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Cluster sizes in subcritical soft Boolean models
Benedikt Jahnel, Lukas Lüchtrath, Marcel Ortgiese

Abstract

We consider the soft Boolean model, a model that interpolates between the Boolean model
and long-range percolation, where vertices are given via a stationary Poisson point process. Each
vertex carries an independent Pareto-distributed radius and each pair of vertices is assigned an-
other independent Pareto weight with a potentially different tail exponent. Two vertices are now
connected if they are within distance of the larger radius multiplied by the edge weight. We deter-
mine the tail behaviour of the Euclidean diameter and the number of points of a typical maximally
connected component in a subcritical percolation phase. For this, we present a sharp criterion in
terms of the tail exponents of the edge-weight and radius distributions that distinguish a regime
where the tail behaviour is controlled only by the edge exponent from a regime in which both
exponents are relevant. Our proofs rely on fine path-counting arguments identifying the precise
order of decay of the probability that far-away vertices are connected.

1 Introduction

Sparse random-graph models that combine heavy-tailed degree distributions and long-range effects
have attracted a lot of attention in recent years due to their ability to describe many real-world net-
works. For these random graphs vertices are embedded into the d-dimensional Euclidean space via
a homogeneous Poisson point process with unit intensity and additionally each vertex is assigned an
i.i.d. weight or interaction radius. Given the vertices and their radii, edges are then drawn indepen-
dently such that edges to vertices with a large radius or to vertices nearby are more probable. The
overall number of edges is controlled by an intensity parameter β > 0 that influences the connectivity
in such a way that increasing β leads to more edges on average. Although short edges are more
likely, the connection mechanism still allows edges between arbitrarily far-apart vertices to occur oc-
casionally. An important question then is whether there exists a non-trivial critical intensity βc such
that the graph contains an infinite connected component with positive probability if β > βc but does
not if β < βc. The ergodicity entailed in the model ensures that the existence of an infinite connected
component is a 0-1-event and any existing infinite connecting component is unique [5, 23]. We call
(0, βc) the subcritical phase and (βc,∞) the supercritical phase. Once the two phases are identified
one aims for more detailed results about the behaviour of the graph within each of those phases. This
article is devoted to the analysis of the tail distribution of the Euclidean diameter as well as the num-
ber of points of the typical connected component in the soft Boolean model in the subcritical regime.
This random graph was recently introduced in [16] as a model that interpolates between the (Poisson)
Boolean model and the long-range random connection model, arguably the two most studied models
in the continuum-percolation literature. For the diameter of the typical cluster in the soft Boolean model
we identify the decay exponent for the whole parameter regime where a subcritical phase exists and
find a sharp criterion when the long-range effects, or the radii, or the combination of both determine the
decay. For the number of points in the typical cluster we derive complementary results, at least in parts
of the parameter regime, that show a strong qualitative difference to the behaviour of the diameter.
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B. Jahnel, L. Lüchtrath, M. Ortgiese 2

The idea of constructing graphs on random point clouds in the continuum and then connecting the
vertices based on their distances goes back to [13], where a model is proposed in which any two
Poisson points are connected by an edge whenever their distance is smaller than a threshold β > 0,
which can be seen as a continuum equivalent to nearest-neighbour percolation on the lattice. This
model is commonly referred to as the Gilbert graph or random geometric graph [40]. The connection
rule can be also seen as assigning a ball of radius β/2 to each vertex and connecting any pair of
vertices whose balls intersect. Later on, this idea was generalised to random radii in the physics
literature [43, 29] and rigorously in [21]. Nowadays, this model is commonly known under the name
(Poisson) Boolean model. It is a, by now, classical result that there always is a non-trivial phase
transition in dimensions d ≥ 2, and no supercritical phase in dimension d = 1, in both cases,
whenever the radius distribution has finite d-th moment [21, 36]. This especially includes heavy-tailed
radius distributions which are of particular interest to us as they lead to heavy-tailed (or scale-free)
degree distributions. In 2008, it was shown that there exists another critical intensity β̂c ≤ βc such
that the Euclidean diameter of the typical connected component has finite s-th moment if and only
if the radius distribution has finite (d + s)-th moment whenever β < β̂c, see [14]. The same holds
for the number of points in the typical cluster [25]. For the planar Boolean model in d = 2, it was
shown that βc = β̂c for all radius distributions with finite d-th moment in [1]. Under additional moment
conditions, this was generalised to all dimensions d ≥ 2 via randomised algorithms and the OSSS
inequality in [11]. Very recently, this result was extended to the class of Pareto distributed radii with
some technical exceptions in [7]. We further discuss the potential equality of critical intensities below
in Section 2.6.

Another generalisation of Gilbert’s model is to replace the hard-threshold condition and instead con-
nect any pair of vertices with a probability determined by a non-increasing function of the distance
of the vertices. This was introduced in continuum percolation under the name (Poisson) random con-
nection model in [41, 42] and further studied in [34, 35]. The generalised connection mechanism
particularly includes connection functions that decay polynomially. The idea of connecting any pair
of vertices with a probability given by a negative power of their spatial distance was first introduced
in [44] as a lattice model that exhibits a non-trivial percolation phase transition even in dimension
d = 1. More precisely, any pair of lattice points is connected independently with a probability decay-
ing polynomially in the distance of the vertices with exponent δ > 1, and there is a non-trivial phase
transition βc ∈ (0,∞) in dimension d = 1 if and only if δ ≤ 2, see [39, 10]. Moreover, for δ = 2, the
percolation function is discontinuous [2], which is rather atypical. This generalises to the continuum
version. It was shown that there always exists a non-trivial phase transition in d ≥ 2 as long as the
connection function is integrable [37]. Further, in the whole subcritical regime the expected number of
points in a typical connected component is finite [34], which is sometimes also referred to as a sharp
phase transition. For a detailed overview of the random connection model, we refer the reader to [37].
Since we are particularly interested in the long-range effects coming from a connection function that
decays polynomially in the distance, we will stick with the name of long-range percolation throughout
the paper.

Besides the soft Boolean model, other models combining heavy-tailed degree distributions and long-
range effects and their percolation behaviour have been studied recently in the literature. Examples
include scale-free percolation [6] and its continuum version [9], also studied under the name geomet-
ric inhomogeneous random graphs [3, 4]. Here, the radii play the role of weights and two vertices are
connected with a probability that decays polynomially in their distance divided by the product of both
weights. This model also appears as a generalised weak local limit of hyperbolic random graph mod-
els [31], cf. [30]. Another model is the age-dependent random connection model [15] which appears
as the weak local limit of a preferential-attachment type model, where the influence of a vertex is de-
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Subcritical cluster sizes 3

termined by its age. These models, together with the soft Boolean model, and the above mentioned
classical continuum percolation models as well as the ultra-small scale-free geometric network [48]
are contained in the class of weight-dependent random connection models, introduced in [17]. The ex-
istence of subcritical and supercritical percolation phases for these models are shown in [19, 18, 24].
In [16], the graph distances in supercritical phases are identified. In [38] it is shown that, for strong
enough long-range effects, the percolation function on weight-dependent random connection models
is continuous, a property that is believed to be generally true. Closely related to the weight-dependent
random connection model, only using a different parametrisation, are the recently introduced kernel-
based spatial random graphs [26]. In that article, the authors show, under some additional assump-
tions, that the tail of the cluster-size distribution of a finite component in a supercritical regime decays
stretched exponentially.

Our article is organised as follows: In the next section, we give a description of the soft Boolean model
and our main results. Our main result is Theorem 2.1 describing the asymptotics of the Euclidean
diameter. Additionally, we derive results on the cardinality of the component of the origin, see Theo-
rem 2.2, in comparison. In Section 2.4 we give a formal construction of the model. In Section 2.6 we
further discuss our results, compare it with known results and elaborate on some open problems. We
present the proofs of our results in Section 3. The main contribution here is the proof of the upper
bound of the Euclidean diameter in Section 3.2. Due to the number of long edges in our model in ad-
dition to the inhomogeneity coming from the radii of the vertices, classical renormalisation arguments
for the Boolean model or long-range percolation cannot be applied. Instead we rely on fine moment
bounds applied to carefully chosen paths to derive our results.

2 Setting and main results

2.1 Description of the model

We now introduce the soft Boolean model [16] that combines both heavy-tailed degree distributions
and long-range effects. The vertex set is given by a homogeneous Poisson point process X in Rd

with intensity one. Note that fixing the intensity is no restriction for our results by rescaling. Next, we
assign to each vertex x ∈ X an independent radius Rx distributed according to a Pareto distribution
with tail exponent 1/γ for some γ ∈ (0, 1), that is P(Rx > r) = 1 ∧ r−1/γ . Further, given X , we
assign to each pair of distinct vertices {x, y} ⊂ X an independent edge weight W (x, y) that is also
Pareto distributed with tail exponent δ for some δ > 1. Then, given X and the collection of radii and
edge weights, each pair of vertices x, y ∈ X is connected by an edge if and only if

|x− y|d ≤ βW (x, y)
(
Rx ∨Ry

)
, (1)

where β > 0 is the edge intensity mentioned above. Here and throughout the article, | · | denotes the
Euclidean norm. In words, two vertices are connected if the vertex with the smaller radius, say x, is
contained in the ball of radius βW (x, y)Ry around the vertex with larger radius y, see Figure 1. We
denote the resulting graph by G β .

A variant of the model is given by replacing (1) by the connection rule |x − y|d ≤ βW (x, y)
(
Rx +

Ry

)
, where now any two vertices are connected when their enlarged balls intersect. However, since

Rx ∨ Ry ≤ Rx + Ry ≤ 2(Rx ∨ Ry), there is no qualitative change of behaviour between the two
model when it comes to the existence of global phase transitions. We therefore stick to the model (1).
Also, our parameters are chosen in a way that allows us to introduce the soft Boolean model as a
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Figure 1: Example for the connection mechanism of the soft Boolean model in two dimensions. The solid lines represent
the graph’s edges. Left: the black circles represent the individual interaction balls governed by Rx, Ry, Rz which already
gives rise to an edge (x, y). Middle: the enlarged dashed circle centred at x is due to the edge weight W (x, y), which in
this case does not lead to a new edge. Right: On the other hand, the enlarged dashed circle centred at z now includes the
point y, leading to an edge (y, z).

special instance of the weight-dependent random connection model [17] in Section 2.4. It is easy to
see that the soft Boolean model interpolates between long-range percolation and the heavy-tailed
Boolean model: The parameter δ controls the strength of the geometric restrictions of the model such
that the restrictions become stronger when δ increases. Put differently, the smaller δ, the less a vertex
feels the geometry. The requirement δ > 1 is needed to remain sparse in the sense that every vertex
has finite expected degree. By sending δ →∞, one obtains a variant of the classical Boolean model.
Similarly, the parameter γ ∈ (0, 1) measures the size of the vertex radii. The larger γ, the larger
the radii and hence the more powerful the vertices are that one can find in the graph. Since the radii
are heavy-tailed, G β has a heavy-tailed degree distribution with power-law exponent τ = 1 + 1/γ,
see [33, 17]. Again the constraint γ < 1 is needed to maintain sparseness. By setting γ = 0, one
obtains a continuum version of long-range percolation.

2.2 Results on the Euclidean diameter

We are interested in the size of the component of a typical vertex in the subcritical regime. Let x↔ y
denote the event that two vertices are connected in G β by a finite path of directly connected vertices.
Let further (o,Ro) be a vertex placed at the origin, assigned with an independent radius and added
to the graph according to the rule (1). Denote the underlying law after the vertex o has been added by
Po. According to Palm theory, the vertex o plays the role of a typical vertex shifted to the origin [32]
and we study its component in the following. Denote by

Cβ :=
{
x ∈ X : o↔ x in G β

}
the component of the origin. When there is no infinite component in the graph, the component of the
origin must be finite. Vice versa, if there is an infinite component, the origin is part of it with a positive
probability. We can therefore write the critical percolation intensity as

βc := βc(γ, 0, δ) := sup
{
β > 0: Po(]Cβ =∞) = 0

}
,

where the notation of βc(γ, 0, δ) is made clear in Section 2.4 once we introduced the more general
framework. It was shown in [19] that βc > 0 if γ < δ/(δ+1) but that βc = 0 if γ > δ/(δ+1). Hence,
we focus on the first parameter regime in the following. We are interested in the Euclidean diameter
of the component of the origin in a subcritical regime as it measures how far a typical component still
spreads out. We define

Mβ := sup
{
|x|d : x ∈ Cβ

}
(2)

DOI 10.20347/WIAS.PREPRINT.3106 Berlin 2024



Subcritical cluster sizes 5

and call it the Euclidean diameter of Cβ with a slight abuse of notation. (Note that the actual diameter

is, up to constants, given by M 1/d
β but we have chosen a parametrisation that allows our results to be

independent of the dimension.) Let us state our main result about the tail probability of the Euclidean
diameter of a typical cluster in the subcritical percolation regime.

Theorem 2.1 (Subcritical Euclidean diameter). Let d ≥ 1, δ > 1, and 0 < γ < δ/(δ+1). Then, there

exists β̃c := β̃c(γ, 0, δ) > 0 such that, for all β < β̃c, there exist constants c1, C2, c3, C4, c5, C6 ∈
(0,∞), depending on β, γ, and δ, such that for all m > 1,

(i) if γ < 1/(δ + 1), we have

c1m
1−δ ≤ Po(Mβ > m) ≤ C2m

1−δ,

(ii) if γ = 1/(δ + 1), we have

c3m
1−δ ≤ Po(Mβ > m) ≤ C4 log(m)m1−δ, and

(iii) if 1/(δ + 1) < γ < δ/(δ + 1), we have

c5m
1− δ−1+γ

γδ ≤ Po(Mβ > m) ≤ C6 log(m)1∨d(δ−1)m
1− δ−1+γ

γδ .

For the critical intensity β̃c, we deduce the following bounds from our proofs

β̃c ≥

{
1

2dδ+3+1
· δ−1
ωdδ

(
1− γ δ+1

δ

)
, if 1/2 ≤ γ < δ/(δ + 1),

δ−1
ωdδ

(
1

1−2γ +
1

1−γ

)−1 ∨ 1
2dδ+3+1

· δ−1
ωdδ

(
1− γ δ+1

δ

)
, if 0 < γ < 1/2.

Here, ωd denotes the volume of the d-dimensional unit ball. We present the proof in Section 3 and dis-
cuss the result further in the context of various other critical values in Section 2.6 below. Theorem 2.1
shows how the soft Boolean model interpolates between the long-range and the power-law degree
distribution effects. When γ < 1/(δ + 1), the effect of the radii is too weak to qualitatively change
the behaviour compared to long-range percolation. Notably, when sending δ →∞, one observes the
exponent 1 − 1/γ in the whole parameter regime γ ∈ (0, 1), matching the result in [14] translated
to our setting. Theorem 2.1, Part (iii) then describes the situation when both effects matter. In fact
the lower bounds remain true for all values of β and even for all δ > 1 and γ ∈ (0, 1). This is due to
the fact that the lower bounds are derived by considering a single long edge in Part (i) or by a path of
length two in Part (iii). If β is additionally sufficiently small, the matching upper bounds then show that
there is no better strategy to connect the origin to a large distance. For the same reason the exponent
in Part (iii) does not equal zero at the critical value γ = δ/(δ+1) when the soft Boolean model loses
its subcritical phase. This is in contrast with the two extremal models since these lose their subcritical
phase at the same point they lose finite degrees (which happens at δ = 1 for long-range percolation
and γ = 1 for the Boolean model). Contrarily, the degrees in the soft Boolean model remain finite
even in the γ > δ/(δ+1) regime when a subcritical phase no longer exists. The exponent in Part (iii)
indeed takes the value one for γ = 1 or δ = 1 when also the considered soft model loses the finite-
degree property. With reference to the established lower bounds, let us further mention that the phase
transition at the critical point γ = 1/(δ + 1) is of second order.

