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Statistics for the triangle density in ERGM and its mean-field
approximation

Elena Magnanini, Giacomo Passuello

Abstract

We consider the edge-triangle model (or Strauss model), and focus on the asymptotic behavior
of the triangle density when the size of the graph increases to infinity. In the analyticity region of
the free energy, we prove a law of large numbers for the triangle density. Along the critical curve,
where analyticity breaks down, we show that the triangle density concentrates with high probability
in a neighborhood of its typical value. A predominant part of our work is devoted to the study of
a mean-field approximation of the edge-triangle model, where explicit computations are possible.
In this setting we can go further, and additionally prove a standard and non-standard central limit
theorem at the critical point, together with many concentration results obtained via large deviations
and statistical mechanics techniques. Despite a rigorous comparison between these two models
is still lacking, we believe that they are asymptotically equivalent in many respects, therefore we
formulate conjectures on the edge-triangle model, partially supported by simulations, based on
the mean-field investigation.
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1 Introduction

Exponential random graphs are an ubiquitous class of models able to capture common network ten-
dencies, such as clustering. Clustering is typically related to the presence of triangles in a graph.
This can be easily motivated, for example, in the context of social networks; if two people share a
common friend, or interest, it is more likely that they form a connection themselves. One of the main
questions among sociologists is to understand how connectivity in local communities can affect the
overall network structure [9, 20, 16, 17]. This can be done by introducing a probability measure that
is a function of the densities of certain given finite subgraphs (such as edges or triangles), thus bi-
asing their occurrence, and then analyzing the large-scale properties of random networks sampled
according to this distribution. Sampling is typically performed by means of Monte Carlo methods, such
as the Glauber dynamics or the MetropolisâĂŞHastings procedure [2]. By following a statistical me-
chanics approach, the bias is encoded by a function called Hamiltonian, contained in an exponential
term, and the probability measure is then a Gibbs distribution [34, 32, 33]. Such class of graphs is
particularly interesting since the Gibbs measure has the special property, among all other distributions
(ensemble) over the space of simple graphs, to assign higher probability to graphs that fit better some
prescribed constraints imposed by a given set of observations. This is of course very helpful if we
want to build a mathematical model that encodes properties that are similar to those observed in a
real network. Specifically, according to the Maximum Entropy Principle introduced by Jaynes [23, 24],
this distribution maximizes the so-called Gibbs entropy subject to the known constraints.

From a probabilistic perspective, exponential random graphs represent a generalization of the dense
Erdős-RÃl’nyi random graph [15], as their probability distribution is obtained by tilting the Erdős-RÃl’nyi
measure by an exponential weight that contains different subgraph densities, thus introducing some
dependence between the random edges. Many important and rigorous results on the model have been
obtained so far [12, 11, 10], sometimes imposing constraints on subgraph densities [25, 31].

Our analysis will be focused on the (unconstrained) edge-triangle model [36], a two-parameter family
of exponential random graphs in which dependence between the random edges is defined through
triangles, and its mean-field approximation [4]. In both cases, a crucial point, which is also preparatory
for understanding phase transitions, is the derivation of the limiting free energy. For the edge-triangle
model, the analytical expression of this function is known, together with its phase diagram, in a region
of parameters called replica symmetric regime [12, 11], where it can be characterized as the solution
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of a one-dimensional maximization problem. Inside the replica symmetric region the analyticity of the
free-energy may break down, thus revealing a phase transition [11, 35, 1]. This happens along a
critical curve that ends in a critical point where the phase transition is of second order. As expected,
the edge-triangle model and its mean-field approximation share the same limiting free energy, and this
is a crucial property that motivates all our analysis.

Regarding the first model, one of the key results of our paper is the characterization of the limiting
behavior of the triangle density (as the graph size n tends to infinity) within the replica-symmetric
regime. Our analysis provides a strong law of large numbers whenever the parameters (α, h) (of
triangles and edges, respectively) are taken outside the critical curve, and proves that on the critical
curve the triangle density concentrates with high probability in a neighborhood of the free energy
maximizers. Our results extend to other graph statistics.

As mentioned, the predominant part of our investigation is concerned with the mean-field approxima-
tion. Its major advantage is that the Hamiltonian can be expressed as a function of the edge density,
and exact computations are possible (like in the Curie–Weiss model). In this setting, we consider an
approximated triangle density for which we prove a central limit theorem whenever the parameters
lie outside the critical curve and away from the critical point. We also characterize the fluctuations of
the triangle density at the critical point, presenting a non-standard central limit theorem with scaling
exponent 3/2. Some heuristic computations based on large deviations estimates, suggest that the
triangle density in the edge-triangle model may exhibit the same limiting behavior as the mean-field
approximation. We then formulate conjectures about fluctuations of the triangle density in the whole
replica symmetric regime (which also includes the critical curve and the critical point).

The paper is organized as follows. In Sec. 2 we introduce the exponential random graph family and
we recall many results present in the literature. We then focus on the edge-triangle model and its
mean-field approximation and collect some main properties. In Sec. 3 we state our results, first for the
edge-triangle model, and then for its mean-field approximation. Secs. 4–5 are devoted to the proofs.
Sec. 4 contains the proof of the strong law of large numbers given in Thm. 3.1, which is based on the
exponential convergence of the sequence of triangle densities, together with the proof of Thm. 3.2,
which provides a concentration result valid on the critical curve. Thms. 3.3–3.4 generalize these state-
ments to any simple graph. Sec. 5 is entirely devoted to the mean-field model: we prove the analogs of
the results derived for the edge-triangle model in the previous section, sometimes in a stronger form,
and we can go further, by characterizing the fluctuations of the triangle density up to the critical point
(Thms. 3.7 and 3.8). These results are extended in Thm. 3.13 to the critical curve under a suitable
conditional measure. As a byproduct of this analysis, in Props. 3.9 and 3.14, we determine the speed
of convergence of the average triangle density in the unconditional and conditional settings. Finally,
Sec. 6 is dedicated to a less rigorous discussion, where we present the conjectures on the edge-
triangle model inspired by the analysis of its mean-field approximation, supported by both heuristic
computations and simulations.

2 Models and background

2.1 Exponential random graphs

As we pointed out before, exponential random graphs (ERGs) are a class of random graphs where the
probability measure over the state space is tilted by a function called Hamiltonian, devised to enhance
or decrease the probability of certain structures in the graph. Before giving its definition we need to
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introduce the notion of homomorphism density.

Definition 2.1 (homomorphism). A homomorphism from a graph H to a graph G is a mapping (not
necessarily bijective) ϕ : V (H) → V (G) such that if u,w are adjacent in H , then ϕ(u), ϕ(w) are
adjacent in G.

Note that ϕ preserves adjacency but not non-adjacency. We denote by |hom(H,G)| the number of
homomorphism of a graph H in G. For example, if H is a triangle then |hom(H,G)| = 6Tn(G),
where Tn(G) denotes the number of triangles in G. If H is not a complete subgraph, the count-
ing is more complicated. For example, if H is a two-star 1 (or wedge) and G is a triangle, then
|hom(H,G)| = 3 · 22; indeed, there are three copies of H in G (one for each root) and for each of
them 4 possible homorphisms. We define the homomorphism density as

t(H,G) :=
|hom(H,G)|
|V (G)||V (H)| . (1)

In this paper we deal with simple graphs on n labeled vertices and we denote by Gn the set of such
graphs. For any k ∈ N, we consider H1, H2, . . . , Hk

2 pre-chosen finite simple graphs (such as
edges, stars, triangles, cycles, . . . ) weighted by a collection of real parameters contained in the vector
β = (β1, . . . , βk). The Hamiltonian is a functionHn;β : Gn → R defined as

Hn;β(G) := n2

k∑
i=1

βit(Hi, G) , for G ∈ Gn. (2)

As probability measure on the space Gn we take the Gibbs probability density

µn;β(G) :=
exp (Hn,β(G))

Zn;β

, with Zn;β :=
∑
G∈Gn

exp (Hn;β(G)) , (3)

where the normalizing constant Zn;β is called partition function. Random graphs whose distribution
is a Gibbs measure of the form (3) are called exponential random graphs. We will denote the related
Gibbs measure and average by Pn;β and En;β, respectively. Two crucial functions for studying the
model are the finite-size and infinite-size free energy:

fn;β :=
1

n2
lnZn;β and fβ := lim

n→+∞
fn;β .

A lack of analyticity in fβ characterizes the presence of a phase transition. An explicit expression of
this function has been obtained in [12] when the vector of parameters β lies in a specific region called
replica-symmetric regime (term borrowed from spin glasses theory). As stated in [12, Thm. 4.1], if
β2, . . . , βk are non-negative, then

fβ = sup
0≤u≤ 1

(
k∑
i=1

βi u
E(Hi) − 1

2
I(u)

)
, (4)

whereE(Hi) denotes the number of edges inHi and I(u) := u lnu+(1−u) ln(1−u). Despite this
result covers only non-negative values of the parameters, the replica symmetric regime can be slightly
extended including (not too big) negative values of β2, . . . , βk (see [12], Thm. 4.2). More precisely, (4)
holds whenever β2, . . . , βk are such that

k∑
i=2

|βi|E(Hi)(E(Hi)− 1) < 2 . (5)

1A two-star is a path of length 2, which has 3 vertices and 2 edges.
2Here the subscript denotes the progressive numbering and has nothing to do with the number of vertices or edges.
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2.2 Presentation of the models

The edge-triangle or Strauss model [36] is obtained by considering only the contribution of edges and
triangles in the Hamiltonian (2). By convention we assume H1 to be a single edge and H2 to be a
triangle. More precisely, by setting β3 = · · · = βk = 0 in (2), we get

Hn;β(G) = n2 [β1t(H1, G) + β2t(H2, G)] G ∈ Gn .

Let En(G) (resp. Tn(G)) denote the number of edges (resp. triangles) in G. By recalling Def. 2.1 of
homomorphism density, we have

t(H1, G) =
2En(G)

n2
and t(H2, G) =

6Tn(G)

n3
. (6)

Therefore, by performing the change of variable h := 2β1; α := 6β2, we can equivalently consider

Hn;α,h(G) =
α

n
Tn(G) + hEn(G) with α, h ∈ R . (7)

We will denote by Pn;α,h the Gibbs measure related to this Hamiltonian, and by En;α,h the correspond-
ing expectation. Notice that in this setting condition (5) reads |α| = 6|β2| < 2, and, therefore, the
replica symmetric regime coincides with the region α > −2, h ∈ R. The free energy (4) reduces then
to

fα,h = sup
0≤u≤1

(
α

6
u3 +

h

2
u− 1

2
I(u)

)
=

α

6
(u∗)3 +

h

2
u∗ − 1

2
I(u∗), (8)

where I(u) is defined below (4) and u∗ = u∗(α, h) is a maximizer that solves the fixed-point equation

eαu
2+h

1 + eαu2+h
= u . (9)

A numerical investigation of the optimizers of the free energy when α is negative and |α| is large
has been done in [19]. Equation (9) can admit more than one solution at which the supremum in (8)
is attained, and this denotes the presence of a phase transition inside the replica symmetric regime.
When the parameters α, h are chosen in this region, the edge-triangle model, when n goes to in-
finity, becomes indistinguishable from an Erdős-RÃl’nyi graphon with connection probability u∗ (we
refer the reader to Sec. 4.2, where these notions are made precise). This remains true even when
the supremum is not unique; in this case the parameter u∗ is randomly chosen according to some
(unknown) probability distribution on the set of solutions of (8) (see [12], Thm. 4.2). The effect of the
phase transition is then a jump between very different values of the limiting Erdős-RÃl’nyi graphon u∗.

Phase diagram. We recall that the limiting free energy fα,h is well defined on the whole replica
symmetric regime α > −2, h ∈ R. However, the fixed point equation (9) can admit more than one
solution, and this is strictly related to the loss of analyticity of fα,h. More precisely, (9) has exactly one
solution on the whole replica symmetric regime except for a certain critical curveMrs that starts at
the critical point (αc, hc) :=

(
27
8
, ln 2− 3

2

)
and that can be written as h = q(α) for a (non-explicit)

continuous and strictly decreasing function q:

Mrs := {(α, h) ∈ (αc,+∞)× (−∞, hc) : h = q(α)} . (10)
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rs

ℳrs

-2 αc
α

hc

h

Figure 1: Illustration of the phase in replica symmetric regime taken from [4]. The curveMrs (10) represents
the region of (α, h) where the optimization problem (8) admits two solutions. Inside the blue region, that includes
the critical point (αc, hc), the scalar problem (8) admits a unique solution.

