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Polynomial Volterra processes

Eduardo Abi Jaber, Christa Cuchiero, Luca Pelizzari, Sergio Pulido, Sara Svaluto-Ferro

Abstract

We study the class of continuous polynomial Volterra processes, which we define as solutions to stochas-
tic Volterra equations driven by a continuous semimartingale with affine drift and quadratic diffusion matrix
in the state of the Volterra pro- cess. To demonstrate the versatility of possible state spaces within our
framework, we construct polynomial Volterra processes on the unit ball. This construction is based on a
stochastic invariance principle for stochastic Volterra equations with possibly singular kernels. Similarly to
classical polynomial processes, polynomial Volterra processes allow for tractable expressions of the mo-
ments in terms of the unique solution to a system of deterministic integral equations, which reduce to a
system of ODEs in the classical case. By applying this observation to the moments of the finite-dimensional
distributions we derive a uniqueness result for polynomial Volterra processes. Moreover, we prove that the
moments are polynomials with respect to the initial condition, another crucial property shared by classical
polyno- mial processes. The corresponding coefficients can be interpreted as a deterministic dual process
and solve integral equations dual to those verified by the moments themselves. Additionally, we obtain a
representation of the moments in terms of a pure jump process with killing, which corresponds to another
non-deterministic dual process.

1 Introduction

Polynomial processes in finite dimensions, introduced in [28] and [40], constitute a class of time-homogeneous
Itô-semimartingales which are inherently tractable: conditional moments can be expressed through a determin-
istic dual process which is the solution of a linear ODE. This is the so-called moment formula. They form a
rich class that includes Wright-Fisher diffusions ([48]) from population genetics, Wishart correlation matrices
([9]), and affine processes ([35]), just to name a few. Notably, polynomial diffusions offer greater flexibility than
affine diffusions, accommodating more general semialgebraic state spaces, including in particular bounded
state spaces; see [40] and [49] for a systematic analysis. The computational advantages due to the moment
formula in the polynomial setting (see, e.g., [8] and [41]) have led to a wide range of applications, in particular
in population genetics and mathematical finance. Indeed, in population genetics dual processes associated to
moments and their interpretation in view of coalescent theory play an important role: the Wright-Fisher diffusion
with seed-bank component (see, e.g., [23] and the references therein) is for instance an important example of a
recently investigated two-dimensional polynomial process in this field. In mathematical finance, polynomial pro-
cesses comprise a plethora of highly popular models, ranging from the famous Black Scholes model over certain
jump-diffusions to Jacobi-type processes, which have been used for stochastic volatility models, life insurance
liability modeling, variance swaps, and stochastic portfolio theory (see, e.g., [8, 22, 26, 39]).

All these models share a finite dimensional Markov property which sometimes may not be adequate, for in-
stance, for modeling volatility where path-dependence is crucial (see, e.g., [25] and [45]). This has motivated
the emergence of numerous models in the literature based on stochastic Volterra equations, where the speci-
fication of the kernel offers greater flexibility to align with market data ([5, 7, 34, 42, 44, 45, 52]). In particular,
the singular fractional kernel is important in view of rough volatility models [42]. To obtain models such as the
rough Heston model [36], the important class of affine processes has been extended to the Volterra framework.
In particular, existence and uniqueness of solutions to the associated equations, invariance over certain do-
mains, and formulas for the Fourier-Laplace transform have been established within the affine paradigm, see
e.g., [6, 32, 24]. Note that Volterra-type processes are not only used in the realm of volatility modeling but also
to model phenomena exhibiting short and long range dependence and self-similarity. For instance, they have
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been applied in web-traffic [51, 57] and energy markets (see, e.g. [11, 12]). In the latter, so-called Brownian
semistationary processes, introduced in [16], as well as volatility modulated Volterra processes, first considered
in [15], play an important role. All these processes can be embedded into the large class of ambit processes,
pioneered in [14] to model turbulence and tumour growth. We also refer to the monograph [13] for a far reaching
analysis of these processes.

In analogy to continuous affine Volterra processes as studied in [6], we shall define continuous polynomial
Volterra processes as solutions X of stochastic Volterra equations driven by a continuous semimartingale Z
depending on X in a way that resembles the structure appearing in the classical framework. More precisely,
Z has an affine drift and a quadratic diffusion matrix in X . To derive moment formulas in this setting, we
draw inspiration from recent works on infinite-dimensional polynomial processes. While there is already a vast
literature on finite dimensional polynomial processes, a systematic analysis of the infinite dimensional case
was only recently provided in [29, 30, 27, 18]. The articles [29, 27] treat probability and non-negative measure-
valued processes, which include the famous Fleming-Viot and the Dawson-Watanabe superprocess (see [37] for
an introduction to superprocesses and [50] for measure-valued branching Markov processes). To accommodate
these and also function space valued processes, a common unifying framework that establishes in particular
the moment formula in a generic infinite dimensional setting has been built in [30]. Related concepts have also
been in considered [18] and in [17].

Our work is the first systematic study extending the theory of polynomial processes to the Volterra setting and
contributes to the existing literature on Volterra processes in multiple ways. In what follows, we describe the
organization of the paper and our main contributions.

In Section 2, we set the stage by defining continuous polynomial Volterra processes and by recalling moment
estimates and existence of solutions to the associated stochastic Volterra equations from [6]. To illustrate the
versatility of possible state spaces, even in the Volterra case, we construct in Theorem 2.5 the first non-trivial
example of a polynomial Volterra process with possibly singular kernels that remains confined to the unit ball.
Notably, when restricted to the one dimensional case, our results provide the construction of Jacobi Volterra pro-
cesses, see Corollary 2.6. This construction relies on a more general result in Theorem 5.1 showing existence
of general Volterra processes confined to the unit ball under structural assumption on the drift and diffusion
coefficient of the driving semimartingale Z . Note that solutions to Volterra equations that remain within a convex
set have so far been constructed and studied for domains with no curvature, such as the non-negative orthant
Rd
+, see [6, Theorem 3.6] and the extensions in [2, 10]. The primary challenge in constructing a solution X

that remains within a given convex set with curvature arises from the potential singularity of the kernel. This
singularity could push the process X outside the domain, if the volatility does not vanish on the boundary. This
difficulty has already been observed in the construction of Volterra Wishart processes [1, 32].

Section 3 is dedicated to an analysis of the moments of polynomial Volterra processes. In particular, in Sec-
tion 3.1 we establish an extension of the moment formula for polynomial Volterra processes. This is the main
moment formula in our work. It shows that the moments are the unique solutions to a system of deterministic
integral equations, which reduce to a system of ODEs for classical polynomial diffusions; see Theorem 3.3. In
the terminology of [30] this formula corresponds to the bidual moment formula. In contrast to the generic infinite
dimensional framework of [30] we can here actually prove existence and uniqueness of the system of determin-
istic integral equations. Using a variation of constants technique, our arguments can be applied to deduce more
explicit expressions for the first and second-order moments and for all moments in the affine case, see Sec-
tion 3.2. Moreover, we elucidate in Section 3.3 a crucial structural property, shared also by classical polynomial
diffusions, namely that the moments are polynomials with respect to the initial condition. The corresponding
coefficients can be interpreted as deterministic dual process and solve integral equations dual to those verified
by the moments themselves; see Theorem 3.8. In the terminology of [30] this corresponds to the dual moment
formula, where we can again prove existence and uniqueness of the corresponding equations (which had to be
assumed in the general framework of [30]). Additionally, in Section 3.4, we illustrate how our results and argu-
ments can be applied to the moments of the finite-dimensional distributions. Our considerations then also lead
to a novel result regarding the uniqueness in law for solutions to stochastic Volterra equations in the polynomial
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framework, as proved in Theorem 3.12.

In Section 4, we get inspiration from the work on classical Flemming Viot processes and general infinite dimen-
sional polynomial processes as considered in [30] to show that the moments of a polynomial Volterra process
can be expressed in terms of expectations of a functional of a (finite dimensional) pure jump process with killing.
Indeed, we consider a function valued lift to the so-called Filipović space [38], denoted by B, and then apply
the ‘dual process’ approach. Denote the infinitesimal generator of the function valued lift by A and consider
polynomials f : B×Rk → R, (λ, x) 7→ λ(x1) · · ·λ(xk). Then we show that in the case of bounded kernels
there exists a k-dimensional pure jump process with killing, denoted by U , with generator L such that

Af(·, x)(λ) = Lf(λ, ·)(x). (1)

Modulo several technical conditions, e.g., stated in [31, Lemma A.1], it then holds that

Eλ0 [f(λt, x)] = EY0=x[f(λ0, Ut)]. (2)

As the evaluation of λ at 0 corresponds to the Volterra process, we get a representation of the kth moment by
setting x = Y0 = 0 ∈ Rk. For the homogeneous case with linear drift and volatility this formula is rigorously
proved in Proposition 4.3 and Proposition 4.8 for the multivariate case. Since for λ0 ≡ X0 we have f(λ0, x) ≡
Xk

0 , we also see that the kth moment of the Volterra process is a monomial of degree k in the initial value,
which is thus a special case of Theorem 3.8. For the general non-homogeneous case we retrieve also a similar
formula, see Remark 4.6. In this context, let us also mention that the results of Section 3.3 can be seen from a
similar duality point of view, here with L corresponding to the dual operator in the terminology of [30], giving rise
to a system of deterministic PDEs. From a numerical perspective the jump representation can sometimes have
advantages as it is easy to simulate from a pure jump process and then compute the right hand side of (2) via
Monte Carlo.

Section 5 provides the proof of Theorem 5.1. Appendix A contains the main results necessary to guarantee
existence and uniqueness of solutions to the equations presented in Section 3, namely the integral equations
verified by the moments of polynomial Volterra processes and by the coefficients in the expression as polynomial
with respect to the initial condition.

Notation: We denote polynomials on Rd of degree less than or equal to n by Poln(Rd). N is the set of natural
numbers and N0 = N∪ {0}. For a multi-index α = (α1, . . . , αd), with αi ∈ N0, we write |α| =

∑d
i=1 αi for

the sum of its components. For a vector x ∈ Rm, xi is its i-th coordinate. For a matrix A ∈ Rd×d, we denote
by |A| =

√
Tr(A⊤A) its Frobenius norm. Id is the d × d identity matrix. For any t ≥ 0, we use the symbol

Et to denote the conditional expectation given the σ-algebra Ft. We sometimes use the convolution notation
(f ∗ g)(t) =

∫ t
0 f(t− s)g(s)ds for functions f and g, and (f ∗L)(t) =

∫ t
0 f(t− s)L(ds) for a measure L.

2 Definition and existence of polynomial Volterra processes

Fix a dimension d ∈ N and consider a filtered probability space (Ω,F , (Ft)t≥0,P), where (Ft)t≥0 satisfies
the usual conditions and F0 is the trivial σ-algebra on Ω. A continuous polynomial Volterra process of con-
volution type is a d-dimensional adapted process X with continuous trajectories solving a stochastic Volterra
equation of the form

Xt = g0(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ≥ 0, (3)

where

■ W is a d-dimensional Brownian motion,

■ the initial condition g0 : R+ → Rd is in C(R+,Rd),
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■ the convolution kernel K : R+ → Rd×d is in L2
loc(R+,Rd×d),

■ the map b : Rd → Rd has components in Pol1(Rd), and σ : Rd → Rd×d is a continuous map such
that a(x) = σ(x)σ(x)⊤ has entries in Pol2(Rd). More precisely,

b(x) = b0 +

d∑
i=1

bixi, a(x) = A0 +

d∑
i=1

Aixi +

d∑
i,j=1

Aijxixj (4)

for some bi ∈ Rd and Ai, Aij ∈ Rd×d.

Observe that if all Aij = 0, X is an affine Volterra process as in [6]. As for stochastic differential equations, we
speak of weak solutions to (3) whenever the filtered probability space and the underlying Brownian motion are
not fixed a priori and they are part of the solution. In this case, with a slight abuse of terminology, we say that X
is a weak solution to (3).

