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An ergodic and isotropic zero-conductance model with
arbitrarily strong local connectivity

Martin Heida, Benedikt Jahnel, Anh Duc Vu

Abstract

We exhibit a percolating ergodic and isotropic lattice model in all but at least two di-
mensions that has zero effective conductivity in all spatial directions and for all non-trivial
choices of the connectivity parameter. The model is based on the so-called randomly
stretched lattice where we additionally elongate layers containing few open edges.

1 Introduction

Consider a stationary and ergodic model for a randomly perforated materialG ⊂ Rd. Examples
we have in mind are the supercritical cluster of the Boolean model based on a Poisson point
process or its complement. From a physical point of view, G could be the perforations of a
sponge-like material which allows for the diffusion of some chemicals while the complement
would block these chemicals.

We assume that the scale of the perforations is small compared to the macroscopic dimensions
of the material, which we express as Gε := εG and we are interested of the effective con-
ductivity of Gε as ε → 0. To be more precises, given a bounded domain Q ⊂ Rd we write
Γε := ∂Gε and νΓε for the outer normal vector ofGε and consider a partial differential equation

−∇ ·
(
|∇uε|p−2∇uε

)
= f on Q ∩Gε

−|∇uε|p−2∇uε · νΓε = 0 on Q ∩ Γε (1)

uε = 0 on Gε ∩ ∂Q .

As ε → 0 we expand uε by zero to Rd and expect that uε ⇀ u in Lr(Q), r ≤ p and that u
solves an effective equation of the form

−∇ ·
(
A|∇u|p−2∇u

)
= fP(o ∈ G) on Q (2)

u = 0 on ∂Q . (3)

If the above convergence behaviour holds, we say that G allows homogenisation and we call
A the effective conductivity of G. Its derivation goes far beyond simple averaging as geometric
features have a major influence. As a most easy example, let Gε be a union of finite pathwise
connected components. Then the above definition of homogenisation makes no sense because
uε can be shifted arbitrarily on the subsets of Gε

0 that have positive distance to ∂Q. From a
physical point of view, with Gε being fragmented into finite mutually disconnected sets, it is
intuitive that the effective conductivity is zero.
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M. Heida, B. Jahnel, A.D. Vu 2

On the other hand for many connected geometries it has been shown that, A > 0: Examples
include periodic domains (see [16] and references therein), minimally smooth domains [9] as
well as the case of Bernoulli bond or site percolation [20]. More irregular domains have been
recently investigated in [11, 10, 12] where sufficient conditions on the distributions of geometric
properties such as local Lipschitz regularity or global connectivity where derived that allow to
pass to the homogenisation limit.

A necessary condition for homogenisation, however, is still lacking. As a consequence, the
authors proposed in [13] an approach for homogenisation of perforated domains where it is not
clear that the perforations are „good enough” but where there is also no clear indication that the
domain should be too irregular for homogenisation. Such approaches using a regularisation of
the random geometry can be helpful to justify a homogenised model on an irregular domain, but
they leave us with a grain of salt, as it is not clear that the regularisation and the homogenisation
limit really interchange.

In order to approach the question of suited or unsuited domains from the other side, in the
analysis below, we will study a reasonable discrete model for a perforated domain that has the
property that the effective conductivity is zero, although the microscopic geometry is topolog-
ically connected. We will also discuss heuristically which of the sufficient conditions from [12]
is violated in order to make this behaviour possible, while we leave the rigorous calculation to
future work. This is considered by the authors a necessary step towards more precise charac-
terisations of admissible domains.

Porous media and their effective conductivity A are closely related to the analysis of random
walks on lattice models or in our specific case: random walks on percolation clusters. These rep-
resent a special class of so called random conductance models, see e.g. [4] for an extensive re-
view. In such models, the variable-speed random walker moves along an edge at a rate equal to
its conductivity. This usually admits a diffusive scaling to a Brownian motion (see e.g. [2, 1] and
especially [8]) with covariance matrix 2A. Indeed, having zero effective conductivity is equiva-
lent to subdiffusivity or trapping of the related random walker. In this regard, it is known that the
random walk on the two-dimensional uniform spanning tree is subdiffusive [3] – constituting an
example of a percolating ergodic medium that features zero effective conductivity.

