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Survival and extinction for a contact process with a
density-dependent birth rate
Jonas Köppl, Nicolas Lanchier, Max Mercer

Abstract

To study later spatial evolutionary games based on the multitype contact process, we first fo-
cus in this paper on the conditions for survival/extinction in the presence of only one strategy, in
which case our model consists of a variant of the contact process with a density-dependent birth
rate. The players are located on the d-dimensional integer lattice, with natural birth rate λ and
natural death rate one. The process also depends on a payoff a11 = a modeling the effects of
the players on each other: while players always die at rate one, the rate at which they give birth is
given by λ times the exponential of a times the fraction of occupied sites in their neighborhood. In
particular, the birth rate increases with the local density when a > 0, in which case the payoff a
models mutual cooperation, whereas the birth rate decreases with the local density when a < 0,
in which case the payoff a models intraspecific competition. Using standard coupling arguments
to compare the process with the basic contact process (the particular case a = 0), we prove that,
for all payoffs a, there is a phase transition from extinction to survival in the direction of λ. Using
various block constructions, we also prove that, for all birth rates λ, there is a phase transition
in the direction of a. This last result is in sharp contrast with the behavior of the nonspatial de-
terministic mean-field model in which the stability of the extinction state only depends on λ. This
underlines the importance of space (local interactions) and stochasticity in our model.

1 Introduction

The field of evolutionary game theory was developed by Maynard Smith [22], and first appeared in his
work with Price [23]. The basic idea in this field is to reinterpret the different strategies as species and
their payoff as fitness to create realistic dynamical systems with density-dependent birth and/or death
rates. The most popular (nonspatial deterministic) model in evolutionary game theory is the replicator
equation. Having an n × n payoff matrix A = (aij) where aij represents the payoff a type i player
receives from a type j player, and letting ui denote the density of type i players in the population, the
payoff of each type i player is given by

φi = φi(u1, u2, . . . , un) = ai1u1 + ai2u2 + · · ·+ ainun.

Reinterpreting the payoff as fitness (a birth rate when the payoff is positive or minus a death rate when
the payoff is negative) and assuming that each individual produced replaces a player chosen uniformly
at random, while each individual removed is replaced by a player chosen uniformly at random, result
in the following so-called replicator equation [16]:

u′i = (φiui)(
∑

j 6=i uj)− (
∑

j 6=i φjuj)ui =
∑

j 6=i(φi − φj)uiuj for i = 1, 2, . . . , n.

This system of coupled differential equations can be turned into a spatially explicit stochastic process
following the modeling approach of [26, 27]. More precisely, to include a spatial structure in the form of
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local interactions, we first assume that the players are located on the d-dimensional integer lattice Zd,
so the state at time t is a configuration

ξt : Zd −→ {1, 2, . . . , n} where ξt(x) = strategy of the player at site x.

Then, writing x ∼ y to indicate that the two lattice points x and y are nearest neighbors (distance one
apart), the payoff of the player at site x is defined as

φ(x, ξt) =
∑

i,j aij fj(x, ξt)1{ξt(x) = i} where fj(x, ξt) =
∑

y∼x 1{ξt(y) = j}/2d
(1.1)

denotes the fraction of nearest neighbors of site x following strategy j, i.e., the payoff only depends
on the strategy of the neighbors. The fitness is then given by

Φ(x, ξt) = (1− w)× 1 + w × φ(x, ξt) = (1− w)× 1 + w × payoff, (1.2)

where the parameter w ∈ (0, 1] represents the strength of selection. Weak selection refers to the
case where w is small, while strong selection means w = 1. The most popular models that fall under
this framework are the birth-death updating process and the death-birth updating process introduced
in [28]. In the birth-death updating process, the fitness is interpreted as a birth rate, and offspring
replace a neighbor of the parent’s site chosen uniformly at random, so the rate at which site x switches
from strategy i to strategy j is given by

ci→j(x, ξt) =
∑

y∼x Φ(y, ξt)1{ξt(y) = j}/2d for all i 6= j. (1.3)

In contrast, in the death-birth updating process, players die at rate one and are instantaneously re-
placed by the offspring of a neighbor chosen at random with a probability proportional to its fitness, so
the local transition rates are now given by

ci→j(x, ξt) =
∑

y∼x Φ(y, ξt)1{ξt(y) = j}/
∑

y∼x Φ(y, ξt) for all i 6= j. (1.4)

Taking w = 0, the transition rates in (1.3)–(1.4) simplify to fj(x, ξt), showing that the birth-death
and the death-birth updating processes both reduce to the voter model [6, 17]. In the presence of
weak selection, these two processes were studied in [4, 5, 21] in the context of two-strategy games,
while [7, 10, 24] also considered games with more strategies. In the weak selection limit w → 0,
voter model perturbations techniques developed in [8] can be used to have a precise description of
the phase structure of the processes. In the presence of strong selection w = 1, more qualitative
aspects such as the existence of phase transitions were proved in [12, 18]. Other natural variants with
discontinuous transition rates were also studied rigorously in the presence of strong selection: the
best-response dynamics [11], and the death-birth of the fittest process [13].
In the previous models, each birth/death induces the instantaneous death/birth of a neighbor so each
site is occupied by exactly one player at all times. In particular, these models, as well as all the models
of interacting particle systems of interest in evolutionary game theory that have been studied in the
probability literature, consist of variants of the voter model with density-dependent birth and/or death
rates in which all the sites are occupied. As far as we know, the only exception is the variant of
the multitype contact process [25] introduced in [19]. This process, however, was only designed to
model the interactions among cooperators and defectors in the prisoner’s dilemma rather than general
games described by a payoff matrix. Our main objective is to initiate the study of spatial evolutionary
games based more realistically on Neuhauser’s multitype contact process instead of the voter model.
In particular, the state at time t is now

