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Polarized frequency combs in a mode-locked VECSEL
Krassimir Panajotov, Andrei G. Vladimirov, Mustapha Tlidi

Abstract

In this paper, we present a detailed and rigorous derivation of the delay differential equations
of the spin-flip model for vertical external cavity lasers with a semiconductor saturable absorption
mirror. This model describe mode-locked semiconductor lasers in the ring-resonator geometry
with unidirectional lasing. This contribution completes a previous communication [Vladimirov et
al. Opt. Lett., 45, 252 (2020)], and we further complete the analytical derivation by taking into
account phase and amplitude anisotropies and the resulting different delay times for orthogonal
linear polarizations. We show evidence of the coexistence of two linearly polarized frequency
combs generation with slightly different repetition rates due to the birefringence-induced time-of-
flight difference.

1 Introduction

Vertical External-Cavity Surface-Emitting Lasers (VECSELs), first developed in 1997 [1], are of great
interest in the scientific community thanks to the possibility of output power scalability, wavelength flex-
ibility, and Optical Frequency Combs (OFC) generation. Semiconductor lasers with saturable absorber
section are widely used to generate short pulses by mode locking [2]. Passive mode locking was first
demonstrated in a VECSEL with a Semiconductor Saturable Absorption Mirror (SESAM), resulting in
the generation of a ps pulse train with a GHz repetition rate [3]. Since then, much progress has been
made towards higher intensity pulses with shorter duration [4, 5, 6, 7]. Two orthogonally polarized
OFCs with different pulse repetition rates have been demonstrated by using a birefringent crystal in the
external cavity to split the laser emission into two spots on the chip combining the gain and saturable
absorption media [8]. In [9] two orthogonally polarized OFCs were theoretically demonstrated for a
VECSEL with SESAM and complex dynamics, including polarization chaotic dynamics was predicted.
Recently, a thorough experimental investigation of polarization dynamics of a VECSEL mode-locked
with SESAM has been performed [10]. Acquiring temporal traces of polarization resolved intensities
provided the Stokes parameters dynamics and demonstrated that the polarization of the generated
light changes during the pulse is generally elliptical with significant s3 Stokes parameter.

Such unusual polarization dynamics is well known for Vertical-Cavity Surface-Emitting Lasers (VC-
SELs) [11, 12, 13] (for a review see [14]). It can lead to deterministic polarization chaos in a solitary
laser [15] or a laser subject to optical feedback [16] or injection [17], vector cavity solitons [18] and
period doubling route to spatially localized chaos of elliptically polarized cavity solitons [19] in broad-
area VCSELs, as well as to ultrahigh-frequency oscillations [20]. It arises due to the lack of strong
polarization selectivity mechanism: the cylindrical symmetry removes the waveguiding and reflectivity
anisotropies and the surface emission removes the gain anisotropy [21, 22]. Since the same surface
emission and absorption occur in the gain and SESAM chips of VECSELs, complex polarization dy-
namics should also occur with the same origin as in VCSELs.

A well-accepted model that reproduces these intriguing polarization dynamics is the so called Spin-
Flip Model or SFM [21]. The SFM considers the transitions between the conduction band and heavy
hole valence band in a quantum well active material as two two-level systems with different spin ori-
entations that are coupled by the spin-flip processes. It takes into account the carrier spin dynamics
occurring on a time scale of hundreds of ps, an intermediate time scale between the photon life-
time (several ps) and the carrier lifetime (ns). Taking into account the VCSEL phase and amplitude
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Figure 1: (color online) The schematic setup of a unidirectional ring resonator produces passively
mode-locked semiconductor lasers filled with four sections along the optical axis, i.e., the z coordinate.
The absorbing section z1 < z < z2, the gain section z2 < z < z3, the spectral filtering section
z3 < z < z4, and the anisotropic section z5 < z < z6. The mirrors M1,2,3 are fully reflective, while
M4 is the output mirror, which is partially reflective.

anisotropies (birefringence and dichroism), the SFM has explained the polarization switching between
two linearly polarized (LP) fundamental transverse modes with injection current as a phase instability
due to amplitude-phase coupling mediated by the linewidth enhancement factor in the semiconductor
active medium [22] (for a review see [14]). It further predicted complex polarization dynamics even in a
solitary VCSEL, such a period-doubling route to chaotic dynamics has been experimentally confirmed
in [15].

