k=1

ϕ1(xik − xik−1) = ub+1(xi1−1, xi1 , xi2−1, xi2 , . . . , xib+1−1, xib+1
). (5.14)

Now we can apply the crucial estimate from Lemma 7.1 and obtain

ub+1(xi1−1, xi1 , . . . , xib+1−1, xib+1
) ≤ Cb+1αb exp

[
− 1

8

∑b+1

k=1
|xik−1− xik |2−A

b∑
k=1

|xik+1
− xik |2

]
.

(5.15)

Combining (5.12)-(5.14) we therefore get

g(n,τ,s)

N (y) ≤ Cnαn
∫

dx
m−1∏
j=1

Γsj+1−1−sj(x2j+1 − x2j)

× exp
[
− 1

8

∑m−1

j=1
|x2j − x2j−1|2 − A

∑n

i=1
|x2τ?(i) − x2τ?(i)|2

]
,

(5.16)

where in the last display we used the notation τ ?(i) and τ?(i) defined in (5.9).

We are heading now towards a proof of Lemma 4.4. In the following, we use C > 0 as a generic constant
that may change its value from appearance to appearance and does not depend on n nor on m or τ and so
on, but may depend only on d, α and λ, which we fix now such that (4.14) holds.

From the preceding, we get, for any type τ and any t, recalling that N =
∑m

i=1 ti =
∑m

i=1(si − si−1),

∑
N

λN
∑

`∈L(n,τ)
N

g(n,τ,s)

N (y) ≤ Cnαnλm−1

∫
dx

m−1∏
j=1

∞∑
k=0

λkΓk(x2j+1 − x2j)

× exp
[
− 1

8

∑m

j=1
|x2j − x2j−1|2

]
exp

[
− A

∑n

i=1
|x2τ?(i) − x2τ?(i)|2

]
≤ Cnαn

∫
dx

m∏
j=2

[
δ(x2j−1 − x2j−2) +G(Γ)

λ (x2j−1 − x2j−2)
]

× exp
[
− 1

8

∑m

j=1
|x2j − x2j−1|2

]
exp

[
− A

∑n

i=1
|x2τ?(i) − x2τ?(i)|2

]
,

(5.17)
where we remind on m ≤ 2n. We integrate now over all the x2j−1 (except of course x1 which is 0 by
convention). Indeed, using the assumption G(Γ)

λ ≤ 7G from (4.14) of Lemma 4.4, we get∫
dx2j−1

[
δ(x2j−1 − x2j−2) +G(Γ)

λ (x2j−1 − x2j−2)

]
exp

[
− 1

8
|x2j − x2j−1|2

]
≤ Cfd(|x2j − x2j−2|),

(5.18)
where we abbreviated

fd(x) := (1 + |x|)−d+2. (5.19)
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Combining the last two estimates we obtain∑
N

λN
∑

`∈L(n,τ)
N

g
(n,τ,s)
N (y) ≤ Cnβn (ϕ1 ∗Xn,τ ) (y) ,

where for n ≥ 2, with renaming zi := x2i, we have written

Xn,τ (x) :=

∫
dz2 · · · dzm−1

× exp

[
− A

∑n−1

i=1

∣∣zτ∗(i) − zτ∗(i)∣∣2 ] exp

[
− A

∣∣zτ∗(n) − x
∣∣2 ] (5.20)

×fd (x− zm−1)
m−1∏
j=2

fd (zj − zj−1) ,

where z1 := 0. We also remark that m in the expression above is a function of τ that satisfies m (τ) ≤ 2n.
Also m = 2 for n = 1, and m ≥ 3 for n ≥ 2.

We will prove by induction on n that for some constant C, depending only on A, and d

sup
τ∈Tn

Xn,τ (x) ≤ Cnfd (x) , n ∈ N. (5.21)

We remark that from this, it also follows that

sup
τ∈Tn

(ϕ1 ∗Xn,τ ) (x) ≤ Cnfd (x) , n ∈ N,

with a slightly changed constant C . As the number of types of laces with n edges is bounded by 2n, this will
subsequently prove Lemma 4.4.