In [35, Prop. 3.2] it has been proved that off the curveMrs the scalar problem (8) admits one solution,
whereas it has exactly two solutions along the curveMrs. The free energy is analytic on the region
U rs \ {(αc, hc)}, where

U rs := ((−2,+∞) × R) \Mrs.

Moreover, at the critical point (αc, hc) the second order partial derivatives of fα,h diverge (see [35],
Thm. 2.1), therefore we observe a second order phase transition. Finally, along the curveMrs the
first order partial derivatives of fα,h have jump discontinuities, and we observe a first order phase
transition. Fig. 1 provides a qualitative representation of the phase diagram.

Approximating the number of triangles. As a consequence of the convergence of the ERG to the
Erdős-RÃl’nyi graphon with parameter u∗ (which holds in probability w.r.t. the so-called cut distance,
see [12, Thm. 4.2]), we can heuristically approximate the triangle density (as well as other graph-
statistics) in the large n limit. The Erdős-RÃl’nyi random graph with parameter u∗ and n vertices has,
on average, u∗3

(
n
3

)
triangles and u∗

(
n
2

)
edges. We observe that

u∗3
(
n

3

)
≈ 4

3n3

(
u∗
(
n

2

))3

.

What we expect is that the same holds, within the replica symmetric regime and when n is large, for
the ERG. Thus, we introduce the approximated count of triangles

Tn(G) ≈ 4

3n3
En(G)3 =: T̄n(G). (11)

Alternatively, going back to Def. 1 of homomorphism density, we can equivalently say that we approx-
imate the number of triangles Tn(G) = n3t(H2,G)

6
(see (6)) with T̄n(G) = n3t3(H1,G)

6
.

Mean-field approximation. Definition (11) leads to the following mean-field approximation, originally
introduced in [4], of the edge-triangle Hamiltonian (7):

H̄n;α,h(G) :=
α

n
T̄n(G) + hEn(G) , for G ∈ Gn. (12)

We borrow this terminology from statistical mechanics, due to the similarities with the Curie–Weiss
model (see e.g. [18, Chap. 2]), which we are going to highlight further in the next paragraph. The
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big advantage of Hamiltonian (12) is that it is just a function of the one dimensional parameter
t(H1, G) = 2En(G)

n2 , taking values in Γn :=
{

0, 2
n2 , . . . , 1− 1

n

}
. We denote by P̄n;α,h and Ēn;α,h

the corresponding measure and expectation, respectively. Moreover, as usual, we define the finite size
free energy as

f̄n;α,h :=
1

n2
ln Z̄n;α,h.

A crucial property of this approximated model is the following (see [4, Thm. 8.2]). Let (α, h) ∈
(−2,+∞)× R and let fα,h as in (8). Then

lim
n→+∞

f̄n;α,h = fα,h . (13)

In other words, the edge-triangle model and this mean-field approximation share the same infinite
volume free energy; this result will be extensively used in the proofs of Sec. 5.

2.3 Notation and preliminaries

We denote by En the edge set of the complete graph on n vertices, with elements labeled from 1 to
(
n
2

)
and we setAn := {0, 1}En . We observe that there is a one-to-one correspondence betweenAn and
the set of n× n symmetric adjacency matrices with zeros on the diagonal and the graphs in Gn. As a
consequence, to each graphG ∈ Gn we can associate an element x = (xi)i∈En ∈ An where xi = 1
if the edge i is present in G, and xi = 0 otherwise. With an abuse of nomenclature, in the rest of the
paper we will refer to the elements of An as adjacency matrices, and we will write En(x) = En(G),
Tn(x) = Tn(G) and T̄n(x) = T̄n(G) whenever x ∈ An is the adjacency matrix of a graph G ∈ Gn.
This representation allows for the following equivalent formulation of the Hamiltonians (7)–(12), as
functions onAn:

Hn;α,h(x) =
α

n

∑
{i,j,k}∈Tn

xixjxk + h
∑
i∈En

xi, (14)

H̄n;α,h(x) =
4α

3n4

(∑
i∈En

xi

)3

+ h
∑
i∈En

xi, (15)

where Tn := {{i, j, k} ⊂ En : {i, j, k} is a triangle}. The Gibbs probability Pn;α,h (resp. P̄n;α,h) will
act consequently onAn.

Remark 2.2. The sequence of measures (Pn;α,h)n≥1 (as well as (P̄n;α,h)n≥1) satisfies proper con-
sistency conditions allowing for the application of Kolmogorov Existence Theorem (see, for example,
Appendix A.7 in [14]). As a consequence, there exists a unique probability measure Pα,h on the space(
{0, 1}N,B({0, 1}N)

)
with marginals corresponding to the measures Pn;α,h, for all n ∈ N (here B

denotes the Borel σ−algebra).

Remark 2.3. Note that Hamiltonian (14) has the same form of the energy function typically used in
interacting particle systems. By making a parallelism with the Curie–Weiss model, we can think of
an ERG as a system where each edge is a particle having a spin (0 or 1), which interacts with its
neighbors. The notion of “neighbor"depends on the specific choice of the subgraphs H1, . . . , Hk;
for the edge-triangle model, two edges are neighbors if they are adjacent. This interaction is local,
however, if we ignore the relative position of edges, we recover (15):∑

{i,j,k}∈Tn

xixjxk =
∑
i∈En

xi
∑
j,k∈En:
{i,j,k}∈Tn

xjxk ≈
∑
i∈En

xi
∑
j,k∈En

4xjxk
3n3

,
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where the factor 4 appears when we replace the number of wedges roughly with
(

2
n2

∑
i∈En xi

)2
, and

adjusting the normalization in accordance with the choice x = (xi)i∈En ≡ 1. The factor 1/3 avoids
overcounting.

We are interested in understanding the asymptotic behavior of the number of triangles. Let X =
(Xi)i∈En ∈ An be the random adjacency matrix of an ERG with law µn;α,h. We consider the random
variables

En ≡ En(X) =
∑
i∈En

Xi ,

Tn ≡ Tn(X) =
∑

{i,j,k}∈Tn

XiXjXk ,

T̄n ≡ T̄n(X) =
4

3n3

(∑
i∈En

Xi

)3

. (16)

We prove classical limit theorems of the sequences (Tn)n≥1 and (T̄n)n≥1 inside the replica symmetric
regime. A predominant part of our results is concerned with the sequence (T̄n)n≥1, since the mean-
field approximation encoded by the Hamiltonian (15) allows for explicit computations.

Definition 2.4. For each n ∈ N, we define the average and the variance of the triangle density,
respectively of the edge-triangle model and of the mean-field approximation, as

m∆
n (α, h) :=

6En;α,h

(
Tn
n

)
n2

and v∆
n (α, h) := ∂αm

∆
n (α, h)

m̄∆
n (α, h) :=

6Ēn;α,h

(
T̄n
n

)
n2

and v̄∆
n (α, h) := ∂αm̄

∆
n (α, h).

It is easy to see that

En;α,h (Tn)

n3
= ∂αfn;α,h and

Varn;α,h (Tn)

n3
= ∂ααfn;α,h (17)

Ēn;α,h

(
T̄n
)

n3
= ∂αf̄n;α,h and

Varn;α,h

(
T̄n
)

n3
= ∂ααf̄n;α,h,

therefore, m∆
n (α, h) = 6∂αfn;α,h and v∆

n (α, h) = 6∂ααfn;α,h (and the same holds for m̄∆
n (α, h)

and v̄∆
n (α, h), replacing fn;α,h with f̄n;α,h). In the rest of the paper we will use the following notation to

distinguish the optimizer(s) of the scalar problem (8), sometimes dropping the dependence on (α, h)
to the sake of readability:


u∗0(α, h) if (α, h) ∈ U rs \ {(αc, hc)},
u∗1(α, h) and u∗2(α, h) if (α, h) ∈Mrs,

u∗c(α, h) = 2
3

if (α, h) = (αc, hc) .

We are now ready for stating our results.
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3 Main results

3.1 Edge-triangle model

Theorem 3.1 (SLLN for Tn). For all (α, h) ∈ U rs,
6Tn
n3

a.s.−−−→ u∗0
3(α, h) w.r.t. Pα,h, as n→ +∞,

where u∗0 solves the maximization problem (8).

Theorem 3.2. For all (α, h) ∈ Mrs and for all sufficiently small ε > 0, there exists a constant
τ = τ(ε;α, h) > 0 such that if

J(ε) := (u∗1
3(α, h)− ε, u∗13(α, h) + ε) ∪ (u∗2

3(α, h)− ε, u∗23(α, h) + ε),

then, for large enough n

Pn;α,h

(
6Tn
n3
∈ J(ε)

)
≥ 1− e−τn2

,

where u∗1(α, h) and u∗2(α, h) are the two maximizers of the scalar problem (8).

By replacing the triangle homomorphism density by the homomorphism density of any simple graph,
we immediately obtain the following generalizations of Thm. 3.1 and Thm. 3.2.

Generalization to a generic simple graph. Fix k ∈ N with k > 2. Let Hk, be a pre-chosen finite
simple graph (such as a square, a cycle, a clique . . . ) with E(Hk) edges, and let t(Hk, G) be the
homomorphism density (1) of Hk. The following theorems characterize the asymptotic behavior of
(t(Hk, ·))n≥1

3 in the replica symmetric regime.

Theorem 3.3. For all (α, h) ∈ U rs,

t(Hk, ·) a.s.−−−→ u∗0
E(Hk)(α, h) w.r.t. Pα,h, as n→ +∞,

where u∗0 solves the maximization problem (8).

Theorem 3.4. For all (α, h) ∈ Mrs and for all sufficiently small ε > 0, there exists a constant
τ = τ(ε;α, h) > 0 such that if

J(ε) := (u∗1
E(Hk)(α, h)− ε, u∗1E(Hk)(α, h) + ε) ∪ (u∗2

E(Hk)(α, h)− ε, u∗2E(Hk)(α, h) + ε),

then, for large enough n
Pn;α,h (t(Hk, ·) ∈ J(ε)) ≥ 1− e−τn2

,

where u∗1(α, h) and u∗2(α, h) are the two maximizers of the scalar problem (8).

After having proved a SLLN, it would be natural to investigate the fluctuations of the triangle density
around its mean value. In Sec. 6 we perform simulations and provide conjectures, also based on the
mean-field investigation of Sec. 5. It is in order to stress that the Yang-Lee theorem [26, Thm. 2], which
is a powerful tool when it comes to prove a central limit theorem, is not applicable to our case, since
Zn;α,h does not admit a polynomial representation in z := eα.

3This notation implies that we are considering the sequence of random variables.
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3.2 Mean-field approximation

Theorem 3.5 (SLLN for T̄n). For all (α, h) ∈ U rs,
6T̄n
n3

a.s.−−−→ u∗0
3(α, h) w.r.t. P̄α,h, as n→ +∞,

where u∗0 solves the maximization problem in (8).

Theorem 3.6. For all (α, h) ∈Mrs,

6T̄n
n3

d−−→ κδu∗13(α,h) + (1− κ)δu∗23(α,h) w.r.t. P̄n;α,h, as n→ +∞,

where u∗1, u∗2 solve the maximization problem in (8), and

κ :=

√[
1− 2α (u∗1)2 (1− u∗1)

]−1√[
1− 2α (u∗1)2 (1− u∗1)

]−1
+

√[
1− 2α (u∗2)2 (1− u∗2)

]−1
. (18)

Theorem 3.7 (CLT for T̄n). If (α, h) ∈ U rs \ {(αc, hc)},
√

6
T̄n
n
− n2

6
m̄∆
n (α, h)

n

d−−→ N (0, v̄∆
0 (α, h)) w.r.t. P̄n;α,h, as n→ +∞,

whereN (0, v̄∆
0 (α, h)) is a centered Gaussian distribution with variance

v̄∆
0 (α, h) :=

3u∗0
4(α, h)

4c0

, (19)

being c0 ≡ c0(α, h) :=
1−2α[u∗0(α,h)]2[1−u∗0(α,h)]

4u∗0(α,h)[1−u∗0(α,h)]
.

