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Minimal and maximal solution maps of elliptic QVIs: Penalisation,
Lipschitz stability, differentiability and optimal control

Amal Alphonse, Michael Hintermüller, Carlos N. Rautenberg, Gerd Wachsmuth

Abstract

Quasi-variational inequalities (QVIs) of obstacle type in many cases have multiple solutions
that can be ordered. We study a multitude of properties of the operator mapping the source
term to the minimal or maximal solution of such QVIs. We prove that the solution maps are lo-
cally Lipschitz continuous and directionally differentiable and show existence of optimal controls
for problems that incorporate these maps as the control-to-state operator. We also consider a
Moreau–Yosida-type penalisation for the QVI wherein we show that it is possible to approximate
the minimal and maximal solutions by sequences of minimal and maximal solutions (respectively)
of certain PDEs, which have a simpler structure and offer a convenient characterisation in partic-
ular for computation. For solution mappings of these penalised problems, we prove a number of
properties including Lipschitz and differential stability. Making use of the penalised equations, we
derive (in the limit) C-stationarity conditions for the control problem, in addition to the Bouligand
stationarity we get from the differentiability result.

1 Introduction

Let (Ω, σ, ϑ) be a measure space and define H := L2(Ω) to be the usual Lebesgue space on this
measure space. We utilise the partial ordering ≤ defined in the standard almost everywhere sense
through ϑ. Take V to be a separable Hilbert space with V ↪→ H (a continuous embedding) and the
property that v ∈ V implies v+ ∈ V and that there exists a C > 0 with ∥v+∥V ≤ C∥v∥V for all
v ∈ V . Here, (·)+ = max(0, ·) denotes the positive part function. Let A : V → V ∗ be a bounded,
linear, coercive and T-monotone operator and suppose that Φ: H → V is a given obstacle map
which is increasing. Given a source term f ∈ V ∗, consider the quasi-variational inequality (QVI)

find u ∈ V, u ≤ Φ(u) such that ⟨Au− f, u− v⟩ ≤ 0 ∀v ∈ V with v ≤ Φ(u). (1)

Under certain circumstances, this inequality has solutions that can be ordered and we denote by M(f)
the maximal solution of (1) and by m(f) the minimal solution.

In this paper, we study the sensitivity and directional differentiability of these extremal solution maps
M and m, in addition to deriving stationarity conditions for optimisation problems with QVI constraints
of the form

min
f∈Uad

J(M(f),m(f), f). (2)

Regarding particular instances of J , we have in mind optimisation problems such as

min
f∈Uad

1

2
∥M(f)−m(f)∥2H +

ν

2
∥f∥2H and min

f∈Uad

1

2
∥M(f)− yd∥2H +

ν

2
∥f∥2H . (3)

The first is a formulation aiming to minimise the variation in solutions, first modelled and motivated in
[4], and the second is the typical tracking-type problem.
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A. Alphonse, M. Hintermüller, C. N. Rautenberg, G. Wachsmuth 2

Inspired in part by our interest in deriving stationarity conditions for the control problems and in part by
some results of Lions and Bensoussan in [7, Chapter 4], a substantial portion of this paper is devoted
to the study of the following penalised problem associated to the QVI (1)

Au+
1

ρ
σρ(u− Φ(u)) = f, (4)

where ρ > 0 is a parameter and σρ is the following smoothed approximation of (·)+

σρ(r) :=


0 if r ≤ 0,
r2

2ρ
if 0 < r < ρ,

r − ρ
2

if r ≥ ρ,

(5)

It turns out that (4) also has multiple solutions that can be ordered and we can again find a maximal
solution Mρ(f) and a minimal one mρ(f). We provide a substantive analysis of the properties of
these maps Mρ,mρ and also their limiting behaviour as ρ↘ 0.

For convenience, we summarise our most important findings.

■ We show that Mρ(f) and mρ(f) converge to M(f) and m(f) respectively under some as-
sumptions. Along the way, we prove that Mρ(f) and mρ(f) can themselves be approximated
by iterative sequences of solutions of PDEs, opening up the possibility for computation and
numerical simulation (see Remark 4.11 for details).

■ We prove that all four of these extremal solution maps (Mρ,mρ,M, and m) are locally Lipschitz
from V ∗ into V (by a bootstrapping and contraction argument; we also utilise some sharp
estimates from [27] to ensure that our assumptions are kept as unobtrusive as possible).

