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Optimality conditions for sparse optimal control of viscous
Cahn–Hilliard systems with logarithmic potential

Pierluigi Colli, Jürgen Sprekels, Fredi Tröltzsch

Abstract

In this paper we study the optimal control of a parabolic initial-boundary value problem of
viscous Cahn–Hilliard type with zero Neumann boundary conditions. Phase field systems of this
type govern the evolution of diffusive phase transition processes with conserved order parameter.
It is assumed that the nonlinear functions driving the physical processes within the spatial domain
are double-well potentials of logarithmic type whose derivatives become singular at the boundary
of their respective domains of definition. For such systems, optimal control problems have been
studied in the past. We focus here on the situation when the cost functional of the optimal con-
trol problem contains a nondifferentiable term like the L1-norm, which leads to sparsity of optimal
controls. For such cases, we establish first-order necessary and second-order sufficient optimality
conditions for locally optimal controls. In the approach to second-order sufficient conditions, the
main novelty of this paper, we adapt a technique introduced by E. Casas, C. Ryll and F. Tröltzsch in
the paper [SIAM J. Control Optim. 53 (2015), 2168–2202]. In this paper, we show that this method
can also be successfully applied to systems of viscous Cahn–Hilliard type with logarithmic nonlin-
earity. Since the Cahn–Hilliard system corresponds to a fourth-order partial differential equation
in contrast to the second-order systems investigated before, additional technical difficulties have
to be overcome.

1 Introduction

Let Ω ⊂ R3 denote some bounded and connected open set with smooth boundary Γ = ∂Ω (a
compact hypersurface of class C2) and unit outward normal n. Moreover, let T > 0 denote some
final time, and set

Qt := Ω× (0, t), Σt := Γ× (0, t), for t ∈ (0, T ], and Q := QT , Σ := ΣT .

We then study the following optimal control problem:

(CP) Minimize the cost functional

J(ϕ, u) :=
b1

2

∫∫
Q

|ϕ− ϕQ|2 +
b2

2

∫
Ω

|ϕ(T )− ϕΩ|2 +
b3

2

∫∫
Q

|u|2 + κG(u) ,

=: J(ϕ, u) + κG(u) (1.1)
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subject to the initial-boundary value system

∂tϕ−∆µ = 0 a.e. in Q, (1.2)

τ∂tϕ−∆ϕ+ f ′(ϕ) = µ+ w a.e. in Q, (1.3)

γ∂tw + w = u a.e. in Q, (1.4)

∂nµ = ∂nϕ = 0 a.e. on Σ, (1.5)

ϕ(0) = ϕ0, w(0) = w0 a.e. in Ω, (1.6)

and to the control constraint

Uad = {u ∈ U : u(x, t) ≤ u(x, t) ≤ u(x, t) for a.a. (x, t) in Q}. (1.7)

Here, the given bounds u, u ∈ U satisfy u ≤ u almost everywhere in Q, and the control space is
given by

U = L∞(Q). (1.8)

Moreover, the targets ϕQ, ϕΩ are given functions, b1 ≥ 0, b2 ≥ 0, b3 > 0 are constants, and
κ > 0 is a constant which represents the sparsity parameter. The sparsity-enhancing functional
G : L2(Q) → R is nonnegative, continuous and convex. Typically, G has a nondifferentiable form
like, e.g.,

G(u) = ‖u‖L1(Q) =

∫∫
Q

|u| . (1.9)

The state equations (1.2)–(1.3) constitute a viscous Cahn–Hilliard system (introduced in [4]), in which
a number of physical constants have been normalized to unity and whose state variables ϕ and µ
are monitored through the input variable w, which is in turn determined by the action of the control
u via the linear control equation (1.4). Equation (1.4) models how the “forcing” w is generated by the
external control u. We remark that (1.5) could be replaced by much more general differential equations
modeling the relation between an L2-control u and a smooth forcing w: one can see, e.g, the system
studied in [14], in which the linear equation (1.4) is replaced by a reaction-diffusion equation where
the unknown w represents a nutrient concentration, in a model for tumor growth.

In the system (1.2)–(1.6), ϕ plays the role of an order parameter that attains its values in the interval
[−1,+1], while µ is the associated chemical potential. Moreover, τ > 0 is a viscosity coefficient,
γ is a given (uniformly) positive function defined on Ω, and ϕ0 and w0 are given initial data. The
nonlinearity f represents a double-well potential whose derivative defines the local part of the ther-
modynamic force driving the evolution of the system. In this paper, we consider potentials having the
typical behavior of the physically particularly relevant logarithmic potential given by

flog(r) =

 c1

(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c2r

2 if r ∈ (−1, 1)
2c1 ln(2)− c2 if r ∈ {−1, 1}
+∞ if r 6∈ [−1, 1].

(1.10)

In this connection, c1, c2 are nonnegative and such that flog is nonconvex. Notice that for f = flog

the term f ′(ϕ) occurring in (1.3) becomes singular as ϕ ↘ −1 and ϕ ↗ 1, which forces the order
parameter ϕ to attain its values in the physically meaningful range (−1, 1).

Starting with the seminal paper [31], there exists an abundant literature on the well-posedness and
asymptotic behavior of viscous and nonviscous Cahn–Hilliard systems with zero Neumann and with
dynamic boundary conditions that cannot be cited here in its entirety. A nice collection of papers on
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this topic up to the year 2015 can be found in [39]. In spite of this large amount of related literature, we
have chosen to provide a detailed well-posedness analysis of the state system (1.2)–(1.6), both for the
readers’ convenience and the fact that the system (1.2)–(1.6) was apparently not studied before in this
particular form in which the control contributes to the chemical potential through the quantityw. Notice
that the typical regularity to be expected for an L2−control u is w ∈ H1(0, T ;L2(Ω)), which in the
three-dimensional case with logarithmic potential is typically needed to derive a separation property
from (1.3) for the state variable ϕ.

There also exist contributions to the optimal control of Cahn–Hilliard type systems in various contexts.
Without claiming to be exhaustive and complete, we mention now some related papers. First, let us
refer to [28, 43, 64, 65] and, in the framework of diffusive models of tumor growth, to [14, 23–25, 29,
30, 33]. Problems with dynamical boundary conditions have been studied in [11, 12, 17–21, 23, 38],
and convective Cahn–Hilliard systems have been the subject of [19, 20, 38, 53, 62, 63]. In addition,
quite a number of works have been dedicated to the study of cases in which the Cahn–Hilliard system
is coupled to other systems; in this connection, we quote Cahn–Hilliard–Navier–Stokes models (see
[32,42,44,45,60]) and the Cahn–Hilliard–Oono (see [15,36]), Cahn–Hilliard–Darcy (see [1,58]), Cahn–
Hilliard–Brinkman (see [30]) and Cahn–Hilliard with curvature effects (see [16]) systems.

None of the papers cited above is concerned with the aspect of sparsity, i.e., the possibility that any
locally optimal control may vanish in subregions of positive measure of the space-time cylinder Q that
are controlled by the sparsity parameter κ. The geometry of these subregions depends on the partic-
ular choice of the convex functional G, which can differ in different situations. The sparsity properties
can be deduced from the variational inequality occurring in the first-order necessary optimality condi-
tions and the particular form of the subdifferential ∂G. In this paper, we focus on sparsity, where, in
the following, we restrict ourselves to the case of full sparsity which is connected to the L1(Q)-norm
functional G introduced in (1.9). Other types of sparsity such as directional sparsity with respect to
time and directional sparsity with respect to space (see, e.g., [55]) are not treated in this paper.

Sparsity in the optimal control theory for partial differential equations has become an actively inves-
tigated aspect. The use of sparsity-enhancing functionals goes back to inverse problems and image
processing. It was the seminal paper [59] on elliptic control problems that initiated the discussion of
sparsity in the optimal control theory of partial differential equations. Soon after [59], many results
on sparse optimal controls for PDEs were published. We mention only very few of them with closer
relation to our paper, in particular [6, 40, 41], on directional sparsity, and [10] on a general theorem
for second-order conditions. Moreover, we refer to some new trends in the investigation of sparsity,
namely, infinite horizon sparse optimal control (see, e.g., [47, 48]) and fractional order optimal control
(cf. [51,52]).

The abovementioned papers concentrated on the first-order optimality conditions for sparse optimal
controls of single elliptic and parabolic equations. In [8,9], first- and second-order optimality conditions
have been discussed in the context of sparsity for the (semilinear) system of FitzHugh–Nagumo equa-
tions. More recently, sparsity of optimal controls for reaction-diffusion systems of Cahn–Hilliard type
have been addressed in [26, 34, 55]. Moreover, we refer to the measure control of the Navier–Stokes
system studied in [7]. However, to the best knowledge of the authors, second-order sufficient optimality
for sparse controls for the Cahn–Hilliard and viscous Cahn–Hilliard equations have never been studied
before.

Second-order sufficient optimality conditions are usually based on a condition of coercivity that is re-
quired to hold for the smooth part J of J in a certain critical cone. The nonsmooth part G contributes
to sufficiency by its convexity. For the strength of sufficient conditions it is crucial that the critical cone
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be as small as possible. In their paper [9], Casas–Ryll–Tröltzsch devised a technique by means of
which a very advantageous (i.e., small) critical cone can be chosen. This method was originally in-
troduced for a class of semilinear second-order parabolic problems with smooth nonlinearities. In the
recent papers [56, 57] two of the present authors have demonstrated that it can be adapted corre-
spondingly to the sparse optimal control of Allen–Cahn systems with dynamic boundary conditions
and to a large class of systems modeling tumor growth, where in both papers the case of singular
logarithmic nonlinearities of the form (1.10) was admitted.

It is the main aim and novelty of this work to show that also systems having a Cahn–Hilliard structure
can be treated accordingly (at least in the viscous case τ > 0). This is by no means obvious, since,
in contrast to the second-order systems investigated in [56, 57], the Cahn–Hilliard structure studied
here leads to a fourth-order PDE for the order parameter ϕ (which readily follows from insertion for
µ from (1.3) in (1.2)). As a consequence, a number of additional technical difficulties have to be
overcome, both in the proof of the Fréchet differentiability of the control-to-state operator and in the
analysis of the properties of the adjoint variables. Some of these technical difficulties are also due to
the singular behavior of the derivative f ′(ϕ) of the logarithmic nonlinearity appearing in (1.3). The
nonviscous case τ = 0 with logarithmic nonlinearity is not covered by our analysis and deserves to
be investigated more specifically and carefully.

The paper is organized as follows. In the following section, we formulate the general assumptions
and study the state system, proving the existence of a unique solution. We also show the uniform
separation property for the solution component ϕ and the local Lipschitz continuity of the control-to-
state operator. In Section 3, we then employ the implicit function theorem to prove that the control-
to-state operator is twice continuously Fréchet differentiable between appropriate Banach spaces.
Moreover, local Lipschitz properties are shown for the first and second derivatives. In Section 4, the
main part of this paper, we investigate the control problem (CP) with sparsity. Besides analyzing the
associated adjoint problem, we derive the first-order necessary optimality conditions. The final section
then brings the derivation of the announced second-order sufficient optimality conditions for controls
that are locally optimal in the sense of L2(Q).

Prior to this, let us fix some notation. For any Banach spaceX , we denote by ‖ · ‖X ,X∗, and 〈 · , · 〉X ,
the corresponding norm, its dual space, and the related duality pairing between X∗ and X . For two
Banach spaces X and Y that are both continuously embedded in some topological vector space Z ,
we consider the linear space X ∩ Y that becomes a Banach space if equipped with its natural norm
‖v‖X∩Y := ‖v‖X + ‖v‖Y for v ∈ X ∩ Y . The standard Lebesgue and Sobolev spaces defined on
Ω are, for 1 ≤ p ≤ ∞ and m ∈ N ∪ {0}, denoted by Lp(Ω) and Wm,p(Ω), respectively. If p = 2,
they become Hilbert spaces, and we use the usual notation Hm(Ω) := Wm,2(Ω). For convenience,
we also set

H := L2(Ω), V := H1(Ω), W :=
{
v ∈ H2(Ω) : ∂nv = 0 on Γ

}
,

and we denote by ( · , · )H the natural inner product in H . As usual, H is identified with a subspace
of the dual spaces V ∗ according to the identity

〈u, v〉V = (u, v)H for every u ∈ H and v ∈ V .

We then have the Hilbert triplet V ⊂ H ⊂ V ∗ with dense and compact embeddings.

We close this section by introducing a convention concerning the constants used in estimates within
this paper: we denote by C any positive constant that depends only on the given data occurring in
the state system and in the cost functional, as well as on a constant that bounds the L∞(Q)–norms
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of the elements of Uad. The actual value of such generic constants C may change from formula to
formula or even within formulas. Finally, the notation Cδ indicates a positive constant that additionally
depends on the quantity δ.

2 General assumptions and the state system

In this section, we formulate the general assumptions for the data of the state system (1.2)–(1.6), and
we collect some known results for the state system. Throughout this paper, we make the following
assumptions:

(A1) f = f1 + f2, where f1 : R → [0,+∞] is convex and lower semicontinuous with f1(0) = 0,
and f2 : R→ R has a Lipschitz continuous first derivative f ′2 on R. Moreover, we require that
f1 ∈ C5(−1, 1) and f2 ∈ C5[−1, 1], and we assume that

lim
r↘−1

f ′1(r) = −∞ , lim
r↗1

f ′1(r) = +∞ . (2.1)

(A2) τ > 0, γ ∈ L∞(Ω), and there exists some γ0 > 0 such that γ ≥ γ0 a.e. in Ω. Moreover,
w0 ∈ H , ϕ0 ∈ W , and it holds that

− 1 < min
x∈Ω

ϕ0(x), max
x∈Ω

ϕ0(x) < 1 . (2.2)

(A3) R > 0 is a fixed constant such that

Uad ⊂ UR := {u ∈ L∞(Q) : ‖u‖L∞(Q) < R}. (2.3)

Remark 2.1. From the condition (A1) (cf. (2.1), in particular) it follows that the derivative f ′1 is just
defined in (−1, 1) and gives rise to a maximal monotone operator in R×R. Note that (A1) is fulfilled
if f is given by the logarithmic potential flog in (1.10), where f1(r) = c1

(
(1 + r) ln(1 + r) +

(1 − r) ln(1 − r)
)

for r ∈ (−1, 1) and f2(r) = −c2r
2 for r ∈ R in that case. The condition

ϕ0 ∈ W implies that ϕ0 is uniformly bounded and continuous on Ω, so that (2.2) yields that ϕ0 is
strictly separated from the values −1 and 1 associated with the pure phases. Finally, the condition
(A3) just fixes once and for all a bounded open subset of the control space L∞(Q) that contains Uad.