For the case of spatial solitons in broad-area VCSELs, the SFM explained the orthogonally polarized
localized structures found in [23] and the vector character of the solitons found in [18]. Recently,
multistability and complex polarization dynamics of an isolated localized structure have been predicted
by SFM for a VCSEL with a saturable absorber section [19]. SFM also explains the appearance of
ultra-fast polarization oscillations [20]. Time-delayed SFM for VECSELs with SA-mirror has recently
been introduced in [9] based on an extension of the delay differential equations (DDEs) proposed in
[24]. It numerically demonstrated the generation of either x- or y-linearly polarized pulse trains in the
fundamental mode-locked regime or in a regime of more than one pulse per roundtrip, as well as more
complicated two-polarization mode dynamics with increasing the pump power.

This paper is organized as follows. After an introduction, we present in detail the spin-flip model delay
differential equation model for vertical external cavity lasers with a saturable semiconductor absorption
mirror (Sec. II). This differential equation model, which describes mode-locked semiconductor lasers,
assumes a ring resonator geometry with a unidirectional laser (see Fig. 1). First, we consider the phase
and amplitude anisotropies and the resulting different delay times for orthogonal linear polarizations -
the derivation of the anisotropy matrix is presented in subsection A. After describing the field equations
assuming the slowly varying envelope approximation (subsection B), we derive the carrier equation
(subsection C). The final section is devoted to the numerical integration of the derived model equations
(Sec. III). We demonstrate the generation of two coexisting linearly polarized frequency combs with
slightly different repetition rates due to the birefringence-induced time-of-flight difference. We conclude
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in sec. IV.

2 Spin-flip delay-differential equation model for mode-locked VEC-
SEL

We consider a ring-cavity geometry with unidirectional lasing containing gain and absorber sections in
VECSELs, the spectral filtering, and the anisotropic section as depicted in Fig. 1.The delay differential
equations (DDEs) are a well-known model for describing mode-locked semiconductor lasers with a
saturable absorber, as shown by Vladimirov and Turaev in [24]. In the absence of spectral filtering and
anisotropy, the gain and absorber sections in VECSELs are described by the spin flip model [21] with
spatial derivatives included and linear loss excluded. Under these modifications, the time evolution of
the right-left amplitude of the field associated with circular polarization and the carriers reads

∂zA
± + ∂tA

± = (1− iα)(N ± n)A±/2, (1)

∂tN = N0 − γeN − s|A+|2(N + n)− s|A−|2(N − n), (2)

∂tn = n0 − γsn− s|A+|2(N + n) + s|A−|2(N − n). (3)

Here A± are the slowly varying envelope field amplitudes for the right (+) and left (−) circular polar-
ization. The variables N and n represent the overall and excess carrier densities, i.e., the half sum and
the half difference of the carrier densities of the two-level systems with different spin orientations [21].
They are rescaled so that the multiplier in the field equations becomes 1/2. The parameters α = αg

and α = αq are the linewidth enhancement factors, γe = γg and γe = γq are the carrier density
relaxation rates, γs = γsh and γs = γsp are the spin-flip relaxation rates in the gain and SA sections,
respectively. N0 and n0 are the pump and unsaturated absorption parameters for the overall and ex-
cess carrier densities, respectively. The parameter s in Eqs. (2) and (3) is the ratio of the saturation
intensities in the gain and absorber sections. s = 1 for the gain section and s = (gqΓq)/(ggΓg) for
the absorber section, where gg (gq) and Γg (Γq) are the differential gains and confinement factors in
the gain (absorber) section.