ξt : Zd −→ {0, 1, 2, . . . , n} where ξt(x) = strategy of the player at site x,
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β = 8, a = −1.75 β = 2, a = 0 β = 0.25, a = 1.16

Figure 1: Snapshots at time 1000 of the two-dimensional single-type contact process with various
birth parameters λ and payoffs a. Middle: When a = 0, the process reduces to the basic contact
process. Left: When a < 0, small clusters have a reduced birth rate, which results in a more scattered
configuration at equilibrium. Right: In contrast, when a > 0, small clusters have an increased birth
rate, which results in stronger spatial correlations.

with the convention 0 = empty. The dynamics combines the multitype contact process and the birth-
death updating process (1.3) dynamics. Like in the neutral multitype contact process, we assume that,
regardless of their strategy, the players have the same natural birth rate λ and the same natural death
rate one, and that births onto already occupied sites are suppressed. Having a payoff matrix A =
(aij), each player now receives a payoff from its occupied neighbors while empty neighbors have no
effects, so the payoff can be defined as in (1.1) assuming that ai0 = 0, i.e., empty sites give a zero
payoff. Like in the birth-death updating process, the payoff of the players affects their birth rate. To
have a well-defined positive birth rate even when the payoff is negative, instead of using the fitness
function (1.2), we assume that the natural birth rate λ is multiplied by the exponential of the payoff. In
particular, the transition rates are given by

c0→i(x, ξt) =
∑

y∼x Φ(y, ξt)1{ξt(y) = i}/2d and ci→0(x, ξt) = 1,

where the fitness function is defined as

Φ(x, ξt) = λ exp(φ(x, ξt)) = λ exp(
∑

i,j 6=0 aij fj(x, ξt)1{ξt(x) = i}).

In particular, players with no neighbors give birth at rate λ, while players with a positive payoff give
birth at a higher rate and players with a negative payoff give birth at a lower rate.
Before looking at the competition among multiple strategies, the first step is to study the conditions
for survival in the presence of only one strategy, say strategy 1, which is the objective of this paper.
In this case, the model depends on two parameters: the natural birth rate λ, and the single payoff
coefficient a11 that we simply denote by a. A player at x gives birth at rate

Φ(x, ξt) = λ exp(af1(x, ξt)), (1.5)

and dies at rate one. See Figure 1 for simulation pictures. Note that this function is nondecreasing with
respect to the natural birth rate λ and the payoff coefficient a. In particular, one expects the probability
of survival, i.e., the probability that, starting with a single player, there is at least one player at all times,
to be nondecreasing with respect to the parameters λ and a. Standard coupling arguments, however,
fail to prove this result when a < 0. Indeed, increasing the birth rate (1.5) increases the local density
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Figure 2: Phase structure of the contact process with a density-dependent birth rate.

of occupied sites, which decreases the birth rate of the surrounding players. Coupling processes with
different parameters/initial configurations, we can prove the following result: letting Pξλ,a be the law of
the process with parameters λ and a, starting from ξ0 = ξ,

λ1 ≤ λ2, a2 ≥ a1 ∨ 0, ξ1 ⊂ ξ2 =⇒ Pξ
1

λ1,a1
[ξt 6= ∅ ∀t] ≤ Pξ

2

λ2,a2
[ξt 6= ∅ ∀t]. (1.6)

Looking at particular cases with the same initial configuration with a single player and/or the same
natural birth rate and/or the same payoff coefficient, the implication in (1.6) shows that the process is
attractive and monotone with respect to λ and a in the parameter region where a ≥ 0. In particular,
there is at most one phase transition from extinction to survival in the direction of each of the two
parameters. The implication also shows that the probability of survival for a ≥ 0 is no less than the
probability of survival for a ≤ 0. In addition, in the special case a = 0, the birth rate (1.5) becomes λ
regardless of the configuration, therefore the process reduces to the basic contact process [14]. In
particular, letting λc = λc(Zd) denote the critical value of the contact process on Zd, and using other
coupling arguments, we can prove the following result.

Theorem 1.1. For every fixed a ∈ R, the process

(a) survives when (a > 0 and λ > λc) or (a < 0 and λ > λc e
−a(1−1/2d)),

(b) dies out when (a < 0 and λ ≤ λc) or (a > 0 and λ ≤ λc e
−a(1−1/2d)).

The theorem shows that, for each fixed payoff −∞ < a < ∞, there exists at least one (and exactly
one when a ≥ 0) phase transition in the direction of the birth rate λ. Proving that, for each fixed birth
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rate 0 < λ < ∞, there exists a phase transition in the direction of the payoff a is more complicated.
Even when λ > 0 is small, for a <∞ large, adjacent players have a large birth rate due to coopera-
tion. In particular, it can be proved that, with high probability, a small block of players quickly doubles
in size. Using also attractiveness when the payoff is positive, and a block construction, implies survival
when a is sufficiently large.

Theorem 1.2 (Survival). For every birth rate λ > 0, there exists an a+ = a+(λ, d) < ∞ such that
the process survives for all payoffs a > a+.

In contrast, even when λ < ∞ is large, for a = −∞, adjacent players cannot give birth before one
of them dies due to competition. In particular, it can be proved that the family generated by a single
player decays exponentially in space and time. Using another block construction and a perturbation
argument implies extinction when a is sufficiently small.