If we define the d-dimensional semimartingale Z as

Zt =

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs, (5)

then the stochastic Volterra equation (3) can be recast as

Xt = g0(t) +

∫ t

0
K(t− s)dZs.

The following proposition provides a priori estimates on the moments of any solution to (3).

Proposition 2.1 Let X be a continuous solution to (3). Then, for any p ∈ N and T ≥ 0,

sup
0≤t≤T

E[|Xt|p] ≤ c (6)

for some constant c which depends only on sup0≤t≤T |g0(t)|, p, K|[0,T ], bi, Ai, Aij , and T .

The initial curve g0 is continuous and hence bounded on compacts. In addition, by (4), the drift function b and
the volatility function σ are continuous and have linear growth. Therefore, to prove this result we can follow the
same argument as in the proof of [6, Lemma 3.1].

The following theorem guarantees the existence of solutions to (3). The next assumption is needed to state the
result.

Assumption 1 There exists a constant γ ∈ (0, 2] such that
∫ h
0 |K(t)|2dt = O(hγ) and

∫ T
0 |K(t + h) −

K(t)|2dt = O(hγ) for every T <∞.

Theorem 2.2 (Existence of polynomial Volterra processes) Suppose that Assumption 1 holds. Then, for any
α < γ/2, (3) admits a weak solution X such that X − g0 has α-Hölder continuous trajectories.

This result is a consequence of [6, Theorem 3.4] and its proof, which can be adapted to the framework of an
initial continuous deterministic curve g0 instead of a constant initial condition X0 ∈ Rd. The main difference
is that the proof presented in [6] relies on the existence of a resolvent of the first kind for the kernel K . This
hypothesis is not necessary because the same tightness argument to construct the weak solution in [6] can be
adapted by considering the integrated form of the equation (3)∫ t

0
Xsds =

∫ t

0
g0(s)ds+

∫ t

0
K(t− s)Zsds (7)

with Z as in (5) instead of the form L∗ (X−g0) = Z with L the resolvent of the first kind ofK . The integrated
form (7) of the stochastic Volterra equation (3), which is suitable for stability results as illustrated in [2, Section
3], can be obtained using an argument based on the stochastic Fubini theorem as shown in [2, Lemma 3.2].
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Example 2.3 Assumption 1 is satisfied for the (possibly singular) fractional kernel K(t) = tH−1/2 with H ∈
(0, 1). In particular, the corresponding polynomial Volterra process (3) fails to be a semimartingale whenever
H ̸= 1/2.

2.1 Polynomial Volterra processes on the unit ball

In this section, we construct polynomial Volterra processes (3), that remain in the unit ball of Rd defined by

B = {x ∈ Rd : x⊤x ≤ 1}.

For the rest of this section, we will assume that the kernel K is scalar K : R+ → R, and we use the so-called
resolvent of the first kind, which is a measure L on R+ of locally bounded variation such that

K ∗ L = L ∗K ≡ 1, (8)

see [43, Definition 5.5.1]. Some examples of resolvents of the first kind are given in [6, Table 1]. A resolvent of
the first kind does not always exist. For the main result of this section, we need an additional assumption for the
kernel.

Assumption 2 K is nonnegative, not identically zero, non-increasing and continuous on (0,∞), and its resol-
vent of the first kind L is nonnegative and non-increasing in the sense that s 7→ L([s, s+ t]) is non-increasing
for all t ≥ 0.

Example 2.4 If K is completely monotone on (0,∞) and not identically zero, then Assumption 2 holds due
to [43, Theorem 5.5.4]. Recall that a function f is called completely monotone on (0,∞) if it is infinitely dif-
ferentiable with (−1)kf (k)(t) ≥ 0 for all t > 0 and k ≥ 0. This covers, for instance, any constant positive
kernel, the fractional kernel tH−1/2 withH ∈ (0, 1/2], and the exponentially decaying kernel e−βt with β > 0.
Moreover, sums and products of completely monotone functions are completely monotone.

The next theorem provides the weak existence and uniqueness of a B-valued polynomial Volterra process. The
construction follows from a more general result for B-valued stochastic Volterra equations given in Theorem 5.1.

Theorem 2.5 (Existence and uniqueness of polynomial Volterra processes in the unit ball) Fix a scalar ker-
nel K : [0, T ] → R that satisfies Assumptions 1 and 2. Assume that b and σ are such that

b(x) = b0 +Bx, σ(x) = c
√

1− x⊤xId1{x∈B}, x ∈ Rd,

where Id is the d× d identity matrix, c ∈ R, and b0 ∈ Rd and B ∈ Rd×d are such that

x⊤(b0 +Bx) ≤ 0 x ∈ ∂B. (9)

For any X0 ∈ B, there exists a unique continuous weak solution X to (3) such that Xt ∈ B a.s. for every
t ∈ [0, T ].

Straightfoward application of Theorem 5.1 and Theorem 3.12 below.

By restricting to the one-dimensional case, Theorem 2.5 allows the construction of Jacobi Volterra processes
on general compact intervals as shown in the next corollary.

Corollary 2.6 Let α1 ≤ α2, b ∈ [α1, α2], λ ≥ 0 and c > 0. Fix a scalar kernel K : [0, T ] → R that satisfies
Assumptions 1 and 2. Then, there exists a unique weak [α1, α2]-valued solution to the equation

Yt = Y0 + λ

∫ t

0
K(t− s)(b− Ys)ds+ c

∫ t

0
K(t− s)

√
(Ys − α1)(α2 − Ys)dWs, (10)

Y0 ∈ [α1, α2], (11)

that we call Jacobi Volterra process on [α1, α2].
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We note that in dimension d = 1 we have that B = [−1, 1]. In this case, the specification of Example 50 yields
an [−1, 1]-valued Volterra Jacobi process in the form

Xt = X0 +

∫ t

0
K(t− s)λ(b̃−Xs)ds+

∫ t

0
K(t− s)c

√
(1−Xs)(1 +Xs)dWs,

X0 ∈ [−1, 1],

for any b̃ ∈ [−1, 1]. Indeed, in this case it is straightforward to check that (9) is satisfied since

xλ(b̃− x) =

{
λ(b̃− 1) ≤ 0 x = 1

−1λ(b̃+ 1) ≤ 0 x = −1.
(12)

Taking b̃ such that b = α2−α1
2 b̃+ α1+α2

2 we readily get that

Y =
α2 − α1

2
X +

α1 + α2

2

is a Jacobi Volterra process on [α1, α2] that satisfies (10).

Remark 2.7 In [40] the authors study stochastic invariance of polynomial diffusions, that is solutions to (3) for
the trivial kernel K ≡ 1, for more general state-spaces E ⊆ Rd. In the case of E = B, choosing Q = Id and
c = 0 in [40, Proposition 6.1] essentially corresponds to Theorem 2.5 for the trivial kernel. In contrast with the
diffusion case, where a tagential diffusive behaviour of the volatility component σ is possible on the boundary,
here we restrict to vanishing volatility at the boundary. Because of the possible singularity of the kernel at 0, we
expect that any tangential diffusive behavior of the volatility σ at the boundary will push the process outside the
ball B.

3 Moments of polynomial Volterra processes

Our aim is to find moment formulas for a continuous Volterra process X solving (3). More precisely, we want to
obtain formulas for expressions of the form

E[Xα
t ] = E[Xα1

1,t · · ·X
αd
d,t ], t ≥ 0, (13)

with α = (αi)
d
i=1 ∈ Nd

0 a multi-index. One of the difficulties to characterize these moments, compared to the
classical framework when the kernelK is equal to Id, stems from the fact thatX is not necessarily a Markovian
semimartingale. To circumvent this complication, and inspired by previous works such as [3, 24, 47, 55], for
each T ≥ 0, we consider the process (indexed in time by t)

gt(T ) = g0(T ) +

∫ t

0
K(T − s)dZs, t ≤ T, (14)

for Z as in (5). The following lemma shows that we can control the moments of the process g.

Lemma 3.1 Suppose that X is a continuous process solving (3) and define the processes g as in (14). Then,
for any p ∈ N and 0 ≤ T ≤ T ′,

E

[
sup

0≤t≤T
|gt(T )|p

]
≤ c (15)

for some constant c which depends only on sup0≤t≤T ′ |g0(t)|, p, K|[0,T ′], bi, Ai, Aij , and T ′.
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It is sufficient to prove the inequality (15) for p ≥ 2. Given T ≥ 0, thanks to the Burkholder-Davis-Gundy and
Jensen’s inequalities

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
K(T − s)σ(Xs)dWs

∣∣∣∣p
]
≤ C E

[(∫ T

0
|K(T − s)|2|a(Xs)|ds

) p
2

]

≤ C

(∫ T

0
|K(t)|2dt

) p
2

sup
0≤t≤T

E[|a(Xt)|
p
2 ]

≤ C

(∫ T ′

0
|K(t)|2dt

) p
2

sup
0≤t≤T ′

E[|a(Xt)|
p
2 ]

(16)

for some constant C > 0. Similarly, multiple applications of Jensen’s inequality yield

E

[(
sup

0≤t≤T

∣∣∣∣∫ t

0
K(T − s)b(Xs)ds

∣∣∣∣
)p]

≤ (T ′)
p
2

(∫ T ′

0
|K(t)|2dt

) p
2

sup
0≤t≤T ′

E[|b(Xt)|p]. (17)

Since the functions b and a have the form (4), (16) and (17) together with Proposition 2.1 yield (15).

Notice that gT (T ) = XT and more generally

gt(T ) = Et

[
XT −

∫ T

t
K(T − s)b(Xs)ds

]
, t ≤ T, (18)

because – as a result of the proof of Lemma 3.1 above and in particular (16) – the process Mt =
∫ t
0 K(T −

s)σ(Xs)dWs, t ≤ T , is a martingale. Moreover, for each T ≥ 0, gt(T ) is a semimartingale with dynamics

dgt(T ) = K(T − t)dZt = K(T − t)b(Xt)dt+K(T − t)σ(Xt)dWt, t < T. (19)

To study the moments ofX in (13), we need to understand the behavior of more general moments of the (infinite
dimensional) processes g defined in (14). To this end, we consider expressions of the form

m(p)(t, T1, . . . , Tp;w) = E

[
p∏

n=1

gin,t(Tn)

]
(20)

where p ∈ N, 0 ≤ t ≤ min{T1, . . . , Tp},w = (in)
p
n=1 ∈ {1, . . . , d}p, and gin,t(Tn) is the in-th coordinate

of gt(Tn). If d = 1, we can omit the argument w and write m(p)(t, T1, . . . , Tp) for p ∈ N. We shall use the
convention m(0) ≡ 1.

Notice that
m(p)(t, t, . . . , t;w) = E[Xα(w)

t ] (21)

where α(w) is the multi-index given by αk(w) = #{n : in = k}, k = 1, . . . , d. In particular, |α(w)| = p.

3.1 The main moment formula

The main result of this section is a characterization for the functions m defined in (20), which in view of (21)
determine the moments. More precisely, we will see in Theorem 3.3 below, that for some fixed level N , the
vector-valued function

(t, T1, . . . , TN ) 7→ {m(p)(t, T1, . . . , Tp;w) : p ∈ {0, . . . , N} and w ∈ {1, . . . , d}p} (22)

is the unique continuous solution to a specific integral equation. Referring to the terminology of [30], this thus
gives an existence and uniqueness result for the bidual moment formula (which had to be assumed in the
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generic infinite dimensional setting of [30]). In order to give a precise statement, we have to fix some notations.
Given N ∈ N, we define the set

I(N) = {(p, w) : p ∈ {0, 1, . . . , N} and w ∈ {1, . . . , d}p}. (23)

Let DN be the cardinality of the set I(N). Notice that DN = N + 1 for d = 1 and DN =
∑N

p=0 d
p =

(dN+1 − 1)/(d− 1) for d > 1. For T ≥ 0, let

D(N)
T = {(t, T1, . . . , TN ) ∈ [0, T ]N+1 : t ≤ min{T1, . . . , TN}}, (24)

and let π be an enumeration of I(N). As we will see in Theorem 3.3 below, the function in (22) belongs to the
following space.