■ We demonstrate that the four maps are directionally differentiable for more general directions
than in previous works, and also Hadamard differentiable in a certain sense (the proof is along
the lines of the iterative approach of [1] with some modifications from [27]).

■ Using the differentiability results on M and m, we derive first-order conditions of Bouligand type
for the control problem. We also derive C-stationarity conditions, which is possible thanks to
the various results on Mρ and mρ that we obtain (we approximate (2) with a penalised control
problem and then pass to the limit).

For precise details of all the main results, see Section 2 where we present them in full. Now, let us
highlight the novelty and positioning of our work among the literature.

■ Continuity of the minimal and maximal solution maps with perturbations in an L∞-type space
was first proved in [4, Theorem 4] under the structural assumption that λΦ(u) ≤ Φ(λu) for all
λ ∈ (0, 1) and for u ∈ H+. In [9, Theorem 3.2], Lipschitz continuity of these maps was shown,
again under this setup and for source terms belonging to a subset of L∞.

In contrast, our result shows Lipschitz stability with respect to the V norm and for sources in V ∗

(thus we do not need to restrict to the L∞ setting) and we do not require the homogeneity-type
assumption on Φ (we do however ask for a local small Lipschitz assumption, see (9)).

In particular, if Φ has a small Lipschitz constant around M(f), we already know that locally
there is a stable (with respect to the norm in V ) solution of the QVI [1, 26, 3], but it is not clear
whether these are the maximal solutions. On the other hand, there are results [4, 9] showing
that the maximal solution is stable (with respect to L∞). Now, our new results show that the
maximal solution is indeed V -stable.
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Minimal and maximal solution maps of elliptic QVIs 3

■ The first work on directional differentiability for solutions of QVIs in infinite dimensions is, to the
best of our knowledge, [1] where it was shown for localised solutions and for non-negative direc-
tions. Subsequent work in [26] and [3] relaxed the assumptions of [1] greatly. All three papers
use a type of smallness assumption on Φ (locally) similar to the one in this paper. However, nei-
ther paper tackled the case of extremal solutions. Regarding in particular differentiability for the
minimal and maximal maps, this was proved in [2] under some sign conditions on the direction
and a QVI characterisation of the derivative was given. In [9], again in an L∞-type setting and
with Φ assumed to be concave, a differentiability result for the maximal solution appears and
under assumptions that entail the unique global solvability of the QVI, a characterisation of the
derivative is given.

In this work, we provide a unique QVI characterisation of the directional derivative of the min-
imal and maximal solution maps under a general and natural function space setting and with
relatively agreeable assumptions. In contrast to the two previous works [2, 9] on extremal so-
lution maps, we require neither sign restrictions on the perturbation directions nor concavity or
homogeneity-type assumptions on Φ nor an embedding into L∞.

■ The study of the specifics of the maps Mρ and mρ in this general setting seems to entirely
new, although we should once again remind the reader that [7] contains some results on the
convergence behaviour of these maps in a specific setting (and not in generality like ours). The
results on the sensitivity and differentiability of the maps are new as are the convergence results
in this generality.

■ The stationarity conditions for the control problem involving minimal and maximal solution maps
are also entirely new. The works [3, 26] have addressed stationarity for control problems in a
QVI setting but not for the extremal solution maps. Furthermore, our C-stationarity system in
some sense improves the one in [3] because we are able to show that the multipliers for the
adjoints vanish on the inactive set (formally speaking; see Proposition 7.8) without requiring any
additional strong assumptions.

■ On this note, we are for the first time able to treat problems like the first one in (3) in a substantial
way.

■ Our results remain valid when the obstacle mapping Φ ≡ ψ is constant, i.e., in the case where
(1) is a variational inequality. We note in particular that Proposition 7.8 improves the E -almost
conditions derived in [13, Theorem 3.4] for control of the obstacle problem; see Remark 7.9.

Although we have specified the functional framework of this paper with the base space chosen as
L2(Ω), let us stress that in fact, many of our results will apply in far greater generality, with a much
more general function space setting (thanH = L2(Ω) as taken above) and also with far more general
maps σρ (provided certain crucial properties are satisfied) than the one above, such as for example
σρ(u) := u+. For simplicity and clarity of exposition, we have decided to present our work with the
choice of H as above and with σρ as in (5) in the paper. We will not present the details here but invite
interested readers to work out the details.