2.1 Anisotropy matrix

The anisotropy matrix M̃ is obtained from the equations for the anisotropic section as included phe-
nomenologically in the Spin-Flip Model [22]

(∂z + ∂t)A
+ = −(γa + iγp)A

−/2

(∂z + ∂t)A
− = −(γa + iγp)A

+/2, (4)

where γa and γp represent the amplitude and phase anisotropies [22]. Taking the sum and the differ-
ence for right and left circularly polarized light in Eq. (4)

(∂z + ∂t)(A
+ + A−) = −(γa + iγp)(A

+ + A−)/2,

(∂z + ∂t)(A
+ − A−) = (γa + iγp)(A

+ − A−)/2.

with solution in terms of LP states

A(4)
x (t) = e−(γa+iγp)l3/2A(3)

x (t− t3 − δt),

A(4)
y (t) = e(γa+iγp)l3/2A(3)

y (t− t3 + δt), (5)
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where A
(k)
x (t) = Ax(zk, t) with k = 3, 4, l3 = z4 − z3 and t3 is the delay time due to the light

propagation in the anisotropy section with δt the difference due to the birefrnigence. The anisotropy
matrix M̃ becomes

M̃ =

[
e−(γ̃a+iγ̃p) 0

0 eγ̃a+iγ̃p

]
. (6)

where γ̃p = γpl3/2 and γ̃a = γal3/2 with l3 = z4 − z3 being the length of the anisotropic section.

2.2 Field equations

Integrating the field equations (1) along the characteristics, we get(
A+

3 (t)
A−

3 (t)

)
= eiϕ2

(
e(1−iαg)(g+h)/2A+

2 (t− t2)
e(1−iαg)(g−h)/2A−

2 (t− t2)

)
, (7)(

A+
2 (t)

A−
2 (t)

)
= eiϕ1

(
e−(1−iαq)(q+p)/2A+

1 (t− t1)
e−(1−iαq)(q−p)/2A−

1 (t− t1)

)
, (8)

where A±
k (t) = A±(zk, t), g(t) =

∫ z3
z2

N(z, t)dz and h(t) =
∫ z3
z2

n(x, t)dz for the gain section and

q(t) = −
∫ z2
z1

Ndz and p(t) = −
∫ z2
z1

ndz for the SA section. The delay times, denoted as t1,2, and
phase shifts, represented by ϕ1,2, arise from the propagation through the absorber and gain media.
Taking the sum and the difference of the two rows of Eq. (7), we obtain(

A+
3 (t) + A−

3 (t)
A+

3 (t)− A−
3 (t)

)
= e(1−iαg)g/2+iϕ2 ×(

A+
2 (t− t2)e

(1−iαg)h/2 + A−
2 (t− t2)e

−(1−iαg)h/2

A+
2 (t− t2)e

(1−iαg)h/2 − A−
2 (t− t2)e

−(1−iαg)h/2

)
. (9)

Similarly, if we take the sum and the difference of the two rows of Eq. (8), we obtain(
A+

2 (t) + A−
2 (t)

A+
2 (t)− A−

2 (t)

)
= e−(1−iαq)q/2+iϕ1 ×(

e−(1−iαq)p/2A+
1 (t− t1) + e(1−iαq)p/2A−

1 (t− t1)
e−(1−iαq)p/2A+

1 (t− t1)− e(1−iαq)p/2A−
1 (t− t1)

)
. (10)

Using e±x = ch(x)± sh(x) in Eqns. (9), we obtain(
A+

3 (t) + A−
3 (t)

A+
3 (t)− A−

3 (t)

)
= e(1−iαg)g/2+iϕ2 ×[(

[A+
2 (t− t2) + A−

2 (t− t2)] cosh [(1− iαg)h/2][
A+

2 (t− t2)− A−
2 (t− t2)

]
cosh [(1− iαg)h/2]

)
+(

[A+
2 (t− t2)− A−

2 (t− t2)] sinh [(1− iαg)h/2][
A+

2 (t− t2) + A−
2 (t− t2)

]
sinh [(1− iαg)h/2]

)]
. (11)

Using the same substitution for e±x in Eqns. (10), we obtain(
A+

2 (t) +A−
2 (t)

A+
2 (t)−A−

2 (t)

)
= e−(1−iαq)q/2+iϕ1 ×[(

[A+
1 (t− t1) +A−

1 (t− t1)] cosh [(1− iαq)p/2][
A+

1 (t− t1)−A−
1 (t− t1)

]
cosh [(1− iαq)p/2]