Theorem 3.8 (Non-standard CLT for T̄n). If (α, h) = (αc, hc),

6
T̄n
n
− n2

6
m̄∆
n (αc, hc)

n3/2

d−−→ Ȳ w.r.t. P̄n;αc,hc , as n→ +∞,

where Ȳ is a generalized Gaussian random variable with Lebesgue density ¯̀c(y) ∝ e−
38

214 y
4

.

Proposition 3.9. For all (α, h) ∈ U rs \ {(αc, hc)},

lim
n→+∞

n · Ēn;α,h

(∣∣∣∣6T̄nn3
− u∗03(α, h)

∣∣∣∣) = E(|X̄|) , (20)

where X̄ is a centered Gaussian random variable with variance 6v̄∆
0 (α, h) =

9u∗0
4(α,h)

2c0
,

being c0 ≡ c0(α, h) =
1−2α[u∗0(α,h)]2[1−u∗0(α,h)]

4u∗0(α,h)[1−u∗0(α,h)]
> 0. Moreover, at the critical point

lim
n→+∞

√
n · Ēn;αc,hc

(∣∣∣∣6T̄nn3
− u∗3(αc, hc)

∣∣∣∣) = E(|Ȳ |) ,

where Ȳ is a generalized Gaussian random variable with Lebesgue density ¯̀c(y) ∝ e−
38

214 y
4

.

Corollary 3.10. For all (α, h) ∈ U rs \ {(αc, hc)}, we have

lim
n→+∞

n · (m̄∆
n (α, h)− u∗03(α, h)) = 0 , (21)

while for (α, h) = (αc, hc)

lim
n→+∞

√
n · (m̄∆

n (αc, hc)− u∗3(αc, hc)) = 0 . (22)
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Generalization to a clique graph. Precisely as we approximated the (random) number of triangles

Tn by T̄n =
4(
∑
i∈En Xi)

3

3n3 , we can approximate the random number of cliques with ` ≥ 3 vertices, by
4

K̄n :=

(
2En
n2

)(`2)
· n

`

`!
=

(
2
∑

i∈En Xi

n2

)(`2)
· n

`

`!
. (23)

We then recover the following generalizations of Thms 3.5–3.8.

Theorem 3.11. Fix ` ∈ N, with ` ≥ 3. For all (α, h) ∈ U rs,
`!K̄n

n`
a.s.−−−→ u∗0

(`2)(α, h) w.r.t. P̄α,h, as n→ +∞, (24)

where u∗0 solves the maximization problem in (8). For all (α, h) ∈Mrs,

`!K̄n

n`
d−−→ κδu∗1,`(α,h) + (1− κ)δu∗2,`(α,h) w.r.t. P̄n;α,h, as n→ +∞, (25)

where u∗1,` := u∗1
(`2)(α, h), u∗2,` := u∗2

(`2)(α, h), u∗1, u∗2 solve the maximization problem in (8), and κ
is given in (18).

Theorem 3.12 (Generalized CLT w.r.t. P̄n;α,h). Let m̄K
n (α, h) :=

`!Ēn;α,h( K̄n
n`−2 )

n2 , with ` ∈ N, ` ≥ 3. If
(α, h) ∈ U rs \ {(αc, hc)}, then

√
`!

K̄n
n`−2 − n2

`!
m̄K
n (α, h)

n

d−−→ N (0, v̄K(α, h)) w.r.t. P̄n;α,h, as n→ +∞,

whereN (0, v̄K(α, h)) is a centered Gaussian distribution with variance

v̄K(α, h) :=
((

`
2

)
u∗0

(`2)−1
)2

(2`!c0)−1 =

((
`
2

)
u∗(

`
2)−1

)2

2`!

4u∗0(1− u∗0)

1− 2αu∗0
2(1− u∗0)

.

If (α, h) = {(αc, hc)}, then

`!
K̄n
n`−2 − n2

`!
m̄K
n (αc, hc)

n3/2

d−−→ W̄ w.r.t. P̄n;αc,hc , as n→ +∞,

where W̄ is a generalized Gaussian random variable with Lebesgue density ¯̀c
K(y) ∝ e−(γy)4

, with

γ := 2(
`
2)+1/2

3(
`
2)

(
`
2

)
.

Conditional measures. When (α, h) lies in the multiplicity curve Mrs, where the solution of (9)
is not unique, we can still characterize the limiting behavior of the triangle density in the mean-field
approximation, provided that we constraint the edge density to be close to one of the maximizers of
the scalar problem (8). To this aim, we consider a conditioned model, as follows. For (α, h) ∈ Mrs,
let u∗i (α, h) (i = 1, 2) be the solutions of the scalar problem (8). For n ∈ N and any fixed δ ∈ (0, 1),
consider the event

Bu∗i
≡ Bu∗i

(n, δ) :=

{
x ∈ An :

∣∣∣∣2En(x)

n2
− u∗i (α, h)

∣∣∣∣ ≤ n−δ
}
, (26)

4For a fixed graph G with n vertices, this is equivalent to say that we approximate the number of cliques by K̄n(G) =

n`(t(H1,G))(
`
2)

`! . If ` = 3 we recover the definition of T̄n(G).
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E. Magnanini, G. Passuello 12

and define the conditional probability measures

P̂(i)
n;α,h ( · ) := P̄n;α,h

(
·
∣∣Bu∗i

(n, δ)
)
, for i = 1, 2 . (27)

We denote the corresponding averages by Ê(i)
n;α,h and we set m̂(i)

n (α, h) := Ê(i)
n;α,h

(
6T̄n
n3

)
. The next

statements represent the analog of the results presented in Subsec. 3.2, when the parameters belong
to the multiplicity regionMrs.

Theorem 3.13 (Conditional SLLN and CLT). For i = 1, 2 and for all (α, h) ∈Mrs,

6T̄n
n3

a.s.−−−→ u∗i (α, h) w.r.t. P̂(i)
α,h, as n→ +∞, (28)

and
√

6
T̄n
n
− n2

6
m̂

(i)
n (α, h)

n

d−−→ N (0, v̄∆
i (α, h)) w.r.t. P̂(i)

n;α,h, as n→ +∞, (29)

whereN (0, v̄∆
i (α, h)) is a centered Gaussian distribution with variance v̄∆

i (α, h) :=
3u4
i
∗
(α,h)

4ci
, being

ci ≡ ci(α, h) :=
1−2α[u∗i (α,h)]2[1−u∗i (α,h)]

4u∗i (α,h)[1−u∗i (α,h)]
.

Proposition 3.14. For i = 1, 2 and for all (α, h) ∈Mrs,

lim
n→+∞

n · Ê(i)
n;α,h

(∣∣∣∣6T̄nn3
− u∗i 3(α, h)

∣∣∣∣) = E
(∣∣X̄(i)

∣∣) ,
X̄(i) is a centered Gaussian random variable with variance 6v̄∆

i (α, h) =
9u∗i (α,h)4

2ci
, being ci ≡

ci(α, h) =
1−2α[u∗i (α,h)]2[1−u∗i (α,h)

4u∗i (α,h)[1−u∗i (α,h)]
.

Corollary 3.15. For i = 1, 2 and for all (α, h) ∈Mrs, we have

lim
n→+∞

n ·
(
m̂(i)
n (α, h)− u∗i 3(α, h)

)
= 0,

where we recall that m̂(i)
n (α, h) := Ê(i)

n;α,h

(
6T̄n
n3

)
.

Beyond the edge-triangle model. All the results stated in Subsec. 3.1 can be easily extended to
the Gibbs measure Pβk,β1 , whose associated Hamiltonian is obtained by setting βi = 0 for all i 6= 1, k
(with k > 2) in (2), i.e.

Hn;βk,β1(G) := n2 [βkt(Hk, G) + β1t(H1, G)] , for G ∈ Gn.
The limiting free energy is given by the scalar maximization problem (4) and the replica symmetric
region is defined by condition βk ≥ 0 combined with (5). The phase diagram has been fully character-
ized in [35, Prop. 3.2] and is completely analogous to those represented in Fig. 1 for the edge-triangle
model. More precisely, problem (4) has exactly one maximizer u∗0(βk, β1) on the whole replica sym-
metric regime, and exactly two maximizers u∗1(βk, β1), u∗2(βk, β1) along a certain critical curveMrs

that starts at the critical point (βck, β
c
1) = 1

2

(
pp−1

(p−1)p
, log(p− 1)− p

(p−1)

)
, being p := E(Hk). At

criticality the unique maximizer coincides with u∗c := u∗(βck, β
c
1) = p−1

p
.

In case Hk is a clique with ` > 3 vertices, all the results of Subsecs. 3.2–3.2 can be extended to the
mean-field measure P̄n;βk,β1 associated with H̄n;βk,β1(G) := βk`!

n`−2 K̄n(G) + 2β1En(G), being

K̄n(G) =
n`(t(H1, G))(

`
2)

`!
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(see (23)). An equivalent version of Lem. 5.1, which is a crucial results for all the proofs, can be
obtained by studying the energy function gβk,β1(m) := βkm

p + β1m− I(m)/2, for m ∈ Γn, (which
generalizes (38)), and exploiting its Taylor expansiongβk,β1(m) = gβk,β1(u∗i )− ci(m− u∗i )2 + o(m− u∗i )3 if (βk, β1) 6= (βck, β

c
1)

gβk,β1(m) = gβk,β1(u∗c)− p5

48(p−1)2 (m− u∗c)4 + o(m− u∗c)5 if (βk, β1) = (βck, β
c
1),

where i ∈ {0, 1, 2} and ci(βk, β1) := −g′′βk,β1
(u∗i )/2 =

1−2p(p−1)βku
∗
i
p−1(1−u∗i )

4u∗i (1−u∗i )
.

4 Proofs: edge-triangle model

Before proving our main results, we show some basic properties of the derivatives w.r.t. α of the free
energy fα,h given in (8). It is convenient to consider the finite size free energy fn;α,h and the limiting
free energy fα,h as functions of α.

4.1 Derivatives of the free energy

For the sake of readability, we set fn,h(α) := fn;α,h. We point out that for every n, fn,h is a convex
function of α; indeed the second derivative of fn,h is positive, because it is a variance (see (17)).
Furthermore, we recall that, for (α, h) in the replica symmetric regime, limn→∞ fn,h(α) exists and it
is given by fh(α) := fα,h, which is defined in (8). We are then under the assumptions of the following
lemma.

Lemma 4.1 ([14], Lem. V.7.5.). Let (fn)n∈N be a sequence of convex functions on an open interval
A of R such that f(t) = limn→+∞ fn(t) exists for every t ∈ A. Let (tn)n∈N be a sequence in A
which converges to a point t0 ∈ A. If f ′n(tn) and f ′(t0) exist, then limn→+∞ f

′
n(tn) exists and equals

f ′(t0).

Now let (α, h) ∈ U rs, and m∆(α, h) := 6f ′h(α) = u∗0
3(α, h). As a corollary of Lem. 4.1 we obtain

lim
n→+∞

m∆
n (α, h) = lim

n→+∞
6f ′n,h(α) = 6f ′h(α) = m∆(α, h).

The following locally uniform convergence also holds.

Proposition 4.2. Let h ∈ R and U rsh := {α ∈ (−2,+∞) : (α, h) ∈ U rs}. If U rsh is non empty,
then f ′n,h −→ f ′h, as n→ +∞, locally uniformly on U rsh .

Proof. We prove the statement by contradiction, therefore we assume that there exists a compact set
A ⊂ U rsh such that the convergence is not uniform on A. If this is the case, there exists ε > 0 and a
subsequence (fnk;α,h)k∈N of (fn;α,h)n∈N such that for all k ∈ N,

max
α∈A
|f ′nk,h(α)− f ′h(α)| > ε. (30)

We recall that, since (α, h) ∈ U rs, these derivatives are continuous. From (30) we then deduce that
for each k ∈ N there exists αk ∈ A such that

|f ′nk,h(αk)− f
′
h(αk)| > ε. (31)
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We can pass to a converging subsequence (αk`)`∈N by compactness of A. If we denote by α0 the
limit of this subsequence, by continuity we have f ′nk` ,h

(αk`) −→ f ′h(α0), as ` → +∞. By triangle

inequality, for all ` ∈ N,

ε < |f ′nk` ,h(αk`)− f
′
h(αk`)| ≤ |f ′nk` ,h(αk`)− f

′
h(α0)|+ |f ′h(α0)− f ′h(αk`)|.