Definition 3.2 Let X (N)
T be the space of RDN -valued bounded functions f on D(N)

T such that the π(p, w)-th
component fπ(p,w) only depends on the variables (t, T1, . . . , Tp) for any (p, w) ∈ I(N), and fπ(0,∅) ≡ 1.

Given f ∈ X (N)
T , define the function M(N)

T f on D(N)
T as follows: (M(N)

T f)π(0,∅) ≡ 0, and for (p, w) ∈ I(N)

with 1 ≤ p ≤ N and w = (in)
p
n=1,

(M(N)
T f)π(p,w)(t, T1, . . . , TN ) =

p∑
n=1

∫ t

0
e⊤inK(Tn − r)b0fπ(p−1,w−n)(r, (Tm)m ̸=n)dr

+

p∑
n=1

d∑
j=1

∫ t

0
e⊤inK(Tn − r)bjfπ(p,wj

−n)
(r, r, (Tm)m ̸=n)dr

+
∑

1≤n<m≤p

∫ t

0
e⊤inK(Tn − r)A0K(Tm − r)⊤eimfπ(p−2,w−n,−m)(r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0
e⊤inK(Tn − r)AjK(Tm − r)⊤eimfπ(p−1,wj

−n,−m)
(r, r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0
e⊤inK(Tn − r)AjkK(Tm − r)⊤eimfπ(p,wj,k

−n,−m)
(r, r, r, (Tl)l ̸=m,n)dr.

(25)

In (25), ei is the i-th canonical vector in Rd, w−n is the vector obtained by erasing the n-th coordinate of
w, w−n,−m is the vector obtained by erasing the n-th and m-th coordinates of w, wj

−n is the vector whose

first coordinate is j and the other coordinates are given by w−n, and wj,k
−n,−m is the vector whose first two

coordinates are j, k and the other coordinates are given by w−n,−m. Notice that thanks to the local square-

integrability of K the right side of (25) is well-defined for f ∈ X (N)
T and, moreover, M(N)

T f ∈ X (N)
T .

The following theorem provides formulas for the moments defined in (20). In view of (21), this result also estab-
lishes relations between the moments of X in (13) and the moments of the process g.

Theorem 3.3 (Main moment formula) Fix N ∈ N and T ≥ 0. Define m : D(N)
T → RDN by mπ(0,∅) =

m(0) ≡ 1, and for (p, w) ∈ I(N) with 1 ≤ p ≤ N , mπ(p,w)(t, T1, . . . , TN ) = m(p)(t, T1, . . . , Tp;w) as in

(20). Then m ∈ X (N)
T (see Definition 3.2) and m solves the integral equation

m(t, T1, . . . , TN ) = m(0, T1, . . . , TN ) + (M(N)
T m)(t, T1, . . . , TN ), (t, T1, . . . , TN ) ∈ D(N)

T , (26)

withM(N)
T as in (25). Furthermore,m is the unique solution inX (N)

T of (26) with initial conditionm(0, T1, . . . , TN ),

and m is continuous on D(N)
T .
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To prove that m ∈ X (N)
T it is enough to show that m is bounded on D(N)

T . This is a consequence of Hölder’s
inequality and Lemma 3.1. Indeed, by Lemma 3.1, for any in ∈ {1, . . . , d}, p ∈ N, and t ≤ Tn ≤ T ,

E[|gin,t(Tn)|p] ≤ E

[
sup

0≤t≤Tn

|gin,t(Tn)|p
]
≤ c

where c is constant depending only on sup0≤t≤T |g0(t)|, p, K|[0,T ], bi, Ai, Aij , and T .

We now prove (26). Clearly this equation holds by definition over the coordinate π(0, ∅). We consider then
(p, w) ∈ I(N) such that 1 ≤ p ≤ N and w = (in)

p
n=1. Itô’s formula, together with (19), yields

d

(
p∏

n=1

gin,r(Tn)

)
=

p∑
n=1

∏
m ̸=n

gim,r(Tm)

 dgin,r(Tn)

+
∑

1≤n<m≤p

 ∏
l ̸=n,m

gil,r(Tl)

 d⟨gin,·(Tn), gim,·(Tm)⟩r.

(27)

The local martingale part in (27) is a true martingale thanks to (19), (4), the fact that Xr = gr(r), and Lemma
3.1. The finite variation part can be written as

p∑
n=1

e⊤inK(Tn − r)b0

∏
m ̸=n

gim,r(Tm)

 dr

+

p∑
n=1

d∑
j=1

e⊤inK(Tn − r)bjXj,r

∏
m̸=n

gim,r(Tm)

 dr

+
∑

1≤n<m≤p

e⊤inK(Tn − r)A0K(Tm − r)⊤eim

 ∏
l ̸=m,n

gil,r(Tl)

 dr

+
∑

1≤n<m≤p

d∑
j=1

e⊤inK(Tn − r)AjK(Tm − r)⊤eimXj,r

 ∏
l ̸=m,n

gil,r(Tl)

 dr

+
∑

1≤n<m≤p

d∑
j,k=1

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimXj,rXk,r

 ∏
l ̸=m,n

gil,r(Tl)

 dr.

Since gin,r(r) = Xin,r, integrating on [0, t], taking expectation, using Fubini’s theorem – which can be applied
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thanks to Lemma 3.1 – and by the definition of m in (20), we obtain

m(p)(t, T1, . . . , Tp;w) =

p∏
n=1

gin,0(Tn)

+

p∑
n=1

∫ t

0
e⊤inK(Tn − r)b0m

(p−1)(r, (Tm)m ̸=n;w−n)dr

+

p∑
n=1

d∑
j=1

∫ t

0
e⊤inK(Tn − r)bjm

(p)(r, r, (Tm)m ̸=n;w
j
−n)dr

+
∑

1≤n<m≤p

∫ t

0
e⊤inK(Tn − r)A0K(Tm − r)⊤eimm

(p−2)(r, (Tl)l ̸=m,n;w−n,−m)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0
e⊤inK(Tn − r)AjK(Tm − r)⊤eimm

(p−1)(r, r, (Tl)l ̸=m,n;w
j
−n,−m)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0
e⊤inK(Tn − r)AjkK(Tm − r)⊤eimm

(p)(r, r, r, (Tl)l ̸=m,n;w
j,k
−n,−m)dr.

(28)

This is precisely the coordinate π(p, w) of the identity (26), which concludes the proof of (26). The uniqueness

of solutions in X (N)
T of the integral equation (26) and the fact that m is continuous on D(N)

T are a consequence
of Corollary A.2 in Appendix A.

Remark 3.4 If we define the function

m(t, x1, . . . , xN ) = m(t, t+ x1, . . . , t+ xN ), (29)

for t, x1, . . . , xN ≥ 0 such that t+ xi ≤ T , i = 1, . . . , N . Then, Theorem 3.3 implies that the function m is
a mild-solution to the following non local PDE

∂tmπ(p,w)(t, x1, . . . , xp) = (∂x1 + · · ·+ ∂xp)mπ(p,w)(t, x1, . . . , xp)

+

p∑
n=1

e⊤inK(xn)b0mπ(p−1,w−n)(t, (xm)m ̸=n)

+

p∑
n=1

d∑
j=1

e⊤inK(xn)bjmπ(p,wj
−n)

(t, 0, (xm)m̸=n)

+
∑

1≤n<m≤p

e⊤inK(xn)A0K(xm)⊤eimmπ(p−2,w−n,−m)(t, (xl)l ̸=m,n)

+
∑

1≤n<m≤p

d∑
j=1

e⊤inK(xn)AjK(xm)⊤eimmπ(p−1,wj
−n,−m)

(t, 0, (xl)l ̸=m,n)

+
∑

1≤n<m≤p

d∑
j,k=1

e⊤inK(xn)AjkK(xm)⊤eimmπ(p,wj,k
−n,−m)

(t, 0, 0, (xl)l ̸=m,n).

(30)

Indeed, this can be deduced using the change of variables Tn = t + xn in (28) together with the definition of
the function m in (29).

Remark 3.5 In the classical polynomial processes framework, whereK = Id and g0 ≡ X0 ∈ Rd, the process
g defined in (14) coincides with X , i.e. gt(T ) = Xt. Hence, in this case, the function m in Theorem 3.3 does
not depend on T1, . . . , TN . Consequently, the function m defined in (29) does not depend on x1, . . . , xN and
the PDE (30) reduces to a linear ODE with constant coefficients. When d > 1, the dimension of this linear
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ODE – which is DN = (dN+1 − d)/(d − 1) in the framework of this study – can be reduced to
(
N+d
N

)
. This

dimension reduction is possible because, as it can be seen from (21), multiple w ∈ {1, . . . , d}p, 1 ≤ p ≤ N ,
yield the same moments of X . The solution to this linear ODE can be expressed in terms of an exponential
matrix. This observation establishes a relation, when K = Id, between Theorem 3.3 and the classical moment
formula for polynomial processes as stated in [40, Theorem 3.1].

In the next subsection, using Theorem 3.3, we establish an alternative moment formula using a variation of
constants technique. This moment formula is useful to characterize the first and second order moments of a
polynomial Volterra process, and the moments of affine Volterra processes, namely when Aij = 0 for all i, j in
(4).

3.2 Moment formula using a variation of constants technique

LetB be a matrix with columns equal to b1, . . . , bd and letRB be the resolvent of −KB, i.e. the solution to the
linear equation KB ∗RB = KB +RB . Thanks to [6, Lemma 2.5], (3) is equivalent to the integral equation

Xt = g0(t)−
∫ t

0
RB(t− s)g0(s)ds+

(∫ t

0
EB(s)ds

)
b0 +

∫ t

0
EB(t− s)σ(Xs)dWs

where EB = K − RB ∗ K . Applying Theorem 3.3 to this reformulation of the stochastic Volterra equation
yields alternative moment formulas. Indeed, let

g̃t(T ) = g̃0(T ) +

∫ t

0
EB(T − s)σ(Xs)dWs = Et[XT ], t ≤ T, (31)

where g̃0(t) = g0(t) −
∫ t
0 RB(t − s)g0(s)ds +

(∫ t
0 EB(s)ds

)
b0. Define further, for (p, w) ∈ I(N), with

1 ≤ p ≤ N and w = (in)
p
n=1,

m̃(p)(t, T1, . . . , Tp;w) = E

[
p∏

n=1

g̃in,t(Tn)

]
.

Adopt as before the convention m̃(0) ≡ 1. Theorem 3.3 shows that for (p, w) ∈ I(N), with 1 ≤ p ≤ N and
w = (in)

p
n=1,

m̃(p)(t, T1, . . . , Tp;w) =

p∏
n=1

g̃in,0(Tn)

+
∑

1≤n<m≤p

∫ t

0
e⊤inEB(Tn − r)A0EB(Tm − r)⊤eimm̃

(p−2)(r, (Tl)l ̸=m,n;w−n,−m)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0
e⊤inEB(Tn − r)AjEB(Tm − r)⊤eimm̃

(p−1)(r, r, (Tl)l ̸=m,n;w
j
−n,−m)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0
e⊤inEB(Tn − r)AjkEB(Tm − r)⊤eimm̃

(p)(r, r, r, (Tl)l ̸=m,n;w
j,k
−n,−m)dr.

(32)

The following two remarks present two important consequences of (32).