However, the example of a uniform spanning tree is quite artificial from a modelling perspec-
tive and very dimension dependent. Hence, in this manuscript we present a potentially more
canonical example of a non-conductive perforated medium that possesses a number of natural
properties, see Figure 1 for illustrations. More precisely, the construction is based on the so-
called randomly stretched lattice (RSL), which is essentially a Bernoulli bond percolation model
in a strongly correlated random environment, augmented with additional deterministic deforma-
tions. The final model, which we call elongated randomly stretched lattice (ERSL), then exhibits
the following key features:

1 It is stationary ergodic and percolates.

2 A = 0, i.e., the effective conductivity is zero in all directions.

3 The (annealed) probability of an edge to be open can be chosen arbitrarily close to one.

4 The above properties can be ensured in any dimension larger or equal to two.
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Ergodic zero-conductance lattice model 3

Figure 1: Two realisations of the non-conductive medium, on slightly differing scales, given by
the elongated randomly stretched lattice. Blue edges belong to the centrally placed green dot’s
cluster (restricted to the observation window).

Let us comment on some potentially simpler models that however violate at least one of the
above conditions. First, the planar uniform spanning tree satisfies the first two conditions, but
it is fractal and it is not connected in high dimensions. Second, it is not hard to construct a
percolating lattice model that is non-conductive in all directions except one, see e.g. Section 6
for a brief description.

Let us finally mention that, while the ERSL is presented and while all relevant calculations are
done in the discrete setting, they can be easily brought into the continuum: one simply needs to
thicken the ERSL by some r < 1/2 after embedding the lattice into Rd.

2 Setting and main result

The elongated randomly stretched lattice (ERSL) is (as the name suggests) a translation- and
(lattice)-rotation-invariant nearest-neighbour percolation model on Zd, constructed by elongat-
ing a randomly stretched lattice (RSL). We define both models in Section 3. Given unit con-
ductance on open edges, let A be the effective conductivity of the ERSL. As mentioned in the
introduction, while A is a semi-positive definite symmetric matrix, 2A is also the covariance
matrix of the diffusively scaled (variable speed) random walker on the ERSL. Moreover, all sym-
metries of the ERSL transfer toA, and in particularA obeys lattice-rotation invariance.

In order to specify the connection betweenA and the ERSL, let us write [0, n] := {0, 1, . . . , n}
and y ∼ x if and only if there exists an open edge between vertices x and y in the ERSL. The
effective conductivity in the direction e1 is represented by the following asymptotic minimisation
problem, see Section 5.2:

et
1Ae1 = lim

n→∞
n2−d inf

V ∈Dn

1
2

∑
z,z̃∈[0,n]d

z∼z̃

|V (z̃)− V (z)|2, (4)

which holds for almost-every realisation of the ERSL, due to ergodicity. Here, e1 denotes the unit
vector in the first coordinate with et

1 its transposition andDn consists of functions V : [0, n]d →
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M. Heida, B. Jahnel, A.D. Vu 4

R satisfying
V (0, z2, . . . , zd) = 0 and V (n, z2, . . . , zd) = 1 .

Under the lattice isotropy, we have et
iAei = et

1Ae1 for all i ≤ d. In fact, since A is symmetric
and rotationally invariant under lattice rotations, we even have isotropy of A, i.e. A = a0Id
for some a0 ∈ R and identity matrix Id. Let us mention that, by the Dirichlet principle, any
minimiser Vmin is harmonic, i.e. it even satisfies∑

z̃∼z

(Vmin(z̃)− Vmin(z)) = 0 for all z ∈ (0, n)× [0, n]d−1,

see e.g. [6]. Before we define the ERSL precisely let us state our main result.

Theorem 1. For any d ≥ 2 and p̄ ∈ (0, 1), there exists an ERSL – a stationary ergodic
nearest-neighbour bond percolation model on Zd – satisfying the following properties.

1 The ERSL percolates almost surely and is lattice rotation invariant.

2 P(e is open in the ERSL) ≥ p̄ for any edge e in Zd.

3 For the associated conductivityA, as defined in (4), we have thatA = 0.

In particular, the random walk on the ERSL is subdiffusive.

In the following construction as well as all proofs, we will restrict ourselves to the planar case,
d = 2, for convenience. All other cases d > 2 follow by completely analogous arguments.

3 Construction: RSL and ERSL

Let us first introduce a prototypical lattice model with columnar disorder: the randomly stretched
lattice. It is a bond percolation model on Z2 where entire columns are made “weak”, i.e., bonds
in such areas are likely to be closed.