Regarding the organisation of the paper, we begin in Section 1.1 with some basic definitions, notations
and fundamental results and provide in Section 1.2 an example. In Section 2 we state all of our main
results for the convenience of the reader and include also some useful or interesting remarks. In
Section 3, we study (4) and an iterative sequence of associated problems and show that (4) does
indeed possess extremal solutions. Section 4 is devoted to the study of the limit ρ → 0 in (4), both
with and without a locally small Lipschitz assumption on Φ. Using these obtained results, we prove our
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A. Alphonse, M. Hintermüller, C. N. Rautenberg, G. Wachsmuth 4

claims on the Lipschitzness of all the maps in Section 5 and directional differentiability in Section 6.
In Section 7, we study the optimisation problem (2) and prove B-stationarity and various forms of
C-stationarity. In Section 8, we finish the main part of the paper with some final remarks.

1.1 Notation and preliminaries

Define the set H+ := {h ∈ H : h ≥ 0} of non-negative elements of H = L2(Ω) and similarly,
define V+. We write h+ = PH+h to denote the orthogonal projection of h ∈ H onto H+ and define
h− := h+ − h. The infimum and supremum of two elements h1, h2 ∈ H are defined as usual:
inf(h1, h2) := h1 − (h1 − h2)

+ and sup(h1, h2) := h1 + (h2 − h1)
+. We define an order on the

dual space V ∗ via
f ≤ g ⇐⇒ ⟨f − g, v⟩ ≤ 0 ∀v ∈ V+.

Here ⟨·, ·⟩ is the duality pairing between V ∗ and V . Regarding the elliptic operator in (1), as men-
tioned, we take A : V → V ∗ to be a linear operator that satisfies the following properties for all
u, v ∈ V :

⟨Au, v⟩ ≤ Cb∥u∥V ∥v∥V , (boundedness)

⟨Au, u⟩ ≥ Ca∥u∥2V , (coercivity)

⟨Au+, u−⟩ ≤ 0, (T-monotonicity)

where Ca, Cb > 0 are constants.

With K(u) := {v ∈ V : v ≤ Φ(u)}, the QVI (1) can be written as

u ∈ K(u) : ⟨Au− f, u− v⟩ ≤ 0 ∀v ∈ K(u). (1)

We introduce S : V ∗ × H → V as the solution map of the associated variational inequality, i.e,
u = S(f, ψ) if and only if

u ∈ K(ψ) : ⟨Au− f, u− v⟩ ≤ 0 ∀v ∈ K(ψ).

Thus the solutions of (1) are precisely the fixed points of S(f, ·).
Assumption 1.1. Given f ∈ V ∗, assume that there exist u, u ∈ V such that

u ≤ S(f, u), u ≥ S(f, u), and u ≤ u.

The element u is called a subsolution for S(f, ·) and u is called a supersolution for S(f, ·).
We come now to an existence result for (1). For more existence results under different assumptions,
see [3, §2].

Proposition 1.2. Under Assumption 1.1, there exist a minimal solution m(f) and maximal solution
M(f) to (1) on the interval [u, u] := {v ∈ V | u ≤ v ≤ u a.e. in Ω}.

Proof. We apply the Birkhoff–Tartar theorem [5, §15.2.2, Proposition 2] which gives existence of fixed
points for increasing maps that possess subsolutions and supersolutions to the map S(f, ·) (which is
increasing, see [20, §4:5, Theorem 5.1]). See also [24], [6, §11.2] and [19, Chapter 2].

We will use the notation Br(x) to denote the (closed) ball of radius r centred at x. It should be clear
from the context the function space in which the ball is taken but typically when we use δ (or a variant
such as δ̄) for the radius, it refers to the V ∗ ball, whereas the radius being ϵ (or a variant) refers to the
V ball.
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Minimal and maximal solution maps of elliptic QVIs 5

1.2 Example

In this work, we will be needing a number of assumptions similar to Assumption 1.1 at various points.
It is illustrative to give an example which occurs commonly in applications that satisfies all of the
assumptions (for the subsolution and supersolution) that will come up. Let Φ satisfy Φ(0) ≥ 0 and let
F ∈ V ∗

+ be a given function. Define

u := 0

u := A−1F.

We define the set of source terms

W := {g ∈ V ∗ : 0 ≤ g ≤ F}.

With these choices, we in fact satisfy every assumption on the existence of sub- and supersolutions
that is mentioned in the paper. We will prove this later in Lemma 3.8.