A consequence of (A2) is that the mean value of ϕ0,

m0 :=
1

|Ω|

∫
Ω

ϕ0 , belongs to the interior of the domain (−1, 1) of f ′1. (2.4)

In the following, we use the notation v to denote the mean value of a generic function v ∈ L1(Ω).
More generally, we set

v :=
1

|Ω|
〈v, 1〉V for every v ∈ V ∗, (2.5)

noting that the constant function 1 is an element of V . Clearly, v is the usual mean value of v if v ∈ H .
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Next, we specify our notion of solution: for any given u ∈ L2(0, T ;H), the triplet (ϕ, µ, w) is said to
be a solution to (1.2)–(1.6) if

ϕ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ),

− 1 < ϕ(x, t) < 1 for a.e. (x, t) ∈ Q,
µ ∈ L2(0, T ;W ), w ∈ H1(0, T ;H),

(ϕ, µ, w) solves (1.2)–(1.6),

so that, in particular,∫
Ω

∂tϕ(t)v +

∫
Ω

∇µ(t) · ∇v = 0 for a.e. t ∈ (0, T ) and every v ∈ V , (2.6)

τ

∫
Ω

∂tϕ(t)v +

∫
Ω

∇ϕ(t) · ∇v +

∫
Ω

f ′(ϕ(t))v

=

∫
Ω

(µ(t) + w(t))v for a.e. t ∈ (0, T ) and every v ∈ V , (2.7)∫
Ω

γ ∂tw(t)z +

∫
Ω

w(t)z =

∫
Ω

u(t)z for a.e. t ∈ (0, T ) and every z ∈ H , (2.8)

as well as
ϕ(0) = ϕ0 in V, w(0) = w0 in H. (2.9)

Note that the above identities (2.6)–(2.8) are variational formulations of (1.2)–(1.4), where the first two
are obtained with the contribution of the boundary conditions (1.5). Let us emphasize that, by this
definition, (1.3) actually holds and, by comparison of terms, it turns out that f ′(ϕ) ∈ L2(0, T ;H). In
addition, (2.9) is another way of writing the initial conditions (1.6). Let us also remark that, thanks to
the linear equation (1.4) and the second initial condition in (2.8), w can be explicitly written in terms of
u by means of the variation of constants formula

w(x, t) = w0(x) exp(−t/γ(x)) +

∫ t

0

exp(−(t− s)/γ(x))u(x, s)ds, a.e. (x, t) ∈ Q. (2.10)

We are going to prove the existence of a (smoother) solution and, in the case when u ∈ UR, the
separation property.

Theorem 2.2. Suppose that the conditions (A1)–(A3) are fulfilled. Then the state system (1.2)–(1.6)
has for any u ∈ L2(0, T ;H) a unique solution (ϕ, µ, w) with the regularity

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) , (2.11)

ϕ ∈ C0(Q) and − 1 < ϕ < 1 in Q , (2.12)

µ ∈ L∞(0, T ;W ) ∩ L2(0, T ;H3(Ω)) ⊂ L∞(Q) , (2.13)

w ∈ H1(0, T ;H) . (2.14)

In addition, there is a constant K1 > 0, which depends only on ‖u‖L2(0,T ;H) and the data of the state
system, such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W )∩C0(Q)

+ ‖µ‖L∞(0,T ;W )∩L2(0,T ;H3(Ω))∩L∞(Q) + ‖w‖H1(0,T ;H) ≤ K1 , (2.15)
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whenever (ϕ, µ, w) is the solution to the state system associated with u. Moreover, if w0 ∈ L∞(Ω)
and u ∈ UR, then the solution component w satisfies

w ∈ W 1,∞(0, T ;L∞(Ω)) ⊂ L∞(Q) , (2.16)

and a uniform strict separation property is fulfilled: there are constants r−, r+, which depend only on
R and the data of the state system, such that

−1 < r− ≤ ϕ(x, t) ≤ r+ < 1 for every (x, t) ∈ Q, (2.17)

whenever ϕ is first component of the solution (ϕ, µ, w) to the state system related to some u ∈ UR.

Corollary 2.3. Assume (A1)–(A3), and let w0 ∈ L∞(Ω). Then, for all u ∈ UR, the corresponding
solution (ϕ, µ, w) of the state system (1.2)–(1.6) satisfies

max
0≤i≤5

(
max
j=1,2

‖f (i)
j (ϕ)‖C0(Q) + ‖f (i)(ϕ)‖C0(Q)

)
≤ K2 , (2.18)

for some constant K2 depending only on r−, r+, f1, f2, where f (i) = f
(i)
1 + f

(i)
2 for i = 0, 1, . . . , 5.

Notice that the regularity ϕ ∈ C0(Q) follows from (2.11) and [54, Sect. 8, Cor. 4], since the continuous
embeddingW ⊂ C0(Ω) is compact. The estimate (2.18) is then an immediate consequence of (2.17)
and assumption (A1). The proof of the above theorem, however, is rather long and involved.

Proof of Theorem 2.2. To begin with, we introduce for every ε ∈ (0, 1) the Moreau-Yosida regulariza-
tions f1,ε and f ′1,ε of f1 and f ′1, which have the folowing properties (see, e.g., [3, pp. 28 and 39]):

f ′1,ε : R→ R is monotone and Lipschitz continuous

with Lipschitz constant 1/ε, and it holds f ′1,ε(0) = 0, (2.19)

|f ′1,ε(r)| ≤ |f ′1(r)| for every r ∈ (−1, 1), (2.20)

0 ≤ f1,ε(r) =

∫ r

0

f ′1,ε(s) ds ≤ f1(r) for every r ∈ R. (2.21)

Then, consider the problem of finding (ϕε, µε, w) satisfying (2.10) as well as∫
Ω

∂tϕε(t) v +

∫
Ω

∇µε(t) · ∇v = 0 for a.e. t ∈ (0, T ) and every v ∈ V , (2.22)

τ

∫
Ω

∂tϕε(t) v +

∫
Ω

∇ϕε(t) · ∇v +

∫
Ω

(
f ′1,ε(ϕε(t)) + f ′2(ϕε(t))

)
v

=

∫
Ω

(
µε(t) + w(t)

)
v for a.e. t ∈ (0, T ) and every v ∈ V , (2.23)

ϕε(0) = ϕ0 a.e. in Ω. (2.24)

Note that (2.22)–(2.24) is a well-known viscous Cahn–Hilliard system that has received a lot of at-
tention in the recent literature. In addition, here the nonlinearies acting in (2.23) are even Lipschitz
continuous. For the existence and uniqueness of a solution (ϕε, µε) to (2.22)–(2.24), we may re-
fer to [13, Thm. 4.1], where a Faedo–Galerkin scheme has been employed for the proof. Observe
that the weak solution offered by [13, Thm. 4.1] is a variational solution with the regularity ϕε ∈
H1(0, T ;V ∗) ∩ C0([0, T ];H) ∩ L2(0, T ;V ) and µε ∈ L2(0, T ;V ); however, since

−f ′1,ε(ϕε)− f ′2(ϕε) + µε + w ∈ L2(0, T ;V ) +H1(0, T ;H) and ϕ0 ∈ W,
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it follows from classical parabolic regularity theory (see, e.g., [49]) that

ϕε ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ) and µε ∈ L2(0, T ;W ), (2.25)

at least. Moreover, the pointwise equations and conditions

∂tϕε −∆µε = 0 a.e. in Q, (2.26)

τ∂tϕε −∆ϕε + f ′1,ε(ϕε) + f ′2(ϕε) = µε + w a.e. in Q, (2.27)

∂nµε = ∂nϕε = 0 a.e. on Σ, (2.28)

are valid. However, in the sequel the reader can realize how to directly obtain the regularities in (2.25)
and even more. Indeed, we are now going to recover a number of a priori estimates, where C > 0
denotes constants that are independent of ε ∈ (0, 1).

First estimate. Take v = 1/|Ω| in (2.22) and integrate with respect to time using (2.24). Recalling
(2.4) and (2.5), we obtain the mean value conservation property

ϕε(t) = ϕ0 = m0 for all t ∈ [0, T ]. (2.29)

Now, let us make a preliminary remark forw. As 0 ≤ exp(−t/γ(x)) ≤ 1 for all t ≥ 0, it is not difficult
to deduce from (2.10) and (1.4) that

‖w‖L∞(0,T ;H) ≤ ‖w0‖H +
√
T ‖u‖L2(0,T ;H), (2.30)

‖∂tw‖L2(0,T ;H) ≤
1

γ0

(
‖u‖L2(0,T ;H) +

√
T ‖w0‖H + T‖u‖L2(0,T ;H)

)
. (2.31)

Next, we choose v = µε(t) in (2.22) and v = ∂tϕε(t) in (2.23), add the resulting equalities and
integrate with respect to t. Noting that a cancellation occurs, we obtain∫∫

Qt

|∇µε|2 + τ

∫∫
Qt

|∂tϕε|2 +
1

2

∫
Ω

|∇ϕε(t)|2 +

∫
Ω

f1,ε(ϕε(t))

=
1

2

∫
Ω

|∇ϕ0|2 +

∫
Ω

f ′1,ε(ϕ0) +

∫∫
Qt

(w − f ′2(ϕε))∂tϕε. (2.32)

The first two terms on the right-hand side are under control due to (A1), (A2) and (2.21). For the third
term, we have that∫∫

Qt

(w − f ′2(ϕε))∂tϕε ≤
τ

2

∫∫
Qt

|∂tϕε|2 + C

∫∫
Qt

(
1 + |ϕε|2 + |w|2

)
,

thanks to Young’s inequality and the Lipschitz continuity of f ′2.

Now observe that, thanks to (2.29) and the Poincaré–Wirtinger inequality, there is some constant
c1 > 0 depending only on Ω such that

1

2

∫
Ω

|∇ϕε(t)|2 ≥ c1‖ϕε(t)−m0‖2
V .

Therefore, by combining the above estimate with (2.32), we can infer that∫∫
Qt

|∇µε|2 +
τ

2

∫∫
Qt

|∂tϕε|2 + c1‖ϕε(t)−m0‖2
V +

∫
Ω

f1,ε(ϕε(t))

≤ 1

2

∫
Ω

|∇ϕ0|2 +

∫
Ω

f ′1,ε(ϕ0) + C‖w0‖2
H + C

∫∫
Qt

(
1 + |ϕε(s)−m0|2

)
+ C‖u‖2

L2(0,T ;H) ,
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whence, in view of (2.30) and Gronwall’s lemma, it is straightforward to arrive at the estimate

‖∇µε‖L2(0,T ;H3) + ‖ϕε‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f1,ε(ϕε)‖L∞(0,T ;L1(Ω)) ≤ C. (2.33)

Second estimate. We take v = ϕε(t) −m0 in (2.23), in order to exploit the following argument,
which owes to [50, Appendix, Prop. A.1] (see also [35, p. 908] for a detailed proof) and was used in
several papers: by virtue of (2.4), we have, with some δ0 > 0 depending only on f ′1 and m0, that

f ′1,ε(r)(r −m0) ≥ δ0|f ′1,ε(r)| − δ−1
0 for every r ∈ R and every ε ∈ (0, 1). (2.34)

We argue for fixed t and avoid time integration, where, for simplicity, we do not write the time t for a
while. We have, almost everywhere in (0, T ),

δ0

∫
Ω

|f ′1,ε(ϕε)| − δ−1
0 |Ω| ≤

∫
Ω

∇ϕε · ∇(ϕε −m0) +

∫
Ω

f ′1,ε(ϕε)(ϕε −m0)

=

∫
Ω

µε(ϕε −m0) +

∫
Ω

(
w − τ∂tϕε − f ′2(ϕε)

)
(ϕε −m0). (2.35)

We recall thatϕε −m0 = 0 a.e. in (0, T ), thus we can take advantage of that and apply the Poincaré–
Wirtinger inequality to µε − µε. In fact, using (2.33) as well, we have∫

Ω

µε(ϕε −m0) =

∫
Ω

(µε − µε)(ϕε −m0) ≤ C ‖∇µε‖H3 ‖ϕε −m0‖H ≤ C ‖∇µε‖H3 .

For the remaining terms on the right-hand side of (2.35), we use the Schwarz inequality, the Lipschitz
continuity of f ′2, and the bounds available from (2.30) and (2.33), to obtain that

‖f ′1,ε(ϕε)‖1 ≤ C
(
‖∇µε‖H + ‖∂tϕε‖H + 1

)
a.e. in (0, T ).

At this point, by taking v = 1/|Ω| in (2.23), using the inequality just obtained, and estimating the other
L1-norms by the corresponding H-norms, we deduce that

|µε| ≤ C
(
‖∇µε‖H + ‖∂tϕε‖H + 1

)
a.e. in (0, T ). (2.36)

Then, by (2.36) and (2.33) we find that ‖µε‖L2(0,T ;V ) ≤ C. Moreover, using again the boundedness
of ∂tϕε in L2(0, T ;H) along with elliptic regularity theory, we additionally recover from (2.26) and
(2.28) the estimate

‖µε‖L2(0,T ;W ) ≤ C. (2.37)

Third estimate. We take v = f ′1,ε(ϕε(t)) as test function in (2.23) and do not integrate with respect
to time, obtaining for a.e. t ∈ (0, T ) that∫

Ω

∇ϕε(t) · ∇f ′1,ε(ϕε(t)) +

∫
Ω

|f ′1,ε(ϕε(t))|2

=

∫
Ω

(
µε + w − τ∂tϕε − f ′2(ϕε)

)
(t) f ′1,ε(ϕε(t)). (2.38)

Note that the first term on the left-hand side is nonnegative, while the right-hand side can be easily
treated using Young’s inequality and taking advantage of (2.30) and (2.33), to deduce that

1

2
‖f ′1,ε(ϕε(t))‖2

H ≤ CR

(
‖µε(t)‖2

H + ‖∂tϕε(t)‖2
H + 1

)
for a.e. t ∈ (0, T ). (2.39)
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Moreover, since it follows from (2.27) that

−∆ϕε(t) = −f ′1,ε(ϕε(t)) +
(
µε + w − τ∂tϕε + f ′2(ϕε)

)
(t) a.e. in Ω,

we can infer from (2.39) that

‖∆ϕε(t))‖2
H ≤ C

(
‖µε(t)‖2

H + ‖∂tϕε(t)‖2
H + 1

)
for a.e. t ∈ (0, T ). (2.40)

Hence, owing to (2.28), (2.33), (2.37) and elliptic regularity theory, we conclude that

‖f ′1,ε(ϕε)‖L2(0,T ;H) + ‖ϕε‖L2(0,T ;W ) ≤ C. (2.41)

Fourth estimate. The subsequent estimate should be rigorously reproduced on some regularized
version of (2.26)–(2.28) with (2.24); for instance, one can use a time discetization procedure. However,
for the sake of brevity, let us argue directly on (2.26)–(2.28). First, we write (2.26)–(2.27) at the initial
time t = 0 and deduce from (2.27), (2.24) and (2.9) that

τ∂tϕε(0) = ∆ϕ0 − f ′1,ε(ϕ0)− f ′2(ϕ0) + µε(0) + w0, (2.42)

whence, replacing ∂tϕε(0) in (2.26), we obain the elliptic equation

µε(0)− τ∆µε(0) = −∆ϕ0 + f ′1,ε(ϕ0) + f ′2(ϕ0)− w0, (2.43)

where the right-hand side is bounded inH due to (A2), (2.1), and (2.20). Then, from the homogeneous
boundary condition ∂nµε(0) = 0 on Γ (see (2.28)) and the elliptic well-posedness and regularity
theory, it turns out that there exists a unique solution µε(0) to (2.43) satisfying

‖µε(0)‖W ≤ C. (2.44)

Moreover, coming back to (2.42), we also recover that

‖∂tϕε(0)‖H ≤ C. (2.45)

The next (formal) computation is performed directly on the variational formulation
(2.22)–(2.23) of (2.26)–(2.28). It consists in differentiating (2.23) with respect to t and then taking
v = ∂tϕε. On the other hand, we choose v = ∂tµε in (2.22) and add the result to the previous
equality. Note that a cancellation occurs. Then, we integrate over (0, t) and obtain

1

2

∫
Ω

|∇µε(t)|2 +
τ

2

∫
Ω

|∂tϕε(t)|2 +

∫∫
Qt

|∇∂tϕε|2 +

∫∫
Qt

∂t(f
′
1,ε(ϕε))∂tϕε

≤ 1

2

∫
Ω

|∇µε(0)|2 +
τ

2

∫
Ω

|∂tϕε(0)|2 +

∫∫
Qt

∂t(w − f ′2(ϕε))∂tϕε.