Remark 3.6 This formulation of the moment formula yields more explicit expressions for the first and second
order moments. Indeed, the definition of g̃ in (31) provides directly a formula for the first order moments m̃(1).
Regarding the second order moments, observe that by taking p = 2 and t = T1 = T2 in (32), we obtain a
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linear system of integral convolution equations for the functions fπ(2,w)(t) = m̃(2)(t, t, t;w), w = (in)
2
n=1 ∈

{1, . . . , d}2. More precisely,

fπ(2,w)(t) =

2∏
n=1

g̃in,0(t) +

∫ t

0
e⊤i1EB(t− r)A0EB(t− r)⊤ei2dr

+
d∑

j=1

∫ t

0
e⊤i1EB(t− r)AjEB(t− r)⊤ei2m̃

(1)(r, r;wj
−n,−m)dr

+
d∑

j,k=1

∫ t

0
e⊤i1EB(t− r)AjkEB(t− r)⊤ei2fπ(2,wj,k

−n,−m)
(r)dr.

This linear system of convolution equations can be solved using the resolvent of the associated (matrix) kernel.
In addition, thanks to (26), all the second order moments m̃(2) can be expressed in terms of m̃(1) and the
functions fπ(2,w), w ∈ {1, . . . , d}2.

Remark 3.7 If X is an affine Volterra process, i.e. Ajk = 0, then (32) provides a recursive algorithm to find
the moments m̃(p) of any order p ∈ N.

Remark 3.5 explained how the moment formula in Theorem 3.3 extends the moment formula from the classical
to the Volterra framework. The next subsection elucidates that there is one important structural property that is
common to the classical and Volterra settings.

3.3 Moments of polynomial Volterra processes are polynomials

For a polynomial diffusion X starting at X0, i.e. when K ≡ Id and g0 ≡ X0 in our framework, [40, Theorem
3.1] gives the following explicit formula for the moments of X

E[p(Xt)] = H(X0)
T etGp⃗, p ∈ Poln(Rd), t ≥ 0. (33)

In (33), H(x) is a vector whose components are elements of a basis for Poln(Rd), G is the matrix of the
infinitesimal generator of X restricted to Poln(Rd), and p⃗ are the coordinates of the polynomial p with respect
to the basis in H(x). As a consequence, the moments of a polynomial diffusion X with initial value X0 are
again polynomials in the variable X0. More precisely,

E[Xα
t ] =

∑
β∈Nd

0,|β|≤|α|

cβ(t)X
β
0 , (34)

for some deterministic and time-dependent family of coefficients {cβ : β ∈ Nd
0, |β| ≤ |α|}, which can be

computed explicitly from (33). It turns out that this structural property still holds for the moments m(p) in (20)
of a polynomial Volterra process X starting at X0, i.e. when g0 ≡ X0 in (3). Furthermore, by an application
of Theorem 3.3, the coefficients can be obtained by solving an integral equation similar to (26). Indeed, for
p = |α| = 0 this trivially holds true. For p = 1 and w = i1 ∈ {1, . . . , d}, we have

m(1)(t, T1;w) = E[Xii,T1 ]− e⊤i1

∫ T1

t
K(T1 − s)b(E[Xs])ds, 0 ≤ t ≤ T1, (35)

where we used (18) and the fact that b ∈ Pol1(Rd). Plugging the identity (31) into (35) yields

m(1)(t, T1;w) = e⊤i1

(
Id −

∫ T1

0
RB(s)ds−

∫ T1

t
K(T1 − s)B

(
Id −

∫ s

0
RB(u)du

)
ds

)
X0

+ e⊤i1

(∫ T1

0
EB(s)ds−

∫ T1

t
K(T1 − s)

(
Id +B

∫ s

0
EB(u)du

)
ds

)
b0.
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This readily shows the representation of the form (34) for first-order moments. In the following theorem we exploit
the moment-formula in Theorem 3.3, to generalize this result for higher order moments.

Before stating the theorem, we recall the notation at the beginning of Subsection 3.1 and observe that for p ∈ N
and w = (in)

p
n=1 ∈ {1, . . . , d}p

m(p)(0, T1, . . . , Tp;w) = X
α(w)
0 , (36)

where α(w) is the multi-index given by αk(w) = #{n : in = k}, k = 1, . . . , d.

Theorem 3.8 (Moments are polynomials) Suppose that X is a continuous solution to (3) with g0 ≡ X0 and
fix T ≥ 0. Then, for all p ∈ N0 and all w ∈ {1, . . . , d}p, we can express the functions m(p) in (20) as

m(p)(t, T1, . . . , Tp;w) =
∑

β∈Nd
0,|β|≤p

C
(p)
β (t, T1, . . . , Tp;w)X

β
0 , (t, T1, . . . , Tp) ∈ D(p)

T , (37)

where the functions C
(p)
β (·, · · · , ·;w) ∈ C(D(p)

T ,R) are independent of X0.

In particular, for any α ∈ Nd
0, there exists a family {cβ}β∈Nd

0,|β|≤|α| of real-valued continuous functions on

[0, T ], independent of X0, such that

E[Xα
t ] =

∑
β∈Nd

0,|β|≤|α|

cβ(t)X
β
0 , t ≥ 0. (38)

Furthermore – for any p ∈ N, w = (in)
p
n=1 ∈ {1, . . . , d}p, and β ∈ Nd

0 with |β| ≤ p – we have

C
(p)
β (t, T1, . . . , Tp;w) = f

(p)
β (t, T1, . . . , Tp;w)

+

p∑
n=1

d∑
j=1

∫ t

0
e⊤inK(Tn − r)bjC

(p)
β (r, r, (Tm)m̸=n;w

j
−n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0
e⊤inK(Tn − r)AjkK(Tm − r)⊤eimC

(p)
β (r, r, r, (Tl)l ̸=m,n;w

j,k
−n,−m)dr.

(39)

where

f
(p)
β (t, T1, . . . , Tp;w) = 1{β=α(w)} +

p∑
n=1

∫ t

0
e⊤inK(Tn − r)b0C

(p−1)
β (r, (Tm)m̸=n;w−n)dr1{|β|<p}

+
∑

1≤n<m≤p

∫ t

0
e⊤inK(Tn − r)A0K(Tm − r)⊤eimC

(p−2)
β (r, (Tl)l ̸=m,n;w−n,−m)dr1{|β|<p−1}

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0
e⊤inK(Tn − r)AjK(Tm − r)⊤eimC

(p−1)
β (r, r, (Tl)l ̸=m,n;w

j
−n,−m)dr1{|β|<p}.

(40)

Remark 3.9 Referring to the terminology used in [30], (39) provides a unique solution to the dual moment

formula and (C
(p)
β (t, T1, . . . , Tp;w))t∈[0,T ] can be interpreted as deterministic dual process.

Notice that, thanks to (21), (38) directly follows from (37) after taking t = T1 = · · · = Tp. The arguments
before the statement of the theorem show that (37) holds for p ∈ {0, 1}. Reasoning by induction, assume that

for each 1 ≤ q < p we have constructed continuous functions C
(q)
β (·, . . . , ·;w) on D(q)

T such that (37) holds

with p replaced by q. Corollary A.3 in Appendix A shows that, for any β ∈ Nd
0 such that |β| ≤ p, the system of
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equations (39) – seen as a system indexed over the elements w ∈ {1, . . . , d}p – with initial condition (40), has

a unique solution such that C
(p)
β (·, . . . , ·;w) ∈ C(D(p)

T ).

It is straightforward to check that the family of functions on D(p)
T defined as

n(q)(t, T1, . . . , Tp;w) =
∑

β∈Nd
0,|β|≤q

C
(q)
β (t, T1, . . . , Tp;w)X

β
0 , (q, w) ∈ I(p),

are a continuous solution (in X (p)
T ) to the moment-equation (26), withN replaced by p and with initial conditions

X
α(w)
0 for each (q, w) ∈ I(p). Notice that the initial conditions are the same for the moments m(q) by (36).

Since by Theorem 3.3 the solution to this moment equation is unique, we conclude that m = n and (37) holds.

Remark 3.10 Observe that the integral equations verified by the coefficientsCβ in (39) resemble the equations
satisfied by the moments in (26). This structural property is well-known for classical polynomial processes.
Indeed, in the classical case the coefficients of the moments in (33) are given in terms of the exponential matrix
etG which solves a linear ODE as well. We could have vectorized the equations for the coefficients (39) as
we did it for the moments in (26). We opted, however, to not use the vectorization at this point for clarity of
exposition.

3.4 Moments of the finite dimensional distributions and uniqueness in law

In this section we explain how the previous ideas can be extended to characterize moments of the finite dimen-
sional distributions of a weak solution to (3). These considerations will allow us to prove a result concerning the
uniqueness in law for solutions to (3).

Fix T ≥ 0, 0 ≤ t1 ≤ T and α1 a multi-index. Define

D(N)
t1,T

= {(t2, T1, . . . , TN ) ∈ [t1, T ]
N+1 : t2 ≤ min{T1, . . . , TN}}.

Consider the RDN -valued function f on D(N)
t1,T

given by fπ(0,∅) ≡ 1 and, for 1 ≤ p ≤ N and w = (in)
p
n=1,

fπ(p,w)(t2, T1, . . . , TN ) = fπ(p,w)(t2, T1, . . . , Tp) = E[Xα1

t1 gi1,t2(T1) · · · gip,t2(Tp)].

Then - by the same considerations as in the proof of Theorem 3.3 – f is a bounded function on D(N)
t1,T

satisfying
the integral equation

fπ(p,w)(t2, T1, . . . , Tp) = E[Xα1

t1 gi1,t1(T1) · · · gip,t1(Tp)]

+

p∑
n=1

∫ t2

t1

e⊤inK(Tn − r)b0fπ(p−1,w−n)(r, (Tm)m̸=n)dr

+

p∑
n=1

d∑
j=1

∫ t2

t1

e⊤inK(Tn − r)bjfπ(p,wj
−n)

(r, r, (Tm)m̸=n)dr

+
∑

1≤n<m≤p

∫ t2

t1

e⊤inK(Tn − r)A0K(Tm − r)⊤eimfπ(p−2,w−n,−m)(r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t2

t1

e⊤inK(Tn − r)AjK(Tm − r)⊤eimfπ(p−1,wj
−n,−m)

(r, r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t2

t1

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimfπ(p,wj,k
−n,−m)

(r, r, r, (Tl)l ̸=m,n)dr
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Polynomial Volterra processes 15

where 1 ≤ p ≤ N and w = (in)
p
n=1. The same arguments as in Appendix A show that, for given inputs

(K, b, a), this equation has a unique bounded solution with initial condition E[Xα1

t1 gi1,t1(T1) · · · gip,t1(Tp)].
Since we already know that this initial condition only depends on (K, b, a), i.e. it is the same for any weak
solution X to (3), we conclude that f only depends on (K, b, a). In particular, the mixed moments of the form
E[Xα1

t1 X
α2

t2 ] are the same for any weak solution X to (3).

Remark 3.11 It is not surprising that the function f defined above solves an integral equation similar to (26),
with initial condition expressed in terms of simple moments at time t1. Indeed, consider the classical case where
K ≡ Id. Then, the tower property of the conditional expectation and the classical conditional moment formula
yield

E[Xα1

t1 X
α2

t2 ] = E[Xα1

t1 H(Xt1)]e
(t2−t1)Gp⃗

where we use the same notation as in (33) with n ≥ |α2|, and where p⃗ are the coordinates of the monomial
xα

2
with respect to the chosen basis. Observe that E[Xα1

t1 H(Xt1)]e
(t2−t1)G solves a linear ODE with initial

condition at t1 given by E[Xα1

t1 H(Xt1)].

A recursive argument, following the same lines as the above mentioned considerations, proves that all weak
solutions X of (3) have the same moments of the form

E[Xα1

t1 · · ·Xαl

tl
]

for l ∈ N, times t1 ≤ · · · ≤ tl and multi-indices α1, . . . , αl. Using this observation and arguing as in the proof
of [40, Lemma 4.1], we deduce the following result.