The l.h.s. is bounded away from zero due to (31), while the r.h.s. vanishes, as ` → +∞, due to
Lem. 4.1 and the pointwise convergence f ′nk` ,h

(αk`) −→ f ′h(α0), as ` → +∞. We get the contra-
diction.

In the next paragraph we provide a short overview of the main notions and results on graph limits the-
ory, relevant to the proof of Thm. 3.2. We refer the reader to [6, 7, 8, 27, 28] for a thorough description
of these concepts.

4.2 Key results on graph limits

Let (Gn)n≥1 be a sequence of simple graphs whose number of vertices tends to infinity; the limit
object of this sequence is a symmetric measurable function on the unitary square called graphon. A
crucial step for understanding where this definition comes from, is to introduce the notion of empirical
graphon.

x

y

0 1

1

1

23

4

5 6

1
6

1
6

2
6

2
6

3
6

3
6

4
6

4
6

5
6

5
6

Figure 2: Graph H with m = 6 vertices on the left and its empirical graphon gH on the right. The gray regions
are constantly equal to one, whereas the white regions are constantly equal to zero (example from [22]).

Let H be a finite simple graph H with vertex set [m]. The empirical graphon gH , corresponding to H ,
is defined by

gH(x, y) :=

{
1 if {dmxe, dmye} is an edge in H
0 otherwise

,

where (x, y) ∈ [0, 1]2. In other words, gH is a step function corresponding to the adjacency matrix of
H (see Fig. 2). It is important to stress that any finite simple graph admits a graphon representation,
therefore the sequence (Gn)n≥1 can be equivalently turned into a sequence of empirical graphons
(gGn)n≥1. Very intuitively, if we imagine to assign a black pixel to each block constantly equal to 1
appearing in the step function gH (and conversely a white pixel to each block constantly equal to 0),
then, as n gets large, pixels become finer and finer and the density of black pixels can be expressed as
a number between 0 and 1. It is then more natural to see that the limit of (gGn)n≥1 can be represented
by a measurable and symmetric function g : [0, 1]2 → [0, 1] (called , indeed, graphon). The set of all
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Statistics for the triangle density in ERGM 15

graphons is denoted byW ; also notice that empirical graphons allow to represent all simple graphs
as elements of the spaceW . The definition of convergence is formalized by making use of the notion
of homomorphism density t(H,Gn) (1) and its continuous analog, the so-called subgraph density

t(H, g) :=

∫
[0,1]m

∏
{i,j}∈E(H)

g(xi, xj) dx1 . . . dxm, (32)

where E(H) denotes the edge set of H . A sequence of graphs (Gn)n≥1 is said to converge to the
graphon g if, for every finite simple graph H ,

lim
n→+∞

t(H,Gn) = t(H, g).

Any sequence of graphs that converges in the appropriate way has a graphon as limit, and vice-
versa every graphon arises as the limit of an appropriate graph sequence. Intuitively, the interval [0, 1]
represents a continuum of vertices and g(xi, xj) corresponds to the probability of drawing the edge
{xi, xj}. For instance, the Erdős-RÃl’nyi graphon is represented by the function that is constantly
equal to p on the unit square. In order to take into account the arbitrary labeling of the vertices when
they are embedded in the unit interval, one needs to introduce an equivalence relation on W . Let
Σ be the space of all bijections σ : [0, 1] → [0, 1] preserving the Lebesgue measure. We say that
the functions g1, g2 ∈ W are equivalent, and we write g1 ∼ g2, if g2(x, y) = g1(σ(x), σ(y)) for

some σ ∈ Σ. The quotient space under ∼ is denoted by W̃ and τ : g 7→ g̃ is the natural mapping
associating a graphon with its equivalence class. The space W̃ can be equipped with the so-called cut
distance that turns W̃ into a compact metric space (see [29], Thm. 5.1). On the space (W̃ , δ�) a large
deviation principle for the sequence of measures (P̃ER

n;p)n≥1 of a dense Erdős-RÃl’nyi random graph

has been proved by Chatterjee and Varadhan in [13]. Here P̃ER
n;p denotes the probability distribution on

W̃ induced by the Erdős-RÃl’nyi graph G = G(n, p) via the mapping G 7→ gG 7→ g̃G. We report
below the large deviation principle:

Theorem 4.3 ([13], Thm. 2.3). For each fixed p ∈ (0, 1), the sequence (P̃ER
n;p)n≥1 satisfies a large

deviation principle on the space (W̃ , δ�), with speed n2 and rate function

Ip(g̃) =
1

2

∫ 1

0

∫ 1

0

Ip(g(x, y)) dx dy,

where g is any representative element of the equivalence class g̃ and, for u ∈ [0, 1], we set Ip(u) =
u ln u

p
+ (1− u) ln 1−u

1−p .

We will strongly rely on Thm. 4.3 for the proof of Thm. 3.2.

4.3 Exponential convergence

Proof of Theorem 3.2. The proof consists in showing that the sequence of the laws of the triangle
density w.r.t. the measure Pn;α,h is exponentially tight; this is made by representing the measure
Pn;α,h as a tilted probability measure on the space of graphons, that has as a priori measure the
Erdős-RÃl’nyi one. Let H2 be a triangle. Note that the homomorphism density defined in (1) is then
t(H2, G) = 6Tn(G)

n3 . An important property that we are going to use is that t( · , G) = t( · , g̃), where

g̃ is the image in W̃ of the empirical graphon gG of G and t(·, g̃) is the subgraph density (32). This
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allows us to extend the edge-triangle Hamiltonian Hn;α,h to the space W̃ replacing homomorphism
densities with subgraph densities. Indeed, for all G ∈ Gn,

Pn;α,h(G) =
exp (Hn;α,h(G))∑

g̃∈W̃
∑

G∈[ g̃ ]n
exp (Hn;α,h(G))

=
exp (Hn;α,h(g̃)) 1(gG ∈ g̃)∑
g̃∈W̃ |[ g̃ ]n| exp (Hn;α,h(g̃))

, (33)

where [ g̃ ]n := {G ∈ Gn : gG ∈ g̃} and | · | denotes the cardinality of a set. Notice that thanks to fact
that we can replace the homomorphism density with the subgraph density, the internal sum

∑
G∈[ g̃ ]n

in the second term of (33) simply reduces to the cardinality of the set [ g̃ ]n. Since for p = 1
2

the Erdős-
RÃl’nyi measure becomes uniform on Gn, we can equivalently write |[ g̃ ]n| = 2n(n−1)/2PER

n; 1
2

([ g̃ ]n).

As a consequence, from (33), we obtain

Pn;α,h(G) =
2−n(n−1)/2 exp (Hn;α,h(g̃)) 1(gG ∈ g̃)∑

g̃∈W̃ exp (Hn;α,h(g̃)) P̃ER
n; 1

2

({g̃})
. (34)

We now express the Hamiltonian in terms of homomorphism densities; to do so, we introduce the
function

Uα,h(G) := α
6
t(H2, G) + h

2
t(H1, G),

so that Hn;α,h(G) = n2Uα,h(G). For each n ≥ 1 and each Borel set Ã ⊆ W̃ , we define the
probabilities

Q̃n;α,h(Ã) :=

∑
g̃∈Ã exp (n2Uα,h(g̃)) P̃ER

n; 1
2

(g̃)∑
g̃∈W̃ exp (n2Uα,h(g̃)) P̃ER

n; 1
2

(g̃)
. (35)

Since Uα,h is a continuous and bounded function on the metric space (W̃ , δ�) (see [7, 8]), by [14,

Thm. II.7.2], the sequence {Q̃n;α,h}n≥1 of probability measures satisfies a large deviation principle
with speed n2 and rate function

Iα,h(g̃) := I 1
2
(g̃)− Uα,h(g̃)− inf

g̃∈W̃

{
I 1

2
(g̃)− Uα,h(g̃)

}
. (36)

The function I 1
2

is lower semicontinuous (see [13, Lem. 2.1]), and, therefore Iα,h is lower-semincontinuous
as well, as it is the sum of lower-semincontinuous functions; thus it admits a minimizer on the compact
space W̃ . In particular, for (α, h) ∈Mrs the minimizers of (36) are given by the set C̃∗ = {ũ∗1, ũ∗2},
where ũ∗1 and ũ∗2 are the images in W̃ of the solutions u∗1, u

∗
2 to the scalar problem (8) (we know that

they are exactly two thanks to [35, Prop. 3.2]). For all sufficiently small ε > 0, we define the open
interval

J(ε) := (u∗1
3 − ε, u∗13 + ε) ∪ (u∗2

3 − ε, u∗23 + ε)

and we consider the sets

C̃∗ε := {g̃ ∈ W̃ : t(H2, g̃) /∈ J(ε)} and C∗ε :=

{
G ∈ Gn :

6Tn(G)

n3
/∈ J(ε)

}
.

It is important to observe that, due to (34) and (35), Q̃n;α,h(C̃
∗
ε ) = Pn;α,h (C∗ε ). Moreover, C̃∗ε does

not contain any element of C̃∗, indeed, for the constant graphons ũ∗i , i ∈ {1, 2}, it holds t(H2, ũ
∗
i ) =

u∗i
3 ∈ J(ε) ⇒ C̃∗ε ∩ C̃∗ = ∅. Hence, since C̃∗ε is closed and does not contain any minimizer of

(36), Thm. II.7.2(b) in [14] guarantees that, for sufficiently large n, there is some positive constant
τ = τ(C̃∗ε ) such that Q̃n;α,h(C̃

∗
ε ) ≤ e−n

2τ . The thesis follows since

Pn;α,h

(
6Tn
n3
∈ J(ε)

)
= 1− Q̃n;α,h(C̃

∗
ε ) ≥ 1− e−n2τ .
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When (α, h) ∈ U rs, namely we work in the uniqueness regime, the proof above can be carried out
exactly in the same way, and it gives exponential convergence of the sequence (6Tn/n

3)n≥1 to u∗0
3.

Indeed in U rs, the set of minimizers of (36) coincides with the singleton C̃∗ = {ũ∗0}, where ũ∗0 is the

image in W̃ of the unique solution u∗0 to the scalar problem (8). As pointed out in [4, Thm. 3.2], as a
byproduct of this proof, we obtain an LDP for Q̃n;α,h:

Remark 4.4 ([4], Rem. 7.5). The sequence (Q̃n;α,h)n≥1 obeys a large deviation principle on the space

(W̃ , δ�), with speed n2 and rate function Iα,h.

4.4 SLLN

We are now ready to prove the strong law of large numbers stated in Thm. 3.1.

Proof of Theorem 3.1. The thesis immediately follows as a consequence of Borel-Cantelli lemma,
since exponential convergence provided by Thm. 3.2 implies almost sure convergence (see [14],
Thm. II.6.4). We stress that this almost sure convergence holds w.r.t. a probability measure Pα,h on
the space

(
{0, 1}N,B({0, 1}N)

)
, with marginals corresponding to the measures Pn;α,h, for all n ∈ N

(see Rem. 2.2).

Generalization to a generic simple graph.

Proof of Thm. 3.4. The first part of the proof follows exactly the same steps as Thm. 3.2. Then, we
define the open interval

J(ε) := (u∗1
E(Hk) − ε, u∗1E(Hk) + ε) ∪ (u∗2

E(Hk) − ε, u∗2E(Hk) + ε)

and we consider the sets

C̃∗ε := {g̃ ∈ W̃ : t(Hk, g̃) /∈ J(ε)} and C∗ε := {G ∈ Gn : t(Hk, G) /∈ J(ε)} .

Consider now the constant graphons ũ∗i , i ∈ {1, 2}. As it happens for the triangle subgraph density,
it holds t(Hk, ũ

∗
i ) = u∗i

E(Hk) ∈ J(ε) ⇒ C̃∗ε ∩ C̃∗ = ∅. Notice that if Hk is, say, a path of length
E(Hk), or a E(Hk)-star 5, or a clique with E(Hk) edges, this distinction is not registered at the level
of t(Hk, ũ

∗
i ). Indeed, being ũ∗i a constant function, the subgraph density (32) returns in both cases

the same value u∗i
E(Hk). The only difference is visible in the homomorphism density t(Hk, G) that,

depending on the subgraph we are taking into account, contains a different constant. Since C̃∗ε is
closed and does not include any minimizer of (36), by Thm. II.7.2(b) in [14] we finally conclude that
Pn;α,h (t(Hk, ·) ∈ J(ε)) ≥ 1− e−n2τ , being τ = τ(C̃∗ε ) some positive constant.