We will now prove (5.21) by induction. For n = 1, there is only one type, and one simply has

X1 (x) = exp
[
− A |x|2

]
fd (x) (5.22)

so (5.21) is evident for n = 1.

Let n = 2. Then there are the two types (1, 1) and (2). For τ = (2)

X2 (x) =

∫
dz exp

[
− A |z|2

]
fd (z) exp

[
− A |x− z|2

]
fd (x− z)

≤
∫

dz exp
[
− A |z|2 − A |x− z|2

]
,

which has Gaussian tails, and so we have only to take care of τ = (1, 1) . There we have m = 4, and

X2 (x) =

∫
dz1 dz2 exp

[
− A

(
|z2|2 + |x− z1|2

)]
fd (z1) fd (z2 − z1) fd (x− z2) ,

which, according to Lemma 7.2, is bounded by C (1 + |y|)−3d+6 .
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We assume now n ≥ 3, and that (5.21) holds up to n− 1 instead of n. We consider first the case where
the type τ starts with (1, 1, . . .) . Then the expression for Xn,τ starts with∫

dz exp
[
− A

(
|z2|2 + |z4 − z1|2 + |z5 − z3|2 + · · ·

)]
×fd (z1) fd (z2 − z1) fd (z3 − z2) fd (z4 − z3) fd (z5 − z4) · · · ·

or |z5 − z3|2 replaced by |z6 − z3|2 if n > 3 and the third entry in τ is 6= 1. Then∫
dz1dz4 fd (z1) fd (z2 − z1) fd (z3 − z2) fd (z4 − z3) fd (z5 − z4) exp

[
−A |z4 − z1|2

]
≤

√∫
f 2
d (z1) f 2

d (z4 − z3) exp
[
−A |z4 − z1|2

]
dz1dz4

×

√∫
f 2
d (z2 − z1) f 2

d (z5 − z4) exp
[
−A |z4 − z1|2

]
dz1dz4

≤ C

√∫
f 2
d (z1) f 2

d (z1 − z3) dz1

√∫
f 2
d (z2 − z1) f 2

d (z5 − z1) dz1

≤ Cfd (z3) fd (z5 − z2) .

To justify the last step in the above bound, we note that f 2
d (x) = (1 + |x|)4−2d is integrable in d ≥ 5. Then

the first integral of the fourth line above is a convolution of f 2
d with itself, and we can take Fourier transform of

this convolution, use a uniform bound on the Fourier coefficient of f 2
d and then take inverse Fourier transform

to obtain the desired bound.

Also, if n > 3 and the third entry in τ is 6= 1, z5 is replaced by z6. Implementing this inequality then leads
to

Xn,τ ≤ CXn−1,τ ′ (5.23)

with τ ′ obtained from τ by replacing (1, 1, t3, . . .) by (1, t3, . . .) .

We next consider the case where τ is (1, t2, t3, . . .) with t2 6= 1. Here the expression for Xn,τ starts with

Xn,τ (y) =

∫
dz exp

[
− A

(
|z2|2 + |z1 − z3|2 + |z5 − z3|2 + · · ·

)]
×fd (z1) fd (z2 − z1) fd (z3 − z2) fd (z4 − z3) · · · ·

≤
∫

dz exp

[
− A

(
|z2|2 + |z1 − z3|2 + |z5 − z3|2 + · · ·

)]
×fd (z1) fd (z2 − z1) fd (z4 − z3) · · · ·

≤ C

∫
dz2 · · · exp

[
− A

(
|z3 − z1|2 + |z6 − z4|2 + · · ·

)]
×fd (z3) fd (z3 − z2) fd (z4 − z3) · · · ·

That is, we have (5.23) with τ ′ = (1, t3, . . .) .
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Finally, we have to handle τ = (k, t2, . . .) with k ≥ 2. We first look at the case τ = (k) in which case
k = n if τ ∈ Tn. Then

Xn,τ (x) =

∫
dz exp

[
− A

(
|z1|2 + |z2 − z1|2 + · · ·+ |x− zn−1|

)]
×fd (z1) fd (z2 − z1) · · · · · fd (x− zn−1)