)
−(

[A+
1 (t− t1)−A−

1 (t− t1)] sinh [(1− iαq)p/2][
A+

1 (t− t1) +A−
1 (t− t1)

]
sinh [(1− iαq)p/2]

)]
. (12)
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Polarized frequency combs in a mode-locked VECSEL 5

We may now rewrite the last two equations, Eq. (11) and Eq. (12) in terms of the orthogonal lin-
ear components of the electric field by utilizing the relations A

(k)
x = (A+

k + A−
k )/

√
2 and A

(k)
y =

−i(A+
k − A−

k )/
√
2, i.e. (

A
(3)
x (t)

iA
(3)
y (t)

)
=

e(1−iαg)g/2+ϕ2

[(
A

(2)
x (t− t2) cosh [(1− iαg)h/2]

iA
(2)
y (t− t2) cosh((1− iαg)h/2)

)
+(

iA
(2)
y (t− t2) sinh [(1− iαg)h/2]

A
(2)
x (t− t2) sinh [(1− iαg)h/2]

)]
, (13)

and (
A

(2)
x (t)

iA
(2)
y (t)

)
=

e−(1−iαq)q/2+ϕ1

[(
A

(1)
x (t− t1) cosh [(1− iαq)p/2]

iA
(1)
y (t− t1) cosh [(1− iαq)p/2]

)
−(

iA
(1)
y (t− t1) sinh [(1− iαq)p/2]

A
(1)
x (t− t1) sinh [(1− iαq)p/2]

)]
. (14)

Substituting Eq. (14) into Eq. (13) and denoting (1− iαg)h/2 → h̃ , (1− iαq)p(t− t2)/2 → p̃, and
q(t− t2) → q̃ we obtain(

A
(3)
x (t)

A
(3)
y (t)

)
= e(1−iαg)g/2−(1−iαq)q̃/2+i(ϕ1+ϕ2) × Ã

(2)
x (t− t2) cosh

(
h̃
)
+ iÃ

(2)
y (t− t2) sinh

(
h̃
)

Ã
(2)
y (t− t2) cosh

(
h̃
)
− iÃ

(2)
x (t− t2) sinh

(
h̃
)  , (15)

with

Ã(2)
x (t) = A(1)

x (t− t1) cosh(p̃)− iA(1)
y (t− t1) sinh(p̃),

Ã(2)
y (t) = A(1)

y (t− t1) cosh(p̃) + iA(1)
x (t− t1) sinh(p̃).

Performing the algebraic calculations in Eq. (15) we obtain(
A

(3)
x (t)

A
(3)
y (t)

)
= e(1−iαg)g/2−(1−iαq)q̃/2× A

(1)
x (t− t12) cosh

(
p̃− h̃

)
− iA

(1)
y (t− t12) sinh

(
p̃− h̃

)
A

(1)
y (t− t12) cosh

(
p̃− h̃

)
+ iA

(1)
x (t− t12) sinh

(
p̃− h̃

)  , (16)

where t12 = t1 + t2.

Using Eq. (16) together with Eq. (5) and the relations A
(1)
x,y(t) = eiϕ0A

(0)
x,y(t − t0), A

(5)
x,y(t) =√

κeiϕ4A
(4)
x,y(t − t4) where, κ is the round-trip intensity attenuation factor, and γ−1∂tA

(0)
x,y(t) +

DOI 10.20347/WIAS.PREPRINT.3109 Berlin 2024
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A
(0)
x,y(t) = A

(5)
x,y(t), which defines a Lorentzian spectral filter with the bandwidth γ describing the

overall spectral filtering including the dispersion of material gain, SA subcavities, and distributed Bragg
reflectors, we get the final equation for the field envelopes:

γ−1 d
dt

(
Ax

Ay

)
+

(
Ax

Ay

)
=

√
κM̃ ×(

R+ [Ax(t− T+) cosh(Ψ+)− iAy(t− T+) sinh(Ψ+)]
R− [Ay(t− T−) cosh(Ψ−) + iAx(t− T−) sinh(Ψ−)]

)
, (17)

R± = e(1−iαg)G(t−T±)/2−(1−iαq)Q(t−T±)/2+iϕ, (18)

Ψ± = (1− iαq)P (t− T±)/2− (1− iαg)H(t− T±)/2, (19)

where Ax,y(t) = A
(0)
x,y(t) ≡ Ax,y(z0, t), ϕ =

∑4
k=0 ϕk is the total phase shift per round-trip, T± =

±δt+
∑4

k=0 tk are the cold cavity round trip times for the two polarizations, G = g(t+ t0+ t1+ t2),
Q = q(t+ t0 + t1), P (t) = p(t+ t0 + t1) and H(t) = h(t+ t0 + t1 + t2).