Theorem 1.3 (Extinction). For every birth rate λ < ∞, there exists an a− = a−(λ, d) > −∞ such
that the process dies out for all payoffs a < a−.

We refer to the phase diagram in Figure 2 for a summary/visualization of our main results. Before going
into the proofs, we point out that Theorem 1.3 cannot be deduced from general ergodicity results like
the (M − ε)-criterion [20, Theorem I.4.1] because we always have ε = 1 while M is lower bounded
by the corresponding value for the contact process. We also note that, although the technical details
in the proofs of Theorems 1.2 and 1.3 differ significantly, the intuition behind both results is the same.
Even if λ is very small, once a player gives birth, this player and its offspring form an adjacent pair with
an arbitrarily large birth rate when a is large. Similarly, even if λ is very large, once a player gives birth,
this player and its offspring form an adjacent pair with an arbitrarily small birth rate when a is small. In
both cases, the conclusion (survival/extinction) is due to the presence of local interactions: the players
place their offspring in their neighborhood, while their payoff is also determined by their neighbors. In
particular, the two theorems are expected to fail in the absence of local interactions. Indeed, a simple
analysis of the mean-field model shows that whether the trivial extinction fixed point 0 is stable or
unstable, and so whether the population dies out or survives starting at low density, depends on λ but
not on a.
The rest of the paper is devoted to the proofs. Section 2 gives a brief analysis of the mean-field model,
focusing on the local stability of the trivial fixed point, but also on the size of its basin of attraction.
Section 3 relies on various coupling arguments to prove monotonicity and attractiveness in the case
where a ≥ 0. Similar couplings are used to compare the process with the basic contact process, and
deduce Theorem 1.1. Section 4 uses a block construction to prove Theorem 1.2. Finally, Section 5
establishes some exponential decay to deduce extinction of the process with a = −∞ from a block
construction. Theorem 1.3 is then deduced by using a perturbation argument.

2 Mean-field model

This section gives a brief analysis of the nonspatial deterministic mean-field model, which describes
the process in the large population limit when the system is homogeneously mixing. Letting u be the
density of occupied sites, the mean-field model reduces to the differential equation

u′ = φ(u) = λeauu(1− u)− u.

Because of the exponential form of the birth rate, we cannot obtain the exact expression of the fixed
points. However, the stability of the trivial fixed point 0, corresponding to the extinction state, as well as
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the existence and stability of additional (interior) fixed points, can be studied. To begin with, observe
that, for all fixed −∞ < a <∞,

u ≈ 0 =⇒ φ(u) ≈ λu− u = (λ− 1)u. (2.1)

This shows that the stability of the trivial fixed point, and so whether the population survives or dies
out when starting at low density, depends on the natural birth rate λ but not on the payoff coefficient a,
which is in sharp contrast with Theorems 1.2 and 1.3.

Extinction phase. It follows from (2.1) that, when λ < 1, the trivial fixed point is locally stable, so
the population dies out (u → 0 starting at low density) even when a is very large. This contrasts
with Theorem 1.2, which states that, even starting with a finite number of players (density zero), the
population survives with positive probability. However, for all λ > 0 and ū < 1/2,

a > ln(2/λ)/ū =⇒ φ(ū) > λeln(2/λ) ū(1− ū)− ū = 2ū(1− ū)− ū ≥ 0.

This shows that φ(u) becomes positive at some unstable fixed point u∗ ∈ (0, ū) therefore, starting
at a density > u∗, the population converges to a limit u∗ > 0. In conclusion, when λ < 1, there
is extinction in the sense that the trivial fixed point is locally stable, but starting from a fixed positive
density, the population survives for all a sufficiently large (depending on that density).

Survival phase. It follows from (2.1) that, when λ > 1, the trivial fixed point is unstable, so the
population survives (starting from a positive density, u converges to a positive limit) even when a is
very small. This contrasts with Theorem 1.3, which states that, regardless of the initial configuration,
the density of occupied sites vanishes to zero. However, for all λ <∞ and ū < 1/2,

a < ln(1/λ)/ū =⇒ φ(ū) < λeln(1/λ) ū(1− ū)− ū = ū(1− ū)− ū ≤ 0.

This shows that φ(u) becomes negative at some stable fixed point u∗ ∈ (0, ū) therefore, starting at
low density, the population converges to a limit that cannot exceeds ū. In conclusion, when λ > 1,
there is survival in the sense that the trivial fixed point is unstable, but starting at low density, the
limiting density can be made arbitrarily small by taking a sufficiently small.

3 Proof of Theorem 1.1 (monotonicity and attractiveness)

The proofs of Theorem 1.1 and (1.6) are based on standard coupling arguments. Processes with differ-
ent parameters and/or different initial configurations can be coupled by constructing them jointly on the
same graphical representation [15]. However, the graphical representation of the contact process with
a density-dependent birth rate is somewhat complicated. Instead, we use the classical comparison
result [20, Theorem III.1.5], which we restate for the reader’s convenience.

Theorem 3.1. Let ξ1
t and ξ2

t be two interacting particle systems with state space Ω = {0, 1}Zd
, and

assume that, whenever ξ1 ⊂ ξ2, we have the inequalities

c0→1(x, ξ1) ≤ c0→1(x, ξ2) and c1→0(x, ξ1) ≥ c1→0(x, ξ2).

Then, there is a coupling of the two processes such that

ξ1 ⊂ ξ2 =⇒ P(ξ1,ξ2)[ξ1
t ⊂ ξ2

t ∀t] = 1.