We can further replace the Pareto distributed radii by more general heavy-tailed radii. As long as the
new radius distributions have the same tail exponent, our Results (i) and (iii) still remain true in the
sense that the decay exponent of the Euclidean diameter does not change. However, this may come at
the cost of additional slowly varying correction terms. Only in Result (ii), dealing with the critical point
of the phase transition, may the precise form of the radius distribution matter. The same also applies
to our results on the number of points, presented in the following section.
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2.3 Results on the number of points

Another important quantity to describe the subcritical typical component is the number of vertices it
contains. Combined with the Euclidean diameter both quantities tell us how far the component spreads
out and how many vertices can be reached. Let us denote the cardinality of the cluster of the origin by

Nβ := ]Cβ. (3)

While the Euclidean diameter is driven by the longest edges, the cardinality is driven by the highest
degrees in the cluster. Indeed, due to subcriticality, there are no ‘long’ paths (in the sense of the graph
distance) in the component and hence, in order to reach many vertices with short paths only, there
must be at least a few high-degree vertices in the cluster. There is however one direct connection
between Nβ and Mβ . Since the number of Poisson points in a ball of radius m1/d concentrate expo-
nentially fast around its volume, Nβ > m, for large m, can only occur with a large probability if also
Mβ > m occurs. For the standard Boolean model it is shown that indeed both quantities are of the
same order [25, 14]. This is due to the fact that the tail probability for both Mβ and Nβ are driven by
the vertex connected to the origin with largest radius since the length of edges and degrees are both
linked directly to the radii in that model. The situation is different in long-range percolation. Here, for β
small enough, the Euclidean diameter is heavy tailed with tail exponent δ − 1 whereas the tail of the
number of vertices decays exponentially fast by a branching-process argument [34, 37]. This is due
to the fact that the long-range effects connect vertices at large distances, yielding a heavy-tailed Eu-
clidean diameter, but the overall degree distribution is not strong enough to guarantee a heavy-tailed
number of vertices in the component of the origin.

In the soft Boolean model, now both effects mix. The required large degrees are however still mostly
driven by large radii. Indeed, our parametrisation is such that the degree distribution in the soft Boolean
model and in the classical Boolean model have the same power-law exponent 1 + 1/γ, see [33, 17].
Therefore, the degree of ‘large-ball’ vertices is in both models of the same order of magnitude. The
additional neighbours of such a vertex in the soft model may however be at a really large distance due
to the long-range effects. These far away neighbours significantly contribute to the Euclidean diameter
but they do not qualitatively contribute to the number of vertices contained in the cluster. Hence, we
expect the tail distribution for Nβ in the soft Boolean model to be of the same order as in the classical
model. We are able to derive this in the finite-variance regime of the degree distribution as stated in
the following theorem.

Theorem 2.2 (Subcritical cardinality). Let d ≥ 1, δ > 1, and 0 < γ < 1.

(i) If γ < 1/2, then there exists β̃c := β̃c(γ, 0, δ) > 0 such that, for all 0 < β < β̃c, there exist
constants c, C ∈ (0,∞) such that, for all m > 1,

cm1−1/γ ≤ Po(Nβ > m) ≤ Cm1−1/γ.

(ii) If γ > 1/2, then ENβ =∞ for all β > 0.

We comment on the critical density and the conjectured behaviour in Section 2.6 and give the proof
in Section 3.3. Theorem 2.2 highlights the qualitative difference between the Euclidean diameter and
the cardinality of the cluster of the origin in the soft Boolean model. First of all, for γ < 1/2, the
tail behaviour for the number of points depends on γ only, whereas the Euclidean diameter always
depends on δ. Also, for γ < 1/2 and β small enough, we have ENβ < ∞ by Part (i) while for
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δ ∈ (1, 2) and all γ < 1/2 or for δ > 2 and (δ − 1)/(2δ − 1) < γ < 1/2, we have EMβ =∞ by
Theorem 2.1.

Let us finally note that the lower bound of Part (i) in Theorem 2.2 is valid for all γ ∈ (0, 1) by a
direct comparison of the soft version with the classical model. Additionally, in order to prove the upper
bound of the theorem, we couple the soft Boolean model with a version of continuous scale-free
percolation [9, 6] in which the minimum Rx ∨ Ry in (1) is replaced by the product RxRy. As a result,
we immediately observe the same bounds for this model as well. Interestingly, this model only has
a subcritical component for γ ≤ 1/2, see [9, 33]. Hence, in that case the result covers the whole
parameter regime for which a subcritical phase exists.

Theorem 2.3 (Subcritical cardinality in scale-free percolation). Let d ≥ 1, δ > 1, and γ < 1/2.
Consider the graph constructed via connection rule (1) but with Rx ∨ Ry replaced by RxRy and

denote the cardinality of the component of the origin by Nβ,γ,γ,δ. Then, there exists β̃c := β̃c(γ, γ, δ)

such that, for all 0 < β < β̃c, there exist constants c, C ∈ (0,∞) such that, for all m > 1,

cm1−1/γ ≤ Po(Nβ,γ,γ,δ ≥ m) ≤ Cm1−1/γ.

2.4 Formal construction

We formally introduce the soft Boolean model as a special instance of the weight-dependent random
connection model [17] as mentioned in Section 1. Recall thatX denotes a unit-intensity Poisson point
process on Rd. We can write X = (Xi : i ∈ N), c.f. [32] and call the elements of X the vertex
locations. Let U = (Ui : i ∈ N) be a family of independent random variables distributed uniformly on
(0, 1) that we call the vertex marks. Let us further write

X :=
(
Xi = (Xi, Ui) ∈ X × U : i ∈ N

)
for the set of vertices and note that X is a unit-intensity Poisson point process on Rd× (0, 1). Finally,
let V = (Vi,j : i < j ∈ N) be another independent sequence of uniformly-distributed random
variables on (0, 1) that we call the edge marks. We define

ξ :=
((
{Xi,Xj}, Vi,j

)
∈ X[2] × (0, 1), i < j ∈ N

)
, (4)

where X[2] denotes the set of all subsets of X of size two. We call ξ an independent edge marking in
accordance with the construction in [22]. Note that ξ is an ergodic point process on (Rd × (0, 1))2 ×
(0, 1). Further note that the law of ξ does not depend on the ordering of the points and that X as well
as X and U can be recovered from it.

Now, fix β > 0, γ ∈ [0, 1), α ∈ [0, 2− γ) and δ > 1. We define the interpolation kernel

gγ,α(s, t) := (s ∧ t)γ(s ∨ t)α, s, t ∈ (0, 1), (5)

as introduced in [18] and the profile function

ρ(x) := ρδ(x) = 1 ∧ x−δ, x ∈ (0,∞).

The undirected graph Gβ,γ,α,δ(ξ) is then defined through its vertex set X and edge set

E
(
Gβ,γ,α,δ(ξ)

)
=
{
{Xi,Xj} : Vi,j ≤ ρ

(
β−1gγ,α(Ui, Uj)|Xi −Xj|d

)
, i < j ∈ N

}
. (6)
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Note that for α = 0, the soft Boolean model G β defined above and the graph Gβ,γ,0,δ(ξ) have the
same law as

Vi,j ≤
(
β−1(Ui ∧ Uj)γ|Xi −Xj|d

)−δ ⇐⇒ |Xi −Xj|d ≤ βV
−1/δ
i,j

(
U−γj ∨ U

−γ
j

)
.

We therefore work from now on explicitly on the probability space on which the edge marking ξ lives
and denote the underlying probability measure by P and the corresponding expectation by E. To
shorten notation, we abbreviate Gβ := Gβ,γ,0,δ(ξ) whenever we work exclusively on the soft Boolean
model and no confusion of parameters is possible.

The same parametrisation can also be used to consider models without long-range effects, particularly
the random geometric graph or the standard Boolean model. To this end, only the function ρ in (6) has
to be replaced by the indicator 1[0,1]. We identify this choice of profile function with δ = ∞ as it
arrives as the δ → ∞ limit of our previous choice. In this notion, the random geometric graph with
edge length β is given by Gβ,0,0,∞(ξ), and the version of the Boolean model where connections are
formed when the ball of the stronger vertex contains the weaker vertex is given by Gβ,γ,0,∞(ξ).
Next, in order to formulate our main Theorem 2.1, we have to add the origin to the graph. To do
so formally, let us denote by x0 = (x0, u0) a vertex placed at x0 and with a given vertex mark
u0 ∈ (0, 1). Let Xx0 = X ∪ {(x0, u0)} denote the vertex set with the additional vertex added. Note
that almost surely no vertex in X has been placed at x0 before. Let us further extend the edge marks
by a sequence of independent uniform random variables (V0,j : j ∈ N) and denote the resulting
sequence by Vx0 . Finally, we define the edge marking containing the extra vertex

ξx0 := ξ ∪
{(
{x0,Xi}, V0,i

)
: i ∈ N

}
.

The graph containing the extra vertex is then Gβ,γ,α,δ(ξx0). Again, if the graph we are considering is
the one corresponding to the soft Boolean model, we abbreviate and refer to it as Gβx0

. We denote
the probability measure and expectation governing ξx0 by Px0 or P(x0,u0) and Ex0 respectively. If the
vertex mark of x0 is not fixed but uniformly distributed independently from everything else, we also
denote the vertex by x0 = (x0, U0) and define Px0 := P(x0,u)du. Then, for (x0, U0) = (o, Uo) the
origin, Po represents the probability measure that describes the Palm version of the graph, which can
be seen as the graph shifted such that a typical (i.e., uniformly chosen) vertex is located at the ori-
gin [32, Chapter 9]. Note that this is consistent with the notation in Section 2 whenever the considered
graph coincides with the soft Boolean model. If this is the case, we may also index our objects as
before by o.

In the same way, finitely-many given vertices y1 = (y1, t1),y2 = (y2, t2), . . . can be added to the
graph using negative indices and writing yi = x−i and ti = u−i. We then write ξy1,y2,..., and Py1,y2,...,
etc.

It is important to note that in the formal construction in the previous section the ordering of the Poisson
points was important. However, the precise ordering does not change any distributional properties.
Therefore, we drop this notation from here on and denote given vertices by x = (x, ux) or y =
(y, uy) but stick with the notation o = (o, uo) for the origin. We further write x1,x2, . . . ,xn for
any sequence of given vertices without referring to the ordering above. For two given vertices, we
denote by {x ∼ y in Gβ,γ,α,δ(ξx,y)} the event that x and y are connected by an edge in the graph
Gβ,γ,α,δ(ξx,y). If the graph is clear from the context, we simply write {x ∼ y}. Similarly, we denote
by {x↔ y in Gβ,γ,α,δ(ξx,y)} (resp. {x↔ y}) the event that x and y are connected by a finite path
in the graph. We denote by Cβ,γ,α,δ the component of the origin in Gβ,γ,α,δo , by Mβ,γ,α,δ its Euclidean
diameter (to the power d as above) and by Nβ,γ,α,δ the cardinality of the component. In accordance
with Section 2, we denote by Cβ , Mβ , and Nβ the component of the origin, its Euclidean diameter,
and the cardinality of the component of the origin in the soft Boolean model Gβo .
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2.5 Strategy of proof

We briefly explain the strategy of the proof in this section. We restrict ourselves to the proof of Theo-
rem 2.1 and put special emphasis on the proof of Part (iii) as it is the main contribution of this paper. In
order to prove the lower bounds one has to consider a potentially optimal connection strategy to derive
the desired Euclidean diameter and calculate its tail behaviour. As in long-range percolation all edges
are independent, the order of magnitude of the Euclidean diameter is driven by the longest edge inci-
dent to the origin. By our construction as a weight-dependent random connection model (6), there is
a direct coupling between long-range percolation Gβ,0,0,δ(ξ) and the soft Boolean model Gβ,γ,0,δ(ξ).
Hence, the long-range percolation lower bound immediately transfers to the soft Boolean model giving
the lower bound in Part (i). For the classical Boolean model results of Gouéré imply that, in order to
obtain a Euclidean diameter of orderm, one has to find a vertex at distance at mostm1/d of the origin
with radius of order m1/d or equivalently with a mark of order m−1/γ . Put differently, the Euclidean
diameter of the component of the origin is driven by the largest radius of the neighbours of the origin.
To derive the lower bound in Part (iii) we also search for a powerful vertex in the vicinity of the origin.
However, due to the additional long-range effect it suffices if this vertex has radius of orderm(δ−1)/(dδ),
respectively a mark of order m−(δ−1)/(γδ). The probability of existence of such a vertex then gives the
lower bound.

To derive the corresponding upper bound, one has to show that the combination of all possibilities to
build paths connecting the origin to distance m1/d do not lead to a larger probability of achieving the
desired Euclidean diameter. We carry this out in four steps which we exemplarily describe for Part (iii).

Step (A) In order to get decent bounds on the probability that certain paths exist, we introduce the
concept of the skeleton of a path. The skeleton vertices can be seen as the key vertices of the
path and allow us to decompose each path in a set of skeleton vertices and a set of connectors
building the subpaths between two skeleton vertices. We can then reduce the probability of ex-
istence of a path to the probability that its skeleton vertices already build a paths by themselves
times an exponential term in the path length depending on β that vanishes for small enough β.
This is carried out in Section 3.2.1.

Step (B) We use 2.5 to deduce that in a subcritical regime the probability that a vertex with radius of
orderm(δ−1)/δ is present is of the same order as the lower bound when this vertex was required
to be a direct neighbour, cf. Lemma 3.7.

Step (C) On the complementary event of 2.5 we deduce that the probability that a vertex in the com-
ponent of the origin that is located within distance m1/d has a neighbour at distance 2m1/d, is
of the same order than the lower bound, cf. Lemma 3.8.

Step (D) On the complementary events of the 2.5 and 2.5 a path that leads to a diameter of order m
cannot use too strong vertices and has to stop within distance 2m1/d of the origin. We use a
calculation comparable to 2.5 to obtain that there is no long edge contained in the component
of the origin restricted to this area with a probability of the desired order. Hence, the paths
cannot use long edges and have to visit many vertices and we show that the probability of
the origin starting a path that visits many vertices is of the desired order, cf. Lemma 3.9 and
Proposition 3.10.
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2.6 Further discussion

In this section, we discuss some further details which particularly concern the logarithmic term in the
upper bound in Theorem 2.1 and the critical intensities βc and β̃c.

2.6.1 Critical intensities

Let us consider the standard definition of the critical percolation intensity for Gβ,γ,α,δ(ξo). That is,

βc(γ, α, δ) := sup
{
β > 0: Po(]Cβ,γ,α,δ =∞) = 0

}
= sup

{
β > 0: lim

n→∞
Po
(
o starts a path of length n in Gβ,γ,α,δ

)
= 0
}
,

(7)

where the function θ(β) := Po(]Cβ,γ,α,δ = ∞) is also called the percolation function. To prove the
existence of a subcritical percolation phase in the standard Boolean model Gβ,γ,0,∞ and to obtain
the tails of the Euclidean diameter in this phase, Gouéré introduced in [14] a new critical intensity
(translated to our setting) as

β̂c(γ, α, δ)

:= sup
{
β > 0: lim inf

m→∞
Po
(
∃x,y ∈ X : |x|d < m, |y|d > 2dm, x↔ y in Gβ,γ,α,δ

)
= 0
}
.

Generally, β̂c(γ, α, δ) can be seen as the critical annulus-crossing intensity. For the Boolean model,

β̂c(γ, 0,∞) can further be interpreted as the critical intensity needed for the probability to be bounded
away from zero of the event that the diameter of the origin exceeds 2dm when setting the radius of
the origin to m1/d. Since β̂c(γ, α, δ) ≤ βc(γ, α, δ), the positivity of the first critical intensity implies

the existence of a subcritical phase. One advantage of considering β̂c(γ, 0,∞) is the possibility to
apply a multi-scale scheme to determine bounds for the Euclidean diameter’s tail that roughly works as
follows. Let us denote the defining event of β̂c(γ, 0,∞) byG′(m1/d). Consider the eventG′(Cm1/d)
for some suitable constant C > 1. Then either one vertex located in the centred ball B(2Cm1/d) is
incident to an edge longer than m1/d, or the path connecting a vertex located in the ball B(Cm1/d)
to some vertex located in B(2Cm1/d)c can only use shorter edges. However, on the letter event, up
to shifts, the event G′(m1/d) occurs twice independently and hence using shift invariance

P
(
G′(Cm1/d)

)
≤ cP

(
G′(m1/d)

)2
+ P

(
∃x : |x|d < (2C)dm,x is incident to an edge longer than m1/d

)
,

(8)

for some constant c > 1. Hence, if the second probability on the right-hand side converges to zero,
P(G′(m1/d)) converges to zero as well. This is due to the fact that on the initial scale m = 1 the
probability P(G′(C)) can be made arbitrarily small by choosing β sufficiently small. The result then
follows by iterating (8). To derive bounds for the tail of the Euclidean diameter, one observes that if
β̂c(γ, α, δ) > 0, then (8) implies for each β < β̂c(γ, α, δ) that P(G′(m1/d)) converges to zero and
that the rate of convergence is determined by the probability of existence of long edges. In the classical
Boolean model, the probability of the occurrence of such long edges can be expressed in terms of the
moments of the radius distribution R (which is Pareto with exponent d/γ in our case, but may also be
considered to be more general) and one derives

P
(
∃x : |x|d < (2C)dm,x is incident to an edge ≥ m1/d in Gβ,γ,0,∞

)
≤ cE[Rd

1{Rd > m}].
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Calculating the right-hand side for our parametrisation then yields

Po(Mβ,γ,0,∞ > m) ≤ Cm1−1/γ.