Definition 2 (Randomly stretched lattice (RSL)). Let p, q ∈ (0, 1) and consider familiesN (x) :=

(N
(x)
i )i∈Z and N (y) := (N

(y)
j )j∈Z of iid geometric random variables satisfying

P(N
(x)
0 ≥ `+ 1) = P(N

(y)
0 ≥ `+ 1) := q` .

Given a realisation of N (x) and N (y), all the bonds in Z2 are open independently with probabil-
ities

P
(

(i, j)↔ (i+ 1, j) is open |N (x), N (y)
)

:= pN
(x)
i

and
P
(

(i, j)↔ (i, j + 1) is open |N (x), N (y)
)

:= pN
(y)
j .

This model is called the randomly stretched lattice (RSL). We will often refer to the value ` as
the badness.

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024



Ergodic zero-conductance lattice model 5

The RSL features a non-trivial percolation behaviour in the sense that, in non-trivial parameter
regimes, realisation of the RSL contain unbounded connected components with positive proba-
bility, and in other non-trivial regimes not. More precisely, we have the following statement.

Theorem 3 (Existence of supercritical regime in the RSL, [18, 15, 5, 14]). Consider the RSL
as in Definition 2 with p > 1/2. Then, there exists qc ∈ (0, 1) such that, for all q ≤ qc, the RSL
percolates almost-surely.

Proof. For d ≥ 3, percolation has been shown in [18], while the d = 2 case was established in
[15] for large p. This result as well as methods have been improved over time in [5, 14].

Let us mention that, in two dimensions, we may even ensure finite (albeit not uniformly bounded)
size void spaces using circuits of open bonds around Λ for every finite set Λ ⊂ Z2. This
is shown in [17] for a part of the supercritical regime, however, the approach in [14] enables
a much simpler proof covering all p > 1/2 (not necessarily the whole supercritical regime
though).

Let us highlight that, while the RSL features infinitely long dependencies, these dependencies
are confined to columns and rows. Therefore, the RSL is mixing in all diagonal directions which
yields ergodicity.

In the following, we will fix a parameter pair p, q ∈ (0, 1) for which the RSL percolates and
additionally p > q. Furthermore, whenever we refer to the RSL in the future, we mean a
realisation. All statements relating to the RSL are meant in the almost-sure sense.

Unfortunately, we are unable to establish A = 0 directly for the RSL. While weak columns
have high resistance, they do not occur frequently enough. Fortunately, duplicating (or rather
deterministically elongating) columns and rows solves the issue. Doing so has no impact on the
connectivity of the underlying percolation model, but it has a huge effect on the conductivity.
Roughly speaking, the elongation is done such that “bad layers” become exponentially large.

We describe this procedure in the following only for (Ni)i∈Z := (N
(x)
i )i∈Z, i.e., along the first

coordinate. All other coordinates are treated in the same fashion. Recall that dae := inf{n ∈
Z : a ≤ n}. The key idea is to use the labels Ni in the RSL to insert additional columns into
the lattice. More precisely, let σ ∈ (0, 1) such that qσ > p and set

S(`) := dq−`(1−σ)e, l ∈ N. (5)

Given the i-th column in the RSL, with label Ni, we deterministically elongate this column to
have width S(Ni). In other words, for any realisation of the RSL, for any column i, we will insert
additionally S(Ni)− 1 copies of said column’s horizontal edges including their open or closed
state. We will call this elongated strip of width S(`) a layer of badness `. It consists of S(`)
many columns of badness `.

Concerning the openness or closedness of the edges in the layers we employ an additional
modification using the parameter L ∈ N, to be specified later. If an edges lies in a rectangle
spanned by a horizontal and a vertical layer with badness l ≤ L then, then we set it to be open.
Otherwise, they remain unmodified. Recall that we do the same analogously for rows, leading
to the elongation and filling transformation RSL 7→ FL(RSL), as illustrated in Figure 2.

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024
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Figure 2: Realisations of the RSL with parameters p = 0.65, q = 0.3 (left), the elongated
version with σ = 0.25 (middle), and the filled version FL(RSL) with L = 2 (right). Blue edges
belong to the centrally placed green dot’s connected component (before using the grey filling).