Using this result, we can prove (1.6) about the monotonicity and the attractiveness of the contact
process with a density-dependent birth rate.
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Proof of (1.6). For i = 1, 2, let ξit be the process with natural birth rate λi, payoff coefficient ai, and
initial configuration ξi. Because the death rate of the processes is always equal to one, the second
inequality in Theorem 3.1, which is in fact an equality, is always satisfied. To prove the first inequality,
recall that the birth rate of the process is of the form

c0→1(x, ξ) =
∑

y∼x Φ(y, ξ) ξ(y)/2d =
∑

y∼x λ exp(af1(y, ξ)) ξ(y)/2d = ψ(λ, a, ξ).

The function ψ(λ, a, ξ) is nondecreasing with respect to λ, a, and ξ when a ≥ 0. In particular,
according to Theorem 3.1, the processes can be coupled in such a way that

λ1 ≤ λ2, 0 ≤ a1 ≤ a2, ξ
1 ⊂ ξ2 =⇒ P(ξ1,ξ2)[ξ1

t ⊂ ξ2
t ∀t] = 1. (3.1)

Note also that, for all λ1 ≤ λ2, a1 ≤ 0 ≤ a2, and ξ1 ⊂ ξ2,

ψ(λ1, a1, ξ1) ≤
∑

y∼x λ1 ξ
1(y)/2d ≤

∑
y∼x λ2 ξ

2(y)/2d ≤ ψ(λ2, a2, ξ2),

from which we deduce that

λ1 ≤ λ2, a1 ≤ 0 ≤ a2, ξ
1 ⊂ ξ2 =⇒ P(ξ1,ξ2)[ξ1

t ⊂ ξ2
t ∀t] = 1. (3.2)

The implication in (1.6) follows from the existence of the couplings (3.1) and (3.2).

Using again Theorem 3.1, we can also prove Theorem 1.1.

Proof of Theorem 1.1. Let ηt and ζt be the contact processes with parameter λ and λe−a(1−1/2d), re-
spectively, and let ξt be the density-dependent contact process. Observing that the density-dependent
contact process with payoff a = 0 reduces to the basic contact process with the same natural birth
rate, it follows from (3.2) that the process ξt dominates ηt when a ≥ 0 but is dominated by ηt
when a ≤ 0. To compare the processes ξt and ζt, observe that, when site x is empty, its neigh-
bors have at most 2d− 1 occupied neighbors, therefore

a ≤ 0, ξ ⊃ ζ =⇒ c0→1(x, ξ) ≥
∑

y∼x λe
a(1−1/2d) ξ(y)/2d = λea(1−1/2d) f1(x, ξ)

≥ λea(1−1/2d) f1(x, ζ) = c0→1(x, ζ),

a ≥ 0, ξ ⊂ ζ =⇒ c0→1(x, ξ) ≤
∑

y∼x λe
a(1−1/2d) ξ(y)/2d = λea(1−1/2d) f1(x, ξ)

≤ λea(1−1/2d) f1(x, ζ) = c0→1(x, ζ).

In particular, by Theorem 3.1, the process ξt dominates ζt when a ≤ 0 but is dominated by ζt
when a ≥ 0. In conclusion, there are couplings of the three processes such that

a ≤ 0, η ⊃ ξ ⊃ ζ =⇒ P(η,ξ,ζ)[ηt ⊃ ξt ⊃ ζt ∀t] = 1,

a ≥ 0, η ⊂ ξ ⊂ ζ =⇒ P(η,ξ,ζ)[ηt ⊂ ξt ⊂ ζt ∀t] = 1.

Since [2, Theorem 1] implies that the contact process ηt survives if and only if λ > λc, while the
contact process ζt survives if and only if λ > λc e

−a(1−1/2d), the theorem follows.
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4 Proof of Theorem 1.2 (survival for a <∞ large)

This section is devoted to the proof of Theorem 1.2, which states that, for all birth rates λ > 0 even
small, the process survives provided the payoff coefficient a is sufficiently large. The basic idea is that,
though it might be likely that isolated players die before they have a chance to give birth, players with
at least one neighbor have a large birth rate when a is large, so a small fully occupied cube will double
in size with probability close to one in a small deterministic time. This and a block construction imply
survival. More precisely, letting

Λ− = {0, 1}d and Λ+ = {−1, 0, 1, 2}d,

the goal is to prove that, if the small cube Λ− is initially fully occupied then, with probability arbitrarily
close to one when a is large, the larger cube Λ+ will be fully occupied at some fixed deterministic
time τ . The density-dependent process with a ≥ 0 is attractive according to (1.6), and the birth rate
of players with at least one occupied neighbor is larger than λea/2d. In particular, it suffices to prove
the result for the process ξ̄t with transition rates

c0→1(x, ξ̄t) =
∑

y∼x λe
a/2d 1{f1(y, ξ̄t) 6= 0} ξ̄t(y)/2d and c1→0(x, ξ̄t) = 1,

modified so that births outside Λ+ are suppressed. The transition rates indicate that isolated players
cannot give birth, while players with at least one occupied neighbor give birth at rate λea/2d, and that
players die at rate one. This process can be constructed graphically as follows:

� Births. Equip each ~xy, x ∼ y, with an exponential clock with rate λea/2d/2d. At the times t
the clock rings, draw an arrow (x, t)→ (y, t) to indicate that, if x is occupied and has at least
one occupied neighbor, and y is empty, then y becomes occupied.