Results for the Boolean model in [1, 11, 7] indicate further that β̂c(γ, 0,∞) = βc(γ, 0,∞). In fact, it

is shown in [1] that this equality holds for all radius distributions in d = 2 and in [7] that β̂c(γ, 0,∞) =
βc(γ, 0,∞) in all dimensions d ≥ 2 for all but at most countably many γ. Hence, in these situations
the above upper bound for the Euclidean diameter’s tail distributions holds for all β < βc(γ, 0,∞).

The above renormalisation argument (8) shows that we can effectively think of attaching a growing
radius of length m1/d to the origin in the Boolean model at no extra cost. However, as we can see
from our proofs below, this argument is no longer possible in the soft Boolean model. The reason
is that there are simply too many long edges in the graph. Assigning a radius of length m1/d to the
origin combined with the long-range effects dramatically increases (by order m) the number of long
edges contained in the component of the origin. We are therefore restricted to work with the original
radius of the origin and its original component at all times when dealing with similar events as outlined
above in 2.5 and 2.5. More precisely, to quantify the number of long edges, which is essential for the
multi-scale argument, the authors in [24] make use of the coefficient δeff, recently introduced in [18], to
measure the effect of the weights of the vertices on the appearance of long edges and therefore
quantify the number of long edges crossing annuli of radii m1/d and 2m1/d in weight-dependent
random-connection-type models. In [24], the authors show that in general β̂c(γ, α, δ) > 0 if δeff > 2,

but β̂c(γ, α, δ) = 0 if δeff < 2. Unfortunately, we have δeff < 2 whenever δ < 2, or γ > (δ − 1)/δ.
Also, in the δeff > 2 regime, the observed upper bound for the exponent in [24] does not match the
bound established in this article, in fact they differ by a summand of size 1/δ. Summarising, for the
soft Boolean model the situation of critical intensities is less clear.

In order to go one step further, let us consider another critical intensity. To prove the existence of a
subcritical percolation phase for the age-dependent random connection model Gβ,γ,1−γ,δ(ξo) of [15]
and models dominated by it, the authors in [19] consider

β1(γ, α, δ) := sup
{
β > 0:

∑
n∈N

Po
(
o starts a shortcut-free path in Gβ,γ,α,δ of length n
whose end vertex has the smallest mark in the path

)
<∞

}
.

Here, a path P = (x0,x1, . . . ,xn) is called shortcut-free if it contains no shorter subpath Q ⊂
P also connecting x0 and xn. The restriction to shortcut-free paths is possible as the existence of
an infinite shortcut-free path is equivalent to the existence of an infinite path since all degrees are
finite. However note that in general the existence of a path of length n does not necessarily imply the
existence of a shortcut-free paths of the same length. The idea behind the definition is to make use
of the fact that the vertices with highest degree are those with smallest marks which can be seen as
the skeleton vertices from 2.5. To build an infinite path, one may want to use vertices with smaller
and smaller marks to find sufficiently many vertices that have not been visited yet to continue the
path. However, such a path contains infinitely many finite subpath ending in the vertex with smallest
vertex mark. For β < β1(γ, α, δ) only finitely many such subpaths exist by the Borel–Cantelli Lemma.
Hence, each potentially infinite path must have marks that are bounded from zero. The latter ultimately
implies

inf{ux : x ∈ Cβ,γ,α,δ} > 0,

which however is equivalent to ]Cβ,γ,α,δ <∞. For the age-dependent random connection model it is
then shown in [19] that β1(γ, 1−γ, δ) > 0 if γ < δ/(δ+1) and β1(γ, 1−γ, δ) = 0 if γ > δ/(δ+1)
and the same holds for the soft Boolean model. From our proofs in Lemma 3.8 and 3.12 below it is

DOI 10.20347/WIAS.PREPRINT.3106 Berlin 2024



B. Jahnel, L. Lüchtrath, M. Ortgiese 12

easy to see that

β1(γ, 0, δ) ≥

{
(δ−1)(δ−γ(δ+1))
(2dδ+3+1)ωdδ2

, if 1/2 ≤ γ < δ/(δ + 1),
δ−1
ωdδ

(
1

1−2γ +
1

1−γ

)−1 ∨ (δ−1)(δ−γ(δ+1))
(2dδ+3+1)ωdδ2

, if 1/(δ + 1) < γ < 1/2,

matching the results of [19] when their proof is specialised to the soft Boolean model.

On a technical level, the necessity of β being small enters our proof in the 2.5 to 2.5 when potentially
arbitrarily long paths have to be considered. Based on the nature of our proof, one could suspect that
the statement of our main theorem holds for all β < β1(γ, 0, δ). Particularly in 2.5 only paths ending
in its most powerful vertex are considered. Unfortunately, especially bounding (21) requires slightly
more than bounding the number of paths occurring in the definition of β1(γ, 0, δ). As (21) is the result
of a moment bound, we believe that our results hold at least up to β1(γ, 0, δ).

Conjecture 2.4. Let β̃c be the critical intensity of Theorem 2.1, then β̃c ≥ β1(γ, 0, δ).

Although, we have already commented on the fact that the decay of the probability of existence of
shortcut-free paths of length n generally gives no information about the decay of the probability of a
general path, in order to deduce the probability of {Mβ > m} one can always reduce to shortcut-free
paths. Therefore, it seems to us that there is no particular reason indicating that increasing β within
the subcritical regime would change the tail of the distribution of Mβ , so that β̃c = βc(γ, 0, δ). An
immediate consequence would also be β1(γ, 0, δ) = βc(γ, 0, δ). We therefore conjecture:

Conjecture 2.5. Let β̃c be the critical intensity of Theorem 2.1, then β̃c = βc(γ, 0, δ) = β1(γ, 0, δ).

2.6.2 The logarithmic term in the upper bound.

Heuristically, we see in our proof that, in probability, the most promising strategy to achieve a large
Euclidean diameter should be to connect the origin to a powerful vertex. This strategy then yields
our polynomial tail without the logarithmic correction. The logarithmic term in our upper bound in
Theorem 2.1 is however a consequence of our last proof step in which we consider the cases that
either certain long edges are present or the path connecting the origin to distance m1/d must contain
many steps. This distinction is technically necessary to control the sheer number of connection pos-
sibilities when none of the extremely powerful vertices can be used. However, on the desired order
m1−(δ−1+γ)/γδ only edges longer than m1/d are absent and as a result the path length and the radius
of the ball under consideration live on the same scale which is not sufficient to bound the existence of
a long path appropriately with our method. We therefore work on the event that also slightly shorter
edges are absent, resulting in the logarithmic term. We however believe that this error term is a result
of our method and should not appear in the case of Pareto-distributed radii. In fact it seems reasonable
to conjecture the following.

Conjecture 2.6. Let β̃c be the critical intensity of Theorem 2.1, then, for all β < β̃c, δ > 1, and
1/(δ + 1) < γ < δ/(δ + 1), there exists C > 0 such that, for all m > 1, we have that

Po(Mβ > m
)
≤ Cm

1− δ−1+γ
γδ .

The other reason why we believe in Conjecture 2.6 is that we can show that the error term indeed does
not occur if γ < 1/2. This is due to that fact that, in this case, the expected number of paths decays
exponentially, cf. Lemma 3.13. Hence, we can use a truncated moment bound on the number of paths
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connecting o with some vertex in B(m1/d)c in the same way we prove Proposition 3.1 Part (ii), which
is the upper bound of Theorem 2.1 Part (i). The truncation here refers to the vertex marks, where
we use an error event to ensure that no atypically strong vertex lies on the path. We formulate this
finding in the following proposition which is an immediate consequence of Lemma 3.12 at the end of
Section 3.2.

Proposition 2.7. Let δ > 1, 0 < γ < 1/2 and 0 < β < δ−1
ωdδ

(
1

1−2γ + 1
1−γ

)−1
. Then, there exists

C > 0 such that, for all m > 1,

Po(Mβ > m) ≤ Cm
1−δ∧ δ−1+γ

γδ .

2.6.3 Cardinality of the cluster of the origin

In Section 3.3 we derive results for the cardinality of the component for the γ < 1/2 regime and yet
another threshold for β. The new threshold is on the one hand a result of the coupling with scale-free
percolation coinciding with α = γ in (5). On the other hand, we use a coupling of the component
of the origin with a multi-type branching process that requires a finite second moment of the degree
distribution and a small enough β to control the exponential growth of integration constants associated
with the second moment. While these branching-process arguments work very well for non-spatial
random graphs, they have the disadvantage of not seeing the spatial clustering. Hence, we cannot
expect to get precise results in a spatial setting where the effect of clustering is highly relevant. The
relevance of clustering in the soft Boolean model can be seen for example in the fact that a subcritical
phase still exists for parameter regimes with degree distributions with infinite variance (γ > 1/2) while
non-spatial models are always robust in the infinite-variance regime [47]. For scale-free percolation the
effect of clustering seems to be less relevant as many changes of behaviour happen again at γ = 1/2
when the second moment of the degree distribution becomes infinite. Still we do not see any reason
why the established tail in Theorem 2.3 should not be valid in the whole subcritical regime.

Conjecture 2.8. Consider βc(γ, α, δ) as defined in (7).

(i) Consider the soft Boolean model Gβ,γ,0,δ for δ > 1, γ < δ/(δ + 1), and β < βc(γ, 0, δ). Then,
there exists a constant C ∈ (0,∞) such that, for all m > 1,

Po(Nβ,γ,0,δ ≥ m) ≤ Cm1−1/γ.

(ii) Consider scale-free percolation Gβ,γ,γ,δ for δ > 1, γ < 1/2, and β < βc(γ, γ, δ). Then, there
exists a constant C ∈ (0,∞) such that, for all m > 1,

Po(Nβ,γ,γ,δ ≥ m) ≤ Cm1−1/γ.

Let us further comment on Part (i) of the conjecture. As already mentioned above, in order to achieve
an Euclidean diameter of order m in the classical Boolean model, one has to find a vertex with radius
m1/d in the neighbourhood of the origin. However, this vertex then also has of order m neighbours
itself leading to the same tail behaviour for the Euclidean diameter and the cardinality of the component
of the origin. In contrast, it suffices to find a vertex with radius m(δ−1)(dδ) in the neighbourhood of the
origin in order to have an Euclidean diameter of order m in the soft model. This vertex however does
not have order m neighbours so that it cannot guarantee a cardinality of order m alone. To achieve
this with a single vertex again a vertex with radius of order m1/d is required. This leads to the same
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lower bound in the classical and in the soft Boolean model. To prove a matching upper bound, one can
easily adapt 2.5 to vertices of that strength in the component of the origin. Further, our diameter result
can be used to derive that the whole component is contained in a ball of volumemδ/(δ−1), with an error
probability of the right order. Now, one can think of the component of the origin in the soft model as a
collection of classical Boolean clusters which are connected via long-range edges. On the event that
no powerful vertex is present in the component of the origin, one can use Gouéré’s method to deduce
that no Boolean cluster in the considered ball has cardinality no larger than m/ log(m) implying that
the the component of the origin decomposes in at least logm many clusters when the long-range
edges are removed. Additionally, we can adapt the bound on long paths of 2.5 to observe with the
right error probability that the component’s depth is larger than logm. Hence, it remains to prove that
it is unlikely enough to connect at least logm small Boolean clusters with long-range edges without
creating shortest paths longer than logm. Since the tail of the cardinality in long-range percolation
decays exponentially fast one would get the desired result if one thought of the Boolean clusters as
nodes of a long-range percolation model. Unfortunately, this ignores correlations between the edges
and we couldn’t find a convincing way yet to control these. We do however believe that it should be
possible.

Let us finally mention the recent results in [26, 28]. Here, the authors derive stretched exponential
decay of the tail distribution of finite clusters in supercritical regimes. The fundamental difference be-
tween their and our work is the presence of an infinite connected component. Since we explicitly work
in subcritical regimes all components must be finite. This leaves the distribution of the radii unchanged
and a single exceptionally large radius alone can lead to a relatively large cluster. Therefore, the cluster
sizes are still heavy-tailed in our regime. In a supercritical regime however, this is no longer true as a
too large radius makes it way too likely to be part of the infinite cluster. Hence, a large but finite cluster
can only use small radii vertices leading to the drastically smaller tail. An exception to this argument is
long-range percolation where no radii are present, a special case the authors consider in [27].

2.6.4 The constants

Let us finally remark that from our proofs we also deduce bounds for the constants of the leading
order term appearing in the theorems when m grows large. The constants c1, c3, and c5 appearing
in the lower bounds of Theorem 2.1 are given in Section 3.1. Further, for the constants of the upper
bounds, we derive C2 in Proposition 3.6, C4 in Proposition 3.11, and C6 in Proposition 3.10. Finally,
the constants appearing in Theorem 2.2 are given in Section 3.3.

3 Proofs

In this section we present the proofs of our results. We will use the common notation f ∼ g for two
positive functions satisfying f(x)/g(x) → 1 as x → 0, and f = o(g), if f(x)/g(x) → 0 as well
as g � f , if f/g is bounded from zero and infinity. We further denote by B(x, r) the ball of radius r
centred in x. If x = o, we simply write B(r) = B(o, r) for the ball around the origin and by ωd the
volume of B(1). For a Borel set B ⊂ Rd, we also write Bc = Rd \B, and we use the same notation
for the complement of an event as usual. Finally, we denote by ]A the number of elements in an at
most countable set A.
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3.1 Proof of the lower bounds in Theorem 2.1

We present two strategies to connect the origin to a vertex at a large distance in this section. The
first strategy is to use a long edge incident to the origin. This strategy corresponds to the long-range
percolation case. The second strategy corresponds to the classical Boolean model case where a pow-
erful intermediate vertex connected to both the origin and the distant vertex is used. Both strategies
combined give the lower bounds of our theorem.

We start with the proof of the ‘long-range percolation’ case when only one long edge is used giving
the lower bound in Part (i). The reason here is that for γ < 1/(δ + 1), the effect of the radii on far
connections is too small to play a significant role. Recall that ωd denotes the volume of a d-dimensional
unit ball.

Proposition 3.1. Let β > 0, δ > 1, and γ ∈ (0, 1) and consider Gβo = Gβ,γ,0,δ(ξo). Then, for all
m > β,

Po
(
∃x = (x, ux) : |x|d > m and x ∼ o in Gβo

)
≥ 1− exp

(
βδωd
δ−1 m

1−δ) ∼ βδωd
δ−1 m

1−δ.

Proof. Since a version of the random connection model is given by choosing γ = α = 0 in the
interpolation kernel (5) and g0,0(s, t) = 1 ≥ gγ,0(s, t), each edge that is present in a realisation
of Gβ,0,0,δ(ξo) is also present in Gβo by the construction rule (6). (Note that the profile function ρ is
decreasing and therefore a smaller value of gγ,α(Ui, Uj) increases the probability of having an edge.)
Hence,

Po
(
∃x = (x, ux) : |x|d > m and x ∼ o in Gβo

)
≥ Po

(
∃x = (x, ux) ∈ X : |x|d > m and x ∼ o in Gβ,0,0,δo

)
.