Proof of Thm. 3.3. When (α, h) ∈ U rs, namely we work in the uniqueness regime, the proof of
Thm. 3.4 gives exponential convergence of the sequence (t(Hk, ·))n≥1 to u∗0

E(Hk). The almost
sure convergence immediately follows as a consequence of Borel-Cantelli lemma, as for the proof
of Thm. 3.1.

5 A E(Hk)-star is an undirected graph with E(Hk) edges meeting at a “root"vertex.
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5 Proofs: mean-field approximation

5.1 Preliminaries

We start from some preliminaries that are preparatory to the proofs of this section. First, we observe
that the Hamiltonian H̄n;α,h (given in (15)), which is defined onAn, is actually a function of the edges
densitym ≡ m(x) := 2En(x)/n2, x ∈ An, taking values in the set Γn :=

{
0, 2

n2 ,
4
n2 ,

6
n2 , . . . , 1− 1

n

}
.

In particular, for all x ∈ An such that 2En(x)
n2 = m, we have

H̄n;α,h(x) = H̄n;α,h(m) = n2

(
α

6
m3 +

h

2
m

)
.

As a consequence, we can also write, with a little abuse of notation,

P̄n;α,h(A) =
∑
m∈A

Nmen2(α
6
m3+h

2
m)

Z̄n;α,h

, for A ⊆ Γn, (37)

where Nm :=
( n(n−1)

2
n(n−1)m

2

)
coincides with the number of adjacency matrices in An with edge density

m. From representation (37) arises another important function, that we call energy function; for any
(α, h) ∈ R2, it is defined as

gα,h(m) :=
α

6
m3 +

h

2
m− I(m)

2
, for m ∈ Γn. (38)

The first two terms coincide with the exponent in (37), whereas the entropic term I(m), defined below
(4), comes from the Stirling approximation of the binomial coefficient Nm. Let fα,h be the infinite
volume free energy of the edge-triangle model, as given in (8), and let u∗i , i = 0, 1, 2, or u∗c be a
solution of (9), depending on the range of (α, h). We stress that, by construction, gα,h(u∗i ) = fα,h if
(α, h) 6= (αc, hc), and gαc,hc(u

∗
c) = fαc,hc .

Neighborhoods of the maximizer(s). Fix 0 < δ < 1. We will mainly work in the following neigh-
borhoods of the maximizer(s) (whose definition was anticipated in (26)):

Bu∗i
≡ Bu∗i

(n, δ) = {m ∈ Γn : |m− u∗i | ≤ n−δ}, i = 0, 1, 2 (39)

Bu∗c ≡ Bu∗c (n, δ) = {m ∈ Γn : |m− u∗c | ≤ n−δ} (40)

making extensively use of the Taylor expansionsgα,h(m)− gα,h(u∗i ) = −ci(m− u∗i )2 + ki(m− u∗i )3 if (α, h) 6= (αc, hc)

gα,h(m)− gα,h(u∗c) = −81
64

(m− u∗c)4 + kc(m− u∗c)5 if (α, h) = (αc, hc),
(41)

where

ci := −
g′′α,h(u

∗
i )

2
=

1− 2α(u∗i )
2(1− u∗i )

4u∗i (1− u∗i )
> 0, (42)

ki := g′′′α,h(ũi)/6, kc := g
(v)
αc,hc

(ũc)/5!, (43)

for some ũi, ũc such that |ũi − u∗i | < n−δ, |ũc − u∗c | < n−δ.
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Lattice sets. As a result of suitable changes of variables, obtained as fluctuations of m ∈ Γn, we
will need to consider the following integration ranges:

R
(n)
i,δ :=

(
−n1−δ, n1−δ) ∩{−nu∗i ,−nu∗i +

2

n
, . . . ,−nu∗i + (n− 1)

}
, (44)

R
(n)
c,δ :=

(
−n 1

2
−δ, n

1
2
−δ
)
∩
{
−√nu∗c ,−

√
nu∗c +

2

n
3
2

, . . . ,−√nu∗c +
n− 1√
n

}
, (45)

where i = 0, 1, 2. The following lemma shows how the main contribution to Z̄n;α,h is given by sums
over these sets.

Lemma 5.1 ([4], Lemma 8.1). Let (α, h) ∈ (−2,+∞) × R and let fα,h be the infinite volume free
energy of the edge-triangle model given in (8).

Fix δ ∈ (0, 1). If (α, h) 6= (αc, hc) and ci, ki as in (42)–(43), let

D
(n)
i :=

∑
x∈R(n)

i,δ

2

n

e−cix
2+

ki
n
x3√(

u∗i + x
n

) (
1− u∗i − x

n

) , for i = 0, 1, 2. (46)

Fix δ ∈
(
0, 3

8

)
. If (α, h) = (αc, hc) and kc as in (43), let

D(n)
c :=

∑
x∈R(n)

c,δ

2

n3/2

e
− 81

64
x4+ kc√

n
x5√(

u∗c + x√
n

)(
1− u∗c − x√

n

) . (47)

Then, as n→ +∞,

Z̄n;α,h =
en

2fα,h

2
√
π

(
D(n)(α, h)

)
(1 + o(1)),

where

D(n)(α, h) :=


D

(n)
0 if (α, h) ∈ U rs \ {(αc, hc)}

D
(n)
1 +D

(n)
2 if (α, h) ∈Mrs

√
nD

(n)
c if (α, h) = (αc, hc)

.

Remark 5.2. Lem. 5.1 directly proves (13).

Remark 5.3. The quantities defined in (46)–(47) are Riemann sums with volume elements respectively
given by 2/n and 2/n3/2. Indeed the points x ∈ R

(n)
i , i = 0, 1, 2 (resp. inside R(n)

c ) are evenly
spaced with gaps of length 2/n (resp. 2/n3/2). Hence,

D
(n)
i

n→+∞−−−−−→ Di := 2

√
π
[
1− 2α (u∗i )

2 (1− u∗i )
]−1

, i ∈ {0, 1, 2} (48)

D(n)
c

n→+∞−−−−−→ Dc :=
3√
2

∫ ∞
−∞

e−
81
64
x4

dx ≈ 3.63 , (49)

where for (49) we used u∗c = 2
3
. Later, these terms will play the role of normalization weights.
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5.2 SLLN

Proof of Theorem 3.5. By retracing the same passages of Thm. 3.2 we can prove exponential conver-

gence of the sequence
(
6T̄n/n

3
)
n∈N to u∗0

3. By multiplying and dividing (37) by 2(n2) we obtain the

analog of representation (35) for the measure P̄n;α,h:

P̄n;α,h(A) =

∑
m∈A e

n2(α
6
m3+h

2
m)PER

n; 1
2

(m)∑
m∈Γn

en
2(α

6
m3+h

2
m)PER

n; 1
2

(m)
, for A ⊆ Γn.

Indeed, PER
n; 1

2

(m) = Nm/2(n2), where we recall that Nm =
( n(n−1)

2
n(n−1)m

2

)
coincides with the number of

adjacency matrices in An with edge density m. The same steps of Thm. 3.2, which in particular rely
on Ellis result [14, Thm. II.7.2], lead then to

P̄n;α,h

(
6T̄n
n3
∈ J(ε)

)
≥ 1− e−n2τ .

Here, J(ε) := (u∗0
3 − ε, u∗0

3 + ε), ε > 0, being u∗0 the unique maximizer of (8) (recall that
(α, h) ∈ U rs), and τ a positive constant depending on the complement set J c(ε). Finally, almost
sure convergence follows from exponential convergence as a consequence of Borel-Cantelli lemma
([14], Thm. II.6.4).

5.3 Phase coexistence on the critical curve

Proof of Theorem 3.6. We will determine the limit of

Ēn;α,h

[
ϕ
(
6T̄n/n

3
)]
,

for any continuous and bounded real function ϕ. First we observe that, since m ≡ m(x) = 2En(x)
n2 ,

from definition (16) we obtain T̄n(x) = n3m3

6
. Then, using (37), we get:

Ēn;α,h

[
ϕ

(
6T̄n
n3

)]
=
∑
m∈Γn

ϕ(m3)
Nmen2(α

6
m3+h

2
m)

Z̄n;α,h

. (50)

We split the sum in (50) over the setsBu∗1
,Bu∗2

given in (39), and C ≡ C(n, δ) := Γn \
(
Bu∗1
∪Bu∗2

)
,

considering the three contributions separately. First we observe that, from [18, Chap. 2, Eq. (2.11)],
there exists two positive constants c and C such that

cne−
n2

2
I(m) ≤ Nm ≤ Ce−

n2

2
I(m). (51)

Whenever we work inside the sets Bu∗i
, i = 1, 2, the bounds in (51) can be made more precise,

because n−2 � m� 1− n−2 and, consequently, n2m→∞ and n2(1−m)→∞, as n→∞.
Hence, the following Stirling approximation is valid

Nm =
e−

n2

2
I(m)

n
√
πm(1−m)

(1 + o(1)) . (52)
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This, together with Lem. 5.1, yields the following representation:

∑
m∈Bu∗

i

ϕ(m3)
Nmen2(α

6
m3+h

2
m)

Z̄n;α,h

=
∑

m∈Bu∗
i

2

n

ϕ(m3)√
m(1−m)

e−n
2(fα,h−gα,h(m))

D
(n)
1 +D

(n)
2

(1 + o(1)) ,

where i ∈ {1, 2} and gα,h is the energy function defined in (38). By performing the change of variable
x = n(m− u∗i ), and using the Taylor expansion (41), we obtain:

∑
m∈Bu∗

i

ϕ(m3)
Nmen2(α

6
m3+h

2
m)

Z̄n;α,h

=
∑
x∈R(n)

i,δ

2

n

ϕ((u∗i + x
n
)3)√

(u∗i + x
n
)(1− u∗i − x

n
)

e−cix
2+

ki
n
x3

D
(n)
1 +D

(n)
2

(1 + o(1))

n→+∞−−−−−→ ϕ(u∗i
3)

Di

D1 +D2

,

where Di is defined in (48) and R(n)
i,δ , given in (44), represents the range of values of x. To conclude

the analysis, we show that the sum over the remaining set C provides no contribution in the limit.
Outside the sets Bu∗i

, i = 1, 2, the Stirling approximation (52) is not valid anymore. However, from
(51) we deduce:∑

m∈C

Nmen
2(α

6
m3+h

2
m) ≤ Cn

∑
m∈C

en
2gα,h(m) <

C

2
n3en

2 maxm∈C gα,h(m), (53)

where the last inequality is due to the fact that C contains at most
(
n
2

)
points. Since fα,h = gα,h(u

∗
i ),

i = 1, 2 we obtain

en
2 maxm∈C gα,h(m) = en

2fα,he−n
2(gα,h(u∗i )−maxm∈C gα,h(m)) ≤ en

2fα,he−kn
2−2δ

, (54)

where k > 0 is a constant that does not depend on n and δ ∈ (0, 1). The last inequality follows
from the Taylor expansion (41), exploiting the fact that |m − u∗i | > n−δ for i = 1, 2 and for all
m ∈ C. As a consequence, from the rough Stirling approximation (51) and the consequent rough
bound Z̄n;α,h ≥ cn−1en

2fα,h , we get∑
m∈CNmen

2(α
6
m3+h

2
m)

Z̄n;α,h

< c−1Cn4e−kn
2−2δ n→+∞−−−−−→ 0, (55)

being 2− 2δ > 0 by assumption. In conclusion,

lim
n→+∞

Ēn;α,h

[
ϕ

(
6T̄n
n3

)]
= ϕ(u∗1

3)
D1

D1 +D2

+ ϕ(u∗2
3)

D2

D1 +D2

.

This proves the thesis.