In view of (2.19), the fourth term on the left-hand side is nonnegative. On the right-hand side, we
invoke (2.44) and (2.45) for the first two terms and easily control the third one by using (2.31), the
Lipschitz continuity of f ′2, and the boundedness of ‖∂tϕε‖2

L2(0,T ;H) established in (2.33). Hence, we
easily conclude that

‖∇µε‖L∞(0,T ;H3) + ‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C. (2.46)
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Conclusion of the existence proof. Next, we return to the bound (2.36) for the mean value of
µε, observing that by virtue of (2.46) the right-hand side of (2.36) is now bounded in L∞(0, T ).
Hence, we have that ‖µε‖L∞(0,T ;V ) ≤ C, and, in view of the boundedness of ∂tϕε in L∞(0, T ;H)∩
L2(0, T ;V ) from (2.46), we can exploit the equation (2.26), the boundary condition in (2.28), and the
elliptic regularity theory, to arrive at

‖µε‖L∞(0,T ;W )∩L2(0,T ;H3(Ω)) ≤ C. (2.47)

Similarly, we can recall (2.39) and (2.40) and, with the help of (2.46) and (2.47), improve the estimate
(2.41), deducing that

‖f ′1,ε(ϕε)‖L∞(0,T ;H) + ‖ϕε‖L∞(0,T ;W ) ≤ C. (2.48)

At this point, we can perform the passage to the limit as ε↘ 0. In view of the estimates (2.46)–(2.48),
which are independent of ε, by weak and weak-star compactness it turns out that there are µ, ϕ and
ζ such that

ϕε → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.49)

µε → µ weakly star in L∞(0, T ;W ) ∩ L2(0, T ;H3(Ω)), (2.50)

f ′1,ε(ϕε)→ ζ weakly star in L∞(0, T ;H), (2.51)

as ε ↘ 0, possibly along a subsequence. By virtue of (2.49)–(2.51) and the Aubin–Lions–Simon
lemma (see, e.g., [54, Sect. 8, Cor. 4], as W ⊂ C0(Ω) with compact embedding), we deduce in
particular that ϕε → ϕ strongly in C0(Q). The same strong convergence holds for f ′2(ϕε)→ f ′2(ϕ),
while the identification ζ = f ′1(ϕ) results (first as an inclusion) as a consequence of (2.51) and the
maximal monotonicity of f ′1 (see (A1) and Remark 2.1), since we can apply, e.g., [2, Lemma 2.3, p. 38].
Then, we can pass to the limit in the variational equalities (2.22), (2.23) and obtain (2.6), (2.7). Also,
the initial condition (2.24) extends to the limit ϕ. Finally, we have found a complete solution (ϕ, µ, w)
to (1.2)–(1.6), solving then (2.6)–(2.9), possessing the full regularity expressed in (2.11)–(2.14) and,
due to (2.49)–(2.51) and the weak star lower semicontinuity of norms, satisfying the bound (2.15).
The uniqueness of this solution (ϕ, µ, w) will follow as a consequence of the subsequent continuous
dependence result.

Separation property. Now assume, in addition to (A1)–(A3), that w0 ∈ L∞(Ω) and u ∈ UR. We
aim at verifying the separation property (2.17). First, note that (2.16) is a direct consequence of (2.10)
and (A3). Moreover, the equation (1.3) holds for the limit functions with the datum f ′ = f ′1 + f ′2 as in
(A1). Therefore, we rewrite (1.3) in the form

τ∂tϕ−∆ϕ+ f ′1(ϕ) = µ+ w − f ′2(ϕ) a.e. in Q, (2.52)

noting that the right-hand side is bounded in L∞(Q) (cf. (2.12) and (2.13)). In fact, there exists a
positive constant c∗, independent of the choice of u ∈ UR, such that

‖µ+ w − f ′2(ϕ)‖L∞(Q) ≤ c∗. (2.53)

Moreover, the condition (2.2) for the initial value ϕ0 and the assumption (2.1) entail the existence of
some constants r− and r+ such that −1 < r− ≤ r+ < 1 and

r− ≤ min
x∈Ω

ϕ0(x), r+ ≥ max
x∈Ω

ϕ0(x), (2.54)

f ′1(r) + c∗ ≤ 0 ∀r ∈ (−1, r−), f ′1(r)− c∗ ≥ 0 ∀r ∈ (r+, 1). (2.55)
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Now, let us test (2.52), witten at time t ∈ (0, T ), by v(t) = (ϕ(t) − r+)+ − (ϕ(t) − r−)−, where
( · )+ and ( · )− denote the standard positive and negative parts, respectively. Then, we integrate with
respect to t. Observe that v(0) = 0 in view of (2.54). Using integration by parts and (2.53), it is
straightforward to deduce that

τ

2
‖v(t)‖2 +

∫∫
Qt

|∇v|2

=

∫∫
Qt∩{ϕ>r+}

(
(µ+ w − f ′2(ϕ))− f ′1(ϕ)

)
(ϕ− r+)

+

∫∫
Qt∩{ϕ<r−}

(
f ′1(ϕ)− (µ+ w − f ′2(ϕ)

)
(r− − ϕ)

≤
∫∫

Qt∩{ϕ>r+}
(c∗ − f ′1(ϕ))(ϕ− r+) +

∫∫
Qt∩{ϕ<r−}

(f ′1(ϕ) + c∗)(r− − ϕ).

Note that the quantity on the last line above is nonpositive due to (2.55), so that v = 0 almost
everywhere, which in turn implies that

r− ≤ ϕ ≤ r+ a.e. in Q.

Thus, since ϕ ∈ C0(Q), the separation property (2.17) holds true, which completes the proof of the
assertion. �

Next, we state a continuous dependence result that, in particular, guarantees the uniqueness of the
solution provided by Theorem 2.2.

Theorem 2.4. Suppose that the conditions (A1)–(A3) are fulfilled. If ui ∈ L2(0, T ;H), i = 1, 2, are
given and (ϕi, µi, wi), i = 1, 2, are the corresponding solutions to (1.2)–(1.6), then

‖ϕ1 − ϕ2‖C0([0,T ];H)∩L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H) ≤ K3 ‖u1 − u2‖L2(0,T ;H), (2.56)

for some constant K3 depending only on τ , γ0, T and the Lipschitz constant of f ′2. If, in addition,
w0 ∈ L∞(Ω) and ui ∈ UR, i = 1, 2, then we have the further estimate

‖ϕ1 − ϕ2‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;W ) + ‖µ1 − µ2‖L2(0,T ;W )

+ ‖w1 − w2‖H1(0,T ;H) ≤ K4 ‖u1 − u2‖L2(0,T ;H), (2.57)

with a constant K4 that depends only on K2, τ , γ0, Ω, and T .

Proof. Let us set, for convenience,

u := u1 − u2 , ϕ := ϕ1 − ϕ2 , µ := µ1 − µ2 , w := w1 − w2 .

Then ϕ(0) = w(0) = 0 in H by (2.9). Next, we can write (2.6)–(2.8) for (ϕi, µi, wi), i = 1, 2, and
take the differences, obtaining∫

Ω

∂tϕv +

∫
Ω

∇µ · ∇v = 0 for every v ∈ V , a.e. in (0, T ), (2.58)

τ

∫
Ω

∂tϕv +

∫
Ω

∇ϕ · ∇v +

∫
Ω

(f ′1(ϕ1)− f ′1(ϕ2))v −
∫

Ω

µv

=

∫
Ω

(w − f ′2(ϕ1) + f ′2(ϕ2))v for every v ∈ V , a.e. in (0, T ), (2.59)
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∫
Ω

γ ∂tw z +

∫
Ω

wz =

∫
Ω

uz for every z ∈ H , a.e. in (0, T ). (2.60)

Now, we integrate (2.58) over (0, t), for t ∈ (0, T ], and take v = µ(t). At the same time, we
insert v = ϕ(t) in (2.59) and z = ∂tw(t) in (2.60). Then we add the three resultants, noting that a
cancellation occurs, and integrate with respect to time. All this leads to

1

2

∫
Ω

∣∣∣∇ ∫ t

0

µ(s)ds
∣∣∣2 +

τ

2

∫
Ω

|ϕ(t)|2 +

∫∫
Qt

|∇ϕ|2

+

∫∫
Qt

(
f ′1(ϕ1)− f ′1(ϕ2)

)
(ϕ1 − ϕ2) +

∫∫
Qt

γ|∂tw|2 +
1

2

∫
Ω

|w(t)|2

=

∫∫
Qt

(
wϕ−

(
f ′2(ϕ1)− f ′2(ϕ2)

)
(ϕ1 − ϕ2) + u ∂tw

)
, (2.61)

for every t ∈ [0, T ]. We point out that the fourth term on the left-hand side is nonnegative, due to the
monotonicity of f ′1. For the right-hand side, we infer from the Lipschitz continuity of f ′2 and Young’s
inequality that ∫∫

Qt

(
wϕ−

(
f ′2(ϕ1)− f ′2(ϕ2)

)
(ϕ1 − ϕ2) + u ∂tw

)
≤ γ0

2

∫∫
Qt

|∂tw|2 + C

∫ t

0

(
‖w(s)‖2

H + ‖ϕ(s)‖2
H + ‖u(s)‖2

H

)
ds . (2.62)

Then, as γ ≥ γ0 a.e. in Ω by (A2), we can combine (2.62) with (2.61) and arrive at (2.56) via an
application of Gronwall’s lemma.

Now let w0 ∈ L∞(Ω) and ui ∈ UR, i = 1, 2. We can then exploit the separation property (2.17) and
the global bound (2.18) from Corollary 2.3, which ensures the Lipschitz continuity of f ′ = f ′1 + f ′2.
Now, we test (2.58) by µ and (2.59) by ∂tϕ, then we add and integrate over (0, t), for t ∈ (0, T ].
Then, we easily obtain that∫∫

Qt

|∇µ|2 + τ

∫∫
Qt

|∂tϕ|2 +
1

2

∫
Ω

|∇ϕ(t)|2 ≤
∫∫

Qt

(
K2|ϕ|+ |w|

)
|∂tϕ|

≤ τ

2

∫∫
Qt

|∂tϕ|2 + C
(
‖ϕ‖2

L2(0,t;H) + ‖w‖2
L2(0,t;H)

)
. (2.63)

Taking advantage of (2.56), we then deduce that

‖∇(µ1 − µ2)‖L2(0,T ;H3) + ‖ϕ1 − ϕ2‖H1(0,T ;H)∩C0([0,T ];V ) ≤ C ‖u1 − u2‖L2(0,T ;H). (2.64)

At this point, we can take v = 1/|Ω| in (2.59) to produce an estimate for the mean value of µ, since
all the other terms are under control. Indeed, it is clear that

|µ(t)| ≤ C
(
‖∂tϕ(t)‖H + ‖f ′(ϕ1(t))− f ′(ϕ2(t))‖H + ‖w(t)‖H

)
for a.e. t ∈ (0, T ); hence it follows from the Lipschitz continuity of f ′ and from (2.56) and (2.64)
that ‖µ‖L2(0,T ) ≤ C‖u‖L2(0,T ;H). Moreover, by a comparison of terms in (2.58), it turns out that
‖∆µ‖L2(0,T ;H) ≤ C‖∂tϕ‖L2(0,T ;H). Therefore, first using the Poincaré–Wirtinger inequality and then
elliptic regularity, we can conclude that

‖µ1 − µ2‖L2(0,T ;W ) ≤ C ‖u1 − u2‖L2(0,T ;H). (2.65)

DOI 10.20347/WIAS.PREPRINT.3094 Berlin 2024



P. Colli, J. Sprekels, F. Tröltzsch 14

Finally, recall that (2.59) yields

τ∂tϕ−∆ϕ = −f ′(ϕ1) + f ′(ϕ2) + µ+ w a.e. in Q, (2.66)

as well as ∂nϕ = 0 a.e. on Σ. Therefore, a comparison of terms in (2.66) leads to the estimate

‖∆ϕ‖L2(0,T ;H) ≤ C
(
‖ϕ‖H1(0,T ;H) + ‖µ‖L2(0,T ;H) + ‖w‖L2(0,T ;H)

)
,

whence, by virtue of the previous estimates (2.56), (2.64), (2.65), and using elliptic regularity theory,
we obtain that

‖ϕ1 − ϕ2‖L2(0,T ;W ) ≤ C ‖u1 − u2‖L2(0,T ;H). (2.67)

With this, (2.57) is completely proved.

Remark 2.5. 1. Note that, by virtue of Theorems 2.2 and 2.4, the control-to-state operator S : u 7→
S(u) := (ϕ, µ, w) is Lipschitz continuous on the set UR as a mapping between L2(0, T ;H) and the
Banach space(

H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )
)
× L2(0, T ;W )×H1(0, T ;H).

2. In view of Theorem 2.4, we emphasize that the continuous dependence estimate (2.56), which
does not use the bounds (2.15) and (2.18), is already enough to ensure the uniqueness of the solution
(ϕ, µ, w) to (1.2)–(1.6). Indeed, the uniqueness of ϕ and w comes immediately from (2.56), while the
uniqueness of µ follows from a comparison in (1.3), since f ′1 is single-valued in its domain (−1, 1).

3 Differentiability of the control-to-state operator

In this section, we study the differentiability properties of the control-to-state operator S. In addition to
the control space U = L∞(Q) defined in (1.8), we introduce the Banach spaces

X :=
(
H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W )

)
× L2(0, T ;W )×H1(0, T ;H), (3.1)

Y :=
(
W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

)
×
(
L∞(0, T ;W ) ∩ L2(0, T ;H3(Ω))

)
×H1(0, T ;H), (3.2)

Z :=
{

(ϕ, µ, w) ∈ Y ∩ U3 : ∂tϕ−∆µ ∈ U,

τ∂tϕ−∆ϕ− µ− w ∈ U, γ∂tw + w ∈ U} , (3.3)

where X and Y are endowed with their standard norms and the norm in Z is given by

‖(ϕ, µ, w)‖Z = ‖(ϕ, µ, w)‖Y + ‖(ϕ, µ, w)‖U3 + ‖∂tϕ−∆µ‖U
+ ‖τ∂tϕ−∆ϕ− µ− w‖U + ‖γ∂tw + w‖U. (3.4)

We want to show that under the assumptions (A1)–(A3) and w0 ∈ L∞(Ω) the operator S is twice
continuously Fréchet differentiable on U as a mapping from U into Z, where, for any control u∗ ∈
UR, with associated state (ϕ∗, µ∗, w∗) =: S(u∗), the first and second Fréchet derivatives S′(u∗) ∈
L(U,Z) and S′′(u∗) ∈ L(U,L(U,Z)) are given as follows:
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(i) For any increment h ∈ U, (ξ, η, v) := S′(u∗)[h] ∈ Z is the unique solution to the linearized
problem

∂tξ −∆η = 0 a.e. in Q, (3.5)

τ∂tξ −∆ξ − η − v = −f ′′(ϕ∗)ξ a.e. in Q, (3.6)

γ∂tv + v = h a.e. in Q, (3.7)

∂nη = ∂nξ = 0 a.e. on Σ, (3.8)

ξ(0) = 0, v(0) = 0 a.e. in Ω. (3.9)

(ii) For any pair of increments h, k ∈ U, (ψ, ν, z) := S′′(u∗)[h, k] ∈ Z is the unique solution to the
bilinearized problem

∂tψ −∆ν = 0 a.e. in Q, (3.10)

τ∂tψ −∆ψ − ν − z = −f ′′(ϕ∗)ψ − f ′′′(ϕ∗)ξhξk a.e. in Q, (3.11)

γ∂tz + z = 0 a.e. in Q, (3.12)

∂nν = ∂nψ = 0 a.e. on Σ, (3.13)

ψ(0) = 0, z(0) = 0 a.e. in Ω, (3.14)

where (ξh, ηh, vh) := S′(u∗)[h] and (ξk, ηk, vk) := S′(u∗)[k]. We immediately note that the third
component z of the solution (ψ, ν, z) to (3.10)–(3.14) fulfills z = 0 a.e. in Q due to (3.12) and (3.14).

Now, fix some values r∗, r∗ such that

−1 < r∗ < r− < r+ < r∗ < 1, (3.15)

with the constants r−, r+ introduced in (2.17). We then consider the set

Φ :=

{
(ϕ, µ, w) ∈ Z : r∗ < ess inf

(x,t)∈Q
ϕ(x, t) ≤ ess sup

(x,t)∈Q
ϕ(x, t) < r∗

}
, (3.16)

which is obviously an open subset of Z. Notice that the functions in Z are measurable and bounded,
so that essential infimum and supremum are well defined.

We now prove an auxiliary result for the linear initial-boundary value problem

∂tϕ−∆µ = 0 a.e. in Q, (3.17)

τ∂tϕ−∆ϕ− µ− w = −λ1f
′′(ϕ∗)ϕ+ λ2g a.e. in Q, (3.18)

γ∂tw + w = λ3h a.e. in Q, (3.19)

∂nµ = ∂nϕ = 0 a.e. on Σ, (3.20)

ϕ(0) = λ4ϕ0, w(0) = λ4w0 a.e. in Ω, (3.21)

which for λ1 = λ3 = 1 and λ2 = λ4 = 0 coincides with the linearization (3.5)–(3.9) of the state
system. For convenience, we introduce the following Banach spaces for the initial data:

N2 := {(ϕ0, w0) : ϕ0 ∈ W, w0 ∈ L2(Ω)}, (3.22)

N∞ := {(ϕ0, w0) : ϕ0 ∈ W, w0 ∈ L∞(Ω)}, (3.23)

equipped with their natural norms. We then have the following result.
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Lemma 3.1. Assume that λ1, λ2, λ3, λ4 ∈ {0, 1} are given and that the assumptions (A1)–(A3) are
fulfilled. Moreover, let (u∗, (ϕ∗, µ∗, w∗)) ∈ UR × Φ be arbitrary. Then the following holds true:

(i) The system (3.17)–(3.21) has, for every g, h ∈ L2(0, T ;H) and (ϕ0, w0) ∈ N2, a unique
solution (ϕ, µ, w) ∈ X, and the linear mapping (g, h, (ϕ0, w0)) 7→ (ϕ, µ, w) is continuous from
L2(0, T ;H)× L2(0, T ;H)×N2 into X.

(ii) If, in addition, g ∈ H1(0, T ;H), then (ϕ, µ, w) ∈ Y, and the mapping (g, h, (ϕ0, w0))
7→ (ϕ, µ, w) is continuous from H1(0, T ;H)× L2(0, T ;H)×N2 into Y.

(iii) If g ∈ H1(0, T ;H) ∩ U, h ∈ U and (ϕ0, w0) ∈ N∞, then (ϕ, µ, w) ∈ Z, and the linear
mapping (g, h, (ϕ0, w0)) 7→ (ϕ, µ, w) is continuous from (H1(0, T ;H) ∩ U)× U×N∞ into Z.

Proof. At first, arguing along the lines of the first part of the proof of Theorem 2.2 for the state sys-
tem, it is a standard matter to show that (3.17)–(3.21) has a unique strong solution (ϕ, µ, w) ∈ X

for given data g, h ∈ L2(0, T ;H), and (ϕ0, w0) ∈ N2. Indeed, the existence can be proved via
an appropriate Faedo–Galerkin approximation for which a priori estimates and a passage-to-the-limit
process are performed. The uniqueness proof is actually simple due to the linearity of the problem. In
order not to overload the exposition, we avoid writing the Faedo–Galerkin scheme here and just give
the corresponding a priori estimates formally. To this end, we introduce the constants

M1 := λ2 ‖g‖L2(0,T ;H) + λ3 ‖h‖L2(0,T ;H) + λ4 ‖(ϕ0, w0)‖N2 , (3.24)

M2 := λ2 ‖g‖H1(0,T ;H) + λ3 ‖h‖L2(0,T ;H) + λ4 ‖(ϕ0, w0)‖N2 , (3.25)

M3 := λ2 ‖g‖H1(0,T ;H)∩U + λ3 ‖h‖U + λ4 ‖(ϕ0, w0)‖N∞ . (3.26)

Proof of (i). Let g ∈ L2(0, T ;H), h ∈ L2(0, T ;H), and (ϕ0, w0) ∈ N2 be given. We derive a
series of a priori estimates for the corresponding solution (ϕ, µ, w), where the constants C > 0 are
independent of the constants M1,M2,M3.

We first add ϕ to both sides of (3.18) and then test (3.17) by µ, (3.18) by ∂tϕ, and (3.19) by ∂tw.
Addition of the resulting identities and integration over (0, t) leads to a cancellation of terms, and it
results that ∫∫

Qt

|∇µ|2 + τ

∫∫
Qt

|∂tϕ|2 +
1

2
‖ϕ(t)‖2

V +

∫∫
Qt

γ|∂tw|2 +
1

2
‖w(t)‖2

H

= −λ1

∫∫
Qt

f ′′(ϕ∗)ϕ∂tϕ+ λ2

∫∫
Qt

g ∂tϕ+ λ3

∫∫
Qt

h ∂tw

+
λ 2

4

2
‖ϕ0‖2

V +
λ 2

4

2
‖w0‖2

H +

∫∫
Qt

(ϕ+ w)∂tϕ. (3.27)

Note that for the first term on the right-hand side we can apply the bounds in Corollary 2.3, where now
the constant K2 depends on r∗, r∗ (in place of r−, r+). Then, by the Young inequality we see that

− λ1

∫∫
Qt

f ′′(ϕ∗)ϕ∂tϕ+ λ2

∫∫
Qt

g ∂tϕ+

∫∫
Qt

(ϕ+ w)∂tϕ

≤ τ

2

∫∫
Qt

|∂tϕ|2 + C
(
λ 2

1 + 1
) ∫∫

Qt

|ϕ|2 + Cλ 2
2

∫∫
Qt

|g|2 + C

∫∫
Qt

|w|2.

Similarly, we have that

λ3

∫∫
Qt

h ∂tw ≤
γ0

2

∫∫
Qt

|∂tw|2 + Cλ 2
3

∫∫
Qt

|h|2.
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Then, using the fact that
∫∫

Qt
γ|∂tw|2 ≥ γ0

∫∫
Qt
|∂tw|2, and applying the above inequalities in

(3.27), we can infer from Gronwall’s lemma that

‖∇µ‖L2(0,T ;H3) + ‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖w‖H1(0,T ;H) ≤ CM1. (3.28)

Testing now (3.18) by 1/|Ω|, and integrating by parts with the help of (3.20), we easily find, by com-
parison of terms and thanks to (3.28), that

‖µ‖L2(0,T ) ≤ CM1. (3.29)

Next, in view of (3.28) and (3.29), we can infer from the Poincaré–Wirtinger inequality that ‖µ‖L2(0,T ;V )

≤ CM1. Therefore, thanks to (3.17), (3.20), and elliptic regularity, it holds that ‖∆µ‖L2(0,T ;H) ≤
CM1 and

‖µ‖L2(0,T ;W ) ≤ CM1. (3.30)

The same argument, this time applied to (3.18), leads to ‖∆ϕ‖L2(0,T ;H) ≤ CM1 and

‖ϕ‖L2(0,T ;W ) ≤ CM1. (3.31)

From the above estimates it follows that (ϕ, µ, w) belongs to X and, at the same time, that the conti-
nuity property asserted in (i) is valid. Assertion (i) is thus shown.

Proof of (ii). Assume now that g ∈ H1(0, T ;H). We then may differentiate (3.18) with respect to
time and test by ∂tϕ, then we add the resultant to (3.18) tested by ∂tµ. Again, we have a cancellation
of terms, and by integration we obtain that

1

2

∫
Ω

|∇µ(t)|2 +
τ

2

∫
Ω

|∂tϕ(t)|2 +

∫∫
Qt

|∇∂tϕ|2

≤ 1

2

∫
Ω

|∇µ(0)|2 +
τ

2

∫
Ω

|∂tϕ(0)|2 +

∫∫
Qt

∂tw ∂tϕ

− λ1

∫∫
Qt

f ′′′(ϕ∗)∂tϕ
∗ ϕ∂tϕ− λ1

∫∫
Qt

f ′′(ϕ∗)|∂tϕ|2 + λ2

∫∫
Qt

∂tg ∂tϕ. (3.32)

Concerning the first two terms on the right-hand side, we can argue as in (2.42)–(2.45), by reading
(3.17) and (3.18) at the initial time t = 0 and exploiting (3.21). Since τ∂tϕ(0) is equal to µ(0) plus
the quantity

λ4(∆ϕ0 + w0 − λ1f
′′(ϕ∗(0))ϕ0) + λ2g(0),

which is bounded in H by CM2 (see (3.16), (3.22), and note that ‖g(0)‖H ≤ C‖g‖H1(0,T ;H) and
M1 ≤M2), we infer that

1

2

∫
Ω

|∇µ(0)|2 +
τ

2

∫
Ω

|∂tϕ(0)|2 ≤ CM2
2 .

Thanks to (3.28) and the bounds (2.18) in Corollary 2.3, all of the other terms on the right-hand side
of (3.32) are easily under control except the fourth, for which we argue as follows:

− λ1

∫∫
Qt

f ′′′(ϕ∗)∂tϕ
∗ ϕ∂tϕ ≤ Cλ1

∫ t

0

‖∂tϕ∗(s)‖H‖ϕ(s)‖L4(Ω)‖∂tϕ(s)‖L4(Ω) ds

≤ Cλ1‖∂tϕ∗‖L2(0,T ;H)‖ϕ‖L∞(0,T ;V ) ‖∂tϕ(s)‖L2(0,t;V )

≤ 1

2

∫∫
Qt

(
|∂tϕ|2 + |∇∂tϕ|2

)
+ CM2

2 ,
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where we exploited the continuity of the embedding V ⊂ L4(Ω). Then, combining the estimates
above, we deduce from (3.32) and (3.28) that

‖∇µ‖L∞(0,T ;H3) + ‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ CM2. (3.33)

Now, we can repeat the comparison arguments used in (3.29)–(3.31) and conclude, in this order, that

‖µ‖L∞(0,T ) ≤ CM2, (3.34)

‖µ‖L∞(0,T ;W )∩L2(0,T ;H3(Ω)) ≤ CM2, (3.35)

‖ϕ‖L∞(0,T ;W ) ≤ CM2. (3.36)

With these estimates, we have shown that (ϕ, µ, w) ∈ Y and that ‖(ϕ, µ, w)‖Y ≤ CM2, which
concludes the proof of assertion (ii).

Proof of (iii). Assume now that g ∈ H1(0, T ;H) ∩ U, h ∈ U and (ϕ0, w0) ∈ N∞. Since
M2 ≤ CM3, we then have from (ii) that ‖(ϕ, µ, w)‖Y ≤ CM3. Owing to the continuity of the
embedding W ⊂ L∞(Ω) and to the fact that w can be explicitly written as (cf. (2.10))

w(x, t) = λ4w0(x) exp(−t/γ(x)) +

∫ t

0

λ3h(x, s) exp(−(t− s)/γ(x))ds, (x, t) ∈ Q,

it is readily verified that (ϕ, µ, w) belongs to Z, and, moreover, that ‖(ϕ, µ, w)‖Z ≤ CM3. This
concludes the proof of the lemma.

Now, having proved Lemma 3.1, we can prepare for the application of the implicit function theorem.
We consider two auxiliary linear initial-boundary value problems. The first is given by

∂tϕ−∆µ = 0 a.e. in Q, (3.37)

τ∂tϕ−∆ϕ− µ− w = g a.e. in Q, (3.38)

γ∂tw + w = h a.e. in Q, (3.39)

∂nµ = ∂nϕ = 0 a.e. on Σ, (3.40)

ϕ(0) = 0, w(0) = 0 a.e. in Ω, (3.41)

and is obtained from (3.17)–(3.21) for λ1 = λ4 = 0, λ2 = λ3 = 1. Thanks to Lemma 3.1, the
problem (3.37)–(3.41) admits for each (g, h) ∈ (H1(0, T ;H)∩U)×U a unique solution (ϕ, µ, w) ∈
Z, and the associated linear mapping

G1 : (H1(0, T ;H) ∩ U)× U→ Z, (g, h) 7→ (ϕ, µ, w),

is continuous. The second system reads

∂tϕ−∆µ = 0 a.e. in Q, (3.42)

τ∂tϕ−∆ϕ− µ− w = 0 a.e. in Q, (3.43)

γ∂tw + w = 0 a.e. in Q, (3.44)

∂nµ = ∂nϕ = 0 a.e. on Σ, (3.45)

ϕ(0) = ϕ0, w(0) = w0 a.e. in Ω, (3.46)
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and results from (3.17)–(3.21) for λ1 = λ2 = λ3 = 0, λ4 = 1. For each (ϕ0, w0) ∈ N∞, the
problem (3.42)–(3.46) has a unique solution (ϕ, µ, w) ∈ Z, and the associated mapping

G2 : N∞ → Z, (ϕ0, w0) 7→ (ϕ, µ, w),

is linear and continuous as well. In addition, we define on the open set A := (UR × Φ) ⊂ (U× Z)
the nonlinear mapping

G3 : A→ (H1(0, T ;H) ∩ U)× U, (u, (ϕ, µ, w)) 7→ (−f ′(ϕ), u) (3.47)

as a mapping from U× Z to (H1(0, T ;H) ∩ U)× U. The solution (ϕ, µ, w) to the nonlinear state
equation (1.2)–(1.6) is the sum of the solution to the system (3.42)–(3.46) and of the solution to the
system (3.37)–(3.41), where (g, h) is given by the pair (−f ′(ϕ), u).