We have to be cautious as the deterministic elongation destroys the stationarity of the lattice.
But we can introduce a stationarising random initial shift Z̄ = (Z(x), Z(y)) (with Z(x), Z(y) > 0
iid for both coordinates) to recover stationarity, see e.g. [22, Theorem 9.1]. This can be done as
long as the expected elongation is finite, which is the case since, by the definition in (5),

E[S(N1)] = (1− q)
∑
`≥1

q`dq−`·(1−σ)e ≤ 1 +
1− q
1− qσ

<∞.

To be precise, Z(x) has the size-biased distribution

P(Z(x) = n) := nE[S(N1)]−1P(S(N1) = n)

and we note that Z(x) is finite but possibly without finite first moment. The probability of a
(horizontal) edge in the initial layer of badness Z(x) to be open is given by pN

′
0 , where N ′0 is a

random variable with

P(N ′0 = n) = S(n)E[S(N1)]−1P(N1 = n).

Now we can define our model.

Definition 4 (Elongated randomly stretched lattice (ERSL)). The elongated randomly stretched
lattice (ERSL) is defined as FL(RSL′) − Ū , where RSL′ is the RSL in which the initial marks

N
(x)
0 and N (y)

0 are replaced by iid copies of the size-biased marks N ′0 as defined above. The
random shift Ū = (U (x), U (y)) is given by independent uniformly distributed random variables

U (x) ∈ [0,S(N
(x)
0 )].

Let us mention that it is precisely this possibility to create a shift-invariant version that fails for
an elongated, non-conductive version of simple Bernoulli bond percolation on Z2. Indeed, to get
infinite resistance, the elongations would need to have infinite first moment.

Let us collect the first properties of the ERSL.

Proof of Theorem 1 Part (1) and (2). Note that the ERSL is ergodic since it is still mixing along
the diagonal directions. Furthermore, it is a nearest-neighbour bond percolation model and its
distribution is invariant under all lattice rotations. In the given parameter regime p > 1/2 and
q ≤ min{qc, p} it features percolation almost surely and this percolation is maintained if we

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024



Ergodic zero-conductance lattice model 7

set additional edges to be open under the L-dependent rule. In particular, for all p̄, we can pick
L sufficiently large such that the typical edge in the system is open with probability not smaller
than p̄.

The next section verifies thatA = 0.

4 Checking non-conductance

Before we start, let us give some intuition. Disregarding the stationarisation as well as the L-
dependent rule, the RSL with both dimensions being elongated serves as our material model
in Z2. The idea behind the introduction of the parameter σ is now the following: In macroscopic
columns of badness `, the fraction of open edges is at most p`. This means, that the whole col-
umn behaves similarly to one where all edges are open but with conductance p` instead of unit
conductance. In other words, the resistance is not smaller than approximately p−`. Additionally,
the probability of seeing a column of badness ` is given by S(`)q`(1− q)E[S(N1)]−1 ≈ Cqσ`

instead of q`(1− q) due to size bias, for some constant C > 0. Observe now that σ has been
chosen such that qσ > p and hence, the expected macroscopic resistance is given by

C
∞∑
`=1

p−`qσ` = C
∞∑
`=1

(qσ/p)` =∞.

But this means that we have zero conductivity.

On a technical level, it suffices to show that the right-hand side in (4) equals 0. For this, the
idea is to locate bad layers and ensure that only few edges are open. In order to do that, let us
introduce some relevant quantities that will aid us in our calculations.

4.1 Parameters

Given p, q, σ as before, we also consider

γ :=
[
(1− σ) +

log(p)

log(q)

]−1/2

.

As qσ > p, i.e., σ < log(p)
log(q)

, we see that γ ∈ (0, 1). We will see that we find layers with badness
`n in boxes of size n with high probability, where

`n :=
γ log n

log(q−1)
.

Let us note that, with these quantities, we have p`n ≥ q`nn→∞ and, as γ < 1, also

p`nn

S(`n)
≤ exp

(
log(n)

[ γ

log(q−1)
log(p) + 1 +

γ

log(q−1)
log(q)(1− σ)

])
= exp

(
log(n)

[
− γ
( log(p)

log(q)
+ (1− σ)

)
+ 1
])

= n1−1/γ → 0.

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024
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4.2 Finding bad layers

We want to estimate the probability of finding suitably weak columns as n → ∞. Due to
the stationarising (horizontal) shift U = U (x), we know that [U,U + S(N1)) is a layer in
[0,∞). Analogously, the i-th consequent layer is [U +

∑i
k=1 S(Nk), U +

∑i+1
k=0 S(Nk)) and

has badness Ni+1. Therefore, finding a layer with badness not smaller than `n inside [0, n] is
guaranteed under the event

En :=
{
∃i ∈ N : Ni ≥ `n and U +

i∑
k=1

S(Nk) < n
}
.