≤
∫

dz exp

[
− A

(
|z1|2 + |z2 − z1|2 + · · ·+ |x− zn−1|

)]
≤ cn exp

[
− A

n
|x|2

]
for a constant c > 0 (depending on A, d only). It is easily checked that exp

[
− A

n
|x|2

]
≤ (c′)n fd (x)

for some constant c′ = c′ (A) > 0. (actually, nγfd (x) for some γ > 0 is already an upper bound). So
(5.21) is satisfied for Xn,(n) for all n, if C is chosen appropriately. We remark that in this case we do not
use induction, and estimate the expressions for every n directly. Therefore, we have outside of any inductive
assumptions

Xn,(n) ≤ Cn
1 fd, n ∈ N,

for some constant C1 > 0 depending on A and d only.

Let now τ = (k, τ ′) with k ≥ 2. Take the types (k − 1) ∈ Tk−1 and (1, τ ′) ∈ Tn−k+1. Observe that

Xn,(k,τ ′) = Xk−1,(k−1) ∗Xn−k+1,(1,τ ′).

As k ≥ 2, we can use the induction assumption for the second factor and obtain

Xn,(k,τ ′) ≤ Ck−1
1 Cn−k+1 (fd ∗ fd) ≤ γCk−1

1 Cn−k+1fd,

where we use fd ∗ fd ≤ γfd for some constant γ = γd > 0 (because 3d− 6 > d). Therefore, if γC1 ≤ C ,
we have

Xn,(k,τ ′) ≤ Cnfd,

finishing the induction argument for (5.21). Therefore, Lemma 4.4 is proved.

6 Proof of Lemma 4.6: deconvolution

In this section we prove Lemma 4.6. For this, we introduce a crucial norm on the set of all continous and
bounded functions Rd → R and derive some properties of the Green’s function with respect to this norm,
and in Section 6.2 we finish the proof.

6.1 A convolution algebra.

Consider the Banach space B of bounded continuous functions f : Rd → R that satisfy

‖f‖ := max
{
‖f‖1, ‖f‖∞, sup

x∈Rd
|x|d|f(x)|

}
<∞. (6.1)
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Lemma 6.1. If f, g ∈ B then also f ? g ∈ B. Furthermore

‖f ? g‖ ≤ 2d+1‖f‖‖g‖, f, g ∈ B.

Proof. Clearly ‖f ? g‖1 = ‖f‖1‖g‖1 ≤ ‖f‖‖g‖, and ‖f ? g‖∞ ≤ ‖f‖1‖g‖∞ ≤ ‖f‖‖g‖. Concerning
the third part in the definition of ‖ · ‖, let x ∈ Rd. Then

|(f ? g)(x)| =
∣∣∣ ∫ f(y)g(x− y) dy

∣∣∣ ≤ ∫ |f(y)| |g(x− y)| dy

≤
∫
y : |y|>|x−y|

|f(y)| |g(x− y)| dy +

∫
y : |y|≤|x−y|

|f(y)| |g(x− y)| dy.

Clearly,{
y : |x− y| < |y|

}
⊂
{
y : |y| > |x|/2

}
and

{
y : |x− y| ≥ |y|

}
⊂
{
y : |x− y| ≥ |x|/2

}
.

Therefore,

|x|d|(f ? g)(x)| ≤ |x|d
∫
y : 2d|y|d>|x|d

|f(y)| |g(x− y)| dy + |x|d
∫
y : 2d|x−y|d≥|x|d

|f(y)| |g(x− y)| dy

≤ 2d‖g‖1 sup
y∈Rd
|y|d|f(y)|+ 2d‖f‖1 sup

y∈Rd
|y|d|g(y)|

≤ 2d+1‖f‖ ‖g‖,

which proves the claim.

We remind the reader on (4.1): G(x) =
∑∞

n=1 ϕn(x) is the Green function for the random walk with
standard normal increments.