All this means that the state (ϕ, µ, w) associated with the control u is the unique solution to the
nonlinear equation

(ϕ, µ, w) = G2(ϕ0, w0) + G1

(
G3(u, (ϕ, µ, w))

)
. (3.48)

Let us now define the nonlinear mapping F : A→ Z,

F(u, (ϕ, µ, w)) := G2(ϕ0, w0) + G1

(
G3(u, (ϕ, µ, w))

)
− (ϕ, µ, w). (3.49)

With F, the state equation can be shortly written as

F(u, (ϕ, µ, w)) = (0, 0, 0). (3.50)

This equation just means that (ϕ, µ, w) is a solution to the state system (1.2)–(1.6) such that (u,
(ϕ, µ, w)) ∈ A. From Theorem 2.2 we know that such a solution exists for every u ∈ UR. A fortiori,
any such solution automatically enjoys the separation property (2.17) and is uniquely determined.

We are going to apply the implicit function theorem to the equation (3.50). To this aim, we need the
differentiability of the mappings entering (3.49). In particular, we have to show that the mapping G3 is
twice continuously Fréchet differentiable in UR × Φ as a mapping from U × Z into (H1(0, T ;H) ∩
U) × U. To this end, we first observe that, thanks to the differentiability properties of the involved
Nemytskii operators (see, e.g., [61, Thm. 4.22, p. 229]), G3 is twice continuously Fréchet differentiable
in UR × Φ as a mapping from U × Z into U × U, and for the first partial derivatives at any point
(u∗, (ϕ∗, µ∗, w∗)) ∈ A, and for all u ∈ U and (ϕ, µ, w) ∈ Z, we have the identities

DuG3(u∗, (ϕ∗, µ∗, w∗))[u] = (0, u),

D(ϕ,µ,w)G3(u∗, (ϕ∗, µ∗, w∗))[(ϕ, µ, w)] = (−f ′′(ϕ∗)ϕ, 0). (3.51)

It remains to show the differentiability properties of the mapping (ϕ, µ, w) 7→ −f ′(ϕ) on Φ as a
mapping from Z into H1(0, T ;H). Now let (ϕ∗, µ∗, w∗) ∈ Φ be fixed. In view of the explicit form of
G3, for the first derivative it obviously suffices to show that

‖f ′(ϕ∗ + ϕ)− f ′(ϕ∗)− f ′′(ϕ∗)ϕ‖H1(0,T ;H)

‖(ϕ, µ, w)‖Z
→ 0 as ‖(ϕ, µ, w)‖Z → 0. (3.52)

To this end, let in the following (ϕ, µ, w) ∈ Z be such that (ϕ∗ + ϕ, µ∗ + µ,w∗ + w) ∈ Φ. We then
observe that

f ′(ϕ∗ + ϕ)− f ′(ϕ∗)− f ′′(ϕ∗)ϕ =

∫ 1

0

(1− τ) f ′′′(ϕ∗ + τϕ) dτ ϕ2 =: Aϕ2, (3.53)

with |A| ≤ K, |∂tA| ≤ K(|∂tϕ∗|+ |∂tϕ|), a.e. in Q, (3.54)
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where, here and in the following,K > 0 denotes generic constants that are independent of the choice
of (ϕ, µ, w). We thus have to estimate

‖Aϕ2‖2
H1(0,T ;H) =

∫∫
Q

|A|2 |ϕ|4 +

∫∫
Q

|∂t(Aϕ2)|2 =: I1 + I2. (3.55)

Owing to (3.54), we have

I1 ≤ K ‖ϕ‖4
L∞(Q) ≤ K ‖(ϕ, µ, w)‖4

Z, (3.56)

as well as

I2 ≤ K

∫∫
Q

(|∂tϕ∗|2 + |∂tϕ|2)|ϕ|4 + K

∫∫
Q

|ϕ|2 |∂tϕ|2

≤ K ‖ϕ‖4
L∞(Q)

(
1 + ‖∂tϕ‖2

L2(0,T ;H)

)
+ K ‖ϕ‖2

L∞(Q) ‖∂tϕ‖2
L2(0,T ;H)

≤ K ‖(ϕ, µ, w)‖4
Z

(
1 + ‖(ϕ, µ, w)‖2

Z

)
. (3.57)

The validity of (3.52) is thus shown. The arguments for the second derivative and its continuity are
quite similar, requiring only straightforward, albeit lengthy, calculations. To keep the paper at a reason-
able length, we leave them to the interested reader. We just remark at this place that the regularity
requirement f1, f2 ∈ C5(−1, 1) comes into play during the proof of the continuity of the second
derivative.

At this point, we introduce some abbreviating notation. We set

y := (ϕ, µ, w), y∗ := (ϕ∗, µ∗, w∗), 0 = (0, 0, 0).

Using the above differentiability results, we obtain from the chain rule that F is twice continuously
Fréchet differentiable in UR×Φ as a mapping from U×Z into Z, with the first-order partial derivatives

DuF(u∗,y∗) = G1 ◦DuG3(u∗,y∗), DyF(u∗,y∗) = G1 ◦DyG3(u∗,y∗)− IZ, (3.58)

where IZ denotes the identity mapping on Z.

We want to prove the differentiability of the control-to-state mapping u 7→ y defined implicitly by
the equation F(u,y) = 0, using the implicit function theorem. Now let u∗ ∈ UR be given and
y∗ = S(u∗). We need to show that the linear and continuous operator DyF(u∗,y∗) is a topological
isomorphism from Z into itself.

To this end, let v = (v1, v2, v3) ∈ Z be arbitrary. Then the identity DyF(u∗,y∗)[y] = v just means
that G1 (DyG3(u∗,y∗)[y])− y = v, which is equivalent to saying that

q := y + v = G1 (DyG3(u∗,y∗)[q])− G1 (DyG3(u∗,y∗)[v]) .

The latter identity means that q is a solution to (3.17)–(3.19) for λ1 = λ2 = λ3 = 1, λ4 = 0,
with the specification (g, h) = −DyG3(u∗,y∗)[v] = (f ′′(ϕ∗)v1, 0) ∈ (H1(0, T ;H) ∩ U)× U. By
Lemma 3.1, such a solution q ∈ Z exists and is uniquely determined, which shows that DyF(u∗,y∗)
is surjective. At the same time, taking v = 0, we see that the equation DyF(u∗,y∗)[y] = 0 just
means that y is the unique solution to (3.17)–(3.19) for λ1 = 1, λ2 = λ3 = λ4 = 0. Obviously,
y = 0, which implies that DyF(u∗,y∗) is also injective and thus, by the open mapping principle, a
topological isomorphism from Z into itself.

We may therefore infer from the implicit function theorem (cf., e.g., [5, Thms. 4.7.1 and 5.4.5] or [27,
10.2.1]) that the control-to-state mapping S is twice continuously Fréchet differentiable in UR as a
mapping from U into Z. More precisely, we obtain the following result.
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Theorem 3.2. Suppose that the conditions (A1)–(A3) andw0 ∈ L∞(Ω) are fulfilled. Then the control-
to-state operator S is twice continuously Fréchet differentiable in UR as a mapping from U into Z.
Moreover, for every u∗ ∈ UR and h, k ∈ U, the functions (ξ, η, v) = S′(u∗)[h] ∈ Z and (ψ, ν, z) =
S′′(u∗)[h, k] ∈ Z are the unique solutions to the linearized system (3.5)–(3.9) and the bilinearized
system (3.10)–(3.14), respectively.

Proof. Let u∗ ∈ UR be arbitrary and y∗ = S(u∗). The existence of S′(u∗) and S′′(u∗), and their
continuous dependence on u∗, were shown above, and differentiation of the identity F(u, S(u)) = 0
at u∗ yields that

DyF(u∗,y∗) ◦ S′(u∗) +DuF(u∗,y∗) = 0.

Now let (ξ, η, v) = S′(u∗)[h], where h ∈ U is arbitrary. Then, by the above identity, and using (3.58)
and (3.51),

(ξ, η, v) = G1

(
DyG3(u∗,y∗)[(ξ, η, v)] + DuG3(u∗,y∗)[h]

)
= G1((−f ′′(ϕ∗)ξ, h)),

and it easily follows from the definition of G1 that (ξ, η, v) indeed coincides with the unique solution to
(3.5)–(3.9) which, by Lemma 3.1,(iii), belongs to Z.

The calculation of the form of the second derivative S′′(u∗) is not given here in order to keep the
exposition at a reasonable length. We just mention that the arguments employed in [61, Sect. 5.7] for
a semilinear heat conduction problem carry over to our situation with only minor changes, leading to
the conclusion that (ψ, ν, z) = S′′(u∗)[h, k] indeed solves the system (3.10)–(3.14). Now observe
that the system (3.10)–(3.14) is of the form (3.17)–(3.21) with λ1 = λ2 = 1, λ3 = λ4 = 0, and
g := −f ′′′(ϕ∗)ξhξk. It is not difficult to show that g ∈ H1(0, T ;H) ∩ U, and Lemma 3.1,(iii) yields
that (ψ, ν, z) ∈ Z.

Remark 3.3. It is worth noting that for the argumentation used above the actual value of the constant
R > 0 defining UR did not matter. It therefore follows that S is twice continuously Fréchet differentiable
as a mapping from U to Z on the entire space U.

Remark 3.4. In view of the continuous embedding Z ⊂ Y, the control-to-state mapping S is also
Fréchet differentiable from U to Y with the same expression for the Fréchet derivative, now regarded
as an element of L(U,Y). As U is dense in L2(0, T ;H), the operator S′(u∗) ∈ L(U,Y) can be
extended in the standard way to an operator belonging to L(L2(0, T ;H),Y). We still denote the
extended operator by S′(u∗), where we underline that it coincides with a Fréchet derivative only
on U and not on L2(0, T ;H). However, it is readily seen by a density argument that (ξ, η, v) =
S′(u∗)[h] coincides also for h ∈ L2(0, T ;H) with the solution to (3.5)–(3.9). Analogously, the sec-
ond Fréchet derivative S′′(u∗) can be continuously extended, which leads to an element of the space
L(L2(0, T ;H),L(L2(0, T ;H),Y)) that is still denoted by S′′(u∗). Again, (ψ, ν, z) = S′′(u∗) [h, k]
solves (3.10)–(3.14) also for h, k ∈ L2(0, T ;H). For the extensions, we have the following result.

Corollary 3.5. Let (A1)–(A3) and w0 ∈ L∞(Ω) be fulfilled, and let u∗ ∈ UR be fixed. Then we have
for every h, k ∈ L2(0, T ;H) the estimates

‖S′(u∗)[h]‖Y ≤ K6 ‖h‖L2(0,T ;H), ‖S′′(u∗)[h, k]‖Y ≤ K6 ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H), (3.59)

with a constant K6 > 0 that depends only on R and the data.

Proof. First note that (ξ, η, v) = S′(u∗)[h] solves the system (3.5)–(3.9), which is of the form (3.17)–
(3.21) with λ1 = λ2 = λ3 = 1, λ4 = 0 and g = 0. Therefore the first inequality in (3.59) follows
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directly from Lemma 3.1,(ii). Next, we observe that the system (3.10)–(3.14) is also of the form (3.17)–
(3.21), but this time with λ1 = λ2 = 1, λ3 = λ4 = 0, and g = −f ′′′(ϕ∗)ξhξk. Hence, also the
second inequality in (3.59) will follow from Lemma 3.1,(ii) once we can show that

‖g‖H1(0,T ;H) ≤ Ĉ ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H) (3.60)

with some Ĉ > 0 that only depends on R and the data. Now recall the definition (3.2) of Y and the
fact that the first estimate in (3.59) is already shown. We thus have

‖g‖2
L2(0,T ;H) ≤ C ‖ξh‖2

L∞(Q)‖ξk‖2
L∞(Q) ≤ C‖S′(u∗)[h]‖2

Y ‖S′(u∗)[k]‖2
Y

≤ C ‖h‖2
L2(0,T ;H) ‖k‖2

L2(0,T ;H) .

Moreover,

‖∂tg‖2
L2(0,T ;H) ≤ C

∫∫
Q

|∂tϕ∗ ξh ξk|2 + C

∫∫
Q

(
|∂tξh|2|ξk|2 + |ξh|2|∂tξk|2

)
≤ C ‖ξh‖2

L∞(Q) ‖ξk‖2
L∞(Q) + C

(
‖∂tξh‖2

L2(Q) ‖ξk‖2
L∞(Q) + ‖ξh‖2

L∞(Q) ‖∂tξk‖2
L2(Q)

)
≤ C‖S′(u∗)[h]‖2

Y ‖S′(u∗)[k]‖2
Y ≤ C ‖h‖2

L2(0,T ;H) ‖k‖2
L2(0,T ;H) ,

which concludes the proof.

Next, we show a Lipschitz continuity property of the extensions of the derivatives that will prove crucial
for the derivation of second-order sufficient optimality conditions below.

Theorem 3.6. The mappings U → L(L2(0, T ;H),Y), u 7→ S′(u), and U → L(L2(0, T ;
H),L(L2(0, T ;H),Y)), u 7→ S′′(u), are Lipschitz continuous in the following sense: there exists a
constant K6 > 0, which depends only on R and the data, such that, for all controls u1, u2 ∈ UR and
all increments h, k ∈ L2(0, T ;H), it holds that

‖(S′(u1)− S′(u2))[h]‖X ≤ K6 ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) , (3.61)

‖ (S′′(u1)− S′′(u2)) [h, k]‖X ≤ K6 ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H) . (3.62)

Proof. Let u1, u2 ∈ UR and h, k ∈ L2(0, T ;H) be given. We put

(ϕi, µi, wi) = S(ui), (ξhi , η
h
i , v

h
i ) = S′(ui)[h], (ξki , η

k
i , v

k
i ) = S′(ui)[k],

(ψi, νi, zi) = S′′(ui)[h, k], for i = 1, 2, as well as

(ξh, ηh, vh) = (ξh1 − ξh2 , ηh1 − ηh2 , vh1 − vh2 ), (ξk, ηk, vk) = (ξk1 − ξk2 , ηk1 − ηk2 , vk1 − vk2).

Then it is easily verified that the triple (ξh, ηh, vh) solves a system of the form (3.5)–(3.9), only that
h = 0 in this case and that the right-hand side of (3.6) is here replaced by the expression

g̃ := −f ′′(ϕ1)ξh − (f ′′(ϕ1)− f ′′(ϕ2))ξh2 .

Now observe that this system is of the form (3.17)–(3.21) with λ1 = λ2 = 1, λ3 = λ4 = 0, ϕ∗ = ϕ1,
and g = −(f ′′(ϕ1)− f ′′(ϕ2))ξh2 . Therefore it follows from Lemma 3.1,(i) that the inequality (3.61) is
valid provided we can show that

‖g‖L2(0,T ;H) ≤ C ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H). (3.63)
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Now, by (2.18), it holds |g| ≤ C|ϕ1 − ϕ2||ξh2 | a.e. in Q. Invoking (2.57) and (3.59), we therefore
conclude that

‖g‖2
L2(Q) ≤ C

∫∫
Q

|ϕ1 − ϕ2|2 |ξh2 |2 ≤ C ‖ϕ1 − ϕ2‖2
L2(Q) ‖ξh2‖2

L∞(Q)

≤ C‖S(u1)− S(u2)‖2
X ‖S′(u2)[h]‖2

Y ≤ C ‖u1 − u2‖2
L2(Q) ‖h‖2

L2(Q).

The inequality (3.61) is thus proved. To show the validity of (3.62), we observe that the triple

(ψ, ν, z) = (ψ1 − ψ2, ν1 − ν2, z1 − z2)

satisfies a system of the form (3.10)–(3.14), where this time the right-hand side of (3.11) is given by

g̃ = −f ′′(ϕ1)ψ − (f ′′(ϕ1)− f ′′(ϕ2))ψ2 − (f ′′′(ϕ1)ξh1 ξ
k
1 − f ′′′(ϕ2)ξh2 ξ

k
2 ).

The system for (ψ, ν, z) is again of the form (3.17)–(3.21), this time with λ1 = λ2 = 1, λ3 = λ4 = 0,
ϕ∗ = ϕ1, and

g = −(f ′′(ϕ1)− f ′′(ϕ2))ψ2 − (f ′′′(ϕ1)ξh1 ξ
k
1 − f ′′′(ϕ2)ξh2 ξ

k
2 ),

and, thanks to Lemma 3.1,(i), it suffices to show that

‖g‖L2(0,T ;H) ≤ C ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H) . (3.64)

Now observe that (2.18) yields that, almost everywhere in Q,

|g| ≤ C
(
|ϕ1 − ϕ2||ψ2| + |ϕ1 − ϕ2||ξh1 ||ξk1 | + |ξh1 − ξh2 ||ξk1 | + |ξh2 ||ξk1 − ξk2 |

)
.

Hence, by virtue of (2.57), (3.59) and the already shown estimate (3.61),

‖g‖L2(Q) ≤ C
(
‖ϕ1 − ϕ2‖L2(0,T ;H) ‖ψ2‖L∞(Q) + ‖ϕ1 − ϕ2‖L2(0,T ;H) ‖ξh1‖L∞(Q) ‖ξk1‖L∞(Q)

+ ‖ξh‖L2(0,T ;H) ‖ξk1‖L∞(Q) + ‖ξh2‖L∞(Q) ‖ξk‖L2(0,T ;H)

)
≤ C

(
‖S(u1)− S(u2)‖X

(
‖S′′(u2)[h, k]‖Y + ‖S′(u1)[h]‖Y ‖S′(u1)[k]‖Y

)
+ ‖(S′(u1)− S′(u2))[h]‖X ‖S′(u1)[k]‖Y
+ ‖S′(u2)[h]‖Y ‖(S′(u1)− S′(u2))[k]‖X

)
≤ C ‖u1 − u2‖L2(0,T ;H) ‖h‖L2(0,T ;H) ‖k‖L2(0,T ;H),

which concludes the proof of the assertion.

4 The optimal control problem

In this section, we study the optimal control problem (CP) with the cost functional (1.1). Besides the
general conditions (A1)–(A3) and w0 ∈ L∞(Ω), we make the following assumptions:

(A4) It holds b1 ≥ 0, b2 ≥ 0, b3 > 0, and κ > 0.

(A5) The target functions satisfy ϕQ ∈ L2(Q) and ϕΩ ∈ V.
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We assume κ > 0 to include the effects of sparsity. By an obvious modification, the theory of second-
order conditions remains valid for κ = 0.

Remark 4.1. The assumption ϕΩ ∈ V is useful in order to have more regular solutions to the as-
sociated adjoint system (see below). It is not overly restrictive in view of the continuous embedding
(H1(0, T ;H) ∩ L2(0, T ;W )) ⊂ C0([0, T ];V ) which implies that ϕ(T ) ∈ V .

The following existence result can be shown with a standard argument that needs no repetition here
(see, e.g., a similar result with proof in [14, Thm. 4.1]).

Theorem 4.2. Suppose that (A1)–(A5) are fulfilled, and suppose that G : L2(Q) → R is nonnega-
tive, convex and continuous. Then the optimal control problem (CP) admits a solution u∗ ∈ Uad.

4.1 The adjoint system

In the following, we often denote by u∗ ∈ Uad a locally optimal control for (CP) and by (ϕ∗, µ∗, w∗) =
S(u∗) the associated state. Recall that a control u∗ ∈ Uad is called locally optimal in the sense of
Lp(Q) for some p ∈ [1,+∞] if and only if there is some ε > 0 such that J(u∗, S(u∗)) ≤ J(u, S(u))
for all u ∈ Uad with ‖u − u∗‖Lp(Q) ≤ ε. As can easily be seen, any locally optimal control in the
sense of Lp(Q) for 1 ≤ p < +∞ is also locally optimal in the sense of L∞(Q).

The corresponding adjoint state system is formally given by:

− ∂t(p+ τq)−∆q + f ′′(ϕ∗)q = b1(ϕ∗ − ϕQ) a.e. in Q, (4.1)

−∆p− q = 0 a.e. in Q, (4.2)

− γ∂tr + r − q = 0 a.e. in Q, (4.3)

∂np = ∂nq = 0 a.e. on Σ, (4.4)

(p+ τq)(T ) = b2(ϕ∗(T )− ϕΩ), r(T ) = 0 a.e. in Ω. (4.5)

We immediately observe that the system is decoupled in the sense that r can be directly recovered
from (4.3) with the terminal condition r(T ) = 0 once q is determined. Note also that the variational
form of (4.1), (4.2), (4.4) is given by

−
∫

Ω

∂t(p+ τq)ρ+

∫
Ω

∇q · ∇ρ+

∫
Ω

f ′′(ϕ∗)qρ = b1

∫
Ω

(ϕ∗ − ϕQ)ρ

for a.e. t ∈ (0, T ) and every ρ ∈ V, (4.6)∫
Ω

∇p · ∇ρ =

∫
Ω

qρ for a.e. t ∈ (0, T ) and every ρ ∈ V. (4.7)

We have the following result.

Theorem 4.3. Suppose that (A1)–(A5) and w0 ∈ L∞(Ω) are fulfilled, and let u∗ ∈ UR be a control
with associated state (ϕ∗, µ∗, w∗). Then the associated adjoint state system has a unique strong
solution (p∗, q∗, r∗) with the regularity

p∗ + τq∗ ∈ H1(0, T ;H) ∩ C0([0, T ];V ) ∩ L2(0, T ;W ), (4.8)

p∗ ∈ L2(0, T ;W ∩H4(Ω)), (4.9)

q∗ ∈ L2(0, T ;W ), (4.10)

r∗ ∈ H1(0, T ;W ). (4.11)
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Moreover, there is a constant K7 > 0, which depends only on R and the data, such that

‖p∗ + τq∗‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H2(Ω)) + ‖p∗‖L2(0,T ;H4(Ω)) + ‖q∗‖L2(0,T ;H2(Ω))

+ ‖r∗‖H1(0,T ;H2(Ω)) ≤ K7

(
‖ϕ∗ − ϕQ‖L2(Q) + ‖ϕ∗(T )− ϕΩ‖V

)
. (4.12)

Proof. We solve the initial-boundary value problem given by (4.6) and (4.7) together with the first ter-
minal condition in (4.5) via a Faedo–Galerkin approximation. To this end, let {λj}j∈N and {ej}j∈N de-
note the countable sets of eigenvalues and eigenfunctions to the elliptic eigenvalue problem−∆ej =
λjej in Ω, ∂nej = 0 on Γ, where the eigenfunctions are normalized by ‖ej‖L2(Ω) = 1 for j ∈ N.
Then

0 = λ1 < λ2 ≤ λ3 ≤ . . . , lim
j→∞

λj = +∞,∫
Ω

ejek =

∫
Ω

∇ej · ∇ek = 0 for j 6= k.

We now introduce the n-dimensional spaces Vn := span{e1, . . . , en}, n ∈ N, and recall the well-
known fact that

⋃
n∈N Vn is dense in both H and V . We make the ansatz

pn(x, t) =
n∑
j=1

pn,j(t)ej(x), qn(x, t) =
n∑
j=1

qn,j(t)ej(x), for (x, t) ∈ Q,

and look for functions pn,j, qn,j such that the identities (4.6) and (4.7) are fulfilled, where p, q are
replaced by pn, qn and the test functions ρ are required to belong to Vn; moreover, we postulate the
terminal condition (pn + τqn)(T ) = Πn

(
b2(ϕ∗(T ) − ϕΩ)

)
, where Πn denotes the H-orthogonal

projection operator onto Vn. Observe that

Πnv =
n∑
j=1

(v, ej)H ej and ‖Πnv‖H ≤ ‖v‖H for all v ∈ H, (4.13)

‖∇(Πnv)‖H ≤ ‖v‖V for all v ∈ V. (4.14)

Next, we choose ρ = ei in (4.6) and (4.7), which leads to the system

− ∂t(pn,i + τqn,i) + λiqn,i +

∫
Ω

f ′′(ϕ∗)
n∑
j=1

qn,jejei = b1

∫
Ω

(ϕ∗ − ϕQ)ei,

a.e. in (0, T ), for 1 ≤ i ≤ n, (4.15)

λi pn,i = qn,i a.e. in (0, T ), for 1 ≤ i ≤ n. (4.16)

In addition, testing the terminal condition by ei, we find that

(pn,i + τqn,i)(T ) = b2

∫
Ω

(ϕ∗(T )− ϕΩ)ei for 1 ≤ i ≤ n. (4.17)

Now we substitute for qn,i from (4.16) in (4.15) and (4.17), which leads to an explicit backward Cauchy
problem for a nonhomogeneous linear ODE system in the unknowns pn,1, . . . , pn,n whose coefficient
functions and right-hand sides all belong to L2(0, T ). Owing to Carathéodory’s theorem, there exists
a unique solution (pn,1, . . . , pn,n) ∈ H1(0, T ;Rn), which, in turn, uniquely determines the solutions
pn, qn ∈ H1(0, T ;W ) to the n-dimensional version of the variational system (4.6), (4.7), together

DOI 10.20347/WIAS.PREPRINT.3094 Berlin 2024



P. Colli, J. Sprekels, F. Tröltzsch 26

with the terminal condition (pn + τqn)(T ) = Πn

(
b2(ϕ∗(T ) − ϕΩ)

)
. We now derive a number of a

priori estimates for pn and qn, where in the following C > 0 denotes constants that may depend on
the data, but not on n ∈ N. When saying that we “insert functions in (4.6) or (4.7)”, we will always
mean the n-dimensional versions of these variational equalities which are solved by pn and qn.

Let n ∈ N now be fixed, and let

M := ‖ϕ∗ − ϕQ‖L2(Q) + ‖ϕ∗(T )− ϕΩ‖V . (4.18)

First, we insert ρ = pn + τqn in (4.6) and ρ = qn in (4.7), and subtract the resultants, noting that
a cancellation of two terms occurs. Then we integrate over (t, T ), where t ∈ [0, T ) is arbitrary.
Introducing the notationQt := Ω× (t, T ) for t ∈ [0, T ), and using Young’s inequality, (2.18), and the
fact that ‖Πn(b2(ϕ∗(T )− ϕΩ))‖H ≤ ‖b2(ϕ∗(T )− ϕΩ)‖H by (4.13), we then obtain that

1

2
‖(pn + τqn)(t)‖2

H +

∫∫
Qt

|qn|2 + τ

∫∫
Qt

|∇qn|2

=
1

2
‖Πn(b2(ϕ∗(T )− ϕΩ))‖2

H −
∫∫

Qt

f ′′(ϕ∗)qn(pn + τqn)

+ b1

∫∫
Qt

(ϕ∗ − ϕQ)(pn + τqn)

≤ CM2 +
1

2

∫∫
Qt

|qn|2 + C

∫∫
Qt

|pn + τqn|2,

and Gronwall’s lemma yields that

‖pn + τqn‖L∞(0,T ;H) + ‖qn‖L2(0,T ;V ) ≤ CM. (4.19)

In addition, we conclude from (4.16) that −∆pn = qn a.e. in (0, T ); since also ∂npn = 0 on Γ a.e. in
(0, T ), we can therefore infer from (4.19) and elliptic regularity theory that pn ∈ L2(0, T ;W∩H3(Ω))
and also

‖pn‖L2(0,T ;H3(Ω)) ≤ CM. (4.20)

Moreover, it readily follows from (4.19) and (4.20), by comparison in (4.6), that∣∣∣ ∫∫
Q

−∂t(pn + τqn)ρ
∣∣∣ ≤ CM‖ρ‖L2(0,T ;V ) for all ρ ∈ L2(0, T ;Vn).

A standard argument then yields that ∂t(pn + τqn) ∈ L2(0, T ;V ∗) and

‖pn + τqn‖H1(0,T ;V ∗) ≤ CM. (4.21)

At this point, we can apply well-known weak and weak-star compactness arguments to conclude that
there are functions p∗, q∗ such that as n→∞ (at first only for a suitable subsequence, but due to the
uniqueness of the limit point eventually for the entire sequence) it holds

pn + τqn → p∗ + τq∗ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;H), (4.22)

pn → p∗ weakly in L2(0, T ;H3(Ω)), (4.23)

qn → q∗ weakly in L2(0, T ;V ). (4.24)

Besides, standard arguments (which need no repetition here) imply that the pair (p∗, q∗) satisfies
(4.6), (4.7), and the terminal condition (p∗ + τq∗)(T ) = b2(ϕ∗(T ) − ϕΩ). Also, by virtue of the
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semicontinuity properties of norms, we infer that the estimates (4.19)–(4.21) are valid with pn, qn
replaced by p∗, q∗. Moreover, from the linearity of (4.6) and (4.7) it readily follows that the solution is
unique.

As the next step, we now recover further regularity properties for p∗, q∗. To this end, we insert ρ =
−∆(pn + τqn) ∈ Vn in (4.6) for fixed n ∈ N and integrate with respect to time to obtain that

1

2

∫
Ω

|∇(pn + τqn)(t)|2 + τ

∫∫
Qt

|∆qn|2 =
1

2

∫
Ω

|∇(Πn(b2(ϕ∗(T )− ϕΩ)))|2

−
∫∫

Qt

∆qn∆pn −
∫∫

Qt

(
b1(ϕ∗ − ϕQ)− f ′′(ϕ∗)qn

)
∆(pn + τqn). (4.25)

Now recall that v := ϕ∗(T ) − ϕΩ ∈ V , so that (4.14) can be applied. Therefore, applying Young’s
inequality and the bounds (4.19) and (4.20) to the last two terms on the right-hand side of (4.25), we
conclude that the right-hand side is bounded by CM2. Therefore, by virtue of elliptic regularity,

‖pn + τqn‖L∞(0,T ;V ) + ‖qn‖L2(0,T ;H2(Ω)) ≤ CM, (4.26)

whence, since −∆pn = qn, and using elliptic regularity theory once more,

‖pn‖L2(0,T ;H4(Ω)) ≤ CM. (4.27)

Consequently, the limit points satisfy (4.9) and (4.10). Moreover, we have p∗+ τq∗ ∈ L∞(0, T ;V )∩
L2(0, T ;H2(Ω)) and q∗ ∈ L2(0, T ;H2(Ω)) with the corresponding norm estimates. In addition,
comparison in (4.6), using the already shown bounds, yields that also p∗ + τq∗ ∈ H1(0, T ;H)
together with the estimate

‖p∗ + τq∗‖H1(0,T ;H) ≤ CM. (4.28)

By virtue of the continuous embedding
(
H1(0, T ;H) ∩ L2(0, T ;H2(Ω))

)
⊂ C0([0, T ];V ), then

also

‖p∗ + τq∗‖C0([0,T ];V ) ≤ CM. (4.29)

It thus remains to show that ‖r∗‖H1(0,T ;H2(Ω)) ≤ CM for the uniquely determined function r∗

satisfying (4.3) with q = q∗ and r∗(T ) = 0. But this is an immediate consequence of the estimate for
q∗ following from (4.26). This concludes the proof of the assertion.