Since the number of the neighbours of the origin in Gβ,0,0,δ(ξo) at distance at least m1/d is Poisson
distributed with parameter∫

|x|d>m
dx ρ(β−1|x|d) = βδ

∫
|x|d>m

dx |x|−dδ = βδωd
δ−1 m

1−δ,

assuming m > β in the first equality, we deduce

Po(Mβ > m) ≥ 1− exp
(
βδωd
δ−1 m

1−δ),
yielding the desired lower bound.

While in long-range percolation the order of the longest edge determines the order of the Euclidean
diameter, this order is determined by the largest radius of a vertex connected to the origin in the
classical Boolean model [14]. In order to connect the origin to a vertex at distancem1/d, one searches
for a vertex of radius at least m1/2 within distance m1/d. Put differently in our parametrisation, such
a vertex has mark smaller than m1/γ . We will show in the following proposition how to apply this
connection strategy in the soft Boolean model. Here, only less powerful vertices are required due to
the additional long-range effects. To make this precise, we write

ζ := (δ − 1)/(γδ) and sm := m−ζ

in the following. Note that the exponent in Part (iii) of Theorem 2.1 can be written as −(1− γ)ζ .
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Proposition 3.2. Let β > 0, δ > 1, and γ > 0 and consider Gβo = Gβ,γ,0,δ(ξo). Then, there exists
M > 0 such that, for all m ≥M , we have

Po
(
∃x,y : |x|d < m, ux ≤ sm,m < |y|d < 2dm,uy > 1/2 and o ∼ x ∼ y

)
≥ 1− e−c5m−(1−γ)ζ

∼ c5m
−(1−γ)ζ ,

where c5 is given below in (9).

Proof. Since the considered event is monotone under the law of u 7→ P(o,u) in the sense that the
smaller the mark of the origin the more connections it forms and hence the likelier the occurrence of
the considered event, and the fact that we aim for a lower bound, we work under P(o,1) in this proof.
That is, we set the mark of the origin to be 1. Let now Y′ ⊂ X be the set of all vertices (y, uy) with
m < |y|d < 2m and uy > 1/2. Then, E[]Y ′] = mωd/2 and a standard Poisson tail bound gives
the existence of a constant c̃ > 0 such that

P(|Y ′| ≥ mωd/4) ≥ 1− e−c̃mωd .

Now, consider a vertex x = (x, ux) ∈ X with |x|d < m and mark ux < sm. Such an x with mark
ux < (3m/β)−1/γ is automatically connected to the origin and to each y ∈ Y′ as |x − y|d ≤ 3m.
Since there are of order m1−1/γ such vertices by the Poisson process properties, reproducing the
known tail bound for the standard Boolean model, we focus on vertices with mark (3m/β)−1/γ <
ux < sm in the following. Then, for m sufficiently large, the probability that this vertex x is connected
to a particular vertex y ∈ Y′ is, by the monotonicity of ρ, lower bounded by

ρ(β−1uγx|x− y|d) ≥ ρ(β−1uγx3m) ≥ (β
3
)δu−γδx m−δ ≥ (β

3
)δm−1,

using the definition of sm. Thus, on the event {]Y′ ≥ mωd/4}, the number of vertices y ∈ Y′

connected to x is bounded from below by a Binomial random variable with mωd/4 trials and success
probability (β/3)δm−1. Therefore, by Poisson approximation, we infer for sufficiently large m that the
probability of existence of at least one such y is no smaller than

1− exp
(
− βδωd/3δ+1

)
=: c.

Since this lower bound is independent of the vertices in Y′ and of x itself, the number of neighbours of
(o, 1) in B(m1/d)× ((3m/β)−1/γ, sm), which are also connected to some vertex in Y′, is bounded
from below by the number of points of a Poisson point process in B(m1/d) × ((3m/β)−1/γ, sm)
of intensity cρ(β−1uγ|x|d)dudx. The expected number of vertices contained in this Poisson point
process is given by

c

sm∫
m−1/γ

du

∫
|x|d<m

dx ρ(βuγx|x|d) = cβ
( sm∫
m−1/γ

duu−γ
)( ∫
|x|d<uγm

dx ρ(|x|d)
)
≥ cβωdδ

2(1−γ)(δ−1)s
1−γ
m ,

for large enough m using
∫
|xd|<uγm ρ(|x|

d) → ωdδ/(δ − 1). Therefore, the probability of existence

of such an x is given by 1− exp(−c5m(1−γ)ζ), where

c5 =
cβωdδ

2(1−γ)(δ−1)

(
1− exp(−βδωd

3δ+1 )
)
, (9)

concluding the proof.
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Proof of the lower bounds in Theorem 2.1. Since 1 − δ ≤ −(1 − γ)ζ if and only if γ ≥ 1/(δ + 1),
the lower bound in Part (i) is a consequence of Proposition 3.1, the lower bound in Part (iii) is a
consequence of Proposition 3.2, and the lower bound in Part (ii) is a consequence of the combination
of both, where the appearing constant is given by

c3 := c1 ∨ c5. (10)

This concludes the proof of the lower bounds.

3.2 Proof of the upper bounds in Theorem 2.1

In this section, we prove the upper bounds of our main theorem. To this end, we show that no strategy
of connecting the origin to some vertex at distancem1/d works better in probability than the respective
strategy in the lower bound. In order to do so, we rely on fine bounds for the probability that carefully
chosen paths exist which we do by using a first-moment method. Note that if γ > 1/2, the degree
distribution has infinite second moment and already the expected number of paths of length two start-
ing at the origin is infinite. Hence, we cannot apply direct moment bounds in the whole parameter
regime. Instead, we decompose each considered path in its ‘powerful’ vertices, the skeleton of the
path, and the remaining ‘weak’ vertices. This concept was first introduced in [19] and gives a powerful
tool to control the combinatorics of our path counts. Then, we combine this with a BK inequality for
independent edge markings of [22] to reduce the probability of a path existing to a moment bound on
the skeleton vertices that form a path themselves. This forms 2.5 of our proof.

3.2.1 The skeleton of a path

The concept of a skeleton of a path for weight-dependent random connection models was introduced
in [19] and is based on a decomposition of a shortcut-free path into its powerful vertices, the skeleton,
and connectors which are weaker vertices that connect the skeleton vertices with each other. Recall
that a path P = (x0,x1, . . . ,xn) is called shortcut free if it contains no shorter subpath Q ⊂ P also
connecting x0 and xn. From now on, each path is considered to be shortcut free.

The idea is now the following: To have a long path it is important to have significantly powerful vertices
which are those with smallest marks since a small mark corresponds to a large radius. Let P =
(x0,x1, . . . ,xn) be a path of length n. We call xi = (xi, ui) for i 6∈ {0, n} a local maximum if
ui > ui−1 and ui > ui+1. We now construct a new path without any local maxima, see Figure 2. For
this, we first take the local maximum in P with greatest vertex mark, remove it from P and connect its
former neighbours by an edge. In the resulting path, we take the new local maximum of greatest vertex
mark, remove it, and connect its former neighbours, repeating until there is no local maximum left in
P . We call the remaining vertices the skeleton of the path. Note that start and end vertex of a path
can never be a local maximum and are therefore always part of the skeleton. Further, the constructed
paths of skeleton vertices is not necessarily an actual path of the graph. In particular, the skeleton
vertices of a shortcut-free path cannot themselves form a path unless the vertices of the path already
form a skeleton. We have decomposed the path in two sets of vertices: the skeleton vertices and the
local maxima that connect two consecutive skeleton vertices. From now on, we refer to the latter as
connectors. In the following, we derive bounds for the probability that two given vertices are connected
by a shortcut-free path consisting of connectors only. Afterwards, we state the BK inequality of [22]
that can be used to decompose the whole path into its subpaths connecting two consecutive skeleton
vertices to obtain bounds for the existence of paths.
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1
u

2
u

3
u

4
u

Figure 2: A path where the mark of a vertex is denoted on the u-axis and the spatial location of the vertices is not shown.
The vertices of the skeleton are in black. We successively remove all local maxima, starting with the largest mark vertex,
and replace them by direct edges until the path, only containing the skeleton vertices, is left.

Connecting two powerful vertices. In this paragraph, we consider two given vertices x and y
and the probability that they are connected by a shortcut-free path in a weight-dependent random
connection model Gβ,γ,α,δ(ξx,y) of length n consisting of connectors only. That is, the paths skeleton is

given by x and y only. Let us denote this event by {x n←→
x,y

y in Gβ,γ,α,δ(ξx,y)}. Since by construction

x and y are connected by an edge with probability

ρ
(
β−1gγ,α(ux, uy)|x− y|d

)
=

{
1, if |x− y|d ≤ βgγ,α(ux, uy)

−1,

βδgγ,α(ux, uy)
−δ|x− y|−dδ, if |x− y|d > βgγ,α(ux, uy)

−1,

we focus on given vertices x and y at distance |x− y|d > βgγ,α(ux, uy)
−1 to fulfil the shortcut-free

property. The next lemma is key in this section and it is a combination of [19, Lemma 2.2 and 2.3].

Lemma 3.3 (n-connection Lemma, [19]). Let β > 0, γ ∈ (0, 1), α ∈ [0, 2 − γ), and δ > 1. Let
further x = (x, ux) and y = (y, uy) be two vertices satisfying the distance condition |x − y|d >
βgγ,α(ux, uy)

−1. Assume that there is a constant C > 0 such that

Ex,y

[
]{z = (z, uz) : uz > ux ∨ uy, and x ∼ z ∼ y in Gβ,γ,α,δ(ξx,y)}

]
≤ (βC)ρ

(
β−1gγ,α(ux, uy)|x− y|d

)
.

Then, for all n ∈ N, we have

Px,y

(
x

n←→
x,y

y in Gβ,γ,α,δ(ξx,y)
)
≤ (4βC)n−1ρ

(
β−1gγ,α(ux, uy)|x− y|d

)
.

The idea behind the lemma is the following. One can represent the inner path consisting of all vertices
excluding x and y as a binary tree which is labelled by the Poisson points of the graph such that
each child has a greater vertex mark than its parent. Here, a binary tree is a tree where each vertex
has either no child, a left child, a right child, or a left and a right child. The underlying binary tree
encodes important structural information of the path. Namely, it encodes the order of the local maxima
where the precise vertex marks order is then given by the labelling. The proof works by induction. If
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n = 1 there is nothing to show. For n = 2 the binary tree consists only of a root vertex which is the
intermediate connector and the claim follows from the assumptions. Now, for any n ≥ 3, fix a binary
tree of n − 1 vertices (recall that start and end vertex are not represented in the tree) and label it
with Poisson points such that each child has mark larger than its parent and the distance condition for
shortcut-free paths is fulfilled. This then represents a paths of length n. Pick the leaf with largest vertex
mark in the tree. The vertex represented by this leaf is by necessity a connector of two vertices with
smaller marks in the path. Therefore, we can apply the assumption and bound the expected number
of possible labels for this leaf by βC times the probability that there is an edge between the vertices
the leaf connects in the path. Since this yields a new path on n − 1 vertices represented by the tree
of n − 2 vertices where the leaf was removed, the induction hypothesis applies and we infer that the
expected number of possible labelings is bounded by (βC)n−1ρ

(
β−1gγ,α(ux, uy)|x−y|d

)
. Now, the

claim follows by applying a union bound over all unlabelled trees on n − 1 vertices and the fact that
there are at most 4n−1 such trees. For the details of the proof and particularly the tree representation,
we refer the reader to [19].

To apply Lemma 3.3, the graph has to have the property that the expected number of weak vertices
connecting two given stronger vertices at a large distance is bounded by a β depending constant
times the probability of an edge existing. The soft Boolean model does not have this property. Indeed,
the connection probability of two given vertices does only depend on the larger radius respectively
the smaller mark. That is, the probability of an edge between the two vertices depends only on the
stronger vertex. Whether the other vertex is rather strong itself has no effect. On the contrary, the
expected number of weaker connectors is the intersection of both neighbourhoods restricted to radii
smaller than both of the given ones. Hence, the stronger the weaker of the two given vertices, the
larger this intersection. To tackle this issue and still make use of Lemma 3.3 and the skeleton strategy,
we stochastically dominate the soft Boolean model by a graph that matches the assumption. To this
end, consider the weight-dependent random connection model Gβ,γ,γ/δ,δ(ξ) defined through its kernel

gγ,γ/δ(s, t) = (s ∧ t)γ(s ∨ t)γ/δ,

which we also refer to as two-connection kernel. To lighten notation, we also write Ĝβ = Gβ,γ,γ/δ,δ(ξ)
in the following. The following lemma shows that Ĝβ indeed dominates Gβ and has the required n-
connection property of Lemma 3.3.

Lemma 3.4. Let β > 0, 0 < γ < δ/(δ + 1), and δ > 1 and consider the soft Boolean model
Gβ = Gβ,γ,0,δ(ξ) and the graph Ĝβ = Gβ,γ,γ/δ,δ(ξ). Then

(i) the two edge sets satisfy E(Gβ) ⊂ E(Ĝβ) almost surely and

(ii) for two given vertices x = (x, ux) and y = (y, uy) at distance |x − y|d > βgγ,γ/δ(ux, uy)
−1

and all n ∈ N, we further have

Px,y

(
x

n←→
x,y

y in Ĝβx,y
)
≤ (βĈ)n−1ρ

(
β−1gγ,γ/δ(ux, uy)|x− y|d

)
,

where Ĉ = 2dδ+3ωdδ
2

(δ−1)(δ−γ(δ+1))
.

Proof. Since γ/δ > 0 and therefore gγ,0(s, t) > gγ,γ/δ(s, t) and ρ is non increasing, each edge that

is present in Gβ is also present in Ĝβ by construction (6), proving (i).
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To prove (ii), we assume without loss of generality ux > uy, and calculate using Mecke’s equa-
tion [32]

Ex,y

[
]{z = (z, uz) ∈ X : uz > ux ∨ uy, and x ∼ z ∼ y in Ĝβx,y}

]
=

∫
Rd

dz

1∫
ux

duz ρ
(
β−1uγyu

γ/δ
z |y − z|d

)
ρ
(
β−1uγxu

γ/δ
z |x− z|d

)
.

Now, either |y − z| ≥ 1
2
|x− y| or |x− z| ≥ 1

2
|x− y|. Splitting Rd according to those cases yields

∫
Rd

dz

1∫
ux

duz ρ(β
−1uγyu

γ/δ
z |y − z|d)ρ(β−1uγxu

γ/δ
z |x− z|d)

≤
1∫

ux

duz ρ
(
(2dβ)−1uγyu

γ/δ
z |y − x|d

) ∫
Rd

dz ρ(β−1uγxu
γ/δ
z |z|d)

+

1∫
ux

duz ρ((2
dβ)−1uγxu

γ/δ
z |y − x|d)

∫
Rd

dz ρ(β−1uγyu
γ/δ
z |z|d).

For the first integral, we use the change of variablesw = (β−1uγxu
γ/δ
z )1/dz and the distance condition

to deduce

1∫
ux

duz ρ
(
(2dβ)−1uγyu

γ/δ
z |y − x|d

) ∫
Rd

dz ρ(β−1uγxu
γ/δ
z |z|d)

= 2dδβ1+δu−γx |x− y|−dδu−γδy

(∫ 1

ux

duz u
−γ−γ/δ
z

)(∫
Rd

dw ρ(|w|d)
)

≤ β 2dδωdδ
2

(δ−1)(δ−γ(δ+1))
ρ
(
β−1gγ,γ/δ(ux, uy)|x− y|d

)
,

where we have used γ < δ/(δ + 1), and
∫
ρ(|w|d)dw = ωdδ/(δ − 1), together with the distance

condition in the last step. A similar calculation for the second integral yields the same bound and
summing both terms yields

Ex,y

[
]{z = (z, uz) ∈ X : uz > ux ∨ uy, and x ∼ z ∼ y in Ĝβx,y}

]
≤ βĈ

4
ρ
(
β−1gγ,γ/δ(ux, uy)|x− y|d

)
.

Hence, we can apply Lemma 3.3, finishing the proof.