Lemma 5 (Probability of bad layers). We have that limn↑∞ P(En) = 1.

Proof. Set C := (2E[S(N1)])−1 and denote the events

An :=
{ Cn∑
k=1

S(Nk) < n− U
}

=
{ 1

Cn

Cn∑
k=1

S(Nk) < 2E[S(N1)]− 1

Cn
U
}

and

Bn :=
{
∃1 ≤ i ≤ Cn : Ni ≥ `n

}
.

Then, by restricting to i ≤ Cn, we see that En ⊃ An ∩ Bn. But, by the law of large numbers
and almost-sure finiteness of U , we have P(An) ↑ 1. Further, since the Ni are iid geometric
random variables, we have

1− P(Bn) =
(
1− q`n

)Cn ≤ exp(−Cq`nn)
n→∞−−−→ 0 ,

by the choice of `n. Combining the two statements yields

P(En) ≥ P(An ∩Bn) ≥ P(An)− P(Bc
n)

n→∞−−−→ 1.

which finishes the proof.

Each column inside the box [0, n]2 contains at most n horizontal edges. Now, we check that
only few of these edges are open with high probability if they belong to a bad layer.

Lemma 6 (Conductivity through bad layers). Assume that En occurs and consider one asso-
ciated layer of badness at least `n. Let Fn be the event that at most 2np`n out of at most n
horizontal edges inside the layer are open. Then,

lim
n↑∞

P(Fn ∩ En) = 1.

Proof. Let X1, . . . , Xn be iid Bernoulli random variables with P(X1 = 1) = p`n and Y :=∑n
i=1Xi. Then, by the Chebyshev inequality,

P(F c
n ∩ En) ≤ P(Y − E[Y ] > E[Y ]) ≤ nVar[X1]

(nE[X1])2
=

1

nE[X1]
· Var[X1]

E[X1]
≤ 1

p`nn
· 1 n→∞−−−→ 0,

which shows the claim by Lemma 5 and the choice of `n.

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024
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4.3 Calculating the effective conductivity

We may finally calculate the right-hand side in (4).

Lemma 7 (Upper bound). Under the event En ∩ Fn there exists a V ∈ Dn such that∑
z,z̃∈[0,n]2 : z∼z̃

|V (z̃)− V (z)|2 ≤ 4n1−1/γ. (6)

Proof. Under the event Fn ∩ En there exists a layer with badness at least `n inside [0, n]. Let
X denote its starting location. Then, we define V : [0, n]2 → R as

V (i, j) :=


0 i < X,

1 i > X + S(`n),
i−X
S(`n)

i ∈ [X,X + S(`n)],

and note that V (i, j) does not depend on j and is constant except inside the bad layer where
it linearly grows to 1. Therefore, the only contribution to the sum in (6) comes from horizontal
edges involving i ∈ [X,X + S(`n)] and in particular V ∈ Dn.

Let us focus on the chosen bad layer. There, under Fn, we have at most 2np`n open edges
along a strip of size S(`n) (which is part of a potentially larger layer), so the contribution is∑

z,z̃∈[0,n]2

z∼z̃

|V (z̃)− V (z)|2 ≤ 4np`nS(`n)S(`n)−2 ≤ 4n1−1/γ,

as desired.

Proof of Theorem 1 Part (3). Note that by the Borel–Cantelli lemma, there exists a subsequence
(nk)k≥1 such that almost surely, for all but finitely many k, the event Enk

∩Fnk
occurs. Hence,

using Lemma 7 yields

P
(

lim
n↑∞

inf
W∈Dn

∑
x,y∈[0,n]d : x∼y

|W (y)−W (x)|2 ≤ 0
)

= P
(

inf
W∈Dnk

∑
x,y∈[0,nk]d : x∼y

|W (y)−W (x)|2 ≤ 4n
1−1/γ
k for infinitely many k

)
≥ P

(
Enk
∩ Fnk

happens for infinitely many k
)

= 1 ,

where the first equality follows from the fact that the limit in Equation (4) exists almost surely as
well as limk→∞ n

1−1/γ
k = 0. This showsA = 0.