The following continuous dependence result will be needed below during the proof of second-order
sufficient optimality conditions.

Corollary 4.4. Suppose that (A1)–(A5) and w0 ∈ L∞(Ω) are fulfilled, and let, for i = 1, 2, ui ∈ UR

be given with the associated states (ϕi, µi, wi) = S(ui) and adjoint states (pi, qi, ri). Then, with a
constant K8 > 0 that depends only on R and the data, it holds that

‖(p1 + τq1)− (p2 + τq2)‖H1(0,T ;H)∩C0([0,T ];V )∩L2(0,T ;H2(Ω)) + ‖p1 − p2‖L2(0,T ;H4(Ω))

+ ‖q1 − q2‖L2(0,T ;H2(Ω)) + ‖r1 − r2‖H1(0,T ;H2(Ω)) ≤ K8 ‖u1 − u2‖L2(0,T ;H) . (4.30)

Proof. We put p = p1 − p2, q = q1 − q2, r = r1 − r2. Then (p, q, r) is the unique strong solution
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to the system

− ∂t(p+ τq)−∆q + f ′′(ϕ1)q = z1 a.e. in Q, (4.31)

−∆p− q = 0 a.e. in Q, (4.32)

− γ∂tr + r − q = 0 a.e. in Q, (4.33)

∂np = ∂nq = 0 a.e. on Σ, (4.34)

(p+ τq)(T ) = z2, r(T ) = 0 a.e. in Ω, (4.35)

where

z1 = −(f ′′(ϕ1)− f ′′(ϕ2))q2 + b1(ϕ1 − ϕ2) and z2 = b2(ϕ1(T )− ϕ2(T )). (4.36)

Applying the same sequence of estimates that led above in the proof of Theorem 4.3 to the derivation
of (4.12) (but this time to the continuous system (4.31)–(4.35)), we readily see that the assertion will
be proved as soon as we can show that

‖z1‖L2(0,T ;H) + ‖z2‖V ≤ C ‖u1 − u2‖L2(0,T ;H) .

But this is an immediate consequence of the estimate (2.57) in Theorem 2.4: indeed, using the conti-
nuity of the embedding V ⊂ L4(Ω), we have that

‖z1‖2
L2(0,T ;H) + ‖z2‖2

V

≤ C

∫ T

0

‖(ϕ1 − ϕ2)(s)‖2
L4(Ω) ‖q2(s)‖2

L4(Ω) ds

+ C‖ϕ1 − ϕ2‖2
L2(0,T ;H) + C‖(ϕ1 − ϕ2)(T )‖2

V

≤ C ‖ϕ1 − ϕ2‖2
C0([0,T ];V )

(
1 + ‖q2‖2

L2(0,T ;V )

)
≤ C ‖u1 − u2‖2

L2(0,T ;H).

4.2 First-order necessary optimality conditions

In this section, we aim at deriving associated first-order necessary optimality conditions for local
minima of the optimal control problem (CP). We assume that (A1)–(A5) are fulfilled and that G :
L2(0, T ;H) → R is a general nonnegative, convex and continuous functional. We define the re-
duced cost functionals associated with the functionals J and J introduced in (1.1) by

Ĵ(u) := J(S(u), u), Ĵ(u) = J(S(u), u) . (4.37)

Since S is twice continuously Fréchet differentiable from U into the space C0([0, T ];H)3 (which
contains Z), it follows from the chain rule that the smooth part Ĵ of the reduced objective functional
is a twice continuously Fréchet differentiable mapping from U into R, where, for every u∗ ∈ U and
every h ∈ U, it holds with (ϕ∗, µ∗, w∗) = S(u∗) that

Ĵ ′(u∗)[h] = b1

∫∫
Q

ξ(ϕ∗ − ϕQ) + b2

∫
Ω

ξ(T )(ϕ∗(T )− ϕΩ) + b3

∫∫
Q

u∗h , (4.38)

where (ξ, η, v) = S′(u∗)[h] ∈ Z is the unique solution to the linearized system (3.5)–(3.9) associ-
ated with h.
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Remark 4.5. Observe that the right-hand side of (4.38) is meaningful also for arguments h ∈ L2(0, T ;
H), where in this case (ξ, η, v) is still S′(u∗)[h], but with the extension of the operator S′(u∗) to
L2(0, T ;H) introduced in Remark 3.4. Hence, by means of the identity (4.38) we can extend the
operator Ĵ ′(u∗) ∈ U∗ to L2(0, T ;H). The extended operator, which we again denote by Ĵ ′(u∗),
then becomes an element of L2(0, T ;H)∗. In this way, expressions of the form Ĵ ′(u∗)[h] have a
proper meaning also for h ∈ L2(0, T ;H).

In the following, we assume that u∗ ∈ Uad is a locally optimal control for (CP) in the sense of U,
that is, there is some ε > 0 such that

Ĵ(u) ≥ Ĵ(u∗) for all u ∈ Uad satisfying ‖u− u∗‖U ≤ ε. (4.39)

Notice that any locally optimal control in the sense of Lp(Q) with 1 ≤ p <∞ is also locally optimal in
the sense of U, since the topology of U is the finest among these spaces. Therefore, a result proved
for locally optimal controls in the sense of U is also valid for locally optimal controls in the sense of
Lp(Q) for 1 ≤ p <∞. It is also true for globally optimal controls.

A standard argument (for details, see, e.g., [55, 56]) then shows that there is some λ∗ ∈ ∂G(u∗) ⊂
L2(0, T ;H) such that

Ĵ ′(u∗)[u− u∗] + κ

∫∫
Q

λ∗(u− u∗) ≥ 0 ∀u ∈ Uad. (4.40)

As usual, we simplify the expression Ĵ ′(u∗)[u− u∗] in (4.40) by means of the adjoint state variables
defined in (4.1)–(4.5). A standard calculation using the linearized system (3.5)–(3.9) then leads to the
following result.

Theorem 4.6. (Necessary optimality condition) Suppose that (A1)–(A5) and w0 ∈ L∞(Ω) are ful-
filled and that G : L2(0, T ;H)→ R is nonnegative, convex and continuous. Moreover, let u∗ ∈ Uad

be a locally optimal control of (CP) in the sense of U with associated state (ϕ∗, µ∗, w∗) = S(u∗)
and adjoint state (p∗, q∗, r∗). Then there exists some λ∗ ∈ ∂G(u∗) such that, for all u ∈ Uad,∫∫

Q

(r∗ + κλ∗ + b3u
∗) (u− u∗) ≥ 0 . (4.41)

We underline again that (4.41) is also necessary for all globally optimal controls and all controls which
are locally optimal in the sense of Lp(Q) with p ≥ 1.

4.3 Sparsity of controls

The convex function G in the objective functional accounts for the sparsity of optimal controls, i.e., the
possibility that any locally optimal control may vanish in some subset of the space-time cylinderQ. The
form of this region depends on the particular choice of the functional G. The sparsity properties can
be deduced from the variational inequality (4.41) and the particular form of the subdifferential ∂G. In
what follows, we restrict ourselves to the case of full sparsity which is connected to the L1(Q)−norm
functional G introduced in (1.9). Its subdifferential is given by (see [46])

∂G(u) =

λ ∈ L2(Q) : λ(x, t) ∈


{1} if u(x, t) > 0
[−1, 1] if u(x, t) = 0
{−1} if u(x, t) < 0

for a.e. (x, t) ∈ Q

 . (4.42)
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We then have to use this subdifferential in the variational inequality (4.41) from Theorem 4.6 to obtain
the following result.

Theorem 4.7. (Full sparsity) Suppose that the assumptions (A1)–(A5) andw0 ∈ L∞(Ω) are fulfilled,
and assume that u and u are constants such that u < 0 < u. Let u∗ ∈ Uad be a locally optimal control
in the sense of U for the problem (CP) with the functional G defined in (1.9), and with associated
state (ϕ∗, µ∗, w∗) = S(u∗) solving (1.2)–(1.6) and adjoint state (p∗, q∗, r∗) solving (4.1)–(4.5). Then
there exists a function λ∗ ∈ ∂G(u∗) satisfying (4.41), and it holds

u∗(x, t) = 0 ⇐⇒ |r∗(x, t)| ≤ κ, for a.e. (x, t) ∈ Q. (4.43)

Moreover, if r∗ and λ∗ are given, then u∗ is obtained from the projection formula

u∗(x, t) = max
{
u,min

{
u,−b−1

3 (r∗ + κλ∗) (x, t)
}}

for a.e. (x, t) ∈ Q.

Proof. The projection formula is a direct consequence of the variational inequality (4.41). It remains
to show the validity of (4.43). We use the projection formula and the fact that u < 0 < u. For a.e.
(x, t) ∈ Q, we have: if u∗(x, t) = 0, then −b−1

3 (r∗(x, t) + κλ∗(x, t)) = 0, where λ∗(x, t) ∈
[−1, 1]. Consequently, |r∗(x, t)| = κ|λ∗(x, t)| ≤ κ.

Now let us assume that |r∗(x, t)| ≤ κ. If u∗(x, t) > 0, then λ∗(x, t) = 1 and, by the projection
formula, −b−1

3 (r∗(x, t) + κ) ≥ u∗(x, t) > 0, which implies that r∗(x, t) + κ < 0 and thus
|r∗(x, t)| = −r∗(x, t) > κ, a contradiction. By analogous reasoning, we can show that also the
assumption u∗(x, t) < 0 leads to a contradiction. We thus must have u∗(x, t) = 0. This ends the
proof.

We conclude this subsection by showing that all locally optimal controls in the sense ofU are identically
zero for sufficiently large sparsity parameters. Indeed, the global estimate (2.15) for the solutions to
the state system is valid for all controls u ∈ Uad, and this is also true for the global estimate (4.12).
Hence, there is some C∗ > 0 such that

‖r∗‖H1(0,T ;H2(Ω)) ≤ C∗ ∀u∗ ∈ Uad,

and, in view of the continuity of the embedding H1(0, T ;H2(Ω)) ⊂ C0(Q), also

‖r∗‖C0(Q) ≤ κ∗ ∀u∗ ∈ Uad,

for a sufficiently large κ∗ > 0, which proves our claim.

4.4 Second-order sufficient optimality conditions

We conclude this paper with the derivation of second-order sufficient optimality conditions. We provide
conditions that ensure local optimality of functions u∗ obeying the first-order necessary optimality
conditions of Theorem 4.6. Second-order sufficient optimality conditions are based on a condition of
coercivity that is required to hold for the smooth part J of J in a certain critical cone. The nonsmooth
part G contributes to sufficiency by its convexity. In the following, we generally assume that the
conditions (A1)–(A5) are fulfilled. Our analysis will follow closely the lines of [9], where a second-order
analysis was performed for sparse control of the FitzHugh–Nagumo system. In particular, we adapt
the proof of [9, Thm. 3.4] to our setting of a viscous Cahn–Hilliard system.
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To this end, we fix a control u∗ that satisfies the first-order necessary optimality conditions, and we
set (ϕ∗, µ∗, w∗) = S(u∗). Then the cone

C(u∗) = {v ∈ L2(0, T ;H) satisfying the sign conditions (4.44) a.e. in Q},

where

v(x, t)

{
≥ 0 if u∗(x, t) = u
≤ 0 if u∗(x, t) = u

, (4.44)

is called the cone of feasible directions, which is a convex and closed subset of L2(0, T ;H). We also
need the directional derivative of G at u ∈ L2(0, T ;H) in the direction v ∈ L2(0, T ;H), which is
given by

G′(u, v) = lim
t↘0

1

t
(G(u+ tv)−G(u)) . (4.45)

Following the definition of the critical cone in [9, Sect. 3.1], we define

Cu∗ = {v ∈ C(u∗) : Ĵ ′(u∗)[v] + κG′(u∗, v) = 0} , (4.46)

which is also a closed and convex subset of L2(0, T ;H). According to [9, Sect. 3.1], it consists of all
v ∈ C(u∗) satisfying

v(x, t)


= 0 if |r∗(x, t) + b3u

∗(x, t)| 6= κ
≥ 0 if u∗(x, t) = u or (r∗(x, t) = −κ and u∗(x, t) = 0)
≤ 0 if u∗(x, t) = u or (r∗(x, t) = κ and u∗(x, t) = 0)

. (4.47)

At this point, we derive an explicit expression for Ĵ ′′(u)[h, k] for arbitrary u, h, k ∈ U. In the follow-
ing, we argue similarly as in [61, Sect. 5.7]. At first, we readily infer that, for every ((ϕ, µ, w), u) ∈
(C0([0, T ];H))3×U and y = (y1, y2, y3), z = (z1, z2, z3) such that (y, u1), (z, u2) ∈ (C0(0, T ;H))3×
U, it follows for the quadratic functional J that

J ′′((ϕ, µ, w), u)[(y, u1), (z, u2)] = b1

∫∫
Q

y1z1 + b2

∫
Ω

y1(T )z1(T ) + b3

∫∫
Q

u1 u2. (4.48)

For the second-order derivative of the reduced cost functional Ĵ at a fixed control u∗ we then find with
(ϕ∗, µ∗, w∗) = S(u∗) that

Ĵ ′′(u∗)[h, k] = D(ϕ,µ,w)J((ϕ∗, µ∗, w∗), u∗)[(ψ, ν, z)]

+ J ′′((ϕ∗, µ∗, w∗), u∗)[((ξh, ηh, vh), h), ((ξk, ηk, vk), k)], (4.49)

where (ξh, ηh, vh), (ξk, ηk, vk), and (ψ, ν, z) stand for the unique corresponding solutions to the
linearized system associated with h and k, and to the bilinearized system, respectively. From the
definition of the cost functional (1.1) we readily infer that

D(ϕ,µ,w)J((ϕ∗, µ∗, w∗), u∗)[(ψ, ν, z)] = b1

∫∫
Q

(ϕ∗ − ϕQ)ψ + b2

∫
Ω

(ϕ∗(T )− ϕΩ)ψ(T ).