Theorem 3.12 (Uniqueness in law for polynomial Volterra processes) Suppose that for any weak solution
X to (3) and for any t ≥ 0, the law of Xt is determined by its moments. Then uniqueness in law holds for (3).

Remark 3.13 As explained in the proof of [40, Lemma 4.1], the hypothesis of Theorem 3.12 holds for instance
if for any weak solution X to (3) and t ≥ 0, there is ϵ > 0 such that E[exp(ϵ|Xt|)] <∞. For example, this is
the case if any such solution X is bounded.

Remark 3.14 Theorem 3.12 constitutes a new result regarding uniqueness in law for solutions to stochastic
Volterra equations. For affine Volterra processes [6] provide uniqueness in law via the Fourier-Laplace transform.
Pathwise uniqueness for stochastic Volterra equations has been established for Lipschitz coefficients e.g., in
[21] and, for certain coefficients in the one-dimensional case, when the kernelK is regular [4, 53] and when the
kernel is singular in [46, 56].

4 Jump representation of polynomial Volterra processes

Let X be the Volterra process introduced in (3) whose dynamics are given by

Xt = λ0(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ∈ [0, T ].

In this section we consider a different lift, denoted by λ that will provide an alternative representation of the
moments of X , namely in terms of a dual process which is a pure jump process with killing. For this reason we
also call the initial condition λ0 instead of g0.
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4.1 One-dimensional case

For the reader’s convenience we consider first the one dimensional case setting d = 1. Let (λt)t∈[0,T ] be a
solution (in a sense made precise in Proposition 4.1 below) of

λt(x) = λ0(x) +

∫ t

0
∂xλu(x)du+

∫ t

0
K(x)

[
b(λu(0))du+ σ(λu(0))dWu

]
, λ0 ≡ X0 ∈ R, (41)

for x ∈ R+. Similarly as in [32, Section 5] and as argued in Remark 4.2 below it holds that λt(0) = Xt and that
λ actually corresponds to the Musiela parameterization of the processes (gt(T ))t∈[0,T ] considered in Section
3.

As a first step we introduce an appropriate space for the function-valued process (λt)t∈[0,T ]. As in [19, 20],
we let α : R+ → [1,∞) be a nondecreasing C1-function such that α−1 ∈ L1(R+). The so-called Filipović
space is then defined by

B = {y ∈ AC(R+,R) : ∥y∥α <∞},

where AC(R+,R) denotes the space of absolutely continuous functions from R+ to R and

∥y∥2α = |y(0)|2 +
∫ ∞

0
|y′(x)|2α(x)dx.

By [19, Lemma 3.2] we also know that B ⊆ R+ C0(R+), namely the space of bounded continuous functions
with continuous continuation to infinity. Furthermore, let (St)t∈[0,T ] denote the left-shift semigroup on B, i.e.,
Sty = y(t+·). Then (St)t∈[0,T ] is theC0-semigroup generated by the operator ∂x (see Filipović [38, Theorem
5.1.1]).

To ease technicalities and the exposition we make the following assumptions throughout this section (unless
otherwise stated).

Assumption 3 1 We assume that the kernel K satisfies K ∈ B.

2 Both b and σ in (41) are linear maps. We thus set b(y) = b1y and σ(y)2 = A11y
2 for constants

b1, A11 ∈ R.

With the shift semigroup at hand we can now define the notion of a mild solution to (41) as in [33, Section 7.1]:

A predictable B-valued process (λt)t∈[0,T ], is said to be a mild solution to (41) if for every t ∈ [0, T ]

P
[∫ t

0
∥λs∥2αds <∞

]
= 1,

and

λt = Stλ0 +

∫ t

0
St−uKb1λu(0)du+

∫ t

0
St−uK

√
A11λu(0)dWu, P-a.s. (42)

Proposition 4.1 (Existence and moment bounds for solutions of (41)) Under Assumption 3 there exists a
unique mild solution to (41) which has a continuous modification. Moreover, for every k ≥ 1, we have

E[ sup
t∈[0,T ]

∥λt∥kα] ≤ CT,k,λ0 , (43)

where CT,k,λ0 is a constant that depends on T, k and λ0. This solution is also an (analytically) weak solution
in the sense of [33, page 161].

DOI 10.20347/WIAS.PREPRINT.3098 Berlin 2024



Polynomial Volterra processes 17

We apply [33, Theorem 7.2] for the Hilbert spaceH = B and U0 = R. We thus need to verify the conditions of
[33, Hypotheses 7.1]. As stated above ∂x generates the strongly continuous right shift semigroup (St)t∈[0,T ].
Moreover, all measurability criteria are satisfied. Furthermore, since the point evaluations at 0 are bounded
linear functionals and the fact that K ∈ B we have

∥Kb1g(0)−Kb1h(0)∥α + ∥K
√
A11g(0)−K

√
A11h(0)∥α ≤ C∥g − h∥α, ∀g, h ∈ B,

and of course also the linear growth condition. This implies the existence and uniqueness of a mild solution (42).
Concerning the moment estimate we apply [33, Equation 7.7] stating that for p > 2

E[ sup
t∈[0,T ]

∥λt∥pα] ≤ ĈT,p(1 + E[∥λ0∥pα]),

By the initial condition λ0 ≡ X0 ∈ R we get a constant on the right hand side. Moreover, since for 1 ≤ k ≤ 2
and p > 2

∥λt∥kα ≤ 1 + ∥λt∥pα
we obtain

E[ sup
t∈[0,T ]

∥λt∥kα] ≤ 1 + E[ sup
t∈[0,T ]

∥λt∥pα] ≤ CT,k,λ0 ,

and we get the assertion for all k ≥ 1. The last assertion concerning the (analytically) weak solution follows
from the same arguments as in [33, Theorem 6.5] since

E
[∫ T

0
∥K
√
A11λt(0)∥2α

]
<∞.

Remark 4.2 Since under Assumption 3 (λt)t∈[0,T ] is a mild solution to (41) with values in B we immediately
get from (42) by evaluating at some fixed x that

λt(x) = λ0(t+ x) +

∫ t

0
K(t+ x− u)b1λu(0)du+

∫ t

0
K(t+ x− u)

√
A11λu(0)dWu.

From this we see that λt(x) = gt(t + x) where the process g was the defined in (14), implying that λ just
corresponds to the Musiela parameterization of the processes g. Moreover, (λt(0))t∈[0,T ] is the unique solution
to the Volterra equation

Xt = X0 +

∫ t

0
K(t− u)(b1Xudu+

√
A11XudWu),

where uniqueness is a consequence of the linearity and thus Lipschitz property of the coefficients.

We are now ready to state in Proposition 4.3 the expression of the moments of the polynomial Volterra process
in terms of a functional of a pure jump process with killing. In the proof, we use the notation λ⊗k(x) to denote
the product λ(x1) · · ·λ(xk) for x = (x1, . . . , xk) ∈ Rk

+.

Proposition 4.3 (Jump representation of one-dimensional polynomial Volterra processes) Fix k ≥ 1 and
let (Yt)t∈[0,T ] be the [0, T ]k-valued process generated by Gk with domain D(Gk) = AC([0, T ]k,R) given by

Gkf(x) = 1⊤∇f(x) +
∫
(f(ξ)− f(x))ν(x, dξ),

for

ν(x, ·) = b1

k∑
i=1

K(xi)δ(x1,...,xi−1,0,xi+1,...,xk)

+A11

k∑
i=1

∑
i<j

K(xi)K(xj)δ(x1,...,xi−1,0,xi+1,...,xj−1,0,xj+1,...,xk),
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and Y0 = (0, . . . , 0). Suppose that Assumption 3 is in force and assume that the mild solution (λt)t∈[0,T ] to
(41) additionally satisfies

E[ sup
x∈[0,T ]k

|λ′t(x1)λt(x2) · · ·λt(xk)|] <∞. (44)

Then for each t ∈ [0, T ] it holds

E[Xk
t ] = Xk

0E
[
exp

(∫ t

0
κ(Yτ )dτ

)]
,

where

κ(x) = b1

k∑
i=1

K(xi) +A11

k∑
i=1

∑
j<i

K(xi)K(xj).

Set
Mkf(x) = Gkf(x) + κ(x)f(x),

for each f ∈ D(Gk). Observe that by Itô’s formula and (41) (since (λt)t∈[0,T ] is also an analytically weak
solution), we have

λ⊗k
t (x) = Xk

0 +

∫ t

0
Mkλ

⊗k
u (x)du+

∫ t

0
Qλ⊗k

u (x)dWu

for

Qf(x) =
√
A11

k∑
i=1

K(xi)f(x1, . . . , xi−1, 0, xi+1, . . . , xk).

Since
E[ sup

t∈[0,T ]
|λt(x1)λt(x2) · · ·λt(xk)|] <∞

due to (43) and as K ∈ B the third term is a true martingale and we thus have

E[λ⊗k
t (x)] = Xk

0 +

∫ t

0
E[Mkλ

⊗k
u (x)]du.

Set then mt(x) = E[λ⊗k
t (x)] for each x ∈ [0, T ]k. Since (44) holds, Leibniz rule and Fubini yield

Mkmt(x) = 1⊤∇E[λ⊗k
t (·)](x) +

∫
E[λ⊗k

t (ξ)]ν(x, dξ)

= E[1⊤∇λ⊗k
t (x)] + E

[∫
λ⊗k
t (ξ)ν(x, dξ)

]
,

proving that Mkmt(x) = E[Mkλ
⊗k
t (x)] and thus that

mt(x) = Xk
0 +

∫ t

0
Mkmu(x)du.

Note that since ms ∈ D(Gk) for each s ∈ [0, T ], by Itô’s formula we get

dms(Yt) = Gkms(Yt)dt+ dMt(ms),

for

Mt(f) =

∫ t

0

∫ (
f(ξ)− f(Yt)

)
(µt(dt, dξ)− ν(Yt, dξ)dt),

where µt is the jump measure corresponding to Y . Fixing now t ∈ [0, T ] we thus get that

dmt−s(Ys) = −∂smt−s(Ys)ds+ Gkmt−s(Ys)ds+ dMs(mt−s)

= −Mkmt−s(Ys)ds+ Gkmt−s(Ys)ds+ dMs(mt−s),
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and similarly for Zs = exp(
∫ s
0 κ(Yτ )dτ)mt−s(Ys) we get

dZs = − exp

(∫ s

0
κ(Yτ )dτ

)
Mkmt−s(Ys)ds

+ exp

(∫ s

0
κ(Yτ )dτ

)
Gkmt−s(Ys)ds+ exp

(∫ s

0
κ(Yτ )dτ

)
dMs(mt−s)

+ κ(Ys) exp

(∫ s

0
κ(Yτ )dτ

)
mt−s(Ys)ds

= exp

(∫ s

0
κ(Yτ )dτ

)
dMs(mt−s),

showing that (Zs)s∈[0,t] is a local martingale. Since supt,x∈[0,T ] |mt(x)| < ∞ and K is bounded we can
conclude that

E
[
exp

(∫ t

0
κ(Yτ )dτ

)
Xk

0

]
= E[Zt] = E[Z0] = mt(0, . . . , 0) = E[λ⊗k

t (0, . . . , 0)] = E[Xk
t ].

Example 4.4 Note that for K ≡ λ0 ≡ 1 we get thatX = X0E((b1t+
√
A11Wt)t∈[0,T ]). The corresponding

representation yields

E[Xk
t ] = Xk

0 exp
(∫ t

0
b1k +A11k(k − 1)dτ

)
= Xk

0 exp((b1k +
1

2
A11k(k − 1))t),

as expected.