5.4 Mean-field convergence error

Proof of Proposition 3.9. Let (α, h) ∈ U rs and u∗0 = u∗0(α, h) be the unique maximizer which solves
the fixed point equation (9). The proof implements the same machinery of Thm. 3.6. First we observe
that

Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) =
∑
m∈Γn

|m3 − u∗03|Nme
n2(α

6
m3+h

2
m)

Z̄n;α,h

. (56)
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We split the average in (56) in two parts, one overBu∗0
given in (39), and the other over C ≡ C(n, δ) :=

Γn \Bu∗0
. The contribution of the average over C is negligible, exploiting exactly the same argument in

(53)–(55) with u∗0 in place of u∗i (i = 1, 2), and bounding, very roughly, |m3−u∗03| = |m−u∗0|(m2 +
mu∗0 + u∗0

2) by the constant 3. We now focus on the sum over Bu∗0
. By Lem. 5.1 and the Stirling

approximation (52), we obtain

Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) =
∑

m∈Bu∗0

|m3 − u∗03|Nme
n2(α

6
m3+h

2
m)

Z̄n;α,h

(1 + o(1))

=
∑

m∈Bu∗0

2

n

|m3 − u∗03|√
m(1−m)

e−n
2(fα,h−gα,h(m))

D
(n)
0

(1 + o(1)) ,

where we recall that T̄n(x) = n3m3

6
and Bu∗0

is defined in (39). First, we analyze the case (α, h) ∈
U rs \ {(αc, hc)} and then we move to the critical point. From the Taylor expansion (41) we get

Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) =
∑

m∈Bu∗0

2

n

|m3 − u∗03|√
m(1−m)

e−n
2c0(m−u∗0)2+n2k0(m−u∗0)3

D
(n)
0

(1 + o(1)). (57)

We now perform the change of variable x = n(m− u∗0), and we use the identity

m3 − u∗03 =
(
u∗0 +

x

n

)3

− u∗03 = 3u∗0
2x

n
+ 3u∗0

x2

n2
+
x3

n3
, (58)

thus obtaining

n · Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) =
∑
x∈R(n)

0,δ

2

n

|3u∗02x+ 3u∗0
x2

n
+ x3

n2 | · e−c0x2+
k0
n
x3√(

u∗0 + x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)),

where R(n)
0,δ is defined in (44) and the constants c0 and k0 are given in (42)–(43). We can upper and

lower bound the sum above using the following chain of inequalities: |a|−|b| ≤ ||a|−|b|| ≤ |a+b| ≤
|a|+ |b|, a, b ∈ R, with a := 3u∗0

2x and b := 3u∗0
x2

n
+ x3

n2 . Consider the term

∑
x∈R(n)

0,δ

2

n

|3u∗02x| · e−c0x2+
k0
n
x3√(

u∗0 + x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)),

together with the sequence of probability densities

`n(x) :=
2

n

e−c0x
2+

k0
n
x3√(

u∗0 + x
n

) (
1− u∗0 − x

n

)
·D(n)

0

1
R

(n)
0

(x) , x ∈ R , (59)

where D(n)
0 is the normalization weight defined in (46). If, for every n ∈ N, Xn is a random variable

with density `n, then

∑
x∈R(n)

0,δ

2

n

|3u∗02x| · e−c0x2+
k0
n
x3√(

u∗0 + x
n

) (
1− u∗0 − x

n

)
·D(n)

0

(1 + o(1)) = E(|3u∗02Xn|)(1 + o(1)).
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Collecting all contributions we have:

E(|3u∗02Xn|)(1 + o(1))−
(∫

R

∣∣∣∣3u∗0x2

n
+
x3

n2

∣∣∣∣ `n(x)dx

)
(1 + o(1)) (60)

≤ n · Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) ≤
E(|3u∗02Xn|)(1 + o(1)) +

(∫
R

∣∣∣∣3u∗0x2

n
+
x3

n2

∣∣∣∣ `n(x)dx

)
(1 + o(1)). (61)

Notice that, due to the convergence D(n)
0

n→+∞−−−−→ D0 (see Rem. 5.3) and the Scheffé Lemma, we

obtain Xn
d−−→ X , where X is a Gaussian random variable with density

`(x) =

√
c0

π
e−c0x

2

, x ∈ R . (62)

Moreover, the random variablesXn have finite exponential moments for any sufficiently large n. There-
fore, by the dominated convergence theorem, applied to both bounds in (60)–(61), we obtain

n · Ēn;α,h

(∣∣∣6T̄n
n3
− u∗03

∣∣∣) n→+∞−−−−−→ 3u∗0
2E(|X|).

Indeed, the second summand in terms (60)–(61) vanishes, being 3u∗0
x2

n
+ x3

n2 = o(1), for fixed x.
Setting X̄ := 3u∗0

2X , and noticing that X has variance (2c0)−1, we recover (20).

We now move to the critical case, so we consider (α, h) = (αc, hc) and u∗c = u∗(αc, hc). Here, the
proof works exactly the same. We split the average in (56) in two parts, one over Bu∗c given in (40),
and the other over C ≡ C(n, δ) := Γn \ Bu∗c . The contribution of the average over C is negligible,
exploiting the same argument in (53)–(55). This time, by injecting the Taylor expansion (41) at the
critical point in (54), and using the fact that |m− u∗c |4 > n−4δ for m ∈ C, we get∑

m∈CNmen
2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

< c−1Cn4e−kn
2−4δ n→+∞−−−−−→ 0, k > 0,

since δ < 3/8 by assumption. We now restrict the average (56) to a sum in Bu∗c . In place of (57) we
get:

Ēn;αc,hc

(∣∣∣6T̄n
n3
− u∗c3

∣∣∣) =
∑

m∈Bu∗c

2

n
3
2

|m3 − u∗c3|e−n2 81
64

(m−u∗c)4+n2kc(m−u∗c)5√
m (1−m) ·D(n)

c

(1 + o(1)),

whereBu∗c is defined in (40), and the constant kc is given in (43). Notice that here the Taylor expansion
(41) provides the fourth-order term (m−u∗c)4 at the exponent, while Lem. 5.1 brings the normalization

weight D(n)
c . After the change of variable y :=

√
n(m− u∗c), recalling that u∗c = 2

3
and by means of

the identity

m3 − u∗c3 =
(
u∗c +

y√
n

)3

− u∗c3 =
4

3

y√
n

+ 2
y2

n
+
y3

n
3
2

, (63)

we obtain

√
n · Ēn;αc,hc

(∣∣∣6T̄n
n3
− u∗c3

∣∣∣) =
∑
y∈R(n)

c,δ

2

n
3
2

|4
3
y + 2 y2

√
n

+ y3

n
| · e−

81
64
y4+ kc√

n
y5√(

u∗c + y√
n

)(
1− u∗c − y√

n

)
D

(n)
c

(1 + o(1)),
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where R(n)
c,δ is given in (45). For every n ∈ N, let Yn be a real random variable with Lebesgue density

`cn(y) :=
2

n3/2

e
− 81

64
y4+ kc√

n
y5√

(u∗c + y√
n
)(1− u∗c − y√

n
) ·D(n)

c

1
R

(n)
c,δ

(y) , y ∈ R . (64)

Notice that D(n)
c provides the right normalization rate. The random variable Yn has finite exponential

moments for any sufficiently large n. By Scheffé Lemma and dominated convergence theorem, we
conclude

√
n · Ēn;αc,hc

(∣∣∣6T̄n
n3
− u∗c3

∣∣∣) n→+∞−−−−−→ 4

3
E(|Y |),

where Y is a generalized Gaussian random variable with Lebesgue density `c(y) ∝ e−
81
64
y4

. Setting

Ȳ := 4
3
Y , since the scale parameter of Y is 23/2

3
, we deduce that Ȳ is a generalized Gaussian

random variable with scale parameter 27/2

32 , thus proving the thesis.

With the same strategy we can immediately prove the following corollary.

Proof of Corollary 3.10. Recall that m̄∆
n (α, h) = Ēn;α,h

(
6T̄n
n3

)
. By following the proof of Prop. 3.9, we

obtain,

� for all (α, h) ∈ U rs \ {(αc, hc)},

n ·
(
m̄∆
n (α, h)− u∗03(α, h)

)
= E

(
3u∗0

2Xn

)
(1 + o(1)) + o(1)

n→+∞−−−−−→ E(X̄) = 0,

� for (α, h) = (αc, hc)

√
n ·
(
m̄∆
n (αc, hc)− u∗3(αc, hc)

)
= E

(4

3
Yn

)
(1 + o(1)) + o(1)

n→+∞−−−−−→ E(Ȳ ) = 0.

5.5 CLT (off the critical curve)

We use Cor. 3.10 to prove Thms. 3.7 and 3.8. We start with Thm. 3.8 at the critical point.

Proof of Theorem 3.8. Let u∗c = u∗(αc, hc). We consider the decomposition

6
T̄n
n
− n2

6
m̄∆
n (αc, hc)

n3/2
= Ūn +

√
n
(
u∗c

3 − m̄∆
n (αc, hc)

)
,

where

Ūn := 6
T̄n
n
− n2

6
u∗c

3

n3/2
.

By (22) and Slutsky theorem, it is enough to study the convergence in distribution of the variable
6( T̄n

n
− n2

6
u∗c

3)/n3/2. We show that, for any t ∈ R,

M̄n(t) := Ēn;αc,hc

(
et·Ūn

)
n→+∞−−−−−→

∫
R
ety ¯̀c(y)dy, (65)
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where ¯̀c is given in the statement. Again, we split the average in (65) in two parts, one overBu∗c given
in (40), and the other over C ≡ C(n, δ) := Γn \

(
Bu∗c

)
. We obtain:∑

m∈C

Nmet
√
n(m3−u∗c3)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

(51)
≤
∑
m∈C

Ce3t
√
n+n2gαc,hc (m)

Z̄n;αc,hc

≤ Cn3e3t
√
n+n2fαc,hc−n2(gα,h(u∗c)−maxm∈C gαc,hc (m))

Z̄n;αc,hc

≤ c−1Cn3e3t
√
n−kn2−4δ n→+∞−−−−−→ 0, (66)

for some constant k > 0. In the second to last inequality we used that fαc,hc = gαc,hc(u
∗
c), and

that the set C contains at most
(
n
2

)
elements. In the last inequality we used the Taylor expansion

(41) at the critical point, the rough bound Z̄n;α,h ≥ cn−1en
2fα,h coming from (51), and the fact that

|m− u∗c |4 > n−4δ for m ∈ C. The assumption δ < 3/8 guarantees that 2 − 4δ > 1/2. As a
consequence of (66), we can reduce the average in (65) into a sum on Bu∗c :

M̄n(t) =
∑

m∈Bu∗c

Nmet
√
n(m3−u∗c3)+n2(αc

6
m3+hc

2
m)

Z̄n;αc,hc

(1 + o(1))

=
∑

m∈Bu∗c

2

n
3
2

et
√
n(m3−u∗c3)−n2(fαc,hc−gαc,hc (m))√

m(1−m) ·D(n)
c

(1 + o(1)) ,

(67)

where the last identity is due to Lem. 5.1 and the Stirling approximation (52). Injecting in (67) the Taylor
expansion (41) at the critical point, we get

M̄n(t) =
∑

m∈Bu∗c

2

n
3
2

et
√
n(m3−u∗c3)− 81

64
n2(m−u∗c)4+kcn2(m−u∗c)5√

m(1−m) ·D(n)
c

(1 + o(1)).

By the change of variable y =
√
n(m− u∗c), and recalling that u∗c(αc, hc) = 2

3
, we find

M̄n(t) =
∑
y∈R(n)

c,δ

2

n
3
2

e
t( 4

3
y+2 y

2
√
n

+ y3

n
) · e−

81
64
y4+kc

y5
√
n√(

u∗c + y√
n

)(
1− u∗c − y√

n

)
D

(n)
c

(1 + o(1)).

Exploiting the range of R(n)
c,δ , given in (45), we observe that −n1/2−3δ < 2 y2

√
n

+ y3

n
< 2n1/2−2δ +

n1/2−3δ. By isolating the term

M̄∗
n(t) :=

∑
y∈R(n)

c,δ

2

n
3
2

et
4
3
y · e−

81
64
y4+kc

y5
√
n√(

u∗c + y√
n

)(
1− u∗c − y√

n

)
D

(n)
c

(1 + o(1)) (68)

we obtain:
e−tn

1/2−3δ

M̄∗
n(t) ≤ M̄n(t) ≤ et(2n1/2−2δ+n1/2−3δ)M̄∗

n(t). (69)

In (68) we recognize the probability density `cn of the random variable Yn, introduced in (64). From (68)
we then deduce that M̄∗

n(t) = E(et
4
3
Yn)(1 + o(1)) . By Scheffé Lemma Yn converges in distribution

to a generalized Gaussian random variable Y with Lebesgue density `c(y) ∝ e−
81
64
y4

, therefore

M̄∗
n(t) = E(et

4
3
Yn)(1 + o(1))

n→+∞−−−−−→ E(et
4
3
Y ).