2.3 Carrier equations

Without loss of generality, we assume that the field envelope is rescaled so that the saturation param-
eter in the gain (absorber) medium is equal to unity (s). Integrating the carrier equations, Eq. (2) and
Eq. (3) along z in the gain and saturable absorber sections as in [9], we obtain

∂tg = G0 − γgg −
∫ z3

z2

|A+|2(N + n)dz −∫ z3

z2

|A−|2(N − n)dz, (20)

∂th = H0 − γsgh−
∫ z3

z2

|A+|2(N + n)dz −∫ z3

z2

|A−|2(N − n)dz, (21)

∂tq = Q0 − γqq − s

∫ z2

z1

|A+|2(N + n)dz −

s

∫ z2

z1

|A−|2(N − n)dz, (22)

∂tp = P0 − γsqp− s

∫ z2

z1

|A+|2(N + n)dz +

s

∫ z2

z1

|A−|2(N − n)dz. (23)

Now using Eq. (1) we get

(∂z + ∂t)|A±|2 = A±∗(∂zA
± + ∂tA

±) + A±(∂zA
±∗ + ∂tA

±∗),

i.e.,
(∂z + ∂t)|A±|2 = |A±|2(N ± n), (24)

Integrating these equations along the characteristic we get∫ zk+1

zk

|A±|2(N ± n)dz = |A±
k+1(t)|

2 − |A±
k (t− tk)|2,

DOI 10.20347/WIAS.PREPRINT.3109 Berlin 2024



Polarized frequency combs in a mode-locked VECSEL 7

where A±
k (t) = A±(zk, t) and k = 1, 2. Expressing A±

k (t) in terms of A±
0 (t) = A±(z0, t) we get∫ z2

z1
|A±|2(N ± n)dz = (e−(q±p) − 1)|A±

0 (t− t0 − t1)|2,∫ z3
z2

|A±|2(N ± n)dz =

e−(q±p)(e(g±h) − 1)|A±
0 (t− t0 − t1 − t2)|2, (25)

Next, instead of (20)-(23) we write the equations for G(t) = g(t+ t0 + t1 + t2), H(t) = h(t+ t0 +
t1 + t2), Q(t) = g(t + t0 + t1), and P (t) = p(t + t0 + t1). Then taking into account Eq. (25) we
obtain:

dG

dt
= G0 − γgG− e−Q−P (eG+H − 1)|A+(t)|2

−e−Q+P (eG−H − 1)|A−(t)|2,
dH

dt
= H0 − γshH − e−Q−P (eG+H − 1)|A+(t)|2

+e−Q+P (eG−H − 1)|A−(t)|2,
dQ

dt
= Q0 − γqQ− s(1− e−Q−P )|A+(t)|2

−s(1− e−Q+P )|A−(t)|2,
dP

dt
= P0 − γspP − s(1− e−Q−P )|A+(t)|2+

s(1− e−Q+P )|A−(t)|2.

Expressing the circularly polarized light intensities in terms of the LP amplitudes Ax and Ay and
carrying out the algebra we obtain

dG

dt
= G0 − γgG− e−Q

[
eG cosh (H − P )− cosh (P )

]
×(

|Ax)|2 + |Ay|2
)
− e−Q

[
eG sinh (H − P ) + sinh (P )

]
×

i
(
A∗

xAy −AxA
∗
y

)
, (26)

dH

dt
= H0 − γshH − e−Q

[
eG sinh (H − P ) + sinh (P )

]
×(

|Ax|2 + |Ay)|2
)
− e−Q

[
eG cosh (H − P )− cosh (P )