BK inequality. The last section was devoted to showing how a path whose skeleton consists of
start and end vertex only can be reduced to a single edge in probability. Since we consider more
general paths in the following, we need to decompose the whole path in its subpaths between two
consecutive skeleton vertices to make use of the above results. To this end, we use a version of the
BK inequality [45] for an independent edge marking of a Poisson point processes as in [22, Theorem
2.1] generalising the result in [20] for the classical Boolean model. The application to our setting is
described in detail in [22, p. 14].

Let x0,x1, . . . ,xk be given vertices with a vertex mark structure that form a skeleton. That is, their
marks are decreasing until they reach the vertex with minimum mark and only increasing afterwards.
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Let us denote by {x0
n←−−−−−→

x0,x1,...,xk
xk in Ĝβx0,x1,...,xk

} the event that x0 and xk are connected by a

(shortcut-free) path of length n and skeleton x0,x1, . . . ,xk in Ĝβxo,...,xn , which is consistent with the
previously used notation.

We start with the case k = 2 where the skeleton only consists of the three vertices x0,x1,x2. We
consider for n1+n2 = n the two events {xi−1

ni←−−−→
xi−1,xi

xi in Ĝβxi−1,xi
}, for i = 1, 2. We are interested

in the event that there exists a path from x0 to x2 with intermediate skeleton vertex x1 such that there
are n1 connectors used between x0 and x1 and n2 connectors used between x1 and x2. Since all
our paths are self avoiding and shortcut free, this event is the same as the disjoint occurrence of the
two events x0

n1←−→
x0,x1

x1, and x1
n2←−→

x1,x2

x2. Here, disjoint occurrence means that the two paths share

no element of ξ. That is, no Poisson vertex is used twice. Note here that x1 is a given vertex and thus
not a random element of X. We denote the disjoint occurrence by ◦. Hence, the event of interest is
given by {(

x0
n1←−→

x0,x1

x1 in Ĝβx0,x1

)
◦
(
x1

n2←−→
x1,x2

x2 in Ĝβx1,x2

)}
.

Further, the two events are increasing in the following sense: Given any realisation ω of, say, ξx0,x1

such that the event {x0
n1←−→

x1,x1

x1 in Ĝβx1,x2
} occurs on ω, it also occurs for on all realisations ω′ with

ω ⊂ ω′. That is, if there is such a path for some realisation, it will also be present if additional vertices
are added to the graph. It is important to note that this notion of increasing refers to set inclusion only,
i.e., we only may add additional vertices with their incident edges but we never add additional edges
between already existing vertices as this may shorten the path of length n1 due to the shortcut-free
property. The application of the BK inequality [22, Theorem 2.1] then yields

Px0,x1,x2

((
x0

n1←−→
x0,x1

x1 in Ĝβx0,x1

)
◦
(
x1

n2←−→
x1,x2

x2 in Ĝβx1,x2

))
≤ Px0,x1

(
x0

n1←−→
x0,x1

x1 in Ĝβx0,x1

)
Px1,x2

(
x1

n2←−→
x1,x2

x2 in Ĝβx1,x2

)
.

Inductively, this applies to all k ≥ 2 and n1 + · · ·+ nk = n and therefore

Px0,...,xk

(
x0

n←−−−→
x0,...,xk

xk in Ĝβx0,...,xk

)
≤

∑
n1,...,nk∈N
n1+···+nk=n

k∏
i=1

Pxi−1,xi

(
xi−1

ni←−−−→
xi−1,xi

xi in Ĝβxi−1,xi

)
. (11)

Observe that the above holds for all versions of the weight-dependent random connection model.
However, we only apply it to Ĝβ in the following and we have hence restricted ourselves to this version
to lighten notation.

Bounds on the probability of paths in the soft Boolean model. In this paragraph, we combine
the results of the two previous paragraphs to derive bounds on the probability that certain paths exist.
Recall the notation of Cβ = Cβ,γ,0,α(o) for the component of the origin in the soft Boolean model and
the notation Mβ = Mβ,γ,0,δ(o) for its Euclidean diameter. Now, the event Mβ > m is equivalent
to the existence of a path starting in o where all vertices are located in B(m1/d) except for the last
vertex that is located outside the ball. We prepare bounds for that type of events in the following.

Let us denote by {x ←−→
D×J

y in Gβx,y} for two given vertices x and y, a domain D ⊂ Rd, and

a measurable set J ⊂ (0, 1) the event that x and y are connected by a shortcut-free path in Gβ
where all skeleton vertices but x and y are elements of D × J . If J = (0, 1), we simply write

DOI 10.20347/WIAS.PREPRINT.3106 Berlin 2024



B. Jahnel, L. Lüchtrath, M. Ortgiese 22

{x ←→
D

y in Gβx,y}. We further denote by {x n←−→
D×J

y in Ĝβx,y} the event that x and y are connected

by a shortcut-free path of length n in Ĝβ where the skeleton has the same restriction as above. Note
that now only the skeleton vertices are restricted to certain locations and marks. However, the results
of the previous paragraphs tell us that this is what matters when it comes to bound the probability of
a path. Note further that this notation is consistent with the one used above to describe paths with a
given skeleton. Indeed, if the whole skeleton is given, the location domain D and the vertex marks J
reduce to the given points. We remark that it will always be clear from the context whether we refer to
a domain for the vertex locations or to a concrete skeleton. Making use of the domination derived in
Lemma 3.4 Part (i), we directly obtain

Px,y

(
x←−→

D×J
y in Gβx,y

)
≤
∑
n∈N

Px,y

(
x

n←−→
D×J

y in Ĝβx,y
)
. (12)

Using Mecke’s equation [32], the BK-inequality (11), the n-connection property of Lemma 3.4 Part (ii),
and writing x = x0,y = yk the probability on the right-hand side can further be bounded by

Px,y

(
x

n←−→
D×J

y in Ĝβx,y
)

≤
n∑
k=1

Ex0,xk

[ 6=∑
x1,...,xk−1

xj∈D,uj∈J,∀j

1{x0,x1, . . . ,xk form skeleton}Px0,x1,...,xk

(
x

n←−−−−−→
x0,x1,...,xk

y in Ĝβx0,...,xk

)]

≤
n∑
k=1

∑
n1,...,nk∈N
n1+···+nk=n

∫
(D×J)k−1

skeleton structure

k−1⊗
j=1

dxj

k∏
i=1

Pxi−1,xi

(
xi−1

ni←−−−→
xi−1,xi

xi in Ĝβxi−1,xi

)

≤
n∑
k=1

(
n

k

)
(βĈ)n−k

∫
(D×J)k−1

skeleton structure

k−1⊗
j=1

dxj

k∏
i=1

ρ
(
β−1gγ,γ/δ(ui−1, ui)|xi−1 − xi|d

)
,

(13)
where we have additionally used ]{n1, . . . , nk ∈ N : n1+ · · ·+nk = n} =

(
n−1
k−1

)
≤
(
n
k

)
in the last

step. Let us further recall that Ĉ = 2dδ+3ωdδ
2

(δ−1)(δ−γ(δ+1))
is the constant given in Lemma 3.4. In conclusion,

an upper bound for the left-hand side in (12) is given by summing the right-hand side of (13) over all
n ∈ N.

A bound on paths with decreasing vertex marks. We close this section with the following tech-
nical lemma that can be used to derive bounds for the expected number of paths whose skeleton is
monotone in its vertex marks once the spatial influence has been integrated out. Besides Lemma 3.4,
this is the second main ingredient that requires γ < δ/(δ + 1) as it shows that the number of such
paths grows no faster than exponentially which is sufficient to derive the existence of a subcritical
phase as pointed out above in Section 2.6 and proved in [19].

Lemma 3.5. Let δ > 1, and γ < δ/(δ + 1), then for all n ∈ N,∫ 1

0

du1· · ·
∫ 1

0

dun

n∏
j=1

u
−γ−γ/δ
j ≤

(
δ

δ−γ(δ+1)

)n
.

Proof. Since γ < δ/(δ + 1), we have 1− γ − γ/δ > 0 and therefore∫ 1

0

du1· · ·
∫ 1

0

dun

n∏
j=1

u
−γ−γ/δ
j ≤ δ

δ−γ(δ+1)

∫ 1

0

du1· · ·
∫ 1

0

dun

n−1∏
j=1

u
−γ−γ/δ
j
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and the proof is completed by iteration.

3.2.2 Proof of the upper bound in Part (i)

We prove the upper bound of Theorem 2.1 Part (i) in this section. That is, we assume γ < 1/(δ+1).
Since the influence of the radii is rather weak compared to the long-range effects in this setting, we
can apply the previously derived bounds directly to obtain the desired result which is summarised in
the following proposition. To quantify the bound on β for which our results hold, we define, as already
discussed in Section 2.6,

β0 :=
1

2dδ+3+1
· δ−1
ωdδ

(
1− γ δ+1

δ

)
= (δ−1)(δ−γ(δ+1))

(2dδ+3+1)ωdδ2
.

As we consider various paths starting in the origin (o, uo) in the following, we will also often refer to
the origin as x0 = (0, u0) in order to have a clean numeration of the vertices on the path.

Proposition 3.6. Let β < β0, δ > 1 and γ < 1/(δ + 1). Consider the soft Boolean model Gβo =
Gβ,γ,0,δo and its Euclidean diameter Mβ = Mβ,γ,0,δ. Then, for all m > 1, we have

Po
(
Mβ > m

)
≤ C2m

1−δ,

where C2 is given below in (16).

Proof. Using the notation from the previous section, writing o = x0 we have

{Mβ > m} ⊂
⋃
n∈N

{
∃x : |x|d > m and o

n←−−−→
B(m1/d)

x in Ĝβo
}

=
⋃
n∈N

n⋃
k=1

{
∃x1, . . . ,xk : |x1|d, . . . , |xk−1|d < m, |xk|d > m and x0

n←−−−−−→
x0,x1,...,xk

xk in Ĝβo
}
.

From now on we assume that each path considered occurs in Ĝβo . We deduce from Mecke’s equa-
tion [32]

Po(Mβ > m)

≤
∑
n∈N
k≤n

1∫
0

du0

∫
|xk|d>m
uk∈(0,1)

dxk Px0,xk

(
∃x1, . . . ,xk−1 : |x1|d, . . . , |xk−1|d < m and x0

n←−−−−−→
x0,x1,...,xk

xk
)
.

Let us focus on a fixed path of length n and skeleton length k. Then, we must have |x` − x`−1| >
m1/d/k for some ` ∈ {1, . . . , k − 1} or |xk − xk−1| > |xk|/k. Applying the probability bounds on
paths derived in (13) for some fixed ` ∈ {1, . . . , k − 1} therefore yields

1∫
0

du0

∫
|xk|d>m
uk∈(0,1)

dxk Px0,xk

(
∃x1, . . . ,xk−1 : |x1|d, . . . , |xk−1|d < m, |x` − x`−1|d > m

kd
,x0

n←−−−−−→
x0,x1,...,xk

xk
)

≤
(
n

k

)
(βĈ)n−kβδkdδm−δ

∫
(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

×
∫

B(m1/d)k−1

|xk|d>m

k⊗
j=1

dxj

k∏
i=1
i 6=`

ρ
(
β−1gγ,γ/δ(ui−1, ui)|xi−1 − xi|d

)
,
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where we used the independence of vertex locations and vertex marks, i.e., dxj = dxjduj , and
the bound ρ(β−1gγ,γ/δ(u`−1, u`)|x` − x`−1|d) ≤ βδgγ,γ/δ(u`−1, u`)

−δmδ. Focusing on the integral
only, we perform the change of variables zi = β−1/dgγ,γ/δ(ui, ui−1)

1/d, starting from i = n and
successively going to i = ` + 1, and continuing from i = ` − 1 and successively going to i = 1,
yielding the upper bound

m−δβk−1
∫

(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1
( ∫
B(m1/d)

dx`

)(∫
Rd

dz ρ(|z|d)
)k−1

≤ ωdm
1−δβk−1( ωdδ

δ−1)
k−1

∫
(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1.

Hence,

1∫
0

du0

∫
|xk|d>m
uk∈(0,1)

dxk Px0,xk

(
∃x1, . . . ,xk−1 : |x1|d, . . . , |xk−1|d < m, |x` − x`−1|d > m

kd
,x0

n←−−−−−→
x0,x1,...,xk

xk
)

≤ m1−δ
(
n

k

)
βn+(δ−1)kdδĈn−k( ωdδ

δ−1)
k

∫
(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1.

In the case that |xk − xk−1|d > |xk|/k, we obtain similarly

1∫
0

du0

∫
|xk|d>m
uk∈(0,1)

dxk Px0,xk

(
∃x1, . . . ,xk−1 : |x1|d, . . . , |xk−1|d < m, |xk − xk−1|d > |xk|d

kd
,x0

n←−−−−−→
x0,x1,...,xk

xk
)

≤
(
n

k

)
(βĈ)n−kβδkdδ

∫
(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ
( ∫
|xk|d>m

|xk|−dδ
)

×
∫

B(m1/d)k−1

|xk|d>m

k⊗
j=1

dxj

k∏
i=1
i 6=`

ρ
(
β−1gγ,γ/δ(ui−1, ui)|xi−1 − xi|d

)

≤ m1−δ
(
n

k

)
βn+(δ−1)kdδĈn−k( ωdδ

δ−1)
k

∫
(0,1)k+1

skeleton structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1.

Since both cases yield the same upper bound, we infer

Po(Mβ > m)

≤ m1−δ
∑
n∈N
k≤n

βn+(δ−1)kdδĈn−k( ωdδ
δ−1)

k

k∑
`=1

∫
(0,1)k+1

skeleton
structure

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1.

(14)
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It remains to calculate the integral with respect to the vertex marks. Denoting by h the index of the
smallest vertex marks among the skeleton, the integral under consideration reads

k∑
h=0

∫
1>u0>u1>···>uh
uh<uh+1<...uk

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1.

We have to distinguish various cases for ` and h. Let us start with the easy case h = k. That is, we
assume the skeleton’s vertex marks are strictly decreasing. The above integral is then bounded from
above for any `, using the definition gγ,γ/δ(u, v) = (u ∨ v)γ/δ(u ∧ v)γ , cf. (5), and Lemma 3.5∫
u0>···>u`−2

`−2⊗
j=0

duj

`−2∏
i=0

u
−γ−γ/δ
i

u`−2∫
0

du`−1 u
−2γ
`−1

u`−1∫
0

du` u
−γ/δ−γδ
`

∫
u`+1>···>uk

k⊗
j=`+1

duj

k∏
i=`+1

u
−γ−γ/δ
i

≤ 1

(1− 2γ)(1− γ(δ + 1/δ))

( δ

δ − γ(δ + 1)

)k
,

since γ < 1/(δ+1) < 1/2 < δ/(δ+1) implying particularly 1− γ(δ+1/δ) > 0 and 1− 2γ > 0.
It is easy to see that the case h = 0 and any ` yields the same bound. We consider next, the case
h 6∈ {0, k}. Here, our calculations depend on the relation between h and `. We start with the case
` ∈ {h+ 2, . . . , k} and obtain the upper bound∫

u0>···>uh−1

h−1⊗
j=0

duj

h−1∏
i=0

u
−γ−γ/δ
i

uh−1∫
0

duh u
−2γ
h

∫
uh+1<···<u`−2

`−2⊗
j=h+1

duj

`−2∏
i=h+1

u
−γ−γ/δ
i

×
1∫

u`−2

du`−1 u
−γ(δ+1/δ)
`−1

1∫
u`−1

du` u
−2γ
`

∫
u`+1<···<uk

k⊗
j=`+1

duj

k∏
i=`+1

u
−γ−γ/δ
i

≤ 1

(1− 2γ)2(1− γ(δ + 1/δ)

( δ

δ − γ(δ + 1)

)k
.