With the further constraint 1
4
< δ < 3

8
, from (69) it holds M̄n(t)

n→+∞−−−−→ E(et
4
3
Y ). By setting

Ȳ := 4
3
Y we conclude the proof.
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Proof of Theorem 3.7. The proof runs exactly as for the critical case, therefore we provide below only
a sketch with the main differences. The object that we want to study is in this case the random variable

√
6
T̄n
n
− n2

6
m̄∆
n (α, h)

n
= V̄n +

n√
6

(
u∗3 − m̄∆

n (α, h)
)
, (70)

where

V̄n :=
√

6
T̄n
n
− n2

6
u∗0

3

n
.

By (21) and Slutsky theorem, it is enough to study the moment generating function of of V̄n, restricting
again the analysis on the neighborhood Bu∗0

(the contribution over the set C ≡ C(n, δ) := Γn \ Bu∗0

can be treated as in (66), with 0 < δ < 1). To simplify constants, we consider
√

6V̄n instead of V̄n.
We then get:

M̄n(t) =
∑

m∈Bu∗0

2

n

1√
m(1−m)

etn(m3−u∗0
3)−c0n2(m−u∗0)2+k0n2(m−u∗0)3

D
(n)
0

(1 + o(1)).

The change of variable x = n(m− u∗0), identity (58), and the Taylor expansion (41) yield

M̄n(t) =
∑
x∈R(n)

0,δ

2

n

et(3u
∗
0

2x+3u∗0
x2

n
+ x3

n2 ) · e−c0x2+k0
x3

n√(
u∗0 + x

n

) (
1− u∗0 − x

n

)
D

(n)
0

(1 + o(1)) .

As in the proof of Thm. 3.8, let

M̄∗∗
n (t) :=

∑
x∈R(n)

0,δ

2

n

e3tu∗0
2x · e−c0x2+k0

x3

n√(
u∗0 + x

n

) (
1− u∗0 − x

n

)
D

(n)
0

(1 + o(1)). (71)

Furthermore, by exploiting the range of R(n)
0,δ , given in (44) we obtain

e−tn
1−3δ

M̄∗∗
n (t) ≤ M̄n(t) ≤ et(3u∗0n

1−2δ+n1−3δ)M̄∗∗
n (t). (72)

In (71) we recognize the probability density `n of the random variable Xn, introduced in (59); we then
rewrite (71) as M̄∗∗

n (t) = E(e3tu∗0
2Xn)(1 + o(1)). By Scheffé Lemma Xn converges in distribution to

a real random variable X with Gaussian density ` given in (62), therefore

M̄∗∗
n (t) = E(e3tu∗0

2Xn)(1 + o(1))
n→+∞−−−−−→ E(e3tu∗0

2X).

With the further constraint 1
2
< δ < 1, from (72), it holds M̄n(t)

n→+∞−−−−→ E(e3tu∗0
2X). Note

that X is a centered Gaussian random variable with variance (2c0)−1, where c0 ≡ c0(α, h) =
1−2α[u∗0(α,h)]2[1−u∗0(α,h)]

4u∗0(α,h)[1−u∗0(α,h)]
. In conclusion, V̄n converges in distribution to the centered Gaussian random

variable 3u∗0
2X/
√

6, with variance v̄∆
0 (α, h) =

3u∗0
4

4c0
, as wanted.

Generalization to a clique graph.
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Proof of Thm. 3.11. From Thm. 3.5 we know that
(

2En
n2

)3 a.s.−→ u∗0
3 w.r.t. P̄α,h. By continuous mapping

theorem it follows that
(

2En
n2

)(`2) a.s.−→ u∗0
(`2) w.r.t. P̄α,h, thus recovering (24).

In order to prove (25) one can proceed as in Thm. 3.6. The final goal is to determine the limit of

Ēn;α,h

[
ϕ
(
`!K̄n
n`

)]
for any continuous and bounded real function ϕ. Since m ≡ m(x) = 2En(x)

n2 ,

from the definition of K̄n we obtain K̄n(x) = n`m(`2)
`!

. Using (37), we get:

Ēn;α,h

[
ϕ

(
`!K̄n

n`

)]
=
∑
m∈Γn

ϕ(m(`2))
Nmen2(α

6
m3+h

2
m)

Z̄n;α,h

. (73)

One can then retrace exactly the same steps of the proof of Thm. 3.6, since the unique difference

consists in the factor ϕ(m(`2)). Indeed, the measure (second factor in (73)) remains unchanged.

Proof of Thm. 3.12. We consider the decompositions

√
`!

K̄n
n`−2 − n2

`!
m̄K
n (α, h)

n
= V̄ (`)

n +
n√
`!

(
u∗0

(`2) − m̄K
n (α, h)

)
,

`!
K̄n
n`−2 − n2

`!
m̄K
n (αc, hc)

n3/2
= Ū (`)

n +
√
n
(
u∗c

(`2) − m̄K
n (αc, hc)

)
,

where V̄ (`)
n :=

√
`!

K̄n
n`−2−

n2

`!
u∗0

(`2)

n
and Ū (`)

n := `!
K̄n
n`−2−

n2

`!
u∗c

(`2)

n3/2 . One can easily check that Cor. 3.10

can be adapted to this setting. It is enough to replace identities (58)–(63) respectively by
(
u∗0 + x

n

)(`2)−
u∗0

(`2) =
(
`
2

)
(u∗0)(

`
2)−1 x

n
(1 + o(1)), where x := n(m − u∗0), and

(
u∗c + y√

n

)(`2) − u∗c
(`2) =(

`
2

) (
2
3

)(`2)−1 y√
n
(1 + o(1)), where y :=

√
n(m − u∗c). Thanks to Cor. 3.10 and Slutsky theorem

we can reduce to study the convergence in distribution of the random variables V̄ (`)
n and Ū (`)

n . Adapt-
ing the proof of Thm. 3.7 one can conclude that

V̄ (`)
n

d−−→ Q̄ :=

(
`
2

)
(u∗0)(

`
2)−1

√
`!

X w.r.t. P̄n;α,h, as n→ +∞,

Ū (`)
n

d−−→ W̄ :=

(
`

2

)(
2

3

)(`2)−1

Y w.r.t. P̄n;αc,hc , as n→ +∞,

whereX is a centered Gaussian random variable with variance (2c0)−1, being c0 defined in Thm. 3.7,

and Y has Lebesgue density `c(y) ∝ e−
81
64
y4

. Hence Q̄ has variance v̄K(α, h) :=

((
`
2

)
u∗0

(`2)−1

)2

/2`!c0,

and W̄ has scale parameter 2(
`
2)+1/2

3(
`
2)

(
`
2

)
, as wanted.

5.6 Conditional measures

Proof of Proposition 3.14. Let (α, h) ∈ Mrs and let u∗i = u∗i (α, h), i = 1, 2 the two solutions of
the scalar problem (8). The proof of this proposition can be carried on exactly as the proof of the
analog Prop. 3.9, but in the conditional setting introduced in Subsec. 3.2. Without loss of generality,
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we consider the case i = 1:

Ê(1)
n;α,h

(∣∣∣∣6T̄nn3
− u∗13

∣∣∣∣) =
∑

m∈Bu∗1

|m3 − u∗13|Nm e
n2(α

6
m3+h

2
m)

Z̄n;α,h(Bu∗1
)

=
∑

m∈Bu∗1

2

n

|m3 − u∗13|√
m(1−m)

e−n
2(fα,h−gα,h(m))

D
(n)
1

(1 + o(1)),

where Ê(1)
n;α,h is the expectation associated with the measure P̂(1)

n;α,h defined in (27). The Taylor expan-
sion (41) and the change of variable x = n(m− u∗1) yield

n · Ê(1)
n;α,h

(∣∣∣∣6T̄nn3
− u∗13

∣∣∣∣) =
∑
x∈R(n)

1,δ

2

n

|3u∗12x+ 3u∗1
x2

n
+ x3

n2 | · e−c1x2+
k1
n
x3√(

u∗1 + x
n

) (
1− u∗1 − x

n

)
·D(n)

1

(1 + o(1)),

where R(n)
1,δ is as in (44). If (X

(1)
n )n≥1 is a sequence of random variables with probability density

`(1)
n (x) :=

2

n

e−c1x
2+

k1
n
x3√(

u∗1 + x
n

) (
1− u∗1 − x

n

)
·D(n)

1

1
R

(n)
1,δ

(x), x ∈ R, (74)

where D(n)
1 is the normalization weight defined in (46), we obtain, as in (60)–(61),

E(|3u∗12X(1)
n |)(1 + o(1))−

(∫
R

∣∣∣∣3u∗1x2

n
+
x3

n2

∣∣∣∣ `(1)
n (x)dx

)
(1 + o(1)) (75)

≤ n · Ê(1)
n;α,h

(∣∣∣6T̄n
n3
− u∗13

∣∣∣) ≤
E(|3u∗12X(1)

n |)(1 + o(1)) +

(∫
R

∣∣∣∣3u∗1x2

n
+
x3

n2

∣∣∣∣ `(1)
n (x)dx

)
(1 + o(1)). (76)

Arguing as at the end of proof 3.9 we conclude

n · Ê1
n;α,h

(∣∣∣6T̄n
n3
− u∗13

∣∣∣) n→+∞−−−−−→ 3u∗1
2E(|X(1)|),

where X(1) is a standard Gaussian variable with variance (2c1)−1. Indeed, the second summand in
(75)–(76) vanishes, being 3u∗1

x2

n
+ x3

n2 = o(1), for fixed x. Setting X̄(1) := 3u∗1
2X(1), we obtain a

random variable with variance 6v̄∆
1 (α, h) =

9u∗i (α,h)4

2c1
, as wanted. The same proof holds for the case

i = 2.

Proof of Corollary 3.15. The proof follows immediately, as for Cor. 3.10.

As mentioned, the next theorem is the analog of Thm. 3.5 and Thm. 3.7, when the edge density is
conditioned to take values in a neighborhood of the two maximizers of the scalar problem (8).

Proof of Theorem 3.13. Let (α, h) ∈ Mrs and let u∗i = u∗i (α, h), i = 1, 2 the two solutions of the
scalar problem (8). We focus on the case i = 1, being the case i = 2 completely analogous. We start
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proving (28) via exponential convergence, which again implies the a.s. convergence by a standard
Borel-Cantelli argument (see [14], Thm. II.6.4 and Rem. 2.2). Fix η > 0. We define

R ≡ R(η;n) :=
{
m ∈ Γn : η ≤ |m− u∗1| < n−δ

}
.

Notice that for large n, the setR is empty. When this does not hold, we have

P̂(1)
n;α,h

(∣∣∣∣6T̄nn3
− u∗13

∣∣∣∣ ≥ η

)
≤
∑
m∈R

Nmen
2(α6m3+h

2
m)

Z̄n;α,h(Bu∗1
)

≤ Cc−1n4e−n
2(fα,h−maxm∈R gα,h(m))

≤ Cc−1n4e−n
2 minm∈R(fα,h−gα,h(m)), (77)

where in the second to last passage we used the rough bound Z̄n;α,h(Bu∗1
) ≥ cn−1en

2fα,h coming
from Stirling approximation (51). As stated in [35, Prop. 3.2], for sufficiently large n, the function fα,h−
gα,h(m), restricted to the neighborhoodBu∗1

, is positive, convex and admits u∗1 as unique zero. Hence

min
m∈R

(fα,h − gα,h(m)) = min{fα,h − gα,h(u∗1 − η), fα,h − gα,h(u∗1 + η)} > 0.

When R is nonempty, the probability in (77) vanishes, as n → ∞. This provides the desired ex-
ponential convergence, for every choice of η > 0. We now move to the proof of (29). By means of
decomposition (70), and Cor. 3.15 we can reduce our analysis to the random variable

V̄ (1)
n :=

√
6
T̄n
n
− n2

6
u∗1

3

n
,

studying, for any t ∈ R, its moment generating function

M̂n(t) := Ê(1)
n;α,h

(
etV̄

(1)
n

)
.