Remark 4 a) With the C = Cα,λ from (4.16) , we obtain from there that ‖G(Π)

λ ‖ ≤ Cα.

b) There is C ∈ (0,∞) (only depending on d) such that, for any f ∈ B satisfying ‖f‖ ≤ 1, it
holds |f(x)| ≤ CG(x) for any x ∈ Rd. (Indeed, use for large |x| that G(x) � |x|2−d and that
|f(x)| ≤ |x|−d and for small |x| that G(x) is bounded away from zero.)

♦

Lemma 6.2. Assume that ρ : Rd → R is a rotationally symmetric and continuous function satisfying
|ρ(x)| ≤ (1 + |x|)−d−4 for any x ∈ Rd and

∫
ρ(x) dx = 0, then ‖ρ ? G‖ <∞.

Proof. Note that G, ρ are both bounded and continuous, and ρ is integrable. Therefore ρ ? G is continuous
and bounded and integrable. It remains to show that |x|d|(ρ ?G)(x)| is bounded in x. It suffices to consider
|x| ≥ 1, which we assume for the rest of the proof.

Evidently

(ρ ? G)(x) =

∫
|y|≥1

G(y)ρ(x− y) dy +O(|x|−d−4) as |x| → ∞. (6.2)
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In the following we will be using C as a generic positive constant that does not depend on x nor on y
and may change its value from appearance to appearance. According to Lemma 7.3, there is a function
h : Rd → [0,∞) such that

G(y) = ad|y|−d+2 + h(y) and |h(y)| ≤ C(1 + |y|)−d−2, |y| ≥ 1. (6.3)

Using our assumptions on ρ and on h, we see that∫
|y|≥1

h(y)ρ(x− y) dy =

∫
1≤|y|≤|x|/2

h(y)ρ(x− y) dy +

∫
|y|>|x|/2

h(y)ρ(x− y) dy

≤ (1 + |x|)−d−4‖h‖1 + C(1 + |x|)−d−2‖ρ‖1

≤ C(1 + |x|)−d−2.

(6.4)

This shows that |x|dh ? ρ(x) is bounded in x. It remains to show that
∫
ρ(y)|x − y|−d+2 dy ≤ O(|x|−d)

as |x| → ∞. We split∫
ρ(y)|x− y|−d+2 dy =

∫
|y|≤|x|/2

ρ(y)|x− y|−d+2 dy +

∫
|y|>|x|/2

ρ(y)|x− y|−d+2 dy =: I1(x) + I2(x).

In the first summand I1, we Taylor expand |x− y|−d+2 around x :

|x− y|−d+2 = |x|−d+2 + (2− d)
d∑
i=1

yixi|x|−d

+ (2− d)
d∑

i,j=1

yiyj

(
− d · xixj|x|−d−2 + δij|x|−d

)
+O(|y|3|x|−d−1).

We split I1 accordingly into I1 = I11+I12+I13+I14. Now for I11 we invoke our assumption
∫
ρ(x) dx = 0

which leads to

|I11(x)| = |x|−d+2
∣∣∣ ∫
|y|≥|x|/2

ρ(y) dy
∣∣∣ ≤ |x|−d+2

∫
|y|≥|x|/2

(1 + |y|)−d−4 dy

≤ C|x|−d
∫
|y|≥|x|/2

(1 + |y|)−d−2 dy ≤ C|x|−d.

We will now use the rotational symmetry of ρ, which means that ρ(y) = ρ(|y|) for some ρ : R+ → R.
But ∫

yiρ(|y|)dy = 0,

∫
yiyjρ(|y|) = i 6= j

and ∫
y2
i ρ(|y|)dy =

∫
y2
jρ(|y|)dy

follow by the invariance of Lebesgue measure under rotation and reflection.
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Using these observations, we have I12 = 0 and similarly we have the same statement for the off-diagonal
terms i 6= j in I13(x). Now for the diagonal terms in I13 we use that

∫
y2
i ρ(y) dy does not depend on i and

noting that
d∑
i=1

[−d · x2
i |x|−d−2 + |x|−d] = 0

Therefore I13(x) = 0. As for I14, we have, by our upper bound on ρ,

|I14(x)| ≤
∫
|y|≤|x|/2

|ρ(y)| |y|3 dy |x|−d−1 = O(|x|−d).