Remark 4.5 Observe that Proposition 4.3 shows that in the current homogeneous case where both b and
σ are linear functions, the kth moment of the Volterra process is just a monomial in Xk

0 with coefficient
E[exp(

∫ t
0 κ(Yτ )dτ)]. This is thus a special case of Theorem 3.8. Note that the proof of Proposition 4.3 also

shows that

E[λt(x1) · · ·λt(xk)] = E[λ⊗k
t (x)] = EY0=x

[
exp

(∫ t

0
κ(Yτ )dτ

)
λ0(Y1,t) · · ·λ0(Yk,t)

]
,

so that we also get a jump representation for m(t, t+x1, . . . , t+xk) (where we apply the notation of Section
3.1). If λ0 ≡ X0, we obtain again a representation that involves only Xk

0 and thus again a special case of
Theorem 3.8.

Let us also explicitly draw the connection to the dual process approach outlined in the introduction via (1). The
infinitesimal generator A of the process λ applied to cylindrical functions f(λ) = g(⟨a1, λ⟩, . . . , ⟨ak, λ⟩)
where g ∈ C2(Rk) and a1, . . . , ak are continuous linear functionals is given by

Af(λ) =
k∑

i=1

∂ig(⟨a1, λ⟩, . . . , ⟨ak, λ⟩)⟨∂xλ+Kb1λ(0), ai⟩

+
1

2

k∑
i,j=1

∂ijg(⟨a1, λ⟩, . . . , ⟨ak, λ⟩)⟨K
√
A11λ(0), ai⟩⟨K

√
A11λ(0), aj⟩.

Letting g(y) =
∏k

i=1 yi and ⟨ai, λ⟩ = λ(xi), i.e. the point evaluations for some fixed x = (x1, . . . , xk), we
thus obtain

Aλ(x1) · · ·λ(xk)

=
k∑

i=1

λ(x1) · · ·λ(xi−1)λ(xi+1) · · ·λ(xk)(∂xλ(xi) +K(xi)b1λ(0))

+
1

2

k∑
i,j=1

λ(x1) · · ·λ(xi−1)λ(xi+1) · · ·λ(xj−1)λ(xj+1) · · ·λ(xk)K(xi)K(xj)A11λ
2(0).
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This is exactly the same as L in (1) with Lλ(x1) · · ·λ(xk) = Gkλ(x1) · · ·λ(xk)+κ(x)λ(x1) · · ·λ(xk) and
the process U from the introduction corresponds to the process Y killed at rate κ.

Remark 4.6 We illustrate now how the proposed method works without supposing the homogeneity condition
of Assumption 32. Consider coefficients b0, b1, A0, A1, A11 such that b(x) = b0 + b1x and σ(x)2 = A0 +
A1x + A11x

2. Fix k ≥ 1 and let (Yt)t∈[0,T ] be the ([0, T ] ∪ {†})k-valued process generated by the linear
operator Gk with domain

D(Gk) ={f : ([0, T ] ∪ {†})k → R : f is symmetric,

f(·, . . . , ·︸ ︷︷ ︸
i

, †, . . . , †︸ ︷︷ ︸
k−i

)|[0,T ]i ∈ AC([0, T ]i,R), i ∈ {1, . . . , k}, f(†, . . . , †) = 1}

and given by

Gkf(y) = 1⊤∇f(y) +
∫
(f(ξ)− f(y))ν(y, dξ),

for ∇xif(†) = 0, K(†) = 0 ,

ν(y, ·) = b0

k∑
i=1

K(yi)δ(y1,...,yi−1,†,yi+1,...,yk) + b1

k∑
i=1

K(yi)δ(y1,...,yi−1,0,yi+1,...,yk)

+A0

k∑
i=1

∑
j<i

K(yi)K(yj)δ(y1,...,yi−1,†,yi+1,...,yj−1,†,yj+1,...,yk)

+
1

2
A1

k∑
i=1

∑
j ̸=i

K(yi)K(yj)δ(y1,...,yi−1,0,yi+1,...,yj−1,†,yj+1,...,yk)

+A11

k∑
i=1

∑
j<i

K(yi)K(yj)δ(y1,...,yi−1,0,yi+1,...,yj−1,0,yj+1,...,yk),

and Y0 = (0, . . . , 0). Suppose that Assumption 31 holds true and assume that the mild solution (λt)t∈[0,T ] to
(41) additionally satisfies

E[ sup
y∈[0,T ]k

|λ′t(y1)λt(y2) · · ·λt(yk)|] <∞.

Then for each t ∈ [0, T ] it holds

E[Xk
t ] = E

[
exp

(∫ t

0
κ(Yτ )dτ

)
X

∑k
i=1 1{Yi,t ̸=†}

0

]
,

where

κ(y) = b(1)

k∑
i=1

K(yi) + σ(1)2
k∑

i=1

∑
j<i

K(yi)K(yj).

Observe that there is a direct connection between this representation and Remark 3.4. Indeed, given a solution
(ft)t∈[0,T ] of

∂tft(y) = Gkft(y)

we obtain that mπ(p,w)(t, x1, . . . , xp) = ft(x1, . . . , xp, †, . . . , †), p = 0, . . . , k solves (30). Moreover,
noting that

E[Xk
t ] =

k∑
j=0

E
[
exp

(∫ t

0
κ(Yτ )dτ

) ∣∣∣ k∑
i=1

1{Yi,t ̸=†} = j
]
P
( k∑

i=1

1{Yi,t ̸=†} = j
)
Xj

0 ,

we can also establish a direct connection with Theorem 3.8 and in particular equation (38).
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4.2 Multivariate case

We move now to the d-dimensional setting, letting again X be the process defined in (3). In this case we
consider a solution (λt)t∈[0,T ] of the SPDE given by

λt(x, i) = X0,i +

∫ t

0

d

dx
λu(x, i)du+

d∑
j=1

e⊤i K(x)bjλu(0, j)du

+
d∑

j1,j2=1

√
λu(0, j1)λu(0, j2)e

⊤
i K(x)

√
Aj1j2dWu,

(45)

for x ∈ R+ and i ∈ {1, . . . , d} and where ei denotes the canonical basis vectors. The Hilbert space for the
corresponding function-valued process (λt)t∈[0,T ] is given by

Bd = {f : R+ × {1, . . . d} → R : f(·, i) ∈ B},

with

∥y∥2α,d =
d∑

i=1

(
|y(0, i)|2 +

∫ ∞

0
|y′(x, i)|2α(x)dx

)
.

We first start by establishing the analog of Proposition 4.1. Even though we believe that existence of an an-
alytically weak solution can be proved via the martingale problem approach we here just focus on the case
Aj1j2 = 0 whenever j1 ̸= j2 so that we only have linear terms in the diffusion part and can apply similar
arguments as in Proposition 4.1.

For completeness we recall the notion of a mild solution in the current setting when Aj1j2 = 0 for j1 ̸= j2. A
predictable Bd-valued process (λt)t∈[0,T ], is said to be a mild solution to (45) if for every t ∈ [0, T ]

P
[∫ t

0
∥λs∥2α,dds <∞

]
= 1,

and for every i ∈ {1, . . . , d}

λt(·, i) = Stλ0(·, i)︸ ︷︷ ︸
≡X0,i

+
d∑

j=1

St−ue
⊤
i Kbjλu(0, j)du+

d∑
j=1

St−ue
⊤
i K
√
Ajjλu(0, j)dWu, P-a.s. (46)

Throughout this section we shall assume the following condition on K .

Assumption 4 We assume that K satisfies Kij ∈ B for all i, j ∈ {1, . . . , d}.

Proposition 4.7 (Existence and moment bounds for solutions of (45)) Let Assumption 4 hold true and sup-
pose that Aj1j2 = 0 for j1 ̸= j2. Then there exists a unique mild solution to (45) which has a continuous
modification. Moreover, for every k ≥ 1, we have

E[ sup
t∈[0,T ]

∥λt∥kα,d] ≤ CT,k,X0 , (47)

where CT,k,X0 is a constant that depends on T, k and X0. This solution is also an (analytically) weak solution
in the sense of [33, page 161].

We again apply Theorem [33, Theorem 7.2] for the Hilbert space H = Bd and U0 = Rd. Verifying the
conditions of [33, Hypotheses 7.1] is completely analogous to the one dimensional case and we obtain existence
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and uniqueness of a mild solution to (46). The moments estimates and the assertion concerning the weak
solution also follow analogously.

In the next proposition we establish the jump representation in the multivariate case. Here, we also allow for
Aj1j2 ̸= 0 when j1 ̸= j2. Note that all the assumptions in Proposition 4.8 except of (48) are satisfied under the
conditions of Proposition 4.7.

Proposition 4.8 (Jump representation of d-dimensional polynomial Volterra processes) Fix k ≥ 1 and
let (Yt)t∈[0,T ] be the ([0, T ]×{1, . . . , d})k-valued process generated by Gk with domainD(Gk) = AC(([0, T ]×
{1, . . . , d})k,R) given by

Gkf(x, i) = 1⊤∇xf(x, i) +

∫
(f(ξ, ℓ)− f(x, i))ν((x, i), d(ξ, ℓ)),

for

ν((x, i), ·) =
k∑

m=1

d∑
j=1

e⊤imK(xm)bjδ{((x1,i1),...,(0,j),...,(xk,ik))}

+
k∑

m=1

∑
n<m

d∑
j1,j2=1

e⊤imK(xm)Aj1j2K(xn)
⊤einδ{((x1,i1),...,(0,j1),...,(0,j2),...,(xk,ik))}

and
Y0 = ((0, 1) . . . , (0, 1)︸ ︷︷ ︸

k1-times

, (0, 2), . . . , (0, 2)︸ ︷︷ ︸
k2-times

, . . . , (0, d), . . . , (0, d)︸ ︷︷ ︸
kd-times

).

Suppose that Assumption 4 holds true and assume that (λt)t∈[0,T ] is a Bd-valued (analytically) weak solution
to (45) satisfying

E[ sup
t∈[0,T ],i

|λt(x1, i1) · · ·λt(xk, ik)|] <∞ and

E[ sup
x∈[0,T ]k,i

|(∂xλt(x1, i1))λt(x2, i2) · · ·λt(xk, ik)|] <∞. (48)

Then for each t ∈ [0, T ] and each multi-index k = (k1, . . . kd) with |k| = k, it holds

E[Xk
t ] = E[Xk1

t,1 · · ·X
kd
t,d] = Xk

0 E
[
exp

(∫ t

0
κ(Yτ )dτ

)]
,

where

κ(x, i) =
k∑

m=1

d∑
j=1

e⊤imK(xm)bj +
k∑

m=1

∑
n<m

d∑
j1,j2=1

e⊤imK(xm)Aj1j2K(xn)
⊤ein .

Set
Mkf(x, i) = Gkf(x, i) + κ(x, i)f(x, i),

for each f ∈ D(Gk) and observe that by Itô’s formula it holds

λ⊗k
t (x, i) = X0,i1 · · ·X0,ik +

∫ t

0
Mkλ

⊗k
u (x, i)du+

∫ t

0
Qλ⊗k

u (x, i)dWu.

for

Qf(x, i) =
k∑

m=1

d∑
j1,j2=1

e⊤imK(xm)
√
Aj1j2

×
√
f((x1, i1), . . . , (0, j1), . . . , (xd, id))f((x1, i1), . . . , (0, j2), . . . , (xd, id)).
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Since the third term is a true martingale, we have

E[λ⊗k
t (x, i)] = X0,i1 · · ·X0,ik +

∫ t

0
E[Mkλ

⊗k
u (x, i)]du.