� Deaths. Equip each x with an exponential clock with rate one. At the times t the clock rings,
put a cross × at (x, t) to indicate that, if x is occupied, then it becomes empty.

We denote by P̄λ,a the law of this process. To prove survival, we first show that, with high probability,
there are no death marks × in Λ+ by some small time τ .

Lemma 4.1. For all ε > 0, there exists τ > 0 such that

P̄λ,a[no death marks × in Λ+ × [0, τ ]] ≥ 1− ε/2.

Proof. The number Dτ of death marks in the space-time box Λ+ × [0, τ ] is Poisson distributed with
parameter 4dτ . In particular, the probability of no death marks satisfies

P[Dτ = 0] = e−4dτ = 1− ε/2 ⇐⇒ τ = − ln(1− ε/2)/4d > 0. (4.1)

This completes the proof.

The next step is to prove invasion Λ− → Λ+ by time τ . Because the players in the small cube Λ−
cannot immediately give birth onto the corners of the larger cube Λ+ when d > 1, we divide the
problem into d steps by considering the sequence of spatial regions

Λi = {y ∈ Λ+ : minx∈Λ− ‖x− y‖1 = i} for i = 0, 1, . . . , d.

Figure 3 shows a picture in the d = 2 case. Note that Λ− = Λ0 and Λ+ = ∪iΛi. In addition, each
site in one region has at least one neighbor in the previous region, so a fully occupied region can
immediately invade the next region. We are now ready to prove invasion.
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Λ− Λ1 Λ2

Figure 3: Illustration of the d-step process used in the proof of Theorem 1.2. The region delimited with
bold lines represents Λ− on the left, Λ1 in the middle, and Λ2 on the right. In all three pictures, the
dashed box is Λ+.

Lemma 4.2. For all ε > 0 and τ > 0 like in (4.1), there exists a <∞ large such that

P̄Λ−
λ,a[ξ̄τ = Λ+] ≥ 1− ε.

Proof. As previously mentioned, we proceed in d steps, and prove that, conditional on no deaths,
each invasion Λi → Λi+1 occurs in less then τ/d units of time with high probability. Given that there
are no deaths by time τ , and that Λi is fully occupied, the probability that Λi+1 becomes fully occupied
in less than τ/d units of time is larger than the probability that, for each site y ∈ Λi+1, there is at
least one birth arrow x → y for some x ∈ Λi in this time window. Because each region has less
than 4d sites, and birth arrows occur along each directed edge at rate λea/2d/2d, this is larger than
the probability that X1, X2, . . . , X4d = independent exponential random variables with that rate are
all less than τ/d. In particular, for all i = 0, 1, . . . , d− 1,

P̄λ,a[ξ̄t ⊃ Λi+1 ∀t ∈ [(i+ 1)τ/d, τ ] | ξ̄iτ/d = Λi, Dτ = 0]

= P̄Λi
λ,a[ξ̄τ/d ⊃ Λi+1 |Dτ = 0] ≥ P[X1, X2, . . . , X4d ≤ τ/d]

= (1− exp(−λτea/2d/2d2))4d .

(4.2)

Some basic algebra shows that this is ≥ 1− ε/2d for all a larger than

a+ = 2d ln(−2d2 ln(1− (1− ε/2d)4−d

)/λτ) <∞. (4.3)

In particular, for all a ≥ a+, it follows from (4.2) and Lemma 4.1 that

P̄Λ−
λ,a[ξ̄τ 6= Λ+] ≤ P̄Λ−

λ,a[ξ̄τ 6= Λ+ |Dτ = 0] + P[Dτ 6= 0]

≤
∑

i<d P̄
Λi
λ,a[ξ̄τ/d 6⊃ Λi+1 |Dτ = 0] + P[Dτ 6= 0]

≤ d(1− (1− ε/2d)) + ε/2 = ε,

which proves the lemma.

The rest of the proof of Theorem 1.2 is standard and relies on a block construction. This technique
first appeared in [3] and is explained in detail in [9]. The basic idea is to compare the process properly
rescaled in space and time with supercritical oriented site percolation. Let

L = {(m,n) ∈ Zd × N : m1 + · · ·+md + n is even},
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and turn L into a directed graph ~L by placing an edge

(m,n)→ (m′, n′) if and only if m′i = mi ± 1 for all i and n′ = n+ 1.

Fix ε > 0, let τ as in (4.1), and call (m,n) ∈ L a good site whenever

Em,n = {the box m+ Λ− is fully occupied at time nτ} occurs.

Lemma 4.3. Let a+ as in (4.3). Then, for all a ≥ a+, the set of good sites dominates stochastically
the set of wet sites in an oriented site percolation process on ~L with parameter 1− ε.

Proof. Because the process ξt dominates the process ξ̄t, and the evolution rules of the process ξt
are translation invariant, it follows from Lemma 4.2 that, for all sites (m′, n′)← (m,n),

Pλ,a[ξ(n+1)τ ⊃ m′ + Λ− | ξnτ ⊃ m+ Λ−]

≥ Pλ,a[ξ(n+1)τ ⊃ m+ Λ+ | ξnτ ⊃ m+ Λ−] ≥ 1− ε for all a ≥ a+.

This shows the existence of a collection of good events Gm,n such that

(a) Pλ,a[Gm,n] ≥ 1− ε and (b) Em,n ∩Gm,n ⊂ Em′,n′ for all (m′, n′)← (m,n).