Summarizing, |x|d|I1(x)| is bounded. Estimating I2 is simpler. Indeed, using the decay of ρ imposed in
our assumption of the lemma, one easily checks that |I2(x)| ≤ C(1 + |x|)−d−2, which is not larger as
O(|x|−d) as well. This shows that |x|dρ ? G(x) is also bounded and proves the lemma.

Remark 5 Since for the function ρ in Lemma 6.2 ‖ρ‖ is finite, also ‖ρ ? G+ ρ‖ is finite. ♦

Lemma 6.3. For µ ≤ 1 define

Gµ(x) :=
∞∑
n=1

µnϕn(x), x ∈ Rd.

If ρ satisfies the conditions of Lemma 6.2, then there is a C ∈ (0,∞) (depending only on ρ and d) such that

‖ρ ? Gµ‖ ≤ C|µ|, µ ∈ [−1, 1].

Proof. Let us first verify thatGµ ∈ B for any µ ∈ (−1, 1). We will be usingC as a generic positive constant
that does not depend on x nor on n and may change its value from appearance to appearance. Since
supx ϕn(x) = ϕn(0) ≤ C , we have ‖Gµ‖∞ ≤ C|µ|

1−|µ| . Since the integral of ϕn is one, ‖Gµ‖1 ≤ C|µ|
1−|µ| .

Furthermore,

sup
x∈Rd
|x|dGµ(x) ≤

∞∑
n=1

|µ|n 1

(2πn)d/2
sup
x∈Rd
|x|de−|x|2/2n = dd/2e−d/2

∞∑
n=1

|µ|n 1

(2πn)d/2
nd/2 ≤ C|µ|

1− |µ|
.

Hence, ‖Gµ‖ ≤ C|µ|
1−|µ| . An elementary calculation shows that

ρ ? Gµ = µ(ρ ? G)− (1− µ)ρ ? G ? Gµ, µ ∈ (−1, 1].

Therefore, for any µ ∈ [−1
2
, 1],

‖ρ ? Gµ‖ ≤ |µ|‖ρ ? G‖+ (1− µ)2d+1‖ρ ? G‖ ‖Gµ‖ ≤ C|µ|‖ρ ? G‖

by applying Lemma 6.1. Now Lemma 6.2 implies the assertion.
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6.2 Proof of Lemma 4.6.

We would like to apply Lemma 6.2 and Lemma 6.3 to ρ = −λϕ− G(Π)

λ . However, for applying Lemma 6.2
we need that

∫
ρ(x) dx = 0. Therefore, we add a suitable multiple of ϕ, by defining

ρ := −G(Π)

λ + (µ− λ)ϕ, where µ =

∫ [
G(Π)

λ (x) + λϕ(x)
]

dx =

∫
G(Π)

λ (x) dx+ λ. (6.5)

Then ρ is continuous and bounded and rotationally symmetric with
∫
ρ(x) dx = 0 and satisfies the re-

quested upper bound by (4.16). We remark that from (4.18), we get(
1− λ−

∫
G(Π)

λ (x) dx
)(

1 +

∫
G(Γ)

λ (x) dx
)

= 1,

and as the second factor on the left-hand side is > 0, we get µ ≤ 1. Furthermore, as |
∫
G(Π)

λ (x) dx| =
O(α) and λ ≥ 0, we have µ ≥ −1/2 for small enough α. Hence, −1

2
≤ µ ≤ 1 and we can therefore

apply Lemma 6.3.

Again, we use C to denote a generic constant that may depend only on d and v and may change its value
from appearance to appearance. Note that |µ| ≤ Cα. From Lemma 6.3 we have that ‖ρ ? Gµ‖ ≤ Cα.
Hence, we have also that ‖ρ ? Gµ + ρ‖ ≤ Cα. Defining

G̃(Π)

λ = λϕ+G(Π)

λ

one readily checks that
−G̃(Π)

λ +Gµ − G̃(Π)

λ ? Gµ = ρ ? Gµ + ρ.