(4.50)
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We now claim that, with the associated adjoint state (p∗, q∗, r∗),

b1

∫∫
Q

(ϕ∗ − ϕQ)ψ + b2

∫
Ω

(ϕ∗(T )− ϕΩ)ψ(T ) = −
∫∫

Q

f (3)(ϕ∗)ξhξkq∗ . (4.51)

To prove this claim, we multiply (3.10) by p∗, (3.11) by q∗, (3.12) by r∗, add the resulting equalities,
and integrate over Q and by parts, to obtain that

0 =

∫
Ω

p∗(T )ψ(T )−
∫∫

Q

∂tp
∗ψ −

∫∫
Q

ν ∆p∗ +

∫
Ω

τq∗(T )ψ(T ) −
∫∫

Q

τ∂tq
∗ψ

−
∫∫

Q

ψ∆q∗ −
∫∫

q∗(ν + z) +

∫∫
f ′′(ϕ∗)ψq∗ +

∫∫
Q

f (3)(ϕ∗)ξhξkq∗

+

∫
Ω

γr∗(T )z(T ) −
∫∫

Q

γ∂tr
∗z +

∫∫
Q

r∗z

=

∫
Ω

b2(ϕ∗(T )− ϕΩ)ψ(T ) +

∫∫
Q

ψ
[
− ∂t(p∗ + τq∗)−∆q∗ + f ′′(ϕ∗)q∗

]
+

∫∫
Q

ν
[
−∆p∗ − q∗

]
+

∫∫
Q

z
[
− γ∂tr∗ + r∗ − q∗

]
= b1

∫∫
Q

(ϕ∗ − ϕQ)ψ + b2

∫
Ω

(ϕ∗(T )− ϕΩ)ψ(T ) +

∫∫
Q

f (3)(ϕ∗)ξhξkq∗ ,

whence the claim follows, since (p∗, q∗, r∗) solves the adjoint system (4.1)–(4.5). From this charac-
terization, along with (4.49) and (4.50), we conclude that

Ĵ ′′(u∗)[h, k] =

∫∫
Q

(
b1 − f (3)(ϕ∗)q∗

)
ξh ξk + b2

∫
Ω

ξh(T )ξk(T ) + b3

∫∫
Q

h k . (4.52)

Observe that the expression on the right-hand side of (4.52) is meaningful also for increments h, k ∈
L2(Q). Indeed, in this case the expressions (ξh, ηh, vh) = S′(u∗)[h], (ξk, ηk, vk) = S′(u∗)[k], and
(ψ, ν, z) = S′′(u∗)[h, k] have an interpretation in the sense of the extended operators S′(u∗) and
S′′(u∗) introduced in Remark 3.4. Therefore, the operator Ĵ ′′(u∗) can be extended by the identity
(4.52) to the space L2(Q) × L2(Q). This extension, which will still be denoted by Ĵ ′′(u∗), will be
frequently used in the following. We now show that it is continuous. Indeed, we claim that for all
h, k ∈ L2(Q) it holds ∣∣∣Ĵ ′′(u∗)[h, k]

∣∣∣ ≤ Ĉ ‖h‖L2(Q) ‖k‖L2(Q) , (4.53)

where the constant Ĉ > 0 is independent of the choice of u∗ ∈ UR. Obviously, only the first integral
on the right-hand side of (4.52) needs some treatment. We have, by virtue of Hölder’s inequality, the
continuity of the embedding V ⊂ L4(Ω), and the global bounds (2.18), (3.59), and (4.12),∣∣∣ ∫∫

Q

f (3)(ϕ∗)ξhξkq∗
∣∣∣ ≤ C

∫ T

0

‖ξh(t)‖L4(Ω) ‖ξk(t)‖L4(Ω) ‖q∗(t)‖L2(Ω) dt

≤ C ‖ξh‖C0([0,T ];V ) ‖ξk‖C0([0,T ];V ) ‖q∗‖L2(0,T ;H) ≤ C ‖h‖L2(Q) ‖k‖L2(Q) ,

as asserted.
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In the following, we will employ the following coercivity condition:

Ĵ ′′(u∗)[v, v] > 0 ∀ v ∈ Cu∗ \ {0} . (4.54)

Condition (4.54) is a direct extension of associated conditions that are standard in finite-dimensional
nonlinear optimization. In the optimal control of partial differential equation, it was first used in [10]. We
have the following result.

Theorem 4.8. (Second-order sufficient condition) Suppose that (A1)–(A5) are fulfilled along with
w0 ∈ L∞(Ω). Moreover, let u∗ ∈ Uad, together with the associated state (ϕ∗, µ∗, w∗) = S(u∗) and
the adjoint state (p∗, q∗, r∗), fulfill the first-order necessary optimality conditions of Theorem 4.6. If,
in addition, u∗ satisfies the coercivity condition (4.54), then there exist constants ε > 0 and ζ > 0
such that the quadratic growth condition

Ĵ(u) ≥ Ĵ(u∗) + ζ ‖u− u∗‖2
L2(Q) (4.55)

holds for all u ∈ Uad with ‖u − u∗‖L2(Q) < ε. Consequently, u∗ is a locally optimal control in the
sense of L2(Q).

Proof. The proof follows that of [9, Thm. 3.4]. We include it for the reader’s convenience. We argue
by contradiction, assuming that the claim of the theorem is not true. Then there exists a sequence of
controls {uj} ⊂ Uad such that, for all j ∈ N,

‖uj − u∗‖L2(Q) <
1

j
while Ĵ(uj) < Ĵ(u∗) +

1

2j
‖uj − u∗‖2

L2(Q) . (4.56)

Noting that uj 6= u∗ for all j ∈ N, we define

τj := ‖uj − u∗‖L2(Q) and hj :=
1

τj
(uj − u∗) .

Then ‖hj‖L2(Q) = 1 and, possibly after selecting a subsequence, we can assume that

hj → h weakly in L2(Q)

for some h ∈ L2(Q). As in [9], the proof is split into three parts.

(i) h ∈ Cu∗ : Obviously, each hj obeys the sign conditions (4.44) and thus belongs to C(u∗). Since
C(u∗) is convex and closed in L2(Q), it follows that h ∈ C(u∗). We now claim that

Ĵ ′(u∗)[h] + κG′(u∗, h) = 0. (4.57)

Notice that by Remark 4.5 the expression Ĵ ′(u∗)[h] has a well-defined meaning. For every ϑ ∈ (0, 1)
and all h, u ∈ L2(Q), we infer from the convexity of G that

G(h)−G(u) ≥ G(u+ ϑ(h− u))−G(u)

ϑ
≥ G′(u, h− u) = max

λ∈∂G(u)

∫∫
Q

λ(h− u),

(4.58)
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where the last equality can be checked directly using (1.9), (4.45) and (4.42). Then, in particular, we
have that

Ĵ ′(u∗)[h] + κG′(u∗, h) ≥ Ĵ ′(u∗)[h] +

∫∫
Q

κλ∗h =

∫∫
Q

(r∗ + b3u
∗ + κλ∗)h

= lim
j→∞

1

τj

∫∫
Q

(r∗ + b3u
∗ + κλ∗)(uj − u∗)

)
≥ 0 , (4.59)

by the variational inequality (4.41). Next, we prove the converse inequality. By (4.56), it turns out that

Ĵ(uj)− Ĵ(u∗) + κ (G(uj)−G(u∗)) <
1

2j
τ 2
j ,

whence, owing to the mean value theorem, and since uj = u∗ + τjhj , we get

τjĴ
′(u∗ + ϑjτjhj)[hj] + κ(G(u∗ + τjhj)−G(u∗)) <

1

2j
τ 2
j ,

with some real number ϑj ∈ (0, 1). Now observe that the mapping h 7→ G′(u∗, h) is positive
homogeneous on L2(Q). We therefore obtain from (4.58) that

κ(G(u∗ + τjhj)−G(u∗)) ≥ κG′(u∗, τjhj) = τj κG
′(u∗, hj),

so that, after division by τj ,

Ĵ ′(u∗ + ϑjτjhj)[hj] + κG′(u∗, hj) <
τj
2j
. (4.60)

At this point, we note that the mapping h 7→ G′(u∗, h) is convex and continuous, and thus weakly
sequentially semicontinuous, on L2(Q). Consequently,

G′(u∗, h) ≤ lim inf
j→∞

G′(u∗, hj).

Besides, the sequence {ũj}j∈N ⊂ Uad, where ũj = u∗ + ϑjτjhj = u∗ + ϑj(uj − u∗), converges
strongly in L2(Q) to u∗. Now let, for j ∈ N, (ϕ̃j, µ̃j, w̃j) = S(ũj), and let (p̃j, q̃j, r̃j) denote the
associated adjoint state. Then, by Corollary 4.4, r̃j → r∗ strongly in H1(0, T ;H2(Ω)) and thus
r̃j + b3ũj → r∗ + b3u

∗ strongly in L2(Q), as j →∞. Consequently, we have that

lim
j→∞

Ĵ ′(ũj)[hj] = lim
j→∞

∫∫
Q

(r̃j + b3ũj)hj =

∫∫
Q

(r∗ + b3u
∗)h = Ĵ ′(u∗)[h],

and we obtain from (4.60) that

Ĵ ′(u∗)[h] + κG′(u∗, h) ≤ lim
j→∞

Ĵ ′(ũj)[hj] + κ lim inf
j→∞

G′(u∗, hj)

= lim inf
j→∞

(
Ĵ ′(ũj)[hj] + κG′(u∗, hj)

)
≤ 0,

which completes the proof of (i).

(ii) h = 0: We again invoke (4.56), now performing a second-order Taylor expansion on the left-hand
side. We obtain, with some real number ϑj ∈ (0, 1),

Ĵ(u∗) + τjĴ
′(u∗)[hj] +

τ 2
j

2
Ĵ ′′(u∗ + ϑjτjhj)[hj, hj] + κG(u∗ + τjhj)

< Ĵ(u∗) + κG(u∗) +
τ 2
j

2j
.
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We subtract Ĵ(u∗) + κG(u∗) from both sides and use (4.58) once more to find that

τj

(
Ĵ ′(u∗)[hj] + κG′(u∗, hj)

)
+
τ 2
j

2
Ĵ ′′(u∗ + ϑjτjhj)[hj, hj] <

τ 2
j

2j
. (4.61)

From the right-hand side of (4.58) and the variational inequality (4.41), it follows that

Ĵ ′(u∗)[hj] + κG′(u∗, hj) ≥ 0 ,

and thus, by (4.61),

Ĵ ′′(u∗ + ϑjτjhj)[hj, hj] <
1

j
. (4.62)

At this point, we apply the identity (4.65) in Lemma 4.9 below, where we note that ũj = u∗ + ϑjτjhj
converges to u∗ strongly in L2(0, T ;H). We have, using the notation introduced in Lemma 4.9 and
(4.62),

Ĵ ′′(u∗)[h, h] = lim
j→∞

(∫∫
Q

(
b1 − f (3)(ϕ̃j)q̃j

)∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2) + b3

∫∫
Q

|h|2

≤ lim inf
j→∞

(∫∫
Q

(
b1 − f (3)(ϕ̃j)q̃j

)∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2 + b3

∫∫
Q

|hj|2
)

= lim inf
j→∞

Ĵ ′′(ũj)[hj, hj] ≤ 0 .

Since we know that h ∈ Cu∗ , the second-order condition (4.54) implies that h = 0.

(iii) Contradiction: From the previous step we know that hj → 0 weakly in L2(Q). Now, (4.52) yields
that

Ĵ ′′1 (u∗)[hj, hj] =

∫∫
Q

(
b1 − f (3)(u∗)q∗

)
|ξhj |2 + b2

∫
Ω

|ξhj(T )|2 + b3

∫∫
Q

|hj|2 , (4.63)

where we have set (ξhj , ηhj , vhj) = S′(u∗)[hj], for j ∈ N. Since hj → 0 weakly in L2(0, T ;H),
we find from (4.65) in Lemma 4.9 that the sum of the first two integrals on the right-hand side of (4.63)
converges to zero. On the other hand, ‖hj‖L2(Q) = 1 for all j ∈ N, by construction. The weak
sequential semicontinuity of norms then implies that

lim inf
j→∞

Ĵ ′′(u∗)[hj, hj] ≥ lim inf
j→∞

b3

∫∫
Q

|hj|2 = b3 > 0 . (4.64)

On the other hand, we may apply Lemma 4.9 twice, namely to the sequence ũj = u∗ + ϑjτjhj and
to the constant sequence ũj = u∗, to infer that

lim
j→∞

(Ĵ ′′(u∗)− Ĵ ′′(u∗ + ϑjτjhj))[hj, hj] = 0.

Therefore, thanks to (4.62) it is clear that

lim inf
j→∞

Ĵ ′′(u∗)[hj, hj]

= lim inf
j→∞

(
(Ĵ ′′(u∗)− Ĵ ′′(u∗ + ϑjτjhj))[hj, hj] + Ĵ ′′(u∗ + ϑjτjhj)[hj, hj]

)
≤ lim inf

j→∞

(
(Ĵ ′′(u∗)− Ĵ ′′(u∗ + ϑjτjhj))[hj, hj] + 1/j

)
= 0 ,

which contradicts (4.64). The assertion of the theorem is thus proved.
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We conclude the paper with the auxiliary result that was used in the above proof.

Lemma 4.9. Assuume that (A1)–(A5) and w0 ∈ L∞(Ω) are satisfied. Suppose that {ũj} ⊂ Uad

converges strongly in L2(0, T ;H) to u∗ ∈ Uad, and that {hj} ⊂ L2(Q) converges weakly in
L2(Q) to h. In addition, let (ϕ̃j, µ̃j, w̃j) = S(ũj), and let (p̃j, q̃j, r̃j) be the associated adjoint state.

Moreover, let, for arbitrary h ∈ L2(0, T ;H), (ξh, ηh, vh) = S′(u∗)[h], as well as (ξ̃hj , η̃hj , ṽhj) =
S′(ũj)[hj]. Then

lim
j→∞

(∫∫
Q

(
b1 − f (3)(ϕ̃j)q̃j

)∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2)

=

∫∫
Q

(
b1 − f (3)(ϕ∗)q∗

)∣∣ξh∣∣2 + b2

∫
Ω

∣∣ξh(T )
∣∣2 . (4.65)

Proof. At first, notice that

(ξ̃hj , η̃hj , ṽhj)− (ξh, ηh, vh) = (S′(ũj)− S′(u∗)) [hj] + S′(u∗)[hj − h] .

By virtue of (3.61) (recall Remark 3.4 in this regard) and the boundedness of {hj} in L2(0, T ;H),
the first summand on the right converges strongly to zero in X. The second converges to zero weakly
star in (cf. (3.1))(

H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )
)
× L2(0, T ;W )×H1(0, T ;H).

Thanks to the compact embeddings V ⊂ Lp(Ω) for 1 ≤ p < 6, the compactness result stated
in [54, Sect. 8, Cor. 4]) ensures that

ξ̃hj → ξh strongly in C0([0, T ];L5(Ω)) . (4.66)

In particular, we have that

lim
j→∞

(
b1

∫∫
Q

∣∣ξ̃hj ∣∣2 + b2

∫
Ω

∣∣ξ̃hj(T )
∣∣2) = b1

∫∫
Q

∣∣ξh∣∣2 + b2

∫
Ω

∣∣ξh(T )
∣∣2 . (4.67)

Moreover, we obtain from (2.57) that ‖ϕ̃j − ϕ∗‖C0([0,T ];V ) → 0, so that we can conclude from the
global estimate (2.18) and (4.30) that, as j →∞,

‖f (3)(ϕ̃j)− f (3)(ϕ∗)‖C0([0,T ];L5(Ω)) → 0, (4.68)

‖q̃j − q∗‖L2(0,T ;H2(Ω)) → 0. (4.69)

Combining this with (4.66), we readily verify that

lim
j→∞

∫∫
Q

f (3)(ϕ̃j)q̃j
∣∣ξhj ∣∣2 =

∫∫
Q

f (3)(ϕ∗)q∗
∣∣ξh∣∣2, (4.70)

which concludes the proof.
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