Again, the case ` ∈ {1, . . . , h−1} yields the same bound and only the cases ` ∈ {h, h+1} remain.
We start with the case ` = h. Then, the integral under consideration is bounded by∫
u0>···>uh−2

h−2⊗
j=0

duj

h−2∏
i=0

u
−γ−γ/δ
i

uh−2∫
0

duh−1 u
−2γ
h−1

uh−1∫
0

duh u
−γ−γδ
h

∫
uh+1<···<uk

k⊗
j=h+1

duj

k∏
i=h+1

u
−γ−γ/δ
i

≤ 1

(1− 2γ)(1− γ(δ + 1))

( δ

δ − γ(δ + 1)

)k
,

(15)
as γ < 1/(δ + 1). Finally, for ` = h + 1, we obtain the same bound with the same calculations.
Hence, summing over h, we obtain

k∑
h=0

∫
1>u0>u1>···>uh
uh<uh+1<...uk

k⊗
j=0

duj gγ,γ/δ(u`, u`−1)
−δ

k∏
i=1
i 6=`

gγ,γ/δ(ui, ui−1)
−1 ≤ k+1

(1−2γ)2(1−γ(δ+1))

(
δ

δ−γ(δ+1)

)k
.

Plugging this into (14) yields

Po(Mβ > m) ≤ m1−δ
∑
n∈N

βδ−1(n+1)ndδ

(1−2γ)2(1−γ(δ+1))
βn

n∑
k=1

(
n

k

)
Ĉn−k

(
ωdδ

2

(δ−1)(δ−γ(δ+1))

)k
≤ C2m

1−δ,
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where
C2 =

βδ−1

(1−2γ)2(1−γ(δ+1))

∑
n∈N

(n+ 1)ndδ( β
β0
)n (16)

is a finite constant as β < β0.

3.2.3 Proof of the upper bound in Part (iii)

In this section, we prove the upper bound of Part (iii) of Theorem 2.1 following the strategy outlined in
Section 2.5. We fix the following notation throughout this section. As above, we set

β0 :=
1

2dδ+3+1
· δ−1
ωdδ

(
1− γ δ+1

δ

)
= (δ−1)(δ−γ(δ+1))

(2dδ+3+1)ωdδ2
.

Recall the notation of Cβ = Cβ,γ,0,α(o) for the component of the origin in the soft Boolean model and
the notation Mβ = Mβ,γ,0,δ for its Euclidean diameter. Recall further

ζ = (δ − 1)/(γδ) and sm = m−ζ .

We start by bounding the probability of the presence of powerful vertices inside the component of the
origin. Here, powerful refers to a vertex mark no larger than sm as demanded in the lower bound.
We show that for β < β0, the presence of such a vertex in the whole component is as unlikely as
its presence in the direct neighbourhood of the origin and hence the probability of this event matches
the probability of the lower bound. Afterwards, we deduce bounds for all other paths connecting o to
distance m1/d when no powerful vertex is present depending on the occurrence of long edges.

Powerful vertices contained in the component of the origin. Let us now define the event that
there exists a powerful vertex in the component of the origin as

F (m):=
{
∃x ∈ Cβ : ux < sm

}
∩{Uo > sm}=

{
∃x : ux < sm and o←−−−−→

Rd×(sm,1)
x
}
∩{Uo > sm}.

(17)
Here, we work on the event that, the origin is not itself a powerful vertex since this only happens with
probability sm which is of lower order than the desired one. For the second equality observe that if
such a powerful vertex x belongs to the component of the origin, there must be a path connecting
o and this x using only vertices with marks larger than sm. If one of the previous vertices had mark
smaller than sm itself, we would have found such a powerful vertex in the component already and
would not have had to consider the remaining part of the path. The following lemma coincides with
2.5.

Lemma 3.7. Consider the soft Boolean model Gβo = Gβ,γ,0,δ(ξo) with δ > 1, γ < δ/(δ + 1), and
β < β0. Then, there exists M > 1 such that for all m > M , we have

Po
(
F (m)

)
≤ C

(1)
6 m−(1−γ)ζ ,

where C(1)
6 is given below in (18).

Proof. Observe that the skeleton of each path considered in F (m) has necessarily a skeleton with
decreasing vertex marks. This is due to the fact that the target vertex x is the most powerful vertex on
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the path. Using Mecke’s equation [32], (12), and (13), we hence immediately infer

Po(F (m)) ≤
1∫

sm

duo

∫
Rd×(0,sm)

dxPo,x

(
o←−−−−−−−−→

B(m1/d)×(sm,1)
x in Gβo,x

)]

≤
∑
n∈N

k∈{1,...,n}

(
n

k

)
(βĈ)n−k

1∫
sm

du0

∫
(Rd)k

u0>u1>···>uk−1>sm>uk

k⊗
j=1

dxj

k∏
i=1

ρ
(
1
β
uγju

γ/δ
j−1|xj − xj−1|d

)
,

where we again identified o = x0. We again make use of the independence of vertex locations and
marks and use that dxk = dxkduk to perform the change of variables zi = β−1/du

γ/d
i u

γ/dδ
j−1 (xi −

xi−1) together with
∫
ρ(|x|d)dx = (ωdδ)/(δ − 1), and Lemma 3.5, to obtain

Po(F (m)) ≤
∑
n∈N

k∈{1,...,n}

βn
(
n

k

)
Ĉn−k( ωdδ

δ−1

)k 1∫
sm

du0 u
−γ/δ
0

u0∫
sm

du1 · · ·
uk−2∫
sm

duk−1

k−1∏
j=1

u
−γ−γ/δ
j

sm∫
0

duk u
−γ
k

≤ δ−γ(δ+1)
(δ−γ))(1−γ)s

1−γ
m

∑
n∈N

βn
n∑
k=0

(
n

k

)
Ĉn−k( ωdδ

2

(δ−1)(δ−γ(δ+1))

)k
≤ δ−γ(δ+1)

(δ−γ)(1−γ)s
1−γ
m

∞∑
n=0

(
β
β0

)n
=
( δ−γ(δ+1)
(δ−γ)(1−γ) ·

β0
β0−β

)
s1−γm ,

where we used the definition of Ĉ from Lemma 3.4 and β < β0. Hence, choosing

C
(1)
6 = (δ−1)(δ−γ(δ+1))2

(δ−γ)(1−γ)(2dδ+3+1)ωdδ2
· 1
β0−β (18)

concludes the proof.

Let us shortly remark that further restricting the target vertex x in the event F (m) to be located in
B(m1/d) corresponds to a version of the lower-bound strategy. More precisely, we define

E(m1/d) :=
{
∃x ∈ X : |x|d < m, ux < sm, and o←−−−−−−−−→

B(m1/d)×(sm,1)
x in Gβo

}
∩ {Uo > sm}.

Clearly, E(m1/d) ⊂ F (m) and each vertex x located in B(m1/d) fulfilling the event E(m1/d) is
connected to o but also to some vertex at distance m1/d of o with a constant probability by our
calculations in the proof of Proposition 3.2.

The occurrence of long edges in the component of the origin. In this section, we deal with
the case that the origin is connected to a vertex at distance m1/d, where we can assume that no
powerful vertex, as defined in the previous section, is used. More precisely, we now work on the event
that F (m) does not occur. In order to do so, we have to bound the occurrence of long edges in
the component of the origin. Those edges play a crucial rule as they contribute significantly to the
Euclidean diameter of the component. Since we have no access to very powerful vertices for the
strategy considered in this section, it is not a priori clear, where these long edges occur in a path.
As outlined in Section 2.5, we distinguish the cases whether the path connecting o to distance m1/d

ends within distance 2m1/d or further away. Additionally, we consider the event that there are no
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edges longer than d(m) present in C β ∩ (B(2m1/d) × (sm, 1)), where d(m) is some real number
in (βmγζ ,m] to be specified later. With this at hand, we define the three events

G(m1/d) :=
{
∃x : m < |x|d ≤ 2dm,ux > sm and o←−−−−−−−−→

B(m1/d)×(sm,1)
x in Gβo

}
∩ {Uo > sm},

H(m1/d) :=
{
∃x,y : |x|d > 2dm, |y|d < m;uy, ux > sm with

o←−−−−−−−−→
B(m1/d)×(sm,1)

y, and y ∼ x in Gβo
}
∩ {Uo > sm},

I(d(m)1/d) :=
{
∃x,y : |x|d, |y|d ≤ 2dm,ux, uy > sm, |y − x|d > d(m),

o←−−−−−−−−→
B(2m1/d)×(sm,1)

x ∼ y in Gβo
}
∩ {Uo > sm}.

(19)
Let us recall one last time that β0 :=

(δ−1)(δ−γ(δ+1))
(2dδ+3+1)ωdδ2

, ζ = (δ− 1)/(γδ) and sm = m−ζ . We start by

bounding the probability of the event H(m1/d) which is 2.5 in the outlined strategy.

Lemma 3.8. Consider the soft Boolean model Gβo = Gβ,γ,0,δ(ξo) with δ > 1, 1/(δ + 1) < γ <
δ/(δ + 1), and β < β0. Then, there exists M > 1 such that, for all m > M , we have

Po
(
H(m1/d)

)
≤ C

(2)
6 m−(1−γ)ζ ,

where C(2)
6 is given below in (31).

Proof. Since the path considered in the eventH(m1/d) lies in the ball B(m1/d) until the final step that
then connects to some vertex at distance 2m1/d, we can write using the conditional independence of
edges and Mecke’s equation

Po
(
H(m1/d)

)
≤

1∫
sm

duo

∫
|x|d>2dm

dx

1∫
sm

dux Po,x

(
∃y : |y|d < m,o←−−−−−−−−→

B(m1/d)×(sm,1)
y ∼ x in Gβo,x

)

≤
1∫

sm

duo

∫
|y|d<m

dy

1∫
sm

duy

∫
|x|d>2dm

dx

1∫
sm

dux Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)(

1
β
(ux ∧ uy)γ|x− y|d

)−δ

≤ βδ
1∫

sm

duo

∫
|y|d<m

dy

1∫
sm

duyPo,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)

×
1∫

sm

dux(ux ∧ uy)−γδ
∫

|x−y|d>m

dx |x− y|−dδ.

The integral with respect to x = (x, ux) reads

1∫
sm

dux(ux ∧ uy)−γδ
∫

|x−y|d>m

dx |x− y|−dδ = ωd
δ−1m

1−δ

[ uy∫
sm

dux u
−γδ
x +

1∫
uy

dux u
−γδ
y

]

≤ ωd
δ−1m

1−δ
[
u1−γδy ∨s1−γδm

|1−γδ| + u−γδy

]
≤
(
1 + 1

|1−γδ|

)
ωd
δ−1u

−γδ
y m1−δ + ωd

|1−γδ|(δ−1)m
1−δ−ζ(1−γδ),
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using sm = m−ζ in the last step. To finish the proof, we therefore have to bound the two terms

βδωd
|1−γδ|(δ−1)m

1−δ−ζ(1−γδ)

1∫
m−ζ

duo

∫
|y|d<m

dy

1∫
m−ζ

duy Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)

(20)

and

(
1 + 1

|1−γδ|

)
βδωd
δ−1 m

1−δ

1∫
m−ζ

duo

∫
|y|d<m

dy

1∫
m−ζ

duy u
−γδ
y Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)
. (21)

Step 1: Bounding the integral in (20). We use the skeleton strategy and deduce by (12) and (13)
together with the same change of variables as above

1∫
sm

duo

∫
|y|d<m

dy

1∫
sm

duy Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Ĝβo,y
)

≤
∑
n∈N
k≤n

(
n

k

)
(βĈ)n−k

1∫
sm

du0

∫
(
B(m1/d)×(sm,1)

)k
x0,...,xk form skeleton

k⊗
j=1

dxj

k∏
j=1

ρ
(
β−1gγ,γ/δ(uj−1, uj)|xj − xj−1|d

)

≤
∑
n∈N
k≤n

(
n

k

)
βnĈn−k( ωdδ

δ−1)
k

∫
(sm,1)k+1

u0,...,uk have skeleton structure

k⊗
j=0

duj

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1.

(22)
As above in the proof of Proposition 3.6, we decompose the integral by considering skeletons where
the h-th vertex has the minimum mark and sum over all possible skeletons to obtain

∫
(sm,1)k+1

u0,...,uk have skeleton structure

k⊗
j=0

duj

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1

≤
k∑

h=0

∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uh−1

sm

duh

∫ 1

uh

duh+1· · ·
∫ 1

uk−1

duk

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1.

We have to distinguish the three cases, whether the minimum mark vertex is the first vertex, the last
vertex, or some vertex in between. For h = 0 the integral reads

∫ 1

sm

du0

∫ 1

u0

du1· · ·
∫ 1

uk−1

duku
−γ
0

( k−1∏
j=1

u
−γ/δ−γ
j

)
u
−γ/δ
k ≤ δ

δ−γ

(
δ

δ−γ(δ+1)

)k−1 1
1−γ

using Lemma 3.5. For h = k similarly

∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uk−1

sm

duku
−γ
k

( k−1∏
j=1

u
−γ/δ−γ
j

)
u
−γ/δ
0 ≤ δ

δ−γ

(
δ

δ−γ(δ+1)

)k−1 1
1−γ .
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Finally, for all other values of h, we infer

∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uh−1

sm

duh

∫ 1

uh

duh+1· · ·
∫ 1

uk−1

duku
−γ
0

( h−1∏
j=1

u
−γ/δ−γ
j

)
u−2γh

( k−1∏
j=h+1

u
−γ−δ/γ
j

)
u
−γ/δ
k

≤ δ
δ−γ

(
δ

δ−γ(δ+1)

)k−2 1
1−γ

1
|1−2γ|

(
1 ∨m−ζ(1−2γ)

)
,

(23)
where we assumed γ 6= 1/2, and we comment on the excluded case below. If γ < 1/2, the above
does not depend onm and since 1−2γ < 1−γ(1+1/δ), the above calculations together with (22)
yield the following bound on (20)

βδωd
|1−γδ|(δ−1)m

1−δ−ζ(1−γδ)

1∫
sm

duo

∫
|y|d<m

dy

1∫
sm

duy Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)

≤ m1−δ−ζ(1−γδ) βδωd(δ−γ(δ+1))2

δ|1−γδ|(δ−1)(δ−γ)(1−γ)|1−2γ|

∑
n∈N

βn
n∑
k=0

(k + 1)

(
n

k

)
Ĉn−k( ωdδ

2

(δ−γ(δ+1))(δ−1)

)k
,

≤ m1−δ−ζ(1−γδ) βδωd(δ−γ(δ+1))2

δ|1−γδ|(δ−1)(δ−γ)(1−γ)|1−2γ|

∑
n∈N

(n+ 1)
(
β
β0

)n
,

(24)
using the form of Ĉ . Further, the sum is finite as β < β0. Using ζ = (δ − 1)/(γδ), we find for the
order in m

1− δ − ζ(1− γδ) = −ζ < −(1− γ)ζ.

For 1/2 < γ < δ/(δ + 1), we infer with the same calculations

βδωd
|1−γδ|(δ−1)m

1−δ−ζ(1−γδ)

1∫
sm

duo

∫
|y|d<m

dy

1∫
sm

duy Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)

≤ m1−δ−ζ(1−γδ)−ζ(1−2γ) βδωd(δ−γ(δ+1))2

δ|1−γδ|(δ−1)(δ−γ)(1−γ)|1−2γ|

∑
n∈N

(n+ 1)
(
β
β0

)n (25)

and it remains to check the order in m for which we find

1− δ − ζ(1− γδ)− ζ(1− 2γ) = −ζ − ζ(1− 2γ) = −2(1− γ)ζ < −(1− γ)ζ.

If γ = 1/2 in (24) only the |1 − 2γ|−1 term in the constant has to be replaced by ζ log(m). Hence,
for β < β0, there are constants c, C > 0 and some ζ ′ > ζ such that we find for (20)

cm1−δ−ζ(1−γδ)

1∫
sm

duo

∫
|y|d<m

dy

1∫
sm

duy Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)
≤ Cm−(1−γ)ζ

′
. (26)
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Step 2: Bounding the integral in (21). We infer with the same arguments as above

(
1+ 1
|1−γδ|

)
βδωd
δ−1 m

1−δ

1∫
sm

duo

∫
|y|d<m

dy

1∫
sm

duy u
−γδ
y Po,y

(
o←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo,y
)

≤
(
1 + 1

|1−γδ|

)
βδωd
δ−1 m

1−δ
∑
n∈N

n∑
k=1

βn
(
n

k

)
Ĉn−k( ωdδ

δ−1

)k
×

k∑
h=0

∫
u0≥···≥uh≥sm
uh≤uh+1≤···≤uk

k⊗
j=0

duj u
−γδ
k

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1,

(27)

and we focus on the integral on the right-hand side. Again, we have to consider the three different
cases depending on where the most powerful vertex is located within the path. We start with h = 0
and infer, again using Lemma 3.5,∫ 1

sm

du0

∫ 1

u0

du1· · ·
∫ 1

uk−1

duk u
−γ
0

( k−1∏
j=1

u
−γ/δ−γ
j

)
u
−γδ−γ/δ
k ≤ 1∨m−ζ(1−γ(δ+1/δ))

|1−γ(δ+1/δ)|

(
δ

δ−γ(δ+1)

)k−1 1
1−γ .