Therefore, ‖ − G̃(Π)

λ +Gµ − G̃(Π)

λ ? Gµ‖ ≤ Cα. Therefore, if α is small enough, the Neumann series

Q :=
∞∑
n=1

(−1)n(−G̃Π
λ +Gµ − G̃(Π)

λ ? Gµ)?n.

converges in B, and satisfies ‖Q‖ ≤ Cα. If we define

S := Q+Gµ +Q ? Gµ. (6.6)

then one checks that
S − G̃(Π)

λ − G̃
(Π)

λ ? S = 0. (6.7)

Formally this means that if δ0 is the Dirac function at 0, one has

(δ0 + S) ? (δ0 − G̃Π
λ ) = δ0

meaning that δ0 + S is the inverse of δ0 − G(Π)

λ under convolution. The following lemma will complete the
argument:

Lemma 6.4. Under condition (4.16), if α > 0 is small enough, then S = G(Γ)

λ .
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Proof of Lemma 6.4: S and G(Π)

λ are in L2(Rd) which then also contains G(Π)

λ ? S. The Fourier transform
of (6.7) is given by

Ŝ − ̂̃
G(Π)

λ − Ŝ
̂̃
G(Π)

λ = 0, or
(
1 + Ŝ

)(
1−̂̃

G(Π)

λ

)
= 1.

Note that G(Γ)

λ satisfies the same equation G(Γ)

λ − G̃
(Π)

λ − G̃
(Π)

λ ? GΓ
λ = 0, so we get

(
1 + Ĝ(Γ)

λ

)(
1−̂̃

G(Π)

λ

)
= 1.

This implies Ŝ = Ĝ(Γ)

λ , so that by Fourier inversion formula, we obtain S = G(Γ)

λ , as required.

Completing the proof of Lemma 4.6: By Lemma 6.4 and (6.6) we obtain

G(Γ)

λ = S = Q+Gµ +Q ? Gµ.

Recall that Gµ ≤ G. Also, from the arguments preceding Lemma 6.4 we have that ‖Q + Q ? Gµ‖ ≤ Cα,
so that for small enough α, by Remark 4 b) we conclude that

G(Γ)

λ = S = Q+Gµ +Q ? Gµ ≤ Q+G+Q ? Gµ ≤ 2G,

as required.

7 Technical estimates

In the proofs of Lemma 4.4 and Lemma 4.6 we have used some technical estimates, which we state
and prove in this section. Recall that ϕ is the standard Gaussian density and that the interaction func-
tion v : [0,∞) → [0,∞) is continuous and satisfies v ≤ L and v(r) = 0 for r > R for some parameters
L,R ∈ (0,∞).

Lemma 7.1 (Gaussian decay of un,α). Recall the function un = un,α defined in (5.1). Then there exist con-
stantsC,A ∈ (0,∞), depending only on d, L,R, such that, for any n and x = (x1, x2, . . . , x2n−1, x2n) ∈
(Rd)2n,

un(x) ≤ Cnαn−1 exp
[
− 1

8

∑n

i=1
|x2i − x2i−1|2 − A

∑n−1

i=1
|x2i − x2i+2|2

]
.

Proof. Let us first assume that n = 2m is even (the case of odd n is similar, we drop it in the follow-
ing), and identify u2m(x) in terms of integrals over standard Brownian bridges BB(i) on [0, 1] that start
and terminate at zero. Indeed, if we define x(i)

t := (1 − t)x2i−1 + tx2i, then (x(i)

t + BB(i)(t))t∈[0,1] are
independent Brownian bridges from x2i−1 to x2i, i = 1, . . . ,m. That is, they have the same distribution as
µ(1)
x2i−1,x2i

/ϕ(x2i − x2i−1). Hence, we can write

u2m(x) =
2m∏
i=1

ϕ(x2i − x2i−1)E
[ 2m−1∏

i=1

(1− exp[−α$i])

]
, (7.1)
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where

$i :=

∫ 1

0

dt v
(∣∣x(i)

t + BB(i)(t)− x(i+1)

t − BB(i+1)(t)
∣∣) and x(i)

t = (1− t)x2i−1 + tx2i.