The lemma then follows from [9, Theorem A.4]

To deduce the theorem, we start the process ξt with a single player at the origin. Because λ > 0,
there is a positive probability that Λ− is fully occupied at time one, so we may assume that the process
starts from ξ0 = Λ− instead. In addition, because Lemma 4.2 applies to the modified process ξ̄t, the
events Gm,n in Lemma 4.3 can be made measurable with respect to the graphical representation in
a bounded space-time box. This shows that the range of dependence of the percolation process is
finite, so we can fix ε > 0 small to make the percolation process supercritical. Since in addition the
set of good sites dominates the set of wet sites for all a ≥ a+, the process survives.

5 Proof of Theorem 1.3 (extinction for a > −∞ small)

This section is devoted to the proof of Theorem 1.3, which states that, for all λ < ∞ even large,
the process dies out provided the payoff coefficient a is sufficiently small. Like in Theorem 1.2, the
basic idea is that isolated players and players with at least one neighbor may have fitnesses that differ
strongly, except that the effects are now reversed: though it might be likely that isolated players give
birth quickly, once they give birth and have one neighbor (their offspring), they are no longer likely to
give birth when a is small. The proof again relies on a block construction, but the technical details are
somewhat more complicated. To begin with, we consider the process starting with a single individual
in the limit a = −∞. In this case, adjacent individuals cannot give birth and the process essentially
behaves like a symmetric random walk that dies after a geometric number of jumps. This implies that
the length of the invasion path decays exponentially in both space and time (radius and time to extinc-
tion). Because the birth rate decreases with the local density of individuals, the process starting from
a general configuration is dominated stochastically by a system of such independent random walks
starting with one particle per site. The exponential decay implies that, regardless of the configuration
outside a large space-time box and with probability close to one, a large space-time region around
the center of the box is not reached by any of the random walks/invasion paths (dead region). This is
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used to prove percolation of the dead regions under a suitable space-time rescaling. Once the space
and time scales are fixed, we can use a perturbation argument to prove that percolation still occurs
for all a > −∞ sufficiently small. Extinction of the process then follows from the fact that the perco-
lation parameter can be chosen close enough to one to ensure the lack of percolation of the closed
sites (corresponding to potentially occupied blocks), and the fact that individuals cannot appear spon-
taneously.

Fast extinction for a = −∞. We first study the process in the limiting case a = −∞ starting with a
single player at the origin, whose law is denoted by P0

λ,−∞. Let

T = inf{t : ξt = ∅} = time to extinction.

Lemma 5.1. For every λ ≥ 0, there exists a constant β = β(λ, d) > 0 such that

P0
λ,−∞[T ≥ t] ≤ e−βt for all t ≥ 0.

Proof. Since a = −∞, two adjacent players cannot give birth, so there can be at most two players
alive at the same time. By the superposition property, the time until one of the two dies is distributed as
an exponential random variable with parameter two. Now, if there is just a single player, the probability
that it dies before it reproduces is equal to 1/(1 + λ). Therefore, the total number of generations N
in which exactly two players are alive is geometrically distributed:

P0
λ,−∞[N > n] ≤

(
1− 1

1 + λ

)n
=

(
λ

1 + λ

)n
=

(
1 +

1

λ

)−n
, n ∈ N. (5.1)

In particular, T can be written as a sum of independent exponential random variables:

T =
N∑
i=1

(Ti + Si) + UN+1

where the (Ti)i∈N are exponential random variables with parameter two, the (Si)i∈N are exponential
random variables with parameter λ, and the (Ui)i∈N are exponential random variables with parameter
one. In particular, T is a hypoexponential random variable. Since we are interest in the case where λ
is large (and so typically λ > 1), and we do not need very precise bounds, we can upperbound the
time to extinction T by the sum T̃N of 2N + 1 exponential random variables with parameter one.
Then, T̃N is a Gamma(2N + 1, 1) random variable. For a deterministic n, one can use the following
Chernoff bound for the tails of the Gamma distribution:

P0
λ,−∞[T̃n ≥ t] ≤ e−θt

(1− θ)2n+1
. (5.2)

Combining (5.1) and (5.2) implies that, for any θ < 1 and m ∈ N,

P0
λ,−∞[T ≥ t] ≤

m∑
n=1

P[T̃n ≥ t] + P[N > m] ≤ m

(
e−θt

(1− θ)2m+1

)
+ e−m ln(1+1/λ).

Taking for example θ = 1/2 and m = btrc with r < 1/4 ln(2) gives the result.

Looking closely at the proof of the previous lemma, one easily deduces the following result, which also
gives us an exponential decay of the radius of the invasion paths.
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Lemma 5.2. Let ξ0 ⊂ Zd be the (random) subset of vertices that are ever occupied. Then, for every
birth rate λ ≥ 0, there exists a constant δ = δ(λ, d) > 0 such that

P0
λ,−∞[|ξ0| > n] ≤ e−δn for all n ∈ N.

Proof. Recall from the proof of Lemma 5.1 that the number of generations N for which our process
survives is a geometric random variable with parameter 1/(1 + λ). Since we can only visit at most
one new site per generation, it follows from (5.1) that

P0
λ,−∞[|ξ0| > n] ≤ P[N > n] = (1 + 1/λ)−n = e−n ln(1+1/λ),

which is exactly the exponential decay we were looking for.

Comparison to non-interacting copies. In order to use union bounds, it will be convenient to com-
pare the process with arbitrary initial condition to a family of non-interacting copies of the process
started with a single occupied site. For all A ⊂ Zd, we let ξAt denote the process starting from the
set A occupied and, as previously, simply write ξzt when A = {z}. Having a collection {(ξxt )t≥0 :
x ∈ A} of non-interacting copies of our process, we let

ΞA
t (x) =

∑
z∈A ξ

z
t (x) for all x ∈ Zd.