Set then mt(x, i) = E[λ⊗k
t (x, i)]. Since (48) holds, Leibniz rule and Fubini yield

Mkmt(x, i) = 1⊤∇xE[λ⊗k
t (·, i)](x) +

∫
E[λ⊗k

t (ξ, ℓ)]ν((x, i), d(ξ, ℓ))

= E[1⊤∇xλ
⊗k
t (x, i)] + E

[∫
λ⊗k
t (ξ, ℓ)ν((x, i), d(ξ, ℓ))

]
,

proving that Mkmt(x, i) = E[Mkλ
⊗k
t (x, i)] and thus that

mt(x, i) = X0,i1 · · ·X0,ik +

∫ t

0
Mkmu(x, i)du.

Since ms lies in the domain of Gk for each s ∈ [0, T ] proceeding as in the one dimensional case we get that
the process (Zs)s∈[0,t] for

Zs = exp

(∫ s

0
κ(Yτ )dτ

)
mt−s(Ys)

is a true martingale and thus that

Xk
0 E
[
exp

(∫ t

0
κ(Yτ )dτ

)]
= mt(Y0) = E[λ⊗k

t (Y0)] = E[Xk
t ].

Example 4.9 Observe that for K ≡ Id, λ0 ≡ (1, . . . , 1), bi = βiei, Aij = σ⊤i σjeie
⊤
j for some βi ∈ R,

σi ∈ Rd we get that

Xi = E((βit+
d∑

j=1

σijW
j
t )t∈[0,T ]).

In this setting

ν((x, i), ·) =
k∑

m=1

d∑
j=1

e⊤imβjejδ{...,(0,j),...} +

k∑
m=1

∑
n<m

d∑
j1,j2=1

σ⊤j1σj2e
⊤
imej1e

⊤
j2einδ{...,(0,j1),...,(0,j2),...}

=

k∑
m=1

βimδ{...,(0,im),...} +

k∑
m=1

∑
n<m

σ⊤imσinδ{...,(0,im),...,(0,in),...},

showing that the second component of each Yi is constant over time. Since

κ(x, i) =
k∑

m=1

βim +
k∑

m=1

∑
n<m

σ⊤imσin =
k∑

m=1

βim +
1

2

k∑
m,n=1

σ⊤imσin −
k∑

m=1

σ⊤imσim ,

the corresponding representation yields

E[Xk
t |λ0] = exp

(( d∑
j=1

kjβj +
1

2

d∑
j1,j2=1

kj1kj2σ
⊤
j1σj2 −

d∑
j=1

kjσ
⊤
j σj

)
t
)
,

as expected.

Remark 4.10 Note that in analogy to Remark 4.6 also in the multivariate setting the non-homogeneous case
can be treated. This can be done by adding zero indices in the definition of κ and ν, i.e. including b0, and
A0i = Ai0 = Ai for i = 0, 1, . . . , d, and changing the corresponding jumps to (†, 0) (instead of (0, j) as it is
the case for j = 1, . . . , d).
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5 Volterra processes in the unit ball

In this section, we are interested in constructing general Volterra processes (3), that remain in the unit ball B of
Rd. To achieve this, structural conditions on the coefficients b : Rd → Rd, σ : Rd → Rd×d and the kernel
K ∈ L2

loc are needed. In a first step, we consider more general continuous coefficients with linear growth

|b(x)| ∨ |σ(x)| ≤ c(1 + |x|), x ∈ Rd. (49)

It follows from [6, Theorem 3.4] that under Assumption 1 and (49), there exists a weak solution to (3) with values
in Rd. For the rest of this section, we will assume that the kernel K is scalar K : R+ → R.

The next theorem provides the existence of a B-valued solution to the stochastic Volterra equation (3) under
structural conditions on the coefficients (b, σ) and the kernel K . We denote by ∂B the boundary of B, that is

∂B = {x ∈ Rd : x⊤x = 1}.

Theorem 5.1 (Existence of Volterra processes in the unit ball) Fix a scalar kernel K : [0, T ] → R that
satisfies Assumptions 1 and 2. Assume that b and σ are continuous, with linear growth (49) and

x⊤b(x) ≤ 0 and σ(x) = 0, x ∈ ∂B. (50)

For any X0 ∈ B, there exists a continuous weak solution X to (3) such that Xt ∈ B a.s. for every t ∈ [0, T ].

The proof is given in Section 5.1 below.

Remark 5.2 Theorem 5.1 allows the construction of Volterra processes living in the more general domain {x ∈
Rd : x⊤Qx ≤ 1}, for some positive definite d× d matrix Q. Indeed, it suffices to construct a weak solution X
for the unit ball and set Y = Q−1/2X .

5.1 Proof of Theorem 5.1

[Proof of Theorem 5.1]For any n ∈ N consider the coefficients bn and σn by

bn(x) =

{
b( x

1−1/n)−
x

n(1−1/n) , |x| ≤ 1− 1/n

b( x
|x|)−

x
n|x| , else

σn(x) =

{
σ
(

x
1−1/n

)
, |x| ≤ 1− 1/n

0, else.

By the assumptions for b and σ, it follows that bn and σn are continuous, and they satisfy the linear growth condi-
tion (49) uniformly in n, with common constant Ĉ . Denote byXn a continuous weak solution to (3) with respect
to (bn, σn), obtained from [6, Theorem 3.4]. Applying tightness and stability results for stochastic Volterra equa-
tions, see for instance [6, Lemma A.1 and A.2], we have Xn =⇒ X̂ , where X̂ solves (3) with coefficients
b̂(x) = 1B(x)b(x) + 1Bc(x)b(x/|x|) and σ̂(x) = 1B(x)σ(x). If we can prove that Xn ∈ B almost surely
for all n ∈ N, then X̂ ∈ B almost surely and since b̂|B = b and σ̂|B = σ, the claim follows.

Fix n ∈ N and denote X = Xn. Note that the coefficients (bn, σn) satisfy the stronger conditions

σn(x) = 0 and x⊤bn(y) ≤ 0, |y|, |x| > 1− 1/n and |x− y| < ϵ, (51)
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for some ϵ depending on n and the constant from the linear growth condition. Indeed let y such that |y| >
1− 1/n and denote by ŷ = y/|y| ∈ ∂B, then

x⊤bn(y) = y⊤bn(y) + (x− y)⊤bn(y) = |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + (x− y)⊤bn(y)

≤ |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + |x− y| (|b(ŷ)|+ 1/n)

≤ |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + |x− y|(2C + 1)

≤ −(n− 1)

n2
+ (2C + 1)|x− y|

≤ 0,

whenever |x−y| ≤ n−1
(2C+1)n2 = ϵ, where we used Cauchy-Schwarz for the second inequality with C denoting

the linear growth constant of b, and the assumption (50) for the third inequality.

Now consider the stopping time τ = inf{t ≥ 0 : Xt /∈ B}, we aim to prove that P(τ < ∞) = 0. Ap-
plying similar reasoning to [6, Theorem 3.6], under Assumption 2, for any stopping time τ and h > 0 we have

Xτ+h = (1− (∆hK ∗ L)(τ))X0 + (∆hK ∗ L)(0)Xτ + (d(∆hK ∗ L) ∗ (X))(τ)

+

∫ ∞

0
1(τ,τ+h](s)K(τ + h− s)bn(Xs)ds

+

(∫ ∞

0
1(τ,τ+h](s)K(t+ h− s)σn(Xs)dWs

) ∣∣∣∣∣
t=τ

=: a0(h) + a1(h) + a2(h).

(52)

Now for ϵ′ > 0, we define the events

Ωϵ′ =
{
τ <∞, X⊤

s b
n(Xu) ≤ 0 and σn(Xu) = 0 ∀u, s ∈ [τ, τ + ϵ′[

}
.

On the event Ωϵ′ , for all h ∈ (0, ϵ′), we have a2(h) = 0, and for ψ(t) = |Xτ+t|

ψ(h)2 = X⊤
τ+h (a0(h) + a1(h)) ≤ ψ(h)|a0(h)|+X⊤

τ+ha1(h), (53)

where we simply applied Cauchy-Schwarz for the inequality. An application of Lemma 5.4 below yields that
|a0(h)| ≤ 1. Moreover, by the definition of Ωϵ′ and the fact that K is nonnegative, it follows that∫ τ+h

τ
K(τ + h− s)X⊤

τ+hb
n(Xs)ds ≤ 0.

Therefore we can conclude

ψ(h)2 ≤ ψ(h)|a0(h)|+X⊤
τ+ha1(h) ≤ ψ(h),

which readily yields ψ(h) ≤ 1, and thus Xτ+h ∈ B for all h ∈ (0, ϵ′) on Ωϵ′ . On the other hand, by the
definition of τ and continuity of X , there exists h ∈ (0, ϵ′) such that Xτ+h /∈ B on Ωϵ′ . But this readily shows
P(Ωϵ′) = 0 for all ϵ′. On the other hand, by (51) and continuity of X , it follows that

P(τ <∞) = P

 ⋃
ϵ′∈(0,ϵ)∩Q

Ωϵ′

 = 0.

The two following lemmas where used in the proof.
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Lemma 5.3 Let K satisfy (2). Then,

(∆hK ∗ L)(t) is nondecreasing in t, (54)

as well as
0 ≤ (∆hK ∗ L)(t) ≤ (K ∗ L)(t) = 1. (55)

The proof of (54) and (55) can be found in the proof of [6, Theorem 3.6], see (3.9) and (3.10) therein.

Lemma 5.4 Let K satisfy (2) and f : [0, t] → B be continuous such that f(t) ∈ ∂B for some t. Then, the
quantity

a0(h) = (1− (∆hK ∗ L)(t)) f(0) + (∆hK ∗ L)(0)f(t) + (d(∆hK ∗ L) ∗ f)(t), h ≥ 0,

satisfies
a0(h)

⊤a0(h) ≤ 1, h ≥ 0.

We first notice that, thanks to the Cauchy-Schwarz inequality, we have

x⊤y ≤
√
x⊤x

√
y⊤y ≤ 1, x, y ∈ B. (56)

We expand

a0(h)
⊤a0(h) = (1− (∆hK ∗ L)(t))2 f(0)⊤f(0) + (∆hK ∗ L)(0)2f(t)⊤f(t)+

+ (d(∆hK ∗ L) ∗ f)(t)⊤(d(∆hK ∗ L) ∗ f)(t)
+ 2 (1− (∆hK ∗ L)(t)) (∆hK ∗ L)(0)f(0)⊤f(t)
+ 2 (1− (∆hK ∗ L)(t)) f(0)⊤(d(∆hK ∗ L) ∗ f)(t)
+ 2(∆hK ∗ L)(0)f(t)⊤(d(∆hK ∗ L) ∗ f)(t)
≤ (1− (∆hK ∗ L)(t))2 + (∆hK ∗ L)(0)2+
+ (d(∆hK ∗ L) ∗ 1)2(t)

+ 2 (1− (∆hK ∗ L)(t)) (∆hK ∗ L)(0)
+ 2 (1− (∆hK ∗ L)(t)) (d(∆hK ∗ L) ∗ 1)(t)
+ 2(∆hK ∗ L)(0)(d(∆hK ∗ L) ∗ 1)(t)
= ((1− (∆hK ∗ L)(t)) + (∆hK ∗ L)(0) + (d(∆hK ∗ L) ∗ 1)(t))2

where for the second inequality, we used (56) combined with (54) and (55). Finally, observing that

(d(∆hK ∗ L) ∗ 1)(t) = (∆hK ∗ L)(t)− (∆hK ∗ L)(0)

yields the desired claim.