Hence, with the same arguments as above, combining this with (27), we infer for some constants
c, C > 0 that

cm1−δ
∑
n∈N

βn
n∑
k=1

(
n

k

)
Ĉn−k( ωdδ

δ−1

)k ∫ 1

sm

du0

∫ 1

u0

du1· · ·
∫ 1

uk−1

duk u
−γ
0

( k−1∏
j=1

u
−γ/δ−γ
j

)
u
−γδ−γ/δ
k

≤ C
(
m1−δ ∨m1−δ−ζ(1−γ(δ+1/δ))

)
β0

β0−β ,
(28)

since β < β0. To deduce the order in m, we only have to check the case when m1−δ−ζ(1−γ(δ+1/δ)) is
the dominant term. In the other case we immediately have m1−δ < m−(1−γ)ζ since γ > 1/(δ + 1).
As

1− δ − ζ(1− γ(δ + 1
δ
)) = −ζ − δ−1

δ2
= −ζ(1 + γ

δ
) < −ζ(1− γ),

we find that (28) is bounded by Cm−(1−γ)ζ
′

for some ζ ′ > ζ .

The next case we consider is 1 ≤ h ≤ k − 1. Then, the integral on the right-hand side of (27) reads∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uh−1

sm

duh

∫ 1

uh

duh+1· · ·
∫ 1

uk−1

duku
−γ/δ
0

( k−1∏
j=1
j 6=h

u
−γ−γ/δ
j

)
u−2γh u

−γδ−γ/δ
k .

We only consider the case when 1 − γδ − γ/δ < 0, since the other case coincides with (23) with a
slightly changed constant. Now integrating out uk and then using that uk−1 ≥ uh we infer∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uh−1

sm

duh

∫ 1

uh

duh+1· · ·
∫ 1

uk−1

duk u
−γ/δ
0

( k−1∏
j=1
j 6=h

u
−γ−γ/δ
j

)
u−2γh u

−γδ−γ/δ
k

≤ δ
γ(δ2+1)−δ

(
δ

δ−γ(δ+1)

)k−h−1∫ 1

sm

du0

∫ u0

sm

du1 . . .

∫ uh−1

sm

duh u
−γ/δ
0

( h−1∏
j=1

u
−γ−γ/δ
j

)
u
1−2γ−γδ−γ/δ
h

≤ δ
γ(δ2+1)−δ

(
δ

δ−γ(δ+1)

)k−2 δ
δ−γm

−ζ(2−2γ−γδ−γ/δ),
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where we have again restricted ourselves to the case 2 − 2γ − γδ − γ/δ < 0 since otherwise
the γ < 1/2 case of (23) applies again. As above, combining with (27) and since β < β0, we find
constants c, C > 0 such that

cm1−δ
∑
n∈N

βn
n∑
k=1

(
n

k

)
Ĉn−k( ωdδ

δ−1

)k k−1∑
h=1

∫
u0≥···≤uh≥sm
uh≤uh+1≤···≤uk

k⊗
j=0

duj u
−γδ
k

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1

≤ Cm1−δ−ζ(2−2γ−γδ−γ/δ) < Cm−(1−γ)ζ
′

(29)

for some ζ ′ > ζ since

1− δ − ζ(2− 2γ − γδ − γ/δ) = −2ζ(1− γ) + γ
δ
ζ < −(1− γ)ζ,

as γ < δ/(δ + 1).

It remains to bound the case when the most powerful vertex of the path is the end vertex. This case can
be seen as a pendant strategy to the one used in the lower bound respectively Lemma 3.7: Namely,
instead of connecting the origin to a vertex with mark slightly more powerful than sm, which then is
connected to distant vertices, we now connect to vertices slightly less powerful. We shall see however
that this strategy dominates in probability all former ones and is of the same order as the one from the
lower bound. For h = k the integral in (27) under consideration reads∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uk−1

sm

duk u
−γ/δ
0

( k−1∏
j=1

u
−γ−γ/δ
j

)
u−γδ−γk ≤ 1

γ(δ+1)−1

(
δ

δ−γ(δ+1)

)k−1 δ
δ−γm

−ζ(1−γ(δ+1)),

where we have used that γ > 1/(δ + 1). Plugging this into the right-hand side of (27) yields, by a
similar calculation as before,

(
1 + 1

|1−γδ|

)
βδωd
δ−1 m

1−δ
∑
n∈N

βn
n∑
k=1

(
n

k

)
Ĉn−k( ωdδ

δ−1

)k
×
∫ 1

sm

du0

∫ u0

sm

du1· · ·
∫ uk−1

sm

duk

k⊗
j=0

duj u
−γ/δ
0

( k−1∏
j=1

u
−γ−γ/δ
j

)
u−γδ−γk

≤ m−(1−γ)ζ
(
1 + 1

|1−γδ|

) βδωd(δ−γ(δ+1))
(δ−1)(γ(δ+1)−1)(δ−γ) ·

β0
β0−β ,

(30)

using again β < β0 and 1− δ− ζ(1− γ(δ+1)) = (1− γ)ζ . Hence, combining (28), (29) and (30),
we find that the term (21) is bounded by

Cm−(1−γ)ζ
′
+m−(1−γ)ζ

(
1 + 1

|1−γδ|

)
βδ(δ−γ(δ+1))2

(γ(δ+1)−1)(δ−γ)(1+2dδ+3)δ2
· 1
β0−β ,

where ζ ′ > ζ and hence m−(1−γ)ζ
′

is of strictly smaller order than m−(1−γ)ζ . We set

C
(2)
6 := 2

(
1 + 1

|1−γδ|

) βδ(δ−γ(δ+1))2

(γ(δ+1)−1)(δ−γ)δ2 ·
1

β0−β (31)

and infer for β < β0 and sufficiently large m

Po
(
H(m1/d)

)
≤ C

(2)
6 m−(1−γ)ζ ,

as claimed.
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Our next result is to bound the probability of I(d(m)1/d), the event that the component of the origin
restricted to vertices inB(2m1/d) contains no edges longer than d(m)1/d, where d(m) ∈ (βmγζ ,m],
preparing 2.5.

Lemma 3.9. Consider the soft Boolean model Gβo = Gβ,γ,0,δ(ξo) with δ > 1, 1/(δ + 1) < γ <
δ/(δ + 1), and β < β0. Then, there exists M > 1 such that, for all m > M , we have

Po
(
I(d(m)1/d)

)
≤ C

(2)
6

(
m/d(m)

)δ−1
m−(1−γ)ζ ,

where C(2)
6 is the constant given above in (31).

Proof. We calculate similarly to above

Po
(
I(d(m)1/d)

)
≤

1∫
sm

duo

∫
|x|d<2dm

dx

1∫
sm

dux

∫
|y|d<2dm

|x−y|d>d(m)

dy

∫
sm

duy Po,x

(
o←−−−−−−−−→
B(2m1/d)×(sm,1)

x in Gβo,x
)

βδ

(ux∧uy)γδ|x−y|dδ

≤ βδ ωd
δ−1d(m)1−δ

1∫
sm

duo

∫
|x|d<2dm

dx

1∫
sm

dux Po,x

(
o←−−−−−−−−→
B(2m1/d)×(sm,1)

x in Gβo,x
) 1∫
sm

duy(ux ∧ uy)−γδ

≤
(d(m)

m

)1−δ βδωd
δ−1

(
(1 + 1

|1−γδ|)m
1−δu−γδx + m1−δ−ζ(1−γδ)

|1−γδ|

)
×

1∫
sm

duo

∫
|x|d<2dm

dx

1∫
sm

dux Po,x

(
o←−−−−−−−−→
B(2m1/d)×(sm,1)

x in Gβo,x
)
.

Therefore, we can perform for the integral the exact same computations as in the previous proof and
we infer for β < β0 and sufficiently large m,

Po
(
I(d(m)1/d)

)
≤ C

(2)
6

(
m/d(m)

)δ−1
m−(1−γ)ζ ,

where C(2)
6 is the constant given above in (31). This concludes the proof.

Finalising the proof of the upper bound in Part (iii). With the results of the previous sections,
we have all tools at hand needed to finish the proof of Theorem 2.1. Recall the events F (m) intro-
duced in (17) as well as G(m1/d), H(m1/d), and I(m1/d) introduced in (19). The upper bound in
Theorem 2.1 Part (iii) is an immediate consequence of the following proposition.

Proposition 3.10. Consider the soft Boolean model Gβo = Gβ,γ,0,δ(ξo) with δ > 1, 1/(δ+1) < γ <
δ/(δ + 1), and β < β0. Then, there exists M > 1 such that, for all m > M , we have

Po(Mβ > m) ≤ C6m
−(1−γ)ζ ,

where C6 is given below in (32).

Proof. For large m by Lemma 3.7

Po(Mβ > m) ≤ Po(Uo ≤ sm) + Po({Mβ > m} ∩ {Uo > sm})
≤ sm + Po(F (m)) + Po

(
{Mβ > m} ∩ F (m)c ∩ {Uo > sm}

)
≤ 3

2
C

(1)
6 m−(1−γ)ζ + Po

(
{Mβ > m} ∩ F (m)c ∩ {Uo > sm}

)
.
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To bound the remaining probability, we set κ = (γ∨(1−γ))ζ
log β0−log β and choose d(m) = m

(κ logm)d
in I(d(m)1/d).

We deduce, using Lemmas 3.8 and 3.9

Po
(
{Mβ > m} ∩ F (m)c ∩ {Uo > sm}

)
≤ Po

(
G(m1/d)

)
+ Po

(
H(m1/d)

)
≤ Po

(
G(m1/d) ∩ I(d(m)1/d)c

)
+ 3

2
C

(2)
6

(
κ log(m)

)d(δ−1)
m−(1−γ)ζ .

for sufficiently large m. It hence remains to bound the probability of G(m1/d) ∩ I(m1/d)c which then
finishes 2.5. On this event, there exists some path of length at least κ log(m) where no vertex of the
path has mark smaller than sm. Hence, by (12)

Po
(
G(m1/d) ∩ I(d(m)1/d)c

)
≤

∑
n≥κ log(m)

n∑
k=1

Eo
[ 6=∑
x1,...,xk∈X
ui>sm ∀i

Px0,...,xk(x0
n←−−−→

x0,...,xk
xk in Ĝβx0,...,xk

)
]
.

Using again Mecke’s equation and the skeleton strategy (13) once more, we infer

n∑
k=1

Eo
[ ∑
x1,...,xk∈X
ui>sm ∀i

Px0,...,xk(x0
n←−−−→

x0,...,xk
xk in Ĝβx0,...,xk

)
]

≤ βn
n∑
k=1

k∑
h=0

(
n

k

)
Ĉn−k( ωdδ

δ−1

)k ∫
u0>u1>···>uh>sm
uh<uh+1<···<uk

k⊗
j=0

duj

k∏
j=1

gγ,γ/δ(uj−1, uj)
−1

≤
(

δ
δ−γ

)2( δ−γ(δ+1)
δ

)2
(1 ∨m−ζ(1−2γ))(n+ 1)

(
β
β0

)n
,

where we performed the same calculations as above in (23) to (24) to bound the integral. Since
β < β0, we have by our choice of κ

∑
n≥κ log(m)

(n+ 1)( β
β0
)n ≤

∞∫
κ log(m)

(x+ 1)e−x log(β0/β)dx ≤ 3
2

γ∨(1−γ)
(log β0−log β)2 log(m)m−(γ∨(1−γ))ζ .

Therefore,

Po
(
G(m1/d) ∩ I(d(m)1/d)c

)
≤
(

δ
δ−γ

)2( δ−γ(δ+1)
δ

)2
(1 ∨m−ζ(1−2γ))

∑
n≥κ log(m)

(n+ 1)
(
β
β0

)n
≤ 3

2

(
δ

δ−γ

)2( δ−γ(δ+1)
δ

)2 γ∨(1−γ)
(log β0−log β)2 log(m)m−(1−γ)ζ .

Hence, we set

C6 =


2
(
(γ∨(1−γ))ζ
log β0−log β

)d(δ−1)
C

(2)
6 , if d(δ − 1) > 1,

3
2

( (γ∨(1−γ))ζ
log β0−log βC

(2)
6 +

(
δ

δ−γ

)2( δ−γ(δ+1)
δ

)2 γ∨1−γ
(log β0−log β)2

)
, if d(δ − 1) = 1, and

2
(

δ
δ−γ

)2( δ−γ(δ+1)
δ

)2 γ∨1−γ
(log β0−log β)2 , if d(δ − 1) < 1.

(32)

to infer
Po(Mβ > m) ≤ C6 log(m)1∨d(δ−1)m1−ζ

for large enough m, concluding the proof.
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3.2.4 The upper bound of Part (ii)

We shortly explain where we have to adapt our proofs to obtain the upper bound in the boundary case.

Proposition 3.11. Consider the soft Boolean model Gβo = Gβ,γ,0,δ(ξo) with δ > 1, 1/(δ + 1) = γ,
and β < β0. Then, there exists M > 1 such that, for all m > M , we have

Pβ(Mβ > m) ≤ C6 log(m)m1−δ,

where C4 is given below in (33).

Proof. First recall that for γ = 1/(δ + 1) the exponents 1 − δ and −(1 − γ)ζ coincide. Hence,
we can work on the event F (m) by Lemma 3.7. We then perform the same proof as for the case
γ < 1/(δ + 1) in Proposition 3.6 where only now the vertex marks of the skeleton are restricted to
the interval (sm, 1). Observe that for γ = 1/(δ+1) we still have γ < 1/2 and 1− γ(δ+1/δ) > 0.
Hence, we only rely in (15) on the condition γ < 1/(δ+1). Performing the same calculations but with
the lower integral bound replaced by sm and using γ = 1/(δ + 1), we obtain instead

∫
u0>···>uh−2
uh−2>sm

h−2⊗
j=0

duj

h−2∏
i=sm

u
−γ−γ/δ
i

uh−2∫
sm

duh−1 u
−2γ
h−1

uh−1∫
0

duh u
−γ−γδ
h

∫
sm<uh+1

uh+1<···<uk

k⊗
j=h+1

duj

k∏
i=h+1

u
−γ−γ/δ
i

≤ − log(sm)
1

1− 2γ

( δ

δ − γ(δ + 1)

)k
.

Due to the additional − log(sm) = ζ log(m) term, this summand is now clearly the dominant one in
the whole sum. Hence, finalising the proof from here as done in Proposition 3.6, we obtain

Po(Mβ > m) ≤ C4 log(m)m1−δ,

where
C4 :=

(δ2−1)(δ+1)βδ−1

δ(δ−1)

∑
n∈N

(n+ 1)ndδ( β
β0
)n, (33)

as ζ = (δ2 − 1)/δ and (1− 2γ)−1 = (δ + 1)/(δ − 1)), concluding the proof.

3.2.5 The special case γ < 1/2

The final result of this section is the following lemma, showing that the logarithmic term in the upper
bound of Theorem 2.1 Part (iii) can be omitted if γ < 1/2 at least for a changed critical intensity
threshold, as discussed in Section 2.6. The proof of Theorem 2.7 follows immediately by summing the
following lemma.

Lemma 3.12. Define K = ωdδ
δ−1

(
1

1−2γ +
1

1−γ

)
. Let β < K−1, γ < 1/2 and δ > 1. Then, there exist

constants K ′ > 0 such that, for all n ∈ N, we have

(i) for 0 < γ < 1/(δ + 1)

Po
(
∃y : |y|d > m, uy > sm and o

n←−−−→
B(m1/d)

y in Gβo
)
≤ K ′βδ−1ndδ+1(βK)n ×m1−δ,
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(ii) for 1/(δ + 1) < γ < 1/2

Po
(
∃y : |y|d > m, uy > sm and o

n←−−−→
B(m1/d)

y in Gβo
)
≤ K ′βδ−1ndδ+1(βK)n ×m−(1−γ)ζ .