Regarding specific choices of the function spaces, we can take Ω ⊂ Rn to be a bounded Lipschitz
domain and set V = H1

0 (Ω). A concrete example of Φ: H → V could be: Φ(w) = ϕ defined via

−∆ϕ = w in Ω,

ϕ = 0 on ∂Ω
(6)

where −∆: V → V ∗ denotes the weak Laplacian. Clearly, Φ(0) = 0. Regarding the operatorA, we
could take for example A(u) = −∇ · (a∇u) where the coefficient a : Ω → R is a function satisfying
a ∈ L∞(Ω) and a ≥ a0 > 0 a.e. for a constant a0.

Applications and further examples can be found in e.g. [3] and [9].

2 Main results

Let us discuss our main results. As a matter of notation, to handle both cases (of the minimal and
maximal solution maps) simultaneously, we denote by Z one of the maps M or m. Note that Z is
defined at all points f satisfying Assumption 1.1.

2.1 On directional differentiability

Our first result concerns local Lipschitz continuity of Z. For this, we need Z to be defined not just at
a solitary point but in a neighbourhood. Thus, we need to expand Assumption 1.1 to take this into
account.

Assumption 2.1. Let f ∈ V ∗ and take a set W ⊆ V ∗ containing f and assume that there exist
u, u ∈ V and δ̄ such that

u ≤ u, (7a)

u ≤ S(g, u) ∀g ∈ Bδ̄(f) ∩W, (7b)

u ≥ S(g, u) ∀g ∈ Bδ̄(f) ∩W. (7c)

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



A. Alphonse, M. Hintermüller, C. N. Rautenberg, G. Wachsmuth 6

The intersection with the set W that appears in the assumption above is inspired by applications
where the source terms may lie in some given ordered interval and it ensures that natural candidates
for the sub- and supersolutions (namely those arising from the boundary of the ordered interval) indeed
qualify as sub- and supersolutions, see the next remark.

Remark 2.2. Consider the example in Section 1.2. If we had asked for (7) to hold for all g ∈ Bδ̄(f) (i.e.
without the intersection with a set W ), then u = 0 does not satisfy (7b) for the element f = 0 ∈ V ∗

since Bδ̄(0) contains negative functions, so that 0 ≤ S(g, 0) may not hold for all g ∈ Bδ̄(0). Even
worse, due to S(g, u) ≤ A−1g for all g ∈ V ∗ and u ∈ V , we would need u ≤ A−1g for all
g ∈ Bδ̄(f), but this is not possible since A−1g could have negative singularities at arbitrary points.
Hence, the intersection with W is necessary for the existence of sub- and supersolutions.

The next theorem will be proved in Section 5.

Theorem 2.3 (Local Lipschitz continuity of Z). Let f ∈ V ∗ and W ⊆ V ∗ satisfy Assumption 2.1.
Assume

Φ: V → V is completely continuous, (8)

there exists ϵ∗ > 0 such that Φ: Bϵ∗(Z(f)) → V has a Lipschitz constant CL satisfying

CL <
Ca

Cb

or A is self-adjoint and CL < 2

√
Cb/Ca

1 + Cb/Ca

. (9)

Then then there exists δ ∈ (0, δ̄) such that for all g ∈ Bδ(f) ∩W ,

∥Z(f)− Z(g)∥V ≤ C∥f − g∥V ∗

where C > 0 is a constant (which depends only on CL, Ca, Cb and the self-adjointness of A).

With the addition of just one more assumption (namely the differentiability of Φ at a point) we can
secure directional differentiability. Before we state the result, let us recall that the radial cone of a set
C ⊂ X of a Banach space X at a point x ∈ C is defined as

RC(x) := {y ∈ X | ∃s0 > 0 : x+ sy ∈ C ∀s ∈ [0, s0]}.

The tangent cone is defined as

TC(x) := {y ∈ X | ∃sk ↘ 0, ∃yk → y in X : x+ skyk ∈ C ∀k}.

In the case that C is additionally convex, the tangent cone is the closure of the radial cone in X ,
written TC(x) = RC(x).

Theorem 2.4 (Hadamard differentiability of Z). Let f ∈ V ∗ and W ⊆ V ∗ satisfy Assumption 2.1.
Assume (8), (9) and

Φ is directionally differentiable at Z(f). (10)

Then

(i) the map Z is Hadamard differentiable in the sense that if d ∈ TW (f), then for any sequence
dk → d in V ∗ with f + skdk ∈ W where sk ↘ 0,

Z(f + skdk)− Z(f)

sk
→ Z′(f)(d).

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



Minimal and maximal solution maps of elliptic QVIs 7

(ii) the derivative Z′(f)(d) is the unique solution of the QVI

α ∈ Ku(α) