Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint

Gibbs measures for hardcore-SOS models on Cayley trees

Benedikt Jahne ${ }^{11}$, Utkir Rozikov ${ }^{2}$

submitted: April 17, 2024

1 Weierstrass Institute	2 V.I.Romanovskiy Institute of Mathematics
Mohrenstr. 39	9, Universitet str.
10117 Berlin	100174 Tashkent
and	and
Institut für Mathematische Stochastik	National University of Uzbekistan
Technische Universität Braunschweig	4, Universitet str.
Universitätsplatz 2	100174 Tashkent
38106 Braunschweig	Uzbekistan
Germany	E-Mail: rozikovu@yandex.ru
E-Mail: benedikt.jahnel@wias-berlin.de	

No. 3100
Berlin 2024

2020 Mathematics Subject Classification. 82B26, 60K35.
Key words and phrases. Cayley tree, p-SOS model, Gibbs measure, tree-indexed Markov chain.
B. Jahnel is supported by the Leibniz Association within the Leibniz Junior Research Group on Probabilistic Methods for Dynamic Communication Networks as part of the Leibniz Competition (grant no. J105/2020). U. Rozikov thanks the Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany for support of his visit. His work was partially supported through a grant from the IMU-CDC and the fundamental project (grant no. F-FA-2021-425) of The Ministry of Innovative Development of the Republic of Uzbekistan.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax:
E-Mail: +493020372-303

World Wide Web: preprint@wias-berlin.de

Gibbs measures for hardcore-SOS models on Cayley trees

Benedikt Jahnel, Utkir Rozikov

Abstract

We investigate the finite-state p-solid-on-solid model, for $p=\infty$, on Cayley trees of order $k \geq 2$ and establish a system of functional equations where each solution corresponds to a (splitting) Gibbs measure of the model. Our main result is that, for three states, $k=2,3$ and increasing coupling strength, the number of translation-invariant Gibbs measures behaves as $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$. This phase diagram is qualitatively similar to the one observed for three-state p-SOS models with $p>0$ and, in the case of $k=2$, we demonstrate that, on the level of the functional equations, the transition $p \rightarrow \infty$ is continuous.

1 Setting, models and functional equations

Statistical-mechanics models on trees are known to possess rich structural properties, see for example [5, 18] for general references. In the present note we contribute to this field by analyzing a hardcore model that emerges as a limit of the p-SOS model that was recently introduced in [3]. The setting for this ∞-SOS model is as follows.

Let $\Gamma^{k}=(V, L)$ be the uniform Cayley tree where each vertex has $k+1$ neighbors with V being the set of vertices and L the set of edges. Endpoints x, y of an edge $\ell=\langle x, y\rangle$ are called nearest neighbors. On the Cayley tree there is a natural distance, to be denoted $d(x, y)$, being the smallest number of nearest-neighbors pairs in a path between the vertices x and y, where a path is a sequence of nearest-neighbor pairs of vertices where two consecutive pairs share at least one vertex. For a fixed $x^{0} \in V$, the root, we let

$$
V_{n}=\left\{x \in V: d\left(x, x^{0}\right) \leq n\right\} \quad \text { and } \quad W_{n}=\left\{x \in V: d\left(x^{0}, x\right)=n\right\}
$$

denote the ball of radius n, respectively the sphere of radius n, both with center at x^{0}. Further, let $S(x)$ be the direct successors of x, i.e., for $x \in W_{n}$

$$
S(x)=\left\{y \in W_{n+1}: d(x, y)=1\right\}
$$

Next, we denote by $\Phi=\{0,1, \ldots, m\}$ the local state space, i.e., the space of values of the spins associated to each vertex of the tree. Then, a configuration on the Cayley tree is a collection $\sigma=$ $\{\sigma(x): x \in V\} \in \Phi^{V}=\Omega$.

Let us now describe hardcore interactions between spins of neighboring vertices. For this, let $G=$ (Φ, K) be a graph with vertex set Φ, the set of spin values, and edge set K. A configuration σ is called G-admissible on a Cayley tree if $\{\sigma(x), \sigma(y)\} \in K$ is an edge of G for any pair of nearest neighbors $\langle x, y\rangle \in L$. We let Ω^{G} denote the sets of G-admissible configurations. The restriction of a configuration on a subset A of V is denoted by σ_{A} and Ω_{A}^{G} denotes the set of all G-admissible
configurations on A. On a general level, we further define the matrix of activity on edges of G as a function

$$
\lambda:\{i, j\} \in K \rightarrow \lambda_{i, j} \in \mathbb{R}_{+},
$$

where \mathbb{R}_{+}denotes the positive real numbers and $\lambda_{i, j}$ is called the activity of the edge $\{i, j\} \in K$. In this note, we consider the graph G as shown in Figure 1. which is called a hinge-graph, see for example [2]. In words, in the hinge-graph G, configuration are admissible only if, for any pair of nearest-

Figure 1: The hinge-graph G with $m+1$ vertices.
neighbor vertices $\{x, y\}$, we have that

$$
\begin{equation*}
|\sigma(x)-\sigma(y)| \in\{0,1\} . \tag{1}
\end{equation*}
$$

Let us also note that our choice of admissibilities generalizes certain finite-state random homomorphism models, see [6, 11], where only configurations with $|\sigma(x)-\sigma(y)|=1$ are allowed.

Our main interest lies in the analysis of the set of splitting Gibbs measures (SGMs) defined on hingegraph addmissible configurations. Let us start by defining SGMs for general admissibility graphs G. Let

$$
z: x \mapsto z_{x}=\left(z_{0, x}, z_{1, x}, \ldots, z_{m, x}\right) \in \mathbb{R}_{+}^{m+1}
$$

be a vector-valued function on V. Then, given $n=1,2, \ldots$ and an activity $\lambda=\left(\lambda_{i, j}\right)_{\{i, j\} \in K}$, consider the probability distribution $\mu^{(n)}$ on $\Omega_{V_{n}}^{G}$, defined as

$$
\begin{equation*}
\mu^{(n)}\left(\sigma_{n}\right)=\frac{1}{Z_{n}} \prod_{\langle x, y\rangle \in V_{n}} \lambda_{\sigma_{n}(x), \sigma_{n}(y)} \prod_{x \in W_{n}} z_{\sigma(x), x}, \tag{2}
\end{equation*}
$$

where $\sigma_{n}=\sigma_{V_{n}}$. Here Z_{n} is the partition function

$$
Z_{n}=\sum_{\widetilde{\sigma}_{n} \in \Omega_{V_{n}}^{G}} \prod_{\langle x, y\rangle \in V_{n}} \lambda_{\widetilde{\sigma}_{n}(x), \widetilde{\sigma}_{n}(y)} \prod_{x \in W_{n}} z_{\widetilde{\sigma}(x), x} .
$$

The sequence of probability distributions $\left(\mu^{(n)}\right)_{n \geq 1}$ is called compatible if, for all $n \geq 1$ and σ_{n-1}, we have that

$$
\begin{equation*}
\sum_{\omega_{n} \in \Omega_{W_{n}}^{G}} \mu^{(n)}\left(\sigma_{n-1} \vee \omega_{n}\right) \mathbf{1}\left\{\sigma_{n-1} \vee \omega_{n} \in \Omega_{V_{n}}^{G}\right\}=\mu^{(n-1)}\left(\sigma_{n-1}\right), \tag{3}
\end{equation*}
$$

where $\sigma_{n-1} \vee \omega_{n}$ is the concatenation of the configurations σ_{n-1} and ω_{n}. Note that, by Kolmogorov's extension theorem, for a compatible sequence of distributions, there exists a unique measure μ on Ω^{G} such that, for all n and $\sigma_{n} \in \Omega_{V_{n}}^{G}$,

$$
\mu\left(\left\{\left.\sigma\right|_{V_{n}}=\sigma_{n}\right\}\right)=\mu^{(n)}\left(\sigma_{n}\right) .
$$

This motivates the following definition.

Definition 1. We call the measure μ, defined by (2) and (3), the splitting Gibbs measure corresponding to the activity λ and the function $z: x \in V \backslash\left\{x^{0}\right\} \mapsto z_{x}$.

Let $A=A^{G}=\left(a_{i j}\right)_{\{i, j\} \in K}$ denote the adjacency matrix of G, i.e.,

$$
a_{i j}=a_{i j}^{G}= \begin{cases}1, & \text { if }\{i, j\} \in K \\ 0, & \text { if }\{i, j\} \notin K\end{cases}
$$

then, the following statement describes conditions on z_{x} guaranteeing compatibility of the distributions $\left(\mu^{(n)}\right)_{n \geq 1}$.

Theorem 1. The sequence of probability distributions $\left(\mu^{(n)}\right)_{n \geq 1}$ in (2) are compatible if and only if, for any $x \in V$, the following system of equations holds

$$
\begin{equation*}
z_{i, x}=\prod_{y \in S(x)} \frac{\sum_{j=0}^{m-1} a_{i j} \lambda_{i, j} z_{j, y}+a_{i m} \lambda_{i, m}}{\sum_{j=0}^{m-1} a_{m j} \lambda_{m, j} z_{j, y}+a_{m m} \lambda_{m, m}}, i=0,1, \ldots, m-1 \tag{4}
\end{equation*}
$$

Proof. The proof is similar to the proof of [17, Theorem 1] and [16, Proposition 2.1].

Note that, in (4), the normalization is at the spin state m, i.e., we assume that, for all $x \in V$, we have $z_{m, x}=1$.

In the remainder of the manuscript, we restrict our choice of activities in order to make contact to p-SOS models defined via the formal Hamiltonian

$$
\begin{equation*}
H(\sigma)=-J \sum_{\langle x, y\rangle}|\sigma(x)-\sigma(y)|^{p} \tag{5}
\end{equation*}
$$

for $p>0$ and coupling constant $J \in \mathbb{R}$, see [3, 5, 18, 19] and references therein. The present note then presents a continuation of previous investigations related to p-SOS models on trees with $p>0$, but now in the case where $p=\infty$. More precisely, we denote $\theta=\exp (J)$ and consider the activity $\lambda=\left(\lambda_{i, j}\right)_{\{i, j\} \in K}$ defined as

$$
\lambda_{i, j}= \begin{cases}1, & \text { if } i=j \tag{6}\\ \theta, & \text { if }|i-j|=1 \\ \infty, & \text { otherwise }\end{cases}
$$

We call the resulting hinge-graph model (with hinge-graph as in Figure 1) the ∞-SOS model. Consequently, for the ∞-SOS model with activity (6), the equation (4) reduces to

$$
\begin{align*}
& z_{0, x}=\prod_{y \in S(x)} \frac{z_{0, y}+\theta z_{1, y}}{\theta z_{m-1, y}+1} \\
& z_{i, x}=\prod_{y \in S(x)} \frac{\theta z_{i-1, y}+z_{i, y}+\theta z_{i+1, y}}{\theta z_{m-1, y}+1}, i=1, \ldots, m-1 \tag{7}\\
& z_{m, x}=1
\end{align*}
$$

and, by Theorem 1, for any $z=\left\{z_{x}: x \in V\right\}$ satisfying (7), there exists a unique SGM μ for the ∞ SOS. However, the analysis of solutions to (7) for an arbitrary m is challenging. We therefore restrict our attention to a smaller class of measures, namely the translation-invariant SGMs.

2 Translation-invariant SGMs for the ∞-SOS model with $m=2$

Searching only for translation-invariant measures, the functional equation (7) reduces to

$$
\begin{align*}
& z_{0}=\left(\frac{z_{0}+\theta z_{1}}{\theta z_{m-1}+1}\right)^{k} \\
& z_{i}=\left(\frac{\theta z_{i-1}+z_{i}+\theta z_{i+1}}{\theta z_{m-1}+1}\right)^{k}, \quad i=1, \ldots, m-1 \tag{8}\\
& z_{m}=1
\end{align*}
$$

In the following we restrict our attention to the case where $m=2$. In this case, denoting $x=\sqrt[k]{z_{0}}$ and $y=\sqrt[k]{z_{1}}$, from (8) we get

$$
\begin{equation*}
x=\frac{x^{k}+\theta y^{k}}{\theta y^{k}+1} \quad \text { and } \quad y=\frac{\theta x^{k}+y^{k}+\theta}{\theta y^{k}+1} \tag{9}
\end{equation*}
$$

In particular, considering only the first equation of this system, we find the solutions $x=1$ and

$$
\begin{equation*}
\theta y^{k}=x^{k-1}+x^{k-2}+\cdots+x \tag{10}
\end{equation*}
$$

We start by investigating the case $x=1$.

2.1 Case $x=1$

In this case, from the second equation in (9), we get that

$$
\begin{equation*}
\theta y^{k+1}-y^{k}+y-2 \theta=0 \tag{11}
\end{equation*}
$$

and hence, as a direct application of Descartes' rule of signs, the following statement follows.
Lemma 1. For all $k \geq 2$, there exist at most three positive roots for 11 .

For small values of k, i.e., $k=2,3$, we can solve 11) explicitly and exhibit regions of θ where there are exactly three solutions.

2.1.1 Case $k=2$

In this case, the equation (11) coincides with the corresponding equation for $p=\infty$ found in [7]. The solutions are presented in Section 3 below.

2.1.2 Case $k=3$

In this case, we can rearrange 11) as

$$
\theta=\frac{y^{3}-y}{y^{4}-2}=: \alpha(y)
$$

where we assumed $y \neq \sqrt[4]{2}$ since $y=\sqrt[4]{2}$ is not a solution. It follows from Figure 2 that up to three solutions y for 11 appear as follows. There exists $\theta_{c} \approx 0.206$ such that we have:

Figure 2: Graph of the function $\alpha(y)$.

1) If $\theta \in\left(0, \theta_{c}\right)$, then there are three solutions $y_{1}>\sqrt[4]{2}$ and $y_{2}<y_{3}<1$.
2) If $\theta=\theta_{c}$, then there are two solutions $y_{1}>\sqrt[4]{2}$ and $y_{2}<1$.
3) If $\theta>\theta_{c}$, then there is a unique solution $y_{1}>\sqrt[4]{2}$.

We can derive the value of θ_{c} explicitly as follows. The equation $\alpha^{\prime}(y)=0$ can be solved explicitly as

$$
y_{0}=\sqrt{1-c+1 / c} \approx 0.635, \text { with } c=\sqrt[3]{1+\sqrt{2}}
$$

Since $y_{0} \in(0,1)$, the critical value θ_{c} is thus given by

$$
\begin{equation*}
\theta_{c}=\alpha\left(y_{0}\right)=\frac{(1-c) \sqrt{c\left(1+c-c^{2}\right)}}{c^{4}-3 c^{2}+2 c-2 \sqrt{2}-1} . \tag{12}
\end{equation*}
$$

2.2 Case $x \neq 1$

Let us consider the second situation as presented in (9).

2.2.1 Case $k=2$

In this case, using (10) and the second equation in (9), we get

$$
\begin{equation*}
\theta^{4} x^{4}+\left(2 \theta^{2}-\theta\right) x^{3}+\left(2 \theta^{4}-2 \theta+1\right) x^{2}+\left(2 \theta^{2}-\theta\right) x+\theta^{4}=0 \tag{13}
\end{equation*}
$$

which is a polynomial with symmetric coefficients and hence, denoting $\xi=x+1 / x$, 13 can be rewritten as

$$
\theta^{4}\left(\xi^{2}-2\right)+\left(2 \theta^{2}-\theta\right) \xi+\left(2 \theta^{4}-2 \theta+1\right)=0
$$

which is equivalent to

$$
\begin{equation*}
\theta^{4} \xi^{2}+\left(2 \theta^{2}-\theta\right) \xi+1-2 \theta=0 \tag{14}
\end{equation*}
$$

But, this equation has two solutions $\xi_{1,2}$ given in (28) below and thus we have up to four additional solutions. Again, this case coincides with the corresponding equation for $p=\infty$ found in [7] and the overview of solutions is presented in Section 3 below.

2.2.2 Case $k=3$

In this case, by (10) and the second equation in (9) we obtain

$$
\begin{align*}
\theta^{6} x^{8}+\left(-\theta^{6}+3 \theta^{4}-\theta^{2}\right) x^{7}+ & \theta^{6} x^{6}+\left(2 \theta^{6}-3 \theta^{2}+1\right) x^{5}+\left(-2 \theta^{6}+6 \theta^{4}-7 \theta^{2}+2\right) x^{4} \\
& +\left(2 \theta^{6}-3 \theta^{2}+1\right) x^{3}+\theta^{6} x^{2}+\left(-\theta^{6}+3 \theta^{4}-\theta^{2}\right) x+\theta^{6}=0 \tag{15}
\end{align*}
$$

and this equation may have up to eight positive solutions since, if $\theta<\theta_{c}^{\prime \prime} \approx 0.605$, the number of sign changes in the coefficients is eight. However, by computer analysis we can show that there exists $\widehat{\theta}_{c} \approx 0.4812$ such that, if $\theta<\widehat{\theta}_{c}$, then 15 has precisely four positive solutions, if $\theta=\widehat{\theta}_{c}$, then there are precisely two solutions and, if $\theta>\theta_{c}$, then there exists no positive solution (see Figure 3 for an implicit plot). For example, if $\theta=0.481$, then the four positive solutions are given approximately by
$0.2072006567,0.2260627940,4.423549680$, and 4.826239530 .

Figure 3: The implicit plot of 15 . Left: For $\theta \in\left(0, \widehat{\theta}_{c}\right)$, there are two solutions in $(0,0.2927)$. Right: For the same region of θ there are two fixed points in $(3.41, \infty)$ since both curves towards the right side converge to zero.

Let us provide an analytical proof of this as well. Since 15 is symmetric, we divide both sides by x^{4} and denote $\eta=x+1 / x$. Then, we arrive at
$\theta^{6}\left(\left(\eta^{2}-2\right)^{2}-2\right)+\left(-\theta^{6}+3 \theta^{4}-\theta^{2}\right) \eta\left(\eta^{2}-3\right)+\theta^{6}\left(\eta^{2}-2\right)+\left(2 \theta^{6}-3 \theta^{2}+1\right) \eta-2 \theta^{6}+6 \theta^{4}-7 \theta^{2}+2=0$
and consequently

$$
\begin{equation*}
\theta^{6} \eta^{4}+\left(-\theta^{6}+3 \theta^{4}-\theta^{2}\right) \eta^{3}-3 \theta^{6} \eta^{2}+\left(5 \theta^{6}-9 \theta^{4}+1\right) \eta-2 \theta^{6}+6 \theta^{4}-7 \theta^{2}+2=0 . \tag{16}
\end{equation*}
$$

Thus, each solution $\eta>2$ of 16 defines two positive solutions to 15. Denoting $t=\theta^{2}$, we write 16) as the following cubic equation with respect to t,

$$
\left(\eta^{4}-\eta^{3}-3 \eta^{2}+5 \eta-2\right) t^{3}+\left(3 \eta^{3}-9 \eta+6\right) t^{2}+\left(-\eta^{3}-7\right) t+\eta+2=0
$$

which is equivalent to

$$
\begin{equation*}
(\eta-1)^{3}(\eta+2) t^{3}+3(\eta-1)^{2}(\eta+2) t^{2}-\left(\eta^{3}+7\right) t+\eta+2=0 \tag{17}
\end{equation*}
$$

Now, again by the rule of sign changes, for each $\eta>2$, this equation may have up to two positive solution $t=\theta^{2}=t(\eta)$. For $\eta>2$ let us introduce the new variables

$$
\begin{equation*}
w=(\eta-1) t>0 \quad \text { and } \quad E=\frac{\eta^{3}+7}{(\eta-1)(\eta+2)}=: b(\eta) \tag{18}
\end{equation*}
$$

With this, 17 can be expressed as

$$
\begin{equation*}
w^{3}+3 w^{2}-E w+1=0 \tag{19}
\end{equation*}
$$

and we can solve the last equation with respect to E, which leads to

$$
E=w^{2}+3 w+1 / w=: a(w)
$$

Note that the function $a(w)$ is monotone decreasing between 0 and $1 / 2$ (because $a^{\prime}(w)=0$ has a unique positive solution $w=1 / 2$ and $a(0)=a(+\infty)=\infty$) and increasing when $w>1 / 2$. Thus, the minimal value of E is given by $a(1 / 2)=15 / 4$ and hence, for each $E>15 / 4$, there are exactly two positive solutions $w_{1}=w_{1}(E)$ and $w_{2}=w_{2}(E)$, with $w_{1}<w_{2}$. If $E=15 / 4$, then there exists a unique $w_{c}=1 / 2$. If $E<15 / 4$, then there is no solution, see Figure 4 . From Figure 4 it is also

Figure 4: The graph of the function $E=a(w)$.
easy to see that $w_{1}(E)$ is a decreasing function with values in $(0,1 / 2]$ and $w_{2}(E)$ is an increasing function with values in $[1 / 2, \infty)$ with respect to the variable $E>15 / 4$. Moreover,

$$
\lim _{E \rightarrow \infty} w_{1}(E)=0 \quad \text { and } \quad \lim _{E \rightarrow \infty} w_{2}(E)=\infty
$$

and from the function $b(\eta)$ given in (18), for $E=15 / 4$, we get that

$$
\eta_{c}=(7+3 \sqrt{57}) / 8 \approx 3.707
$$

Note that, for the derivative of $\eta \mapsto b(\eta)$, we have

$$
b^{\prime}(\eta)=\frac{(\eta+1)^{2}\left(\eta^{2}-7\right)}{(\eta-1)^{2}(\eta+2)^{2}}
$$

Consequently, $b(\eta)$ is increasing for $\eta>\sqrt{7} \approx 2.65$ with a minimum value $b(\sqrt{7})=21 /(1+$ $2 \sqrt{7}) \approx 3.34$. For each $E \geq 15 / 4$, since $b(\eta)$ is an increasing function, from $E=b(\eta)$ one obtains a unique $\eta \geq \eta_{c}$. As a consequence, $w_{1}(b(\eta))$ is a decreasing and $w_{2}(b(\eta))$ is an increasing functions of $\eta>\eta_{c}$. Thus, η is a solution to the following two independent equations, obtained from the first formula of (18),

$$
\begin{align*}
& w_{1}(b(\eta))=(\eta-1) \theta^{2} . \tag{20}\\
& w_{2}(b(\eta))=(\eta-1) \theta^{2} . \tag{21}
\end{align*}
$$

Denoting by $\tilde{\theta}$ the positive solution of the equation

$$
1 / 2=\left(\eta_{c}-1\right) \tilde{\theta}^{2}
$$

see 18, we have

$$
\tilde{\theta}=\frac{2}{\sqrt{3 \sqrt{57}-1}} \approx 0.4298
$$

Then, as can be seen in Figure 5 , the following assertions hold.
i. If $\theta \in(0, \tilde{\theta})$, then (20) and 21) have a unique solution $\eta>2$.
ii. If $\theta \in\left[\tilde{\theta}, \widehat{\theta}_{c}\right.$), then (20] has no solution, but (21] has two solutions greater than 2 .
iii. If $\theta=\widehat{\theta}_{c}$, then (20) has no solution, but (21) has a unique solution.
iv. If $\theta>\widehat{\theta}_{c}$, then both equations have no solution.

Consequently, under the above mentioned Conditions i.-ii., (16) has two solutions greater then 2 , which define four positive solutions for (15).
Remark 1. To find the exact critical value $\widehat{\theta}_{c}$ mentioned above, one has to solve the following system of equation with respect to unknowns $\widehat{\theta}_{c}$ and η_{1}

$$
w_{2}^{\prime}\left(b\left(\eta_{1}\right)\right) b^{\prime}\left(\eta_{1}\right)=\widehat{\theta}_{c}^{2} \quad \text { and } \quad w_{2}\left(b\left(\eta_{1}\right)\right)=\left(\eta_{1}-1\right) \widehat{\theta}_{c}^{2} .
$$

With respect to Theorem 1, we can summarize our results for $k=3$ in the following statement.
Theorem 2. For the ∞-SOS model with $m=2$ and $k=3$, there exist critical values $\theta_{c} \approx 0.206$ (given explicitly by (12)) and $\widehat{\theta}_{c} \approx 0.4812$ such that

1. If $\theta>\widehat{\theta}_{c}$, then there is unique translation-invariant $S G M$.
2. If $\theta=\widehat{\theta}_{c}$, then there are three translation-invariant $S G M$ s.
3. If $\theta \in\left(\theta_{c}, \widehat{\theta}_{c}\right)$, then there are five translation-invariant SGMs.
4. If $\theta=\theta_{c}$, then there are six translation-invariant SGMs.
5. If $\theta \in\left(0, \theta_{c}\right)$, then there are seven translation-invariant $S G M s$.

Figure 5: Up-left: The graphs of $\eta \mapsto(\eta-1) \widehat{\theta}_{c}^{2}$ (red), $\eta \mapsto w_{2}(b(\eta))$ (blue) and $\eta \mapsto w_{1}(b(\eta))$ (black). Up-right: The graphs of $\eta \mapsto(\eta-1) 0.22$ (red), $\eta \mapsto w_{2}(b(\eta))$ (blue) and $\eta \mapsto w_{1}(b(\eta))$ (black). Down: The graphs of $\eta \mapsto(\eta-1) 0.15$ (red), $\eta \mapsto w_{2}(b(\eta))$ (blue) and $w_{1}(b(\eta))$ (black).

3 The p-SOS model with $p \rightarrow \infty$

In this section we exhibit the functional equations corresponding to the p-SOS model defined by the Hamiltonian (5) and give results related to the case when $p \rightarrow \infty$. The limiting equations turn out to be the same equations as the ones for the ∞-SOS model. Assuming $k=m=2$, [7] establishes and analyzes the translation-invariant SGMs of the p-SOS model corresponding to the positive solutions of the following system

$$
\begin{align*}
& x=\frac{x^{2}+\theta y^{2}+\theta^{2^{p}}}{\theta^{2^{p}} x^{2}+\theta y^{2}+1} \tag{22}\\
& y=\frac{\theta x^{2}+y^{2}+\theta}{\theta^{2 p} x^{2}+\theta y^{2}+1} \tag{23}
\end{align*}
$$

In the following, we establish limits for the obtained solutions when $p \rightarrow \infty$. First, from 22 we get $x=1$ or

$$
\begin{equation*}
\theta y^{2}=\left(1-\theta^{2^{p}}\right) x-\theta^{2^{p}}\left(x^{2}+1\right) \tag{24}
\end{equation*}
$$

Remark 2. Since $x>0$ we have that (24) can hold iff $\theta<1$.

3.1 Case $0<\theta<1$.

Let us distinguish two subcases.

3.1.1 Case $x=1$

Solving by computer the cubic equation

$$
\begin{equation*}
\theta y^{3}-y^{2}+\left(\theta^{2^{p}}+1\right) y-2 \theta=0 \tag{25}
\end{equation*}
$$

and taking limits of each solution as $p \rightarrow \infty$, we see that the solutions have the limits $y_{i}(\theta), i=$ $1,2,3$. The limiting functions have lengthy formulas, but their graphs can be simply plotted as shown in Figure 6. Moreover, the critical value of θ for existence of more than one solution is obtained from the discriminant of the cubic equation as $p \rightarrow \infty$, i.e.,

$$
\Delta_{0}(\theta)=\frac{1}{27 \theta^{2}}\left(4(1-3 \theta)^{3}-\left(2-9 \theta+54 \theta^{3}\right)^{2}\right)=0
$$

Hence, by Figure 6 it is clear that there exists a unique $\theta_{0} \approx 0.135$ such that $\Delta_{0}\left(\theta_{0}\right)=0$.

3.1.2 Case $x \neq 1$

In this case, there are up to four solutions when $p>0$ is fixed. These solutions are defined by the quantities $\xi_{1}(\theta, p)<\xi_{2}(\theta, p)$ given by

$$
\begin{equation*}
\xi_{1,2}(\theta, p):=\frac{q}{2} \frac{-3 \theta q^{2}+2(\theta+1) q+2\left(\theta^{2}-1\right) \mp \theta \sqrt{q(q+2 \theta-2)\left[(q-\theta-1)^{2}+(\theta+1)(3 \theta-1)\right]}}{(q-\theta-1)\left[\theta q^{2}+\left(\theta^{2}-1\right)(q+\theta-1)\right]} \tag{26}
\end{equation*}
$$

where $q=1-\theta^{2^{p}}$, see [7]. Moreover, if

$$
\begin{equation*}
2<\xi_{1}(\theta, p) \leq \xi_{2}(\theta, p) \tag{27}
\end{equation*}
$$

one can find all four positive solutions $x_{i}=x_{i}(\theta, p), i=4,5,6,7$ explicitly. In this case, as $p \rightarrow \infty$, we check the Condition 27. From 26 we get

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \xi_{1,2}(\theta, p)=\xi_{1,2}(\theta):=\frac{1}{2 \theta^{3}} \cdot\left(1-2 \theta \mp \sqrt{(2 \theta-1)\left(4 \theta^{2}+2 \theta-1\right)}\right) \tag{28}
\end{equation*}
$$

and these numbers exist iff

$$
(2 \theta-1)\left(4 \theta^{2}+2 \theta-1\right) \geq 0 \Leftrightarrow \theta \in(0,(\sqrt{5}-1) / 4] \cup[1 / 2,1)
$$

Thus, Condition 27] is satisfied iff $\theta \in(0,(\sqrt{5}-1) / 4]$ (see Figure 7). Now using [28), for $\theta \in$ $(0,(\sqrt{5}-1) / 4))$, we obtain $x_{i}(\theta), i=4,5,6,7$. Since the last x_{i} 's exist, we get

$$
y_{i}(\theta)=\sqrt{x_{i}(\theta) / \theta}, \quad i=4,5,6,7
$$

Figure 6: Left: The graphs of the functions $\theta \mapsto y_{1}(\theta)$ (gray), $\theta \mapsto y_{2}(\theta)$ (blue) and $\theta \mapsto y_{3}(\theta)$ (orange). Right: The graph of the function $\theta \mapsto \Delta_{0}(\theta)$ for $\theta \in(0,1)$.

Figure 7: Left: The graphs of the functions $\theta \mapsto \xi_{1}(\theta)$ (blue) and $\theta \mapsto \xi_{2}(\theta)$ (black) for $\theta \in(0,(\sqrt{5}-$ 1)/4]. Right: The same graphs for $\theta \in\left[\frac{1}{2}, 1\right)$.

3.2 Case $\theta>1$

In this case, assuming $x=1$, from (25) we get a unique solution for large p, which has a limit as $p \rightarrow \infty$. If $\theta>1$ and $x \neq 1$ then the statement of Remark 2 is satisfied for any $p>0$ and therefore there is no solution. We summarize the results of this section in the following statement which essentially says that the number of translation-invariant SGMs remains unchanged in the limiting model as $p \rightarrow \infty$.

Proposition 1. For the p-SOS model, as $p \rightarrow \infty$, there exist critical values $\theta_{0} \approx 0.135$ and $\theta_{0}^{\prime}=$ $(\sqrt{5}-1) / 4 \approx 0.309$ such that

1. If $\theta>\theta_{0}^{\prime}$, then there is a unique translation-invariant $S G M$.
2. If $\theta=\theta_{0}^{\prime}$, then there are three translation-invariant $S G M$ s.
3. If $\theta \in\left(\theta_{0}, \theta_{0}^{\prime}\right)$, then there are five translation-invariant $S G M s$.
4. If $\theta=\theta_{0}$, then there are six translation-invariant $S G M$ s.
5. If $\theta \in\left(0, \theta_{0}\right)$, then there are seven translation-invariant SGMs.

4 Conditions for non-extremality of translation-invariant SGMs

It is known that a translation-invariant SGM corresponding to a vector $v=(x, y) \in \mathbb{R}^{2}$ (which is a solution to (9) is a tree-indexed Markov chain with states $\{0,1,2\}$, see [5] Definition 12.2], and for the transition matrix

$$
\mathbb{P}=\left(\begin{array}{ccc}
\frac{x^{k}}{x^{k}+\theta y^{k}} & \frac{\theta y^{k}}{x^{k}+\theta y^{k}} & 0 \tag{29}\\
\frac{\theta x^{k}}{\theta x^{k}+y^{k}+\theta} & \frac{y^{k}}{\theta x^{k}+y^{k}+\theta} & \frac{\theta}{\theta x^{k}+y^{k}+\theta} \\
0 & \frac{\theta y^{k}}{\theta y^{k}+1} & \frac{1}{\theta y^{k}+1}
\end{array}\right) .
$$

Hence, for each given solution $\left(x_{i}, y_{i}\right), i=1, \ldots, 7$ of (9), we need to calculate the eigenvalues of \mathbb{P}. The first eigenvalue is one since we deal with a stochastic matrix, the other two eigenvalues

$$
\begin{equation*}
\lambda_{j}\left(x_{i}, y_{i}, \theta, k\right), \quad j=1,2 \tag{30}
\end{equation*}
$$

can be found via symbolic computer analysis, but they have bulky formulas. For example, in the case $x=1$, for each y the matrix 29 has three eigenvalues, 1 and

$$
\lambda_{1}(1, y, \theta, k)=\frac{\left(1-2 \theta^{2}\right) y^{k}}{\theta y^{2 k}+\left(2 \theta^{2}+1\right) y^{k}+2 \theta} \quad \text { and } \quad \lambda_{2}(1, y, \theta, k)=\frac{1}{\theta y^{k}+1}
$$

However, we can still deduce the following relation.
Lemma 2. If $\theta \in(0,1)$, then, for any solution y of 11 , we have that

$$
\left|\lambda_{1}(1, y, \theta, k)\right| \leq \lambda_{2}(1, y, \theta, k)
$$

Proof. Since $\lambda_{2}>0$, we have to show that

$$
\begin{equation*}
-\lambda_{2}(1, y, \theta, k) \leq \lambda_{1}(1, y, \theta, k) \leq \lambda_{2}(1, y, \theta, k) \tag{31}
\end{equation*}
$$

It is easy to see that the inequality on the left is true for θ satisfying $1-2 \theta^{2} \geq 0$. If $1-2 \theta^{2}<0$ then the inequality on the left is equivalent to

$$
\theta\left(1-\theta^{2}\right) y^{2 k}+y^{k}+\theta \geq 0
$$

which is true for all $\theta<1$. Next, the inequality on the right of 31 is equivalent to the inequality

$$
\left(\theta y^{k}+1\right)^{2} \geq 0
$$

which is universally true, concluding the proof.

Now, a sufficient condition for non-extremality of a Gibbs measure μ corresponding to \mathbb{P} on a Cayley tree of order $k \geq 1$ is given by the Kesten-Stigum Condition $k \lambda^{2}>1$, where λ is the second-largest (in absolute value) eigenvalue of \mathbb{P}, see [8]. Hence, denoting for $i=1, \ldots, 7$,

$$
\eta_{i}(\theta, k)=k \lambda_{2}^{2}\left(x_{i}, y_{i}, \theta, k\right)-1 \quad \text { and } \quad \mathbb{K}_{i}=\left\{(\theta, k) \in(0,1) \times \mathbb{N}: \eta_{i}(\theta, k)>0\right\}
$$

using Lemma 2, we have the following criterion.
Proposition 2. Let μ_{i} denote the translation-invariant SGM associated to the tuple $\left(x_{i}, y_{i}, \theta, k\right)$. If $(\theta, k) \in \mathbb{K}_{i}$ then μ_{i} is non-extremal.

In order to employ the proposition, for $k=2$ and $k=3$, we find representations for \mathbb{K}_{i}. In case $k=2$ and $x_{i}=1$, we have for $i=1,2,3$ that $\lambda_{2}\left(1, y_{i}, \theta, 2\right)=1 /\left(\theta y_{i}^{2}+1\right)$ and thus

$$
\eta_{i}(\theta, 2)=\frac{2}{\left(\theta y_{i}^{2}+1\right)^{2}}-1
$$

Hence, from Figure 8 it follows that, for μ_{1}, the Kesten-Stigum condition is never satisfied, but for μ_{2}

Figure 8: Left: The graph of the function $\eta_{1}(\theta, 2), \theta \in(0,1)$. Right: The graphs of the functions $\eta_{2}(\theta, 2)$ (solid line) and $\eta_{3}(\theta, 2)$ (doted line) when $\theta \in(0,0.14)$.
and μ_{3} the condition is always satisfied, i.e., μ_{2} and μ_{3} are not-extreme.
In case $k=3$ and $x_{i}=1$, we have for $i=1,2,3$, using $\lambda_{2}\left(1, y_{i}, \theta, 3\right)=1 /\left(\theta y_{i}^{3}+1\right)$, that

$$
\eta_{i}(\theta, 3)=\frac{3}{\left(\theta y_{i}^{3}+1\right)^{2}}-1
$$

But, as shown in Section 2.1.2, if $\theta<\theta_{c} \approx 0.206$, there exist two solutions $y_{2}, y_{3}<1$. For these solutions we have

$$
\eta_{i}(\theta, 3)=\frac{3}{\left(\theta y_{i}^{3}+1\right)^{2}}-1>\frac{3}{(\theta+1)^{2}}-1
$$

But, since $\theta<\theta_{c}$, we have that $3 /(\theta+1)^{2}-1>0$ and we can formulate the following summarizing result.