5 Background on discrete models for perforated domains

5.1 Justification of discrete models replacing continuous problems

We will now demonstrate that discrete homogenisation problems can at least in some cases
be considered as continuous homogenisation problems. The implication of this insight is that,

DOI 10.20347/WIAS.PREPRINT.3095 Berlin 2024
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constructing a discrete medium that is topologically connected but has macroscopic conductivity
zero can be mapped onto a continuous medium with the same properties.

The classical point of view, which we discuss first, somehow follows the opposite direction.
However, we provide it here for completeness.

The classical point of view. Historically, the upscaling of discrete models were first pro-
posed independently in [21, 19] as substitutes for the homogenisation of partial differential
equations. A basic idea behind this discretisation is the finite-volume approach: A partial dif-
ferential equation of the form −∇ · (a(x)∇u) = f(x) can be discretised on a cubic grid by
−δ−2

∑
±
∑d

j=1 ax,j (u(x± δej)− u(x)) = f(x), where x ∈ δZd and ax,j is constructed
properly in [7].

Hence, if we consider a homogenisation problem−∇ · (a(x/ε)∇u) = f(x), we can consider
instead −(δε)−2

∑d
j=1 ax,j (u(x+ δεej)− u(x)) = f(x), where x ∈ εδZd or equivalently,

after a rescaling,

−ε−2

d∑
j=1

aεi,j (u(xi + εej)− u(xi)) = f(xi) , x ∈ εZd .

In order to transfer this insight to the case of a perforated domain, we can consider a stationary
ergodic random domain with holes that are large compared to the grid distance in Zd. Then,
we consider GZ := G ∩ Zd and say ai,j = 1 if and only if xi, xi + ej ∈ GZ and ai,j = 0
otherwise. This mimics the behaviour of (1) in the discrete setting.

The exact solution point of view. Through another point of view, our discrete solutions can
be mapped one on one to solutions for a subclass of problems on a special perforated domain.
In order to avoid struggles with boundary conditions, we consider the full-space problem, even
though the major events happen around a bounded domain Q.

For every vertex x of our rectangular grid, we consider for δ � 1 the cube of width δ with
centre x and call it C(x, δ). If x ∼ y are connected neighbours in our discrete model, we
connect the two cubes C(x, δ) and C(y, δ) by their combined convex hull C(x, y, δ), e.g., a
rectangular cylinder with a (d−1)-dimensional cube of size δ as its base. We call C0(x, y, δ) =
C(x, y, δ) \ (C(x, δ) ∪ C(y, δ)) and Gδ =

⋃
x C(x, δ) ∪

⋃
x∼y C0(x, y, δ).

Given values fx for each vertex x, with fx = 0 for x 6∈ Q we consider the discrete equation for
u

∀x ∈ Zd ∩Q ,
∑

x,y∈[0,n]d : x∼y

ux − uy = fx and ∀xZd \Q, ux = 0. (7)

This problem has a unique solution as the linear map on the left-hand side is positive definite.

Next we define f δ(x) = fx on C(x, δ) and f δ(x) = 0 else. We set uδ as the linear interpolation
of ux on ∂C(x, δ)∩ ∂C0(x, y, δ) and uy on ∂C(y, δ)∩ ∂C0(x, y, δ). Furthermore, let uδ solve
−∆uδ = f on C(x, δ) with uδ = ux on ∂C(x, δ). Then, uδ is anH1

loc(G
δ) function that solves

−∆uδ = f δ on Gδ. Furthermore, uδ = 0 outside a sufficiently large ball around Q.

It is thus reasonable to consider a sequence of discrete solutions as a sequence of solutions
to (1), turning the discrete homogenisation problem into a continuous homogenisation problem.
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5.2 Formulas for the effective conductivity

We will now justify our formula for the effective conductivity (4). Since this formula is well es-
tablished in literature, it is not our goal to rigorously derive it, but to recap some of the main
arguments as to why this formula is correct. Given a lattice ⊂ Zd, we consider ε := ε as well
as the following scaled version of (7)

∀z ∈ ε ∩Q , ε−2
∑

z,z̃∈[0,n]d

z∼z̃

uεz − uεz̃ = fz , (8)

which takes the following form by a variational principle

uε = arg minu 7→ εd
∑
z∈ε∩Q

(
1

2
ε−2
∑
z̃∼z

|uz − uz̃|2 − fzuz

)
.

Boundary conditions can be imposed by restricting the space over which the minimum is taken.