Proving the lemma requires bounds on the expected number of paths similar to those in Lemma 3.5
but now for all paths rather than only those with skeleton structure as we no longer make use of the
latter. Put differently, we require the following lemma.

Lemma 3.13. Let γ < 1/2 and u0 ∈ (0, 1).

(a) For all k ∈ N, we have∫ 1

0

du1 · · ·
∫ 1

0

duk

k∏
j=1

(uj−1 ∧ uj)−γ ≤ 2−γ
1−γ

(
1

1−2γ +
1

1−γ

)k−1
u−γ0 .

(b) Further, for all k ∈ N, we have∫ 1

0

du1 · · ·
∫ 1

0

duk

( k∏
j=1

(uj−1 ∧ uj)−γ
)
u−γk ≤

(
1

1−2γ +
1

1−γ

)k−1
u−γ0 .

Proof. We prove the Statement (a) by induction. For k = 1, we have∫ 1

0

du1 (u0 ∧ u1)−γ ≤
∫ u0

0

u−γ1 du1 + u−γ0 ≤
2−γ
1−γu

−γ
0 .

For k ≥ 2 we have by using the induction hypothesis∫ 1

0

du1 · · ·
∫ 1

0

duk

k∏
j=1

(uj−1 ∧ uj)−γ ≤ 2−γ
1−γ

(
1

1−2γ +
1

1−γ

)k−2 ∫ 1

0

u−γ1 (u0 ∧ u1)−γdu1

= 2−γ
1−γ

(
1

1−2γ +
1

1−γ

)k−2(∫ u0

0

u−2γ1 du1 +

∫ 1

u0

u−γ0 u−γ1 du1

)
≤ 2−γ

1−γ

(
1

1−2γ +
1

1−γ

)k−2(u1−2γ
0

1−2γ +
u−γ0

1−γ

)
≤ 2−γ

1−γ

(
1

1−2γ +
1

1−γ

)k−1
u−γ0 .

For statement (b), we only show the induction start k = 1 as the induction step works analogously as
above. We have∫ 1

0

du1(u0 ∧ u1)−γu−γ1 =

∫ u0

0

du1 u
−2γ
1 +

∫ 1

u0

du1 u
−γ
0 u−γ1 ≤

(
1

1−2γ +
1

1−γ

)
u−γ0 ,

as desired.

Proof of Lemma 3.12. We restrict ourselves to the proof of Part (ii). The adaptation to the easier case
of Part (i) is straightforward. With Lemma 3.13 it is also straight forward to adapt the proof of Lemma 3.7
to the case γ < 1/2 and β < K−1 to derive∑

k→∞

Po
(
∃x : ux < sm and o

k←−−−−→
Rd×(sm,1)

)
≤ m−(1−γ)ζK ′ 1

1−βK .
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Hence, from now on, we work on the assumption that all considered vertices have mark no smaller
than sm. On the path of length n, either one of the intermediate edges has length at least m1/d/n,
or the last edge is longer than |y|/n. Hence, following the arguments of the proof of Proposition 3.12,
we infer

Po
(
∃y : |y|d > m, uy > sm and o

n←−−−−−−−−→
B(m1/d)×(sm,1)

y in Gβo
)

≤
n−1∑
`=1

βδ−1ndδ
(
βωd

δ
δ−1

)n
m1−δ

∫
(sm,1)n+1

n⊗
j=0

duj (u`−1 ∧ u`)−γδ
n∏
j=1
j 6=`

(uj−1 ∧ uj)−γ

+ βδ−1ndδ
(
βωd

δ
δ−1

)n−1 ∫
|xn|d>m

dxn |xn|−dδ
∫

(sm,1)n+1

n⊗
j=0

duj (un−1 ∧ un)−γδ
n−1∏
j=1

(uj−1 ∧ uj)−γ

=
n∑
`=1

βδ−1ndδ
(
βωd

δ
δ−1

)n
m1−δ

∫
(sm,1)n+1

n⊗
j=0

duj (u`−1 ∧ u`)−γδ
n∏
j=1
j 6=`

(uj−1 ∧ uj)−γ.

We have using Lemma 3.13∫
(sm,1)n+1

n⊗
j=0

duj (u`−1 ∧ u`)−γδ
n∏
j=1
j 6=`

(uj−1 ∧ uj)−γ

≤ 2−γ
1−γ

(
1

1−2γ +
1

1−γ

)n−`−1 ∫
(sm,1)`

`+1⊗
j=0

duj u
−γ
` (u`−1 ∧ u`)−γδ

`−1∏
j=1

(uj−1 ∧ uj)−γ.

Since γ > 1/(δ + 1), we infer∫ 1

sm

du`−1(u`−1 ∧ u`−2)−γ
[ ∫ u`−1

sm

du` u
−γ(δ+1)
` +

∫ 1

u`−1

du` u
−γδ
` u−γ`−1

]
≤
∫ 1

sm

du`−1(u`−1 ∧ u`−2)−γ
[
m−ζ(1−γ(δ+1))

γ(δ+1)−1 +
u
1−γ(δ+1)
`−1 ∨u−γ`−1

|1−γδ|

]
≤
(

1
γ(δ+1)−1 +

1
|1−γδ|

)
m−ζ(1−γ(δ+1))

∫ 1

sm

du`−1(u`−1 ∧ u`−2)−γu−γ`−1.

(34)

Using Lemma 3.13 once more, we hence get∫
(sm,1)n+1

n−1⊗
j=0

duj (u`−1 ∧ u`)−γδ
n∏
j=1
j 6=`

(uj−1 ∧ uj)−γ ≤ K ′
(

1
1−2γ +

1
1−γ

)n
m−ζ(1−γ(δ+1))

for
K ′ = 2−γ

1−γ (
1

γ(δ+1)−1 +
1

|1−γδ|)(
1

1−2γ +
1

1−γ )
−2.

Therefore,

n∑
`=1

βδ−1ndδ
(
βωd

δ
δ−1

)n
m1−δ

∫
(sm,1)n+1

n⊗
j=0

duj (u`−1 ∧ u`)−γδ
n∏
j=1
j 6=`

(uj−1 ∧ uj)−γ

≤ nK ′βδ−1ndδ
(
βK
)n
m−(1−γ)ζ ,
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whereK is given in the formulation of the lemma, concluding the proof of Part (ii). The proof of Part (i)
works analogously. However, the restrictions to vertices with not too small vertex marks is no longer
necessary and we repeat the same computations without this restriction for the case γ < 1/(δ + 1))
to obtain the desired result.

3.3 Number of points contained in the component of the origin

In this final section we prove our results about the number of points in a subcritical component. Part (ii)
of Theorem 2.2, stating that the expected cardinality of the component of the origin is infinite whenever
the degree distribution has no second moment, is only stated for completeness and directly follows
from the corresponding result for the classical Boolean model [37, Theorem 3.2]. Hence, it suffices to
prove Part (i). Again, the lower bound Po(Nβ ≥ m) ≥ cm1−1/γ is an immediate consequence of the
result for the classical Boolean model in [14, 25]. We however give the short proof for completeness.

Proof of the lower bound in Theorem 2.2, Part (i). Let us denote by N(x) the number of neighbours
of the vertex x = (x, ux) in Gβx and let us writeN>(x) for the number of neighbours of x with mark no
smaller than ux. It is clear that N>(x) ≤ N(x). Further, for given x = (x, ux), N>(x) is Poisson
distributed with parameter βωdδ

δ−1 (u
−γ
x − 1) independently from its location by [33, Proposition 2.1].

Therefore, by the standard Poisson tail bound, each vertex with mark smaller than c(2m)−1/γ for
c = (δ−1)/(βωdδ) has at leastm neighbours with exponentially small error probability. Additionally,
each vertex located in B(m1/d) with mark smaller than c(2m)−1/γ is connected to o. Therefore,

Po
(
Nβ > m

)
≥ P

(
∃x ∈ X ∩

(
B(m1/d)× (0, c(2m)−1/γ)

))
− P

(
∃x ∈ X ∩

(
B(m1/d)× (0, c(2m)−1/γ)

)
: N>(x) < m

)
≥ cωd

21+1/γm
1−1/γ,

for all sufficiently large m > c1/γ , since

P
(
∃x ∈ X ∩

(
B(m1/d)× (0, c(2m)−1/γ)

)
: N>(x) < m

)
≤

∫
|x|d<m

dx

c(2m)−1/γ∫
0

du P
(
N<(x) < m

)
≤ cωd

21/γ
m1−1/γ Pois2m−1(m) ≤ cωd

21+1/γm
1−1/γ,

where we have written Pois2m−1 for the distribution function of a Poisson random variable with pa-
rameter 2m− 1. This proves the lower bound.

Consider now the scale-free percolation model corresponding to the choice of α = γ in the in-
terpolation kernel (5). That is, gγ,γ(s, t) = sγtγ . Since gγ,0 ≥ gγ,γ , we have E(Gβ,γ,0,δ(ξ)) ⊂
E(Gβ,γ,γ,δ(ξ)) by (6). Put differently, the scale-free percolation model in this parametrisation contains
all edges of the soft Boolean model and more. As a direct result, the lower bound for the tail probability
of the cardinality of the component of the origin in the soft Boolean model is also valid for scale-free
percolation. Contrarily, each upper bound for scale-free percolation is then also an upper bound in the
soft Boolean model. Hence, it suffices to prove the upper bound for scale-free percolation in order to
finish the proofs of the Theorems 2.2 and 2.3.
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Proof of the upper bound in Theorem 2.3. We couple the component of the origin to a multi-type
branching process starting at the origin which we now describe. The individuals of the branching
process are nodes x = (x, ux) that have a location in Rd and a type ux ∈ (0, 1). Let Y(1) be a unit-
intensity Poisson point process on Rd × (0, 1)× (0, 1), independent of everything else, the nodes of
which we denote by (x, ux, vx). Given the origin and its type o = (o, uo), the first generation consists
of the points

Z(1) =
{
(x, u) : ∃v such that (x, u, v) ∈ Y(1) and v ≤ 1 ∧ (β−1uγou

γ|x|d)−δ
}
.

Let us denote by Z(1)(A) the number of points in Z(1) that have their type in A. Then, given o =
(o, uo), Z(1)(A) is Poisson distributed with mean

E(o,uo)Z
(1)(A) =

∫
A

du

∫
Rd

dx 1 ∧ (β−1uγuγo |x|d)−δ = β ωdδ
δ−1u

−γ
o

∫
A

du u−γ. (35)

For simplicity we write Z(1) = Z(1)((0, 1)) in which case we have

µ(1)((o, uo)) := E(o,uo)Z
(1) = β ωdδ

(δ−1)(1−γ)u
−γ
o ≤ β ωdδ

(δ−1)(1−2γ)u
−γ
o , (36)

using γ < 1/2 in the last step. It is easy to see that the number of individuals in the first generation
of this process coincides with the number of neighbours the origin has in Gβ,γ,γ,δo . To construct the

second generation, let the first generation {x(1)
1 , . . . ,x

(1)
k } = Z(1) be given. For j ∈ {1, . . . , k} let

Y(2)
j be a unit-intensity Poisson point process on Rd× (0, 1)× (0, 1) independent of everything else.

The children of x(1)
j = (x

(1)
j , u

(1)
j ) are then given by

Z(2)
j =

{
(x, u) : ∃v such that (x, u, v) ∈ Y(1)

1 and v ≤ 1 ∧
(
β−1uγ(u

(1)
j )γ|x− x(1)j |d

)−δ}
.

Let as above Z(2)
j (resp. Z(2)

j (A)) denote the number of children of the individual xj (of type in

A) and note that again the number of which is Poisson distributed with mean µ(1)(xj), see (36).
Given the whole first generation Z(1), the expected size of the second generation is hence given by∑

x∈Z(1) µ(1)(x). Using the Markov property of this process together with Mecke’s equation, we infer
that the expected size of the second generation, given the origin o = (o, uo), is bounded by

µ(2)((o, uo)) = E(o,uo)

[ ∑
x∈Z(1)

µ(1)(x)
]
=

∫ 1

0

du

∫
Rd

dx
(
1 ∧ (β−1uγuγo |x|d)−δ

)
µ(1)((x, u))

≤
(
β ωdδ

(δ−1)(1−2γ)

)2
u−γo ,

where we used (36) and γ < 1/2. Again, it is easy to see that the branching process can be cou-
pled with Gβ,γ,γ,δo such that the second generation contains at least as many individuals as there are
vertices at graph distance two away from o in Gβ,γ,γ,δo . We continue constructing the subsequent gen-
erations in the obvious way. Then, for each n, the n-th generation Z(n) contains at least as many
individuals as there are vertices at graph distance n away from o in Gβo . Moreover, we obtain induc-
tively by the Markov property of the process and Mecke’s equation that

µ(n)((o, uo)) := E(o,uo)Z
(n) ≤

(
β ωdδ

(δ−1)(1−2γ)

)n
u−γo .

Choosing β < (δ−1)(1−2γ)
ωdδ

the sequence µ(n)((o, uo)) is summable and hence

ENβ,γ,γ,δ ≤
∫ 1

0

du
∑
n

µ(n)(o, uo) <∞.
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In particular, the constructed branching process is subcritical. Moreover, we can see in our calculations
that the spatial embedding plays no particular role and only the polynomial types of the form u−γ

influence the offspring distribution. Let us think in the following of the individual types as of the form
Wx = u−γx ∈ (1,∞). By the Poisson nature of the branching process, (35) and (36) together yield
that an offspring of a type-w individual has type in (1, z) with probability

β ωdδ
δ−1w

∫ 1

z−1/γ du u
−γ

β ωdδ
(δ−1)(1−γ)w

= 1− z1−1/γ,

independently from the ancestor’s type. Hence, the constructed branching process has the same law
as a single-type branching process with mixed-Poisson offspring distribution with mean βCW where
W is Pareto(1/γ) distributed and C = ωdδ

(δ−1)(1−γ) . This reduction to a single-type branching process
is a crucial feature of the underlying product structure of the kernel gγ,γ , see [47, Chapter 3.4.3]. In
particular, the mixing parameter W ′ = βCW is heavy tailed with tail distribution

P(W ′ ≥ w) = cw1−1/γ,

for an appropriate c > 0. But this also implies that a random variable Z that is distributed as mixed
Poisson with mean W ′ is heavy tailed with tail distribution

cz1−1/γ ≤ P(Z ≥ z) ≤ Cz1−1/γ,

for some constants c, C > 0, see [46, Chapter 6]. This in particular implies P(Z = z) � z−1/γ for all
large z ∈ N. Summarising, the cardinality of the component of the origin is stochastically dominated
by the total progeny C of a branching process with offspring distribution identically to Z . Together with
Dwass’ Theorem [12] we obtain

Po(Nβ,γ,γ,δ ≥ m) ≤ P(C ≥ m) =
∑
k≥m

P(C = k) =
∑
k≥m

1

k
P(Z1 + · · ·+ Zk = k − 1), (37)

where Z1, . . . , Zk are i.i.d. copies of Z . Finally, recall that we have already shown the subcriticality
of the process which particularly implies EZ1 < 1 (the integrability is due to γ < 1/2 and the
boundedness is due to β being small enough). Hence, n − 1 > nEZ1 for large enough n and as
Z1, Z2, . . . are independent and heavy tailed with finite expectation, the single big jump paradigm [8,
Theorem 9.1] yields

P(Z1 + · · ·+ Zn ≥ n− 1) ∼ nP(Z1 ≥ n− 1) � n2−1/γ,

as γ < 1/2. Again, this implies P(Z1+ · · ·+Zn = n−1) � n1−1/γ for sufficiently large n. Plugging
this back into (37) we obtain, for large enough m, that

Po(Nβ,γ,γ,δ ≥ m) ≤
∑
k≥m

1

k
P(Z1 + · · ·+ Zk = k − 1) �

∑
k≥m

k−1/γ � m1−1/γ.

This concludes the proof.
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