Proposition 3. For $\theta<1, k=2$ and $k=3$ the translation-invariant SGMs corresponding to solutions of the form $(1, y)$ with $y<1$ are not-extreme.

Let us note that for $k=3$ and $x_{i}=1$ the translation-invariant SGM corresponding to the solution $y_{1}>\sqrt[4]{2}$ does not satisfy the Kesten-Stigum condition if $\theta>(\sqrt{3}-1) / \sqrt[4]{8} \approx 0.435$. Indeed, using $y_{1}>\sqrt[4]{2}$ we get

$$
\eta_{i}(\theta, 3)=\frac{3}{\left(\theta y_{1}^{3}+1\right)^{2}}-1<\frac{3}{(\theta \sqrt[4]{8}+1)^{2}}-1<0 \Leftrightarrow \theta>\frac{\sqrt{3}-1}{\sqrt[4]{8}}
$$

Remark 3. Let us finally discuss further extremality conditions for translation-invariant SGMs. Various approaches in the literature aim to establish sufficient conditions for extremality, which can be simplified to a finite-dimensional optimization problem based solely on the transition matrix. For instance, the percolation method proposed in [13] and [14], the symmetric-entropy method by [4], or the bound provided in [12] for the Ising model in the presence of an external field. Different techniques are employed also in [1] in order to demonstrate the sharpness of the Kesten-Stigum bound for an Ising channel with minimal asymmetry.

However, since, in our case, the transition matrix corresponding to a translation-invariant SGM depends on the solutions (x_{i}, y_{i}), which have a very complex form, it appears challenging to apply the aforementioned methods to verify extremality. Furthermore, the difficulty increases when we only have knowledge of the existence of a solution but lack its explicit form. Nonetheless, our results could serve as a basis for numerical investigations of extremality in the future.

References

[1] C. Borgs, J. Chayes, E. Mossel, S. Roch, The Kesten-Stigum reconstruction bound is tight for roughly symmetric binary channels, FOCS, 2006, 47th Annual IEEE Conference on Foundations of Computer Science, 518-530. Preprint arXiv:math/0604366v1.
[2] G.R. Brightwell, P. Winkler, Graph homomorphisms and phase transitions, J. Combin. Theory Ser. B 77(2) (1999), 221-262.
[3] L. Coquille, C. Külske, A. Le Ny, Extremal inhomogeneous Gibbs states for SOS-models and finite-spin models on trees, J. Stat. Phys. 190 (2023), 71-97.
[4] M. Formentin, C. Külske, A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton-Watson trees. Electron. Commun. Probab. 14 (2009), 587-596.
[5] H.-O. Georgii, Gibbs Measures and Phase Transitions, Second edition. de Gruyter Studies in Mathematics, 9. Walter de Gruyter, Berlin, 2011.
[6] B. Jahnel, C. Külske, U.A. Rozikov, Gradient Gibbs measures for the random homomorphism model on Cayley trees. In preparation.
[7] B. Jahnel, U.A. Rozikov, Three-state p-SOS models on binary Cayley trees. arXiv:2402.09839
[8] H. Kesten, B.P. Stigum, Additional limit theorem for indecomposable multi-dimensional GaltonWatson processes, Ann. Math. Statist. 37 (1966), 1463-1481.
[9] C. Külske, U.A. Rozikov, Extremality of translation-invariant phases for a three-state SOS-model on the binary tree, J. Stat. Phys. 160(3) (2015), 659-680.
[10] C. Külske, U.A. Rozikov, Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree, Random Struct. Algorithms. 50(4) (2017), 636-678.
[11] P. Lammers, F. Toninelli: Height function localisation on trees, Comb. Probab, 33(1) (2024), 5064.
[12] J.B. Martin, Reconstruction thresholds on regular trees. Discrete random walks (Paris, 2003), 191-204 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003.
[13] F. Martinelli, A. Sinclair, D. Weitz, Fast mixing for independent sets, coloring and other models on trees, Random Struct. Algorithms, 31 (2007), 134-172.
[14] E. Mossel, Y. Peres, Information flow on trees, Ann. Appl. Probab. 13(3) (2003), 817-844.
[15] E. Mossel, Survey: Information flow on trees, Graphs, Morphisms and Statistical Physics, 155170, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 63, Amer. Math. Soc., Providence, RI, 2004.
[16] U.A. Rozikov, Y.M. Suhov, Gibbs measures for SOS model on a Cayley tree, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(3) (2006), 471-488.
[17] U.A. Rozikov, Sh.A. Shoyusupov, Fertile three state HC models on Cayley tree, Theor. Math. Phys. 156(3) (2008), 1319-1330.
[18] U.A. Rozikov, Gibbs Measures on Cayley Trees, World Sci. Publ. Singapore. 2013.
[19] U.A. Rozikov, Gibbs Measures in Biology and Physics: The Potts model, World Sci. Publ. Singapore. 2022.