With this notation at hand, we are ready to state the following comparison result.

Lemma 5.3. There exists a coupling such that Pλ,−∞[ξAt ≤ ΞA
t ∀t] = 1.

In particular, the set of sites occupied by the original process at time t is always contained in the set
of sites occupied by at least one of the non-interacting copies.

Proof. To compare the two processes, we differentiate the players assuming that, for all z ∈ A, site z
is initially occupied by a type z player. Then, in the limiting case a = −∞, we can construct all the
processes from the following graphical representation:

� Births. For each z ∈ A, equip each ~xy, x ∼ y, with a rate λ/2d exponential clock. At the
times t the clock rings, draw an arrow (x, t)

z−→ (y, t).

� Deaths. For each z ∈ A, equip each x with a rate one exponential clock. At the times t the
clock rings, put a cross ×z at the space-time point (x, t).

The crosses have the same effects on both processes: a cross ×z at site x kills a type z particle
at that site. The arrows, however, have different effects. The process ξAt is constructed by assuming
that, if the tail x of a type z arrow is occupied by a type z player, and none of the neighbors of x is
occupied, then the head y of the arrow becomes occupied by a type z player. In contrast, the system
of non-interacting copies ΞA

t is constructed by assuming that, if the tail of a type z arrow is occupied
by a type z player, and none of the neighbors of site x is occupied by a type z player, then the head y
of the arrow becomes occupied by a type z player. Because the condition for giving birth in the first
process is more restrictive (no players of any type in the neighborhood as opposed to no type z
players), if there is a type z player at (x, t) in the first process then there is a type z player at (x, t)
in the second process, which proves the lemma. Note that there is at most one type z player at each
site in both processes, but sites can be occupied by multiple players with different types in the system
of non-interacting copies.

DOI 10.20347/WIAS.PREPRINT.3103 Berlin 2024



Contact process with density-dependent birth rate 13

(2m− 2)L (2m + 2)L

Am,n

(2m− 1)L (2m + 1)L

Bm,n

(n + 2)L

(n + 1)L

nL

in this region
no players

bottom Λ− bottom Λ−

periphery
Λ

+
periphery

Λ
+

pe
rip

he
ry

Λ
+

pe
rip

he
ry

Λ
+

Figure 4: Illustration of the event Em,n when d = 1. With high probability, the invasion paths starting
from the bottom or the periphery of the big space-time box Am,n do not reach the smaller space-time
box Bm,n.

Block construction. Using the exponential decay (in space and time) of the invasion paths and the
stochastic domination in the previous two sections, we can now use a block construction to prove
extinction (and more importantly control the rate of extinction) of the process. Let Ld = Zd × N,
which we turn into a directed graph ~Ld by placing an edge

(m,n)→ (m′, n′) if and only if |m1 −m′1|+ · · ·+ |md −m′d|+ |n− n′| = 1 and n ≤ n′.

In other words, starting from each site (m,n), there are 2d “horizontal” arrows that we can think of as
potential invasions in space, and one “vertical” arrow that we can think of as a potential persistence
in time. To rescale the interacting particle system in space and time, we let L be a large integer, and
define the space-time blocks

Am,n = (2mL, nL) + [−2L, 2L]d × [0, 2L],

Bm,n = (2mL, nL) + [−L,L]d × [L, 2L],

for all (m,n) ∈ Ld. See Figure 4 for a picture. We call (m,n) a good site whenever

Em,n = {the space-time block Bm,n is empty} occurs.

We now prove that, when a = −∞ and regardless of the configuration outside the space-time
box Am,n, the event Em,n occurs with probability close to one when L is large.

Proposition 5.4. Let ε > 0. Then, Pλ,−∞[Em,n] ≥ 1− ε/2 for sufficiently large L ∈ N.

Proof. In view of the stochastic domination in Lemma 5.3, it suffices to prove the result for the process
that evolves according to ξt outside the space-time block Am,n but according to Ξt inside the block.
The basic idea is to use Lemma 5.1 to prove that the invasion paths starting from the bottom of the
block cannot live too long, and Lemma 5.2 to prove that the invasion paths starting from the periphery
cannot go too far. More precisely, let

Λ− = {(x, t) ∈ Am,n : t = nL} = bottom of Am,n,

Λ+ = {(x, t) ∈ Am,n : ‖x− 2mL‖∞ = 2L} = periphery of Am,n,
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and write Λ± → Bm,n to indicate an invasion path going from Λ± to the blockBm,n. Because players
cannot appear spontaneously, we have

Pλ,−∞[Ec
m,n] ≤ Pλ,−∞[Λ− → Bm,n] + Pλ,−∞[Λ+ → Bm,n]. (5.3)

Now, by the domination in Lemma 5.3 and the exponential decay in Lemma 5.1,

Pλ,−∞[Λ− → Bm,n] ≤ |Λ−| × Pλ,−∞[ξ0
L 6= ∅] ≤ (4L+ 1)d e−βL. (5.4)

Dealing with the invasion paths coming in the blockAm,n through its periphery Λ+ is more complicated
because the number of such paths is random. Note that the number paths is dictated by the process ξt
whereas their length is upperbounded by their counterpart for Ξt. To deal with the number of invasion
paths coming in through the periphery, let

Hm,n = {there are less than 2e 4dL(4L+ 1)d−1λ

players outside Am,n giving birth onto Λ+}.