]
×

i
(
A∗

xAy −AxA
∗
y

)
, (27)

dQ

dt
= Q0 − γqQ− s

[
1− e−Q cosh (P )

] (
|Ax|2 + |Ay|2

)
−

se−Q sinh (P )i(A∗
xAy −AxA

∗
y), (28)

dP

dt
= P0 − γspP − se−Q sinh (P )

(
|Ax|2 + |Ay|2

)
−

s
[
1− e−Q cosh (P )

]
i(A∗

xAy −AxA
∗
y), (29)
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Figure 2: (a) Time trace of the intensity of x linearly polarized light; (b) time trace of a single pulse
and (c) RF spectrum corresponding to a frequency comb with line spacing of 1.33 GHz. VECSEL
parameters are γ = 33.3, γg = 1.33× 10−2, γq = 0.5, γsh = 0.5, γsp = 5, g0 = 0.01, q0 = 0.3,
h0 = 0, p0 = 0, s = 25. The VECSEL is consider isotropic, i. e. γ̃p = 0, γ̃a = 0 and τx = τy = 75.
Initial conditions are Ax = 0.1, Ay = 0.

3 Numerical results

We integrate numerically the Eqs. (17) - (29) by using the 5th order Runge-Kutta integration scheme
and accounting for the delay terms. We fix the VECSEL parameters as in [9], namely γ = 33.3,
γg = 1.33 × 10−2, γq = 0.5, γsh = 0.5, γsp = 5, g0 = 0.01, q0 = 0.3, h0 = 0, p0 = 0,
and s = 25. However, we consider a longer external cavity length of 22.5 cm, corresponding to a
normalized delay time of 75. The linewidth enhancement factors are taken as αg = αq = 0.

First, we confirm the results of [9] namely, that for isotropic VECSEL, i.e., γ̃p = 0 and γ̃a = 0,
and depending on which x or y linearly polarized light is chosen as an initial condition the mode
locking occurs in the same LP mode. Fig. 2, calculated for initial conditions for the amplitudes of the
x and y polarizations of Ax = 0.1 and Ay = 0, represents the case of mode-locked pulses in only
x polarization while y polarization is not lasing. Fig. 2(a) shows a time trace of the x-LP intensity;
Fig. 2(b) show a time trace of a single pulse and Fig. 2(c) shows the RF spectrum corresponding to a
frequency comb with line spacing of 1.33 GHz.

Which polarization lases for the case of isotropic VECSEL is determined by the initial conditions. For
example, for initial conditions for the amplitudes of the x and y polarizations of Ax = 0 and Ay = 0.1
mode-locked pulses for y polarization are only generated (not shown). When the two LP are chosen
with the same amplitude initially, the VECSEL pulsates in both polarizations simultaneously with the
same pulse amplitudes - see Fig. 3 for initial conditions of Ax = 0.1 and Ay = 0.1. Fig. 3(a) and
(b) shows the time traces of the intensities of x and y linear polarizations, respectively and Fig. 3(c)
shows the time traces of overall carrier densities: G in the gain section (red color) and Q in the
saturable absorber section (blue color). For isotropic VECSEL considered the excess carrier densities
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Figure 3: (color online) VECSEL with the same parameters as in Fig. 2 and initial conditions of
Ax = 0.1 and Ay = 0.1. (a) Time traces of the intensities of x (red color) and y (blue color) lin-
ear polarizations and (b) time traces of overall carrier densities: G in the gain section (red color) and
Q in the saturable absorber section (blue color).
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Figure 4: (color online) Evolution of the light polarization during a mode-locked pulse: (a) time traces
of the intensities of x (red color) and y (blue color) linear polarizations; (b), (b) and (c) time traces of
normalized Stokes parameters s1, s2 and s3.

H in the gain section and P in the absorber sections are equal to zero.
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Figure 5: (color online) Evolution of the light polarization during a mode-locked pulse: (a) time traces
of the intensities of x (red color) and y (blue color) linear polarizations; (b), (b) and (c) time traces of
normalized Stokes parameters s1, s2 and s3.