Without going into detail, but referring to [4], the effective conductivity is again defined asA such
that f ε → f and uε → u in an appropriate sense (this involves mapping discrete functions
to continuous ones) implies that u solves −∇ · (A∇u) = f on Q. Furthermore, using Γ-
convergence arguments, one can draw the conclusion that the minimisers uε from above satisfy∫

Q

∇u · A∇u− fudx = lim inf
ε→0

εd
∑
z∈ε∩Q

(
1

2
ε−2
∑
z̃∼z

|uz − uz̃|2 − fzuz

)
. (9)

With regard to (4), let us note that in the continuous case, a function satisfying u(0, z2, . . . , zd) =
0, u(1, z2, . . . , zd) = 1, −∇ · (A∇u) = 0, and also minimising the left-hand side of (9), has
to satisfy u(z) = z1 and it holds that

∫
(0,1)d

∇u · A∇udx = e1Ae1.

The correctness of (4) now follows from a rescaling, choosing ε = N−1.

5.3 Violation of the homogenisation conditions in [12]

In [12] it is assumed that we can distribute a point process X = (Xi)i≥1, inside the random
geometry, that is jointly stationary and with a uniform minimal distance δ > 0 to the boundary.
Then, these pointsXi are used to create a Voronoi tessellation where each cellCi, correspond-
ing to Xi, has a diameter Di. Within our above construction of a channel network, this situation
can be reproduced for example by choosing a subset of Zd ∩ Gδ, as each of these points has
a distance δ to ∂Gδ.

Now, [12] states three conditions on the random geometry and the chosen point process that
together ensure positive conductivity. Two of these conditions are concerned with the moments
of local Lipschitz regularity and thickness of pipes, which are both satisfied even uniformly in our
model. The third condition, [12, Equation (1.12)], is related to the Voronoi cells emerging from
X and it implies that the (5d + 1)-th moment of the typical diameter exists, i.e., E[D5d+1

0 ] <
∞, where D0 is the diameter corresponding to a uniformly chosen point in the domain, see
Palm theory for details. Since we characterise our geometry by exponential distributions and
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the conditions in [12] are polynomial, let us shortly sketch how we believe this fits together, i.e.,
why our model violates the sufficient conditions in [12].

We observe that the diameters Di are related to the thickness of bad layers and to the mean
mutual distance of channels in bad layers. Concerning the first part, we note that P(S(N0) =
q−l(1−σ)) ≈ ql and thus P(k < D0 ≤ k+1) ∼ k1/(σ−1). Concerning the second part, we can
put ourselves in one of the channels in the layer of badness l and observe that the probability
to find another channel in orthogonal direction to the current channel and within a distance R
is proportional to ωl(1− pl)R

d−1
where ωl is supposedly exponentially decreasing. Comparing

the sum
∑

l ωl(1 − pl)R
d−1

with an integral
∫∞

1
ωl(1 − px)R

d−1
dx, the probability becomes

polynomial in R1−d.

We leave the detailed verification of the above heuristic to future investigations as we expect the
corresponding calculations to be involved, for example due to boundary effects in the creation
of the Voronoi cells.

6 Discussions and outlook

We briefly mentioned a simple percolation model with infinite resistance in all (standard lattice)
directions but one, which we illustrate in Figure 3: Let us first choose e1 ∈ Zd as our special
direction. In this direction, we set all edges (v ↔ v + e1) to be open. For all other directions,
we do the following (only illustrated for d = 2 and analogously for higher dimensions): For each
column i of horizontal edges, sample independently a Pi ∈ (0, 1). Then, the edges in said
column are independently set open with probability Pi and closed otherwise. If all the Pi are iid
and E[P−1

0 ] =∞, then the expected resistance is infinite and the effective conductivity is zero
in this direction. In fact, this model features exactly one connected component which contains
all open edges.

Figure 3: Realisation of a lattice model with zero conductivity in vertical direction. Here, P0 is a
uniform random variable.

Previously, we exploited the existence of weak columns in the RSL by elongating them. With
actual control on the percolation cluster, one might be able to answer the following question: Is
there perhaps a supercritical regime in the unmodified RSL which already features zero con-
ductivity on large scales?

By now, we have shown that the (variable speed) random walker on a properly tuned ERSL is
subdiffusive. Figuring out the exact scaling and determining whether it depends on the elonga-
tion parameter σ seems worthwhile.
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