Because the births in the process ξt occur at rate at most λ, the number of births onto Λ+ is dominated
by the Poisson random variable with parameter

λ|Λ+| ≤ 2d(4L+ 1)d−1 × 2Lλ.

Using the standard tail bound for the Poisson distribution, we get

Pλ,−∞[Hc
m,n] ≤ 2 exp(−4Ld(4L+ 1)d−1λ− 2e 4Ld(4L+ 1)d−1λ log(2)).

This, together with Lemmas 5.2 and 5.3 and a union bound, implies that

Pλ,−∞[Λ− → Bm,n] ≤ Pλ,−∞[Λ− → Bm,n |Hm,n] + Pλ,−∞[Hc
m,n]

≤ 2e 4dL(4L+ 1)d−1λP0
λ,−∞[|ξ0| > L] + Pλ,−∞[Hc

m,n]

≤ 2e 4dL(4L+ 1)d−1λ e−δL

+ 2 exp(−4dL(4L+ 1)d−1λ− 2e 4dL(4L+ 1)d−1λ log(2)).

(5.5)

Finally, plugging (5.4) and (5.5) into (5.3), and noticing that both can be made arbitrarily small by
choosing L sufficiently large yield the claim.

Perturbation argument. It follows from the block construction that the set of good sites = empty
blocks Bm,n dominates the set of wet sites (m,n) in the percolation process. Because ε can be cho-
sen arbitrarily small, in which case the set of dry (not wet) sites does not percolate, and players cannot
appear spontaneously, this shows extinction of the process. To complete the proof of Theorem 1.3,
the last step is to transport this result from the limiting case a = −∞ to the case where the payoff
coefficient a is small but finite. In the latter case, an individual with a neighbor can give birth, but it is
unlikely, so (the graphical representations of) the two processes in a space-time block should agree
with high probability, as long as one chooses a sufficiently small, depending on the size of the block.
Instead of working with the graphical representation in Lemma 5.3, which was designed to compare
our process with the system of non-interacting copies, we construct the processes with a > −∞
and a = −∞ using the following graphical representation:

� Births. For each i = 0, 1, . . . , 2d, equip each ~xy, x ∼ y, with a rate λeia/2d/2d exponential

clock. At the times t the clock rings, draw an arrow (x, t)
i−→ (y, t).
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� Deaths. Equip each x with a rate one exponential clock. At the times t the clock rings, put a
cross × at the space-time point (x, t).

The crosses have the same effects on both processes: a cross × at site x kills a particle/player at
that site. The process with a > −∞ is constructed by assuming that, if the tail x of a type i arrow is
occupied, the head y is empty, and exactly i of the neighbors of x are occupied, then the head y of the
arrow becomes occupied. The process with a = −∞ is constructed similarly but using only the type 0
arrows, since the other arrows occur at rate zero in the limit. Using this graphical representation, we
can now extend Proposition 5.4 to the process with a > −∞ small.

Lemma 5.5. Let ε > 0. Then, Pλ,a[Em,n] ≥ 1− ε for all L ∈ N large and a > −∞ small.

Proof. In view of Proposition 5.4, it suffices to show that, with probability arbitrarily close to one, the
process with a = −∞ and the process with a > −∞ small agree in the block Am,n, i.e., there are
no type i arrows for i 6= 0 in the block, which prevents players with at least one neighbor to give birth.
The overall rate of all the type i arrows for i 6= 0 starting at a given site is

λea/2d + λe2a/2d + λe3a/2d + · · ·+ λe2da/2d ≤ 2λea/2d

for all a > −∞ small. This implies that the number of such arrows that point at the space-time
block Am,n is dominated by the Poisson distribution X with parameter

|Am,n| × 2λea/2d = 2L(4L+ 1)d × 2λea/2d.

Now, the scale parameter L ∈ N being fixed as in Proposition 5.4, we define

a− = 2d ln

(
− ln(1− ε/2)

4L(4L+ 1)dλ

)
> −∞.

Finally, since the event Em,n occurs for the process with a < a− whenever it occurs for the process
with a = −∞ and the two processes agree in the block, it follows from Proposition 5.4 that

Pλ,a[Em,n] ≥ Pλ,−∞[Em,n]× P[X = 0]

≥ (1− ε/2)× exp(−2L(4L+ 1)d × 2λea−/2d) = (1− ε/2)2 ≥ 1− ε

for all a ≤ a−. This completes the proof.

Using Lemma 5.5 and an idea of [1], we can now conclude the proof of the theorem.

Proof of Theorem 1.3. It follows from Lemma 5.5 that there is a collection of good events Gm,n that
only depend on the graphical representation in the slightly enlarged space-time blocks

A+
m,n = [−2L− 1, 2L+ 1]d × [0, 2L], (m,n) ∈ Ld,

such that, for every ε > 0, we can choose the scale parameter L ∈ N large, then the payoff coeffi-
cient a > −∞ small, to guarantee

Pλ,a[Gm,n] ≥ 1− ε and Gm,n ⊂ Em,n.

This implies that the set of good sites dominates stochastically the set of wet sites in the oriented
site percolation process on ~Ld with parameter 1 − ε. If ε > 0 is small enough, not only the set of
wet sites percolates, but also the probability of a path of closed sites with length at least n starting
from (0, 0) decays exponentially with n (see [1, Section 8] for a proof). Because the players cannot
appear spontaneously, the presence of a player in a space-time block Bm,n implies the existence of a
path of closed sites to (m,n), which shows extinction of our process.
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