We will later upper estimate the expectation on the right-hand side of (7.1) against products of expectations
over Brownian brides, using the Cauchy–Schwarz inequality; hence it will be critical and almost sufficient to
handle the case n = 2. Hence, first prove the assertion for the case n = 2. We will use the well known fact
(proved with the help of the reflection principle) that the distribution of supt∈[0,1] |BB(t)| has sub-gaussian
tails, i.e., there exist constants c1, c2 > 0, depending only on d, such that

P
(

sup
t∈[0,1]

|BB(t)| > u
)
≤ c1 exp[−c2u

2], u ∈ (0,∞). (7.2)

We first consider the set

W :=
{
x ∈ R4 : max

i=1,2
|x2i − x2i−1| >

1

4
|x4 − x2|

}
.

If |x2 − x1| > |x4 − x2|/4, we have

exp
[
− 1

2
|x2 − x1|2

]
≤ exp

[
− 1

4
|x2 − x1|2 −

1

64
|x4 − x2|2

]
, (7.3)

and similarly when |x4 − x3| > |x4 − x2|/4. Therefore, for x ∈ W, we have, also using that v ≤ L and
that 1− e−αL ≤ αL,

u2(x) ≤ Lα

(2π)d
exp

[
− 1

4
|x2 − x1|2 −

1

4
|x4 − x3|2 −

1

64
|x4 − x2|2

]
,

which shows the claim for n = 2 on W .

On W c, and on the event {
sup
t∈[0,1]

|BB(i)(t)| ≤ 1

2
|x4 − x2| − 2R

}
one has $1 = 0. Therefore, on W c,

u2(x) ≤ Lα

(2π)d
exp

[
− 1

2
|x2 − x1|2 −

1

2
|x4 − x3|2

]
2P
(

sup
t∈[0,1]

|BB(t)| > 1

2
|x4 − x2| − 2R

)
≤ Cα exp

[
− 1

2
|x2 − x1|2 −

1

2
|x4 − x3|2 − A|x4 − x2|2

]
,

(7.4)

using (7.2), with some constants C,A > 0, depending only on d, L,R. This proves the claim for n = 2,
actually with slightly better coefficients in the exponent. But the ones in the statement comes up in an
induction argument.
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Let n ≥ 3. To simplify the notation, we take n even, n = 2m. (The case of an odd n follows by a
straightforward modification.) We have

u2m(x)∏2m
i=1 ϕ(x2i − x2i−1)

= E
[∏2m−1

j=1
(1− exp[−α$j])

]
= E

[∏m

j=1
(1− exp[−α$2j−1])

∏m−1

j=1
(1− exp[−α$2j])

]
≤
[
E
(∏m

j=1

(
1− exp[−α$2j−1]

)2
)
E
(∏m−1

j=1

(
1− exp[−α$2j]

)2
)]1/2

≤
[
E
(∏m

j=1

(
1− exp[−α$2j−1]

))
E
(∏m−1

j=1

(
1− exp[−α$2j]

))]1/2

=

[∏m

j=1
E
(

1− exp[−α$2j−1]
)∏m−1

j=1
E
(

1− exp[−α$2j]
)]1/2

In the third line, we used the Cauchy-Schwarz bound, while in the following inequality, we used that 1 −
e−α$ ∈ (0, 1), and so we can drop the square. In the fifth line we used independence. Hence, we get

u2m(x) ≤
( 2m∏
i=1

√
ϕ(x2i − x2i−1)

)√
ϕ(x2 − x1)

√
ϕ(x2m − x2m−1)

×
√∏m

j=1
ϕ(x4j − x4j−1)ϕ(x4j−2 − x4j−3)E(1− exp[−α$2j−1])

×
√∏m−1

j=1
ϕ(x4j+2 − x4j+1)ϕ(x4j − x4j−1)E(1− exp[−α$2j])

≤
( 2m∏
i=1

√
ϕ(x2i − x2i−1)

)√
ϕ(x2 − x1)

√
ϕ(x2m − x2m−1)

×
√∏m

j=1
u2(x4j, x4j−1, x4j−2, x4j−3)×

√∏m−1

j=1
u2(x4j+2, x4j+1, x4j, x4j−1)

Now we apply the estimate in (7.4) for each of terms in the last line and summarize to finish the proof for
n = 2m.