The evolution of the light polarization during the mode-locked pulses is illustrated in Fig. 4 by following
the evolution of the Stokes parameters. As can be seen from this figure, light polarizations is not
changed by mode-locking. This is because the light polarization remains linear at 45 degrees as the
normalized Stokes parameter does not change s2 = 1 while s1 and s3 are always equal to zero.
However, this is not generally true: polarization of the mode-locked pulses should also depend on the
polarization of the pump. In general, the VECSEL gain chip could be also not isotropically pumped,
i.e. there could be an excess of one circularly polarized components of the pump. We characterized
the degree of circular polarization of the pump by the parameter (see also [25, 26])

Dcp =
H0

G0

. (30)

The evolution of the Stokes parameters of the light mode-locked pulses is illustrated for this case in
Fig. 5 for the same parameters as in Fig 3 except that Dcp = 0.025, i.e. H0 = 0.0025. As can be
seen from this figure, light polarizations is now changed by the mode-locking: while s1 = 0 always,
s2 and s3 are impacted. Before the arrival of the pulse their values are s2 = 0.65 and s3 = −0.75
indicating elliptical polarization. Shortly before arriving of the pulse s2 decreases abruptly to 0 and s3
to −1, i.e. light is circularly polarized. During the leading edge of the pulse they again change abruptly:
to almost 1 and 0, respectively, indicating linear polarization at 45 degrees. During the trailing edge of
the pulse and afterwards s2 and s3 slowly relax back to the values characteristic for the beginning of
the pulse.

Fig. 6 presents a bifurcation diagram as a function of the gain chip pump G0 for VECSEL with the same
parameters as in Fig. 2. It presents the maxima and the minima of the polarization resolved intensities
for the last 10 ns for a number of time traces with a duration of 150ns starting at G0 = 0.001 with
initial conditions of Ax = 0.1 and Ay = 0.1 and increasing G0 with steps of ∆G = 0.001. Typical
mode locking as presented so far and with progressively increasing with G0 pulse amplitude occurs in
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Figure 6: (color online) Top panel: Bifurcation diagram as a function of the gain chip pump for VECSEL
with the same parameters as in Fig. 2 and initial conditions as in Fig. 3. The bottom panels present
time traces of the intensities of x (red color) and y (blue color) linear polarizations at fixed values of
G0 as denoted in the bifurcation diagram.

the region of G0 ∈ [0.002, 0.023]; time traces of the intensities of x and y polarizations for this case
are shown in (a) in the bottom panel for G0 = 0.002. With further increasing of G0 the trailing edge
of the mode-locked pulse develops a progressively increasing plateau - see the time traces for this
case in (b) in the bottom panel for G0 = 0.004. The amplitude of the pulses progressively decreases
until the zero-intensity off-state disappears (it acquires a non-zero value). Time traces for this case is
shown in (c) in the bottom panel for G0 = 0.007. Finally, the VECSEL lases in CW regime with a
constant intensity - see the time traces in (d) in the bottom panel for G0 = 0.008.

DOI 10.20347/WIAS.PREPRINT.3109 Berlin 2024



K. Panajotov, A.G. Vladimirov, M. Tlidi 12

Figure 7: (color online) Same as Fig. 3 except that the VECSEL birefringence and the consequent
optical path difference are considered, namely γ̃p = 0.25 and τx = 75 and τy = 76. (a) Time traces
of the intensities of x (red color) and y (blue color) linear polarizations; (b) time traces of G (red color),
and Q (blue color) and (c) time traces of the maxima of the pulses in shown (a). The inset in (b) shows
enlargement of region of G(t), Q(t) where two LP pulses are generated.

Next, we consider the presence of birefringence that may be due to the gain, the SA chips and/or can
be deliberately introduced in the external cavity [8]. Optical birefringence appears due to refractive
index anisotropy, which automatically means that the optical paths, and therefore the delay times τx
and τy will be different. All this is accounted in Fig. 7 where we consider the case of γ̃p = 0.25
and τx = 75 and τy = 76. Fig. 7(a) shows time traces of the intensities of x (red color) and y
(blue color) linear polarizations. Remarkably, two pulse trains with orthogonal linear polarizations and
slightly different repetition rate are observed. Because of this difference of the repetition rates, the
LP pulses will overlap periodically (see e.g. the pulses at t = 114ns) and, as consequence, the
amplitudes of the orthogonally polarized pulses will be periodically modulated. This is better evident in
Fig. 7(c) where time traces of only the maxima of the pulses are shown. The reason for the modulation
of the LP pulse amplitudes can be deduced from Fig. 7(b): when the LP pulses are well separated the
gain G (the red curve) manages to partially recover after being sharply depleted at the first pulse - see
also the inset of the figure. This recovery occurs less and less as the time difference between the two
LP pulses diminishes and does not happen when the two LP pulses coincide.