We consider
√

6V̄
(1)
n instead of V̄ (1)

n (to simplify constants), and we follow the same line of arguments
as in the proof of Thm. 3.7. We get:

M̂n(t) =
∑

m∈Bu∗1

2

n

1√
m(1−m)

etn(m3−u∗1
3)−c1n2(m−u∗1)2+k1n2(m−u∗1)3

D
(n)
1

(1 + o(1)).

The change of variable x = n(m− u∗1), identity (58), and the Taylor expansion (41) yield

M̂n(t) =
∑
x∈R(n)

1,δ

2

n

et(3u
∗
1

2x+3u∗1
x2

n
+ x3

n2 ) · e−c1x2+k1
x3

n√(
u∗1 + x

n

) (
1− u∗1 − x

n

)
D

(n)
1

(1 + o(1)) ,

where R(n)
1,δ is defined in (44). By defining

M̂∗∗
n (t) :=

∑
x∈R(n)

1,δ

2

n

e3tu∗1
2x · e−c1x2+k1

x3

n√(
u∗1 + x

n

) (
1− u∗1 − x

n

)
D

(n)
1

(1 + o(1)),

we observe that M̂∗∗
n (t) = E(e3tu∗1

2X
(1)
n )(1 + o(1)) , where, for each n ∈ N, X(1)

n is a random

variable with density `(1)
n (x) given in (74).
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Notice that X(1)
n converges in distribution to a centered Gaussian random variable X(1) with variance

(2c1)−1, where c1 ≡ c1(α, h) =
1−2α[u∗1(α,h)]2[1−u∗1(α,h)]

4u∗1(α,h)[1−u∗1(α,h)]
.

Therefore
M̄∗∗

n (t) = E(e3tu∗1
2X

(1)
n )(1 + o(1))

n→+∞−−−−−→ E(e3tu∗1
2X(1)

).

With the further constraint 1
2
< δ < 1, exploiting the same bounds as in (72), we also obtain the

convergence M̂n(t)
n→+∞−−−−→ E(e3tu∗1

2X(1)
) for all t ∈ R. In conclusion, V̄ (1)

n converges in distribution

to the centered Gaussian random variable 3u∗1
2X(1)/

√
6, with variance v̄∆

1 (α, h) =
3u∗1

4

4c1
, as wanted.

The same proof works for i = 2.

6 Conjectures and simulations

The comparison between the mean-field approximation and the edge-triangle model respectively en-
coded by Hamiltonian (14) and (15) remains an open problem. We refer the reader to [4, Sec. 8.3] for
a discussion on the main difficulties in proving that they asymptotically coincide. However we believe
that this is the case, and we report a list of conjectures based on the results obtained for the mean-field
model. Some of them are supported by heuristics computations and simulations.

6.1 Conjectures and heuristics

Conjecture 6.1. For all (α, h) ∈Mrs,

6Tn
n3

d−−→ κδu∗13(α,h) + (1− κ)δu∗23(α,h) w.r.t. Pn;α,h, as n→ +∞,

where u∗1, u∗2 solve the maximization problem in (8), and

κ =

√[
1− 2α (u∗1)2 (1− u∗1)

]−1√[
1− 2α (u∗1)2 (1− u∗1)

]−1
+

√[
1− 2α (u∗2)2 (1− u∗2)

]−1
.

Conjecture 6.2 (CLT for Tn). If (α, h) ∈ U rs \ {(αc, hc)},

√
6
Tn
n
− n2

6
m∆
n (α, h)

n

d−−→ N (0, v∆
0 (α, h)) w.r.t. Pn;α,h, as n→ +∞,

whereN (0, v∆
0 (α, h)) is a centered Gaussian distribution with variance v∆

0 (α, h) =
3u∗0

4(α,h)

4c0
, being

c0 ≡ c0(α, h) :=
1−2α[u∗0(α,h)]2[1−u∗0(α,h)]

4u∗0(α,h)[1−u∗0(α,h)]
.

Conjecture 6.3 (Non-standard CLT for Tn). If (α, h) = (αc, hc),

6
Tn
n
− n2

6
m∆
n (αc, hc)

n3/2

d−−→ Y w.r.t. Pn;αc,hc , as n→ +∞, (78)

where Y is a generalized Gaussian random variable with Lebesgue density `c(y) ∝ e−
38

214 y
4

.

Having at hand a large deviation principle (see Rem. 4.4) allows to perform a heuristic calculation to
support Conjs. 6.2 and 6.3.
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Heuristics on the CLT. To guarantee convexity of the rate function Iα,h, we restrict here to the
region (α, h) ∈ (−2, αc]× R (see [35], Prop. 3.2). Let us define the random variables

Vn :=
√

6
Tn
n
− n2

6
u∗0

3(α, h)

n
=

n√
6

[
6Tn
n3
− u∗03(α, h)

]
, (α, h) ∈ (−2, αc)× R,

Un := 6
Tn
n
− n2

6
u∗3(αc, hc)

n3/2
=
√
n

[
6Tn
n3
− u∗3(αc, hc)

]
,

so that we obtain the following decomposition:

√
6
Tn
n
− n2

6
m∆
n (α, h)

n
= Vn + n(u∗0

3(α, h)−m∆
n (α, h)), (α, h) ∈ (−2, αc)× R (79)

6
Tn
n
− n2

6
m∆
n (αc, hc)

n3/2
= Un +

√
n(u∗3(αc, hc)−m∆

n (αc, hc)). (80)

For convenience, we drop any subscript from u∗ in the following argument, since we treat both cases
(critical and non-critical) together. For all (α, h) ∈ (−2, αc] × R let Cε := {y ∈ [0, 1] : |y3 −
u∗3(α, h)| ≥ ε} where we assume 0 < ε < min{u∗3(α, h), 1− u∗3(α, h)}. We claim:

Pn;α,h

(
6Tn
n3
∈ Cε

)
≈ e−n

2 infx∈Cε Iα,h(x) (81)

where Iα,h(x) = 1
2
I(x)− α

6
x3− h

2
x+fα,h, and I(x) = x lnx+(1−x) ln(1−x). Note that we have

used the LDP of Rem. 4.4, exploiting the fact that whenever we work in replica symmetric regime, the
variational problem inf g̃∈C̃ε Iα,h(g̃) on the set C̃ε := {g̃ ∈ W̃ : |t(H2, g̃)−u∗3(α, h)| ≥ ε} reduces
to the scalar problem on the r.h.s. of (81) (indeed Iα,h coincides with Iα,h when it is computed on
constant graphons). Moreover, since (α, h) ∈ (−2, αc]×R, the function Iα,h is continuous, positive,

u∗ 1

fα,h

Cϵ

x

Iα,h(x)

Figure 3: Qualitative representation of Iα,h in Urs. The red interval corresponds to the set Cε defined below
(80).

and convex (see [35], Prop. 3.2); furthermore, it admits a unique zero at x = u∗ 6 (see Fig. 3 for a
qualitative representation Iα,h). As a consequence,

inf
x∈Cε

Iα,h(x) = Iα,h

(
3
√
u∗3 ± ε

)
= Iα,h

(
u∗ ± ε

3u∗2
+ o(ε2)

)
, (82)

where in last passage we used the assumption 0 < ε < min{u∗3(α, h), 1 − u∗3(α, h)}. Set
δ := ε

3u∗2
+ o(ε2); we determine which is the order of the functions Iα,h(u∗ ± δ) as δ goes to zero.

6In the following part of the text we omit the dependence on (α, h).
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We obtain:

Iα,h(u
∗ ± δ) = ±δ

2

[
ln

u∗

1− u∗ − α(u∗)2 − h
]

+
δ2

2

[
1

2u∗(1− u∗) − αu
∗
]

(83)

± δ3

2

[
2u∗ − 1

6(u∗)2(1− u∗)2
− α

3

]
+
δ4

24

3(u∗)2 − 3u∗ + 1

(u∗)3(1− u∗)3
+ o(δ4).

� If (α, h) ∈ (−2, αc)×R, then the first non-vanishing coefficient in (83) is the coefficient of the

second order term, which equals
I′′α,h(u∗)

2
, and it is strictly positive as Iα,h is strictly convex in

the parameter range we are considering. Therefore, we get

Iα,h(u
∗ ± δ) =

I ′′α,h(u
∗)

2
δ2 + o(δ2), (84)

and, as n→∞,

Pn;α,h (Vn ∈ dx) = Pn;α,h

(
6Tn
n3 ∈ u∗3 +

√
6

n
dx

)
(81)(82)≈ e

−n2Iα,h

(
3
√
u∗3+

√
6
n
x

)
dx

= e−
I′′α,h(u∗)x2

3u∗4
+o(x2)dy, (85)

where in the last equality we used (84) injecting ε =
√

6x
n

in the definition of δ. In (85) we rec-

ognize the density of a Gaussian random variable with variance 3u∗4

2I′′α,h(u∗)
. A direct computation

shows that I ′′α,h(u
∗) = 2c0 (where c0 is given in (42)), hence we recover the value (19) stated

in Thm. 3.7.

� If (α, h) = (αc, hc) =
(

27
8
, ln 2− 3

2

)
, since u∗ = u∗(αc, hc) = 2

3
, (83) reduces to

Iα,h(u
∗ ± δ) =

81

64
δ4 + o(δ4).

As n→ +∞, we find

Pn;αc,hc (Un ∈ dx) = Pn;αc,hc

(
6Tn
n3 ∈ u∗3 + dx√

n

)
(81)(82)≈ e

−n2Iαc,hc

(
3
√
u∗3+ x√

n

)
dx

= e−
38

214 x
4+o(x4)dx, (86)

where in the last equality we used (84) injecting ε = x√
n

in the definition of δ. In (86) we can

immediately recognize the same density ¯̀c stated in Thm. 3.8.

However, notice that the error terms appearing in (85)–(86) might be relevant, as well as the shift
terms in (79)–(80), similarly to what happens in [30, Thm. 1.4(c)] for the two-star model (indeed we
don’t have the equivalent of Cor. 3.10, which is valid instead for the mean-field model). However, we
believe that a subtle compensation among this two contributions produces the conjectured results. In
the next section, we show two simulations that support Conj. 6.2.

6.2 Simulations

We perform a discrete-time Glauber dynamics, namely an ergodic reversible Markov chain onAn with
stationary distribution Pn;α,h. A step of the Glauber dynamics can be described as follows:
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1. Uniformly sample ` ∈ En, and let x+ (resp. x−) be the adjacency matrix, with x+
` = 1

(resp. x−` = 0), that coincides with x for all elements except for x`. Let W` := {{i, j} :
i, j ∈ En, i ∼ j, {i, j, `} ∈ Tn ⇔ x` = 1} the set of two-stars insisting on the edge (or
non-edge) x`. Here, the symbol ∼ denotes that the two edges i and j are neighbors.

2. Given the current state represented by x ∈ An, the next state is obtained by performing the
transition x 7→ x+ (resp. x 7→ x−) with probability

pn(x, `) :=
eα
∑
{i,j}∈W`

xixj+h

1 + eα
∑
{i,j}∈W`

xixj+h
(resp. 1− pn(x, `) ) . (87)

The update probability (87) is given in [2, Lem. 3] (or equivalently [3], pag. 18). Moreover in [2, Thm. 5] it
has been proved that the mixing time of the Glauber dynamics is Θ(n2 ln(n)) whenever (α, h) ∈ U rs.

Figure 4: The picture displays a simulation of the distribution of
√

6
Tn
n
−n

2

6
m∆
n (α,h)

n obtained with n = 150,
M = 5000 samples, and parameters h = 1, α = ±1 (histogram), and the pdf of the Gaussian distribution
introduced in Conj. 6.2 (continuous line).

Pict. 4 shows a numerical simulation of the probability distribution of (78) obtained with n = 150
and M = 5000 samples, both for negative and positive values of α. The picture also displays the
Gaussian probability density function given in Conj. 6.2, showing that it approximates the histogram
with good accuracy, thus supporting the conjecture.

Remark 6.4. Note that, despite [2, Thm. 5] holds in U rs, which includes (αc, hc), when we perform
the Glauber dynamics at the critical point, the mixing time that we observe is not Θ(n2 ln(n)), as we
would expect. We believe that the proximity of the point to the critical curveMrs where the mixing
time is exponential (see [2, Thm. 6]), is responsible for this behavior. As a consequence, the incredibly
high computational cost prevented us from getting an equivalent simulation for supporting Conj. 6.3
and Conj. 6.1.
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