Lemma 7.2. a) For any m ∈ N and h > 0, there exists C(m,h) > 0 such that

1

C(m,h)(1 + |y|)m
≤
∫
Rd

1

(1 + |x|)m
e−h|y−x|

2

dx ≤ C(m,h)

(1 + |y|)m
, y ∈ Rd.

b) For any m1,m2 ∈ N and h > 0, there exists C(m1,m2, h) > 0 such that∫
Rd

1

(1 + |y1 − x|)m1

1

(1 + |y2 − x|)m2
e−h|x|

2

dx ≤ C(m1,m2, h)

(1 + |y1|)m1(1 + |y2|)m2
, y1, y2 ∈ Rd.
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Proof. a)∫
Rd

1

(1 + |x|)m
e−h|y−x|

2

dx =

∫
|x−y|≤|y|/2

1

(1 + |x|)m
e−h|y−x|

2

dx+

∫
|x−y|>|y|/2

1

(1 + |x|)m
e−h|y−x|

2

dx

≤ 1

(1 + |y|/2)m

∫
e−h|z|

2

dz +

∫
|z|>|y|/2

e−h|z|
2

dz

≤ 2mπd/2h−d/2
1

(1 + |y|)m
+

∫
|z|>|y|/2

e−h|z|
2

dz,

where we used in the first integration area that |x − y| ≤ |y|/2 implies that |x| ≥ |y| − |x − y| ≥ |y|/2.
As the second summand on the right-hand side has a Gaussian tail bound, the second inequality follows.

For the first,∫
Rd

1

(1 + |x|)m
e−h|y−x|

2

dx ≥
∫

|x|≤|y|+1

1

(1 + |x|)m
e−h|y−x|

2

dx

≥ 1

(2 + |y|)m

∫
|z|≤1

e−h|z|
2

dz ≥ c(m,h)
1

(1 + |y|)m

for some small c(m,h) > 0 and all y ∈ Rd.

b) follows by applying the Cauchy–Schwarz inequality and a).

Lemma 7.3. G satisfies

G(x) = ad|x|2−d +O(|x|−d−2) as |x| → ∞, where ad :=
Γ(d/2− 1)

2πd/2
,

and Γ is the standard Gamma function.

Proof. We approximate G by the Green function in continuous time:

Gc(x) :=

∫ ∞
0

ϕt(x) dt = ad|x|−d+2.

To determine the correction, we consider

Gc(x)−G(x) =
∞∑
n=1

∫ n+1/2

n−1/2

[ϕt(x)− ϕn(x)] dt+

∫ 1/2

0

ϕt(x) dt.

The second summand has Gaussian tails in |x|, so we have only to care about the first one. A Taylor
expansion gives

ϕt(x)− ϕn(x) = (t− n)∂1ϕn(x) +
(t− n)2

2
∂2

1ϕn+θ(t−n)(x), θ ∈ [0, 1]. (7.5)
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Note that

∂1ϕt(x) =
[ |x|2

2t2
− d

2t

2m∏
i=1

ϕ(x2i − x2i−1)
]
ϕt(x)

∂2
1ϕt(x) =

2m∏
i=1

ϕ(x2i − x2i−1)
[
− 2
|x|2

2t3
+

d

2t2

]
ϕt(x) + [

|x|2

2t2
− d

2t

]2

ϕt(x)

=
1

t2

[( |x|2
t

)2

− |x|
2

t
(1 + d

2
) + d

2
(1 + d

2
)
]
ϕt(x)

The integration
∫ n+1/2

n−1/2
dt over the first summand on the right-hand side of (7.5) is 0. Therefore

∞∑
n=1

∣∣∣ ∫ n+1/2

n−1/2

[ϕt(x)− ϕn(x)] dt
∣∣∣ ≤ 1

24

∞∑
n=1

sup
t∈[n−1/2,n+1/2]

|∂2
1ϕt(x)|

≤
∞∑
n=1

C

n2+d/2

(( |x|2
n

)2

+ 1
)

exp
[
− |x|2

2(n+ 1)2

]
= O(|x|−d−2)

as |x| → ∞.
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