The evolution of the light polarization is illustrated in Fig. 8 for the case of well separated in time con-
secutive pulses. As evident, light polarization remains linear during the mode-locked pulses, oriented
along either the x or the y axis: the normalized Stokes parameter s1 switches from −1 to +1 for the
first and the second LP light pulses while s2 and s3 remain equal to zero during the pulses. How-
ever, for the case of overlapping pulses light polarization evolves in a continuous manner as shown
in Fig. 9. In the region where the two pulses overlap, s1 changes smoothly from −1 to +0.2. This
change is accompanied by an increase of s2 from 0 to almost 1 and a small increase of s3 from 0 to
about 0.05. This signifies that the light does not remain linearly polarized in the region of overlapping
pulses: it turns its direction (signified by the large change of s2 and acquires also a circular component
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(signified by the non-zero value of s3).

Finally, we illustrate the impact of the linewidth enhancement factors of the VECSEL gain chip and
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Figure 8: (color online) Evolution of the light polarization during a mode-locked pulse: (a) time traces
of the intensities of x (red color) and y (blue color) linear polarizations; (b), (b) and (c) time traces of
normalized Stokes parameters s1, s2 and s3.
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Figure 9: (color online) Evolution of the light polarization during a mode-locked pulse: (a) time traces
of the intensities of x (red color) and y (blue color) linear polarizations; (b), (b) and (c) time traces of
normalized Stokes parameters s1, s2 and s3.
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Figure 10: (color online) Same as Fig. 7 except that the linewidth enhancement factors of the VECSEL
gain chip and saturable absorber are considered, namely αg = 3 and αq = 1. (a) Time traces of the
intensities of x (red color) and y (blue color) linear polarizations; (b) time traces of single pulses in
x (red color) and y (blue color) linear polarizations and (c) optical spectra for the x (red color) and y
(blue color) LP light.

saturable absorber, namely αg = 3 and αq = 1. Fig. 10(a) presents the time traces of the intensities
of x (red color) and y (blue color) linear polarizations and reveals similar sequences of pulses in the
two linear polarizations with different repetition rate and modulated amplitude as already observed
and explained for the case of zero linewidth enhancement factors. Fig. 10(b) shows the time traces of
single pulses in x (red color) and y (blue color) linear polarizations and reveals that the trailing edges
of the pulses are now distorted with more evident after-pulsing for the y-LP light. Fig. 10(c) presents
the optical spectra for the x (red color) and y (blue color) polarizations, revealing two coexisting linearly
polarized frequency combs with slightly different line spacing.

4 Conclusion

We have developed a spin-flip delay differential equation model for vertical external cavity lasers
equipped with a saturable semiconductor absorber mirror. We obtained complete formulas for the
anisotropy matrix and the associated field and carrier equations, providing a basis for a detailed study
of the dynamics of the system. This model, based on the approximation of unidirectional generation
in a ring cavity, is well suited to describe the mode-locking regimes involving two waves with different
polarizations. Our analysis considers both phase and amplitude anisotropies in the laser cavity. In par-
ticular, the occurrence of optical birefringence due to refractive index anisotropy significantly affects
the optical paths, thereby changing the cavity round-trip times for orthogonal linear polarizations.

We performed numerical simulations of the derived model equations. In our analysis, we examined
the mode-locked solutions by studying their Stokes parameters and temporal behavior. Our results
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revealed the presence of two distinct pulse trains with orthogonal linear polarizations and slightly
different repetition rates. In the spectral domain, these operating regimes correspond to the generation
of two optical frequency combs with slightly different line spacings due to the birefringence-induced
time-of-flight difference.
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