A Well-posedness for Volterra-type integral equations

In this section we study existence and uniqueness of solutions to a certain class of integral equations, in-
cluding all the equations appearing in Section 3 for the characterization of moments. Fix N,D ∈ N and

T ≥ 0, and consider the domain D(N)
T as in (24). Denote by C(D(N)

T ,RD) the space of continuous, vector-

valued functions on the compact set D(N)
T . Moreover, consider the families of kernels {An,i

1 }1≤n≤N ;1≤i≤2,

and {An,m,j
2 }1≤n,m≤N ;1≤j≤3, such that

An,i
1 : [0, T ] → RD×D, An,m,j

2 : [0, T ]× [0, T ] → RD×D, 1 ≤ n,m ≤ N, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3.
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We will make the following integrability assumptions for the matrix-norm of the kernels:

|An,i
1 | ∈ L1([0, T ]), |An,m,j

2 (t, s)| ≤ |Gn,m
1 (t)| · |Gn,m

2 (s)|, (57)

for some Gn,m
1 ,Gn,m

2 ∈ L2([0,T]), for all 1 ≤ n,m ≤ N , 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. Finally, for all f ∈
C(D(N)

T ,RD) we define

(Ψf)(t, T1, . . . , TN ) =
∑

1≤n≤N

∫ t

0
An,1

1 (Tn − r)f(r, r, (Tk)k ̸=n)dr

∑
1≤n≤N

∫ t

0
An,2

1 (Tn − r)f(r, (Tk)k ̸=n, r)dr

+
∑

1≤n<m≤N

∫ t

0
An,m,1

2 (Tn − r, Tm − r)f(r, r, r, (Tk)k ̸=n,m)dr

+
∑

1≤n<m≤N

∫ t

0
An,m,2

2 (Tn − r, Tm − r)f(r, r, (Tk)k ̸=n,m, r)dr

+
∑

1≤n<m≤N

∫ t

0
An,m,3

2 (Tn − r, Tm − r)f(r, (Tk)k ̸=n,m, r, r)dr.

(58)

Proposition A.1 Suppose that (57) holds. Then, for any function f0 ∈ C([0, T ]N ,RD) there exists a unique

solution f ∈ C(D(N)
T ,RD) to the integral equation

f(t, T1, . . . , TN ) = f0(T1, . . . , TN ) + (Ψf)(t, T1, . . . , TN ), (t, T1, . . . , TN ) ∈ D(N)
T . (59)

For λ ≥ 0 we introduce the norm ∥f∥λ,∞ = sup
(t,T1,...,TN )∈D(N)

T

e−λt|f(t, T1, . . . , TN )|, where | · | denotes

the Euclidean norm on RD. One can check that ∥ · ∥λ,∞ is equivalent to the sup-norm, and (C(D(N)
T ,RD), ∥ ·

∥λ,∞) is a Banach space. Following a standard proof pattern, we wish to prove that the operator

T f = f0(·) + (Ψf)(·), f ∈ C(D(N)
T ,RD),

is invariant and contracts. For the invariance, we only need to show that (t, T1, . . . , TN ) 7→ (T f)(t, T1, . . . , TN )
is continuous. By assumption, f0 is continuous, and for x = (t, T1, . . . , TN ) and x′ = (t′, T ′

1, . . . , T
′
N ), with

t ≤ t′, we have∣∣(Ψf)(t, T1, . . . , TN )− (Ψf)(t′, T ′
1, . . . , T

′
N )
∣∣ ≤ ∣∣(Ψf)(t, T1, . . . , TN )− (Ψf)(t, T ′

1, . . . , T
′
N )
∣∣

+
∣∣(Ψf)(t′, T ′

1, . . . , T
′
N )− (Ψf)(t, T ′

1, . . . , T
′
N )
∣∣ .

The second term converges to zero as t → t′ by dominated convergence and (57). For the first term we only
analyze the first and third components of Ψf as the others behave similarly. Notice that for any 1 ≤ n,m ≤ N∫ t

0
|An,1

1 (Tn − r)f(r, r, (Tk)k ̸=n)−An,1
1 (T ′

n − r)f(r, r, (T ′
k)k ̸=n)|dr

≤
∫ t

0
|An

1 (Tn − r)| · |f(r, r, (Tk)k ̸=n)− f(r, r, (T ′
k)k ̸=n)|dr

+

∫ t

0
|An

1 (Tn − r)−An
1 (T

′
n − r)| · |f(r, r, (T ′

k)k ̸=n)|dr.

DOI 10.20347/WIAS.PREPRINT.3098 Berlin 2024



E. Abi Jaber, C. Cuchiero, L. Pelizzari, S. Pulido, S. Svaluto-Ferro 28

and∫ t

0
|An,m,1

2 (Tn − r, Tm − r)f(r, r, r, (Tk)k ̸=n,m)−An,m,1
2 (T ′

n − r, T ′
m − r)f(r, r, r, (T ′

k)k ̸=n,m)|dr

≤
∫ t

0
|An,m,1

2 (Tn − r, Tm − r)| · |f(r, r, r, (Tk)k ̸=n,m)− f(r, r, r, (T ′
k)k ̸=n,m)|dr

+

∫ t

0
|An,m,1

2 (Tn − r, Tm − r)−An,m
2 (T ′

n − r, T ′
m − r)| · |f(r, r, r, (T ′

k)k ̸=n,m)|dr.

In the expressions on the right of the two previous inequalities, the first integrals converge to zero as x → x′

by (57), dominated convergence and the fact that f is continuous. For the second integrals, we can take ∥f∥∞
out of the integral, and then use (57) and the fact that the translation of Lp-functions is continuous, see [54,
Proposition 1.6.13], to show that both terms converge to zero as x′ → x. Applying similar arguments to the

other components of Ψf , we conclude that T f ∈ C(D(N)
T ,RD).

Finally, denoting by dλ the metric induced by the norm ∥ · ∥λ,∞, we want to show that T contracts for λ large
enough, that is

dλ(T f , Tg) ≤ qdλ(f ,g), ∀f ,g ∈ C(D(N)
T ,RD) (60)

for some q < 1 and λ > 0. By definition

e−λt |(T f)(t, T1, . . . , TN )− (Tg)(t, T1, . . . , TN )|

≤
∑

1≤n≤N

∫ t

0
e−λt|An,1

1 (Tn − r)||f(r, r, (Tk)k ̸=n)− g(r, r, (Tk)k ̸=n)|dr

+
∑

1≤n≤N

∫ t

0
e−λt|An,2

1 (Tn − r)||f(r, (Tk)k ̸=n, r)− g(r, (Tk)k ̸=n, r)|dr

+
∑

1≤n<m≤N

∫ t

0
e−λt|An,m,1

2 (Tn − r, Tm − r)||f(r, r, r, (Tk)k ̸=n,m)− g(r, r, r, (Tk)k ̸=n,m)|dr

+
∑

1≤n<m≤N

∫ t

0
e−λt|An,m,2

2 (Tn − r, Tm − r)||f(r, r, (Tk)k ̸=n,m, r)− g(r, r, (Tk)k ̸=n,m, r)|dr

+
∑

1≤n<m≤N

∫ t

0
e−λt|An,m,3

2 (Tn − r, Tm − r)||f(r, (Tk)k ̸=n,m, r, r)− g(r, (Tk)k ̸=n,m, r, r)|dr

≤ dλ(f ,g)× ∑
1≤n≤N
i=1,2

∫ t

0
e−λ(t−r)|An,i

1 (Tn − r)|dr +
∑

1≤n<m≤N
j=1,2,3

∫ t

0
e−λ(t−r)|An,m,j

2 (Tn − r, Tm − r)|dr


︸ ︷︷ ︸

Cλ(t,T1,...,TN )

.

(61)

We claim that for all 1 ≤ n,m ≤ N , 1 ≤ i ≤ 2, and 1 ≤ j ≤ 3, we have

sup
0≤t≤T1≤T

∫ t

0
e−λ(t−r)|An,i

1 (T1 − r)|dr, sup
0≤t≤T1,T2≤T

∫ t

0
e−λ(t−r)|An,m,j

2 (T1 − r, T2 − r)|dr λ→∞−−−→ 0.

(62)
Indeed, using a change of variable s = t− r, for any δ > 0 we can write the first integral as∫ t

0
e−λs|An,i

1 (T1 − t+ s)|ds ≤
∫ δ

0
e−λs|An,i

1 (T1 − t+ s)|ds+
∫ t∨δ

δ
e−λs|An,i

1 (T1 − t+ s)|ds

≤ ∥An,i
1 ∥L1([T1−t,T1−t+δ]) + e−λδ∥An,i

1 ∥L1([0,T ]).
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Since An,i
1 ∈ L1([0, T ]) by assumption (57), for any ϵ > 0, we can choose δ small enough, such that

∥An,i
1 ∥L1([T1−t,T1−t+δ]) ≤ ϵ/2, uniformly in (t, T1). Choosing λ > 0 such that e−λδ∥An,i

1 ∥L1([0,T ]) ≤ ϵ/2,
we obtain

sup
0≤t≤T1≤T

∫ t

0
e−λs|An,i

1 (T1 − t+ s)|ds ≤ ϵ.

Similar considerations can be applied for the second term using the assumptions in (57). Indeed, for some
Gn,m
1 ,Gn,m

2 ∈ L2([0, T ]) we have∫ t

0
e−λs|An,m,j

2 (T1−t+s, T2−t+s)|ds ≤ max
i∈{1,2}

∥Gn,m
i ∥2L2([Ti−t,Ti−t+δ])+e

−λδ max
i∈{1,2}

∥Gn,m
i ∥2L2([0,T ]),

and we conclude with the same arguments as before, that we can find λ large enough such that

sup
0≤t≤T1,T2≤T

∫ t

0
e−λ(t−r)|An,m,j

2 (T1 − r, T2 − r)|dr ≤ ϵ.

Hence, (62) holds and we can choose λ large enough, such that

sup
(t,T1,...,TN )∈D(N)

T

Cλ(t, T1, . . . , TN ) < 1,

with Cλ as in (61). This implies (60) for some q < 1 and λ > 0. Banach fixed point theorem yields the
conclusion.

Corollary A.2 The function m defined in Theorem 3.3 is the unique solution in X (N)
T of (26) with initial condi-

tion m(0, T1, . . . , TN ), and m is continuous on D(N)
T .

We start by observing that M(N)
T can be defined for bounded functions f on D(N)

T by inserting r (one or
multiple times) as the last arguments of the function f in the first, third and fourth addends in (25). Furthermore,

this extension of the operator M(N)
T restricted to the subspace C(D(N)

T ,RD) has the structure of the operator
Ψ in (58) with D = DN (the cardinality of the set I(N) in (23)), and the hypothesis (57) holds. In addition,
since g0 is continuous then m(0, T1, . . . , TN ) is continuous as well. By Proposition A.1 there exists a solution

m′ ∈ C(D(N)
T ,RD) to the equation (26) with initial condition m(0, T1, . . . , TN ), where instead of M(N)

T we
consider the above mentioned extension of the operator. Furthermore, the proof of (61) in Proposition A.1 also

holds for bounded functions f ,g. Hence, uniqueness also holds over the space of bounded functions on D(N)
T .

These observations imply uniqueness of the solutions in X (N)
T of (26) with initial condition m(0, T1, . . . , TN ),

and that the function m defined in Theorem 3.3 has to coincide with m′ and in particular it is continuous.

Corollary A.3 Fix β ∈ Nd
0 and p ∈ N such that |β| ≤ p. Suppose that that for each 1 ≤ q < p and any

w ∈ {1, . . . , d}q , C
(q)
β (·, . . . , ·;w) is continuous on D(q)

T . Consider the system of equations (39) in Theorem

3.8 – seen as a system indexed over the elements w ∈ {1, . . . , d}p – with initial condition f
(p)
β (· · · ;w),

w ∈ {1, . . . , d}p, as in (40). Then for each w ∈ {1, . . . , d}p, f
(p)
β (· · · ;w) is in C(D(p)

T ,R) and (39) has a

unique solution such that C
(p)
β (·, . . . , ·;w) ∈ C(D(p)

T ,R).

The continuity of f
(p)
β (· · · ;w) can be shown in the same way that we showed in the proof of Proposition A.1

that T f was continuous for f continuous. By taking D = dp, i.e. the cardinality of {1, . . . , d}p, and N = p,
equation (39) has the structure of the equation in Proposition A.1 and hence the claim follows.
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[39] Damir Filipović, Elise Gourier, and Loriano Mancini. Quadratic variance swap models. Journal of Financial
Economics, 119(1):44–68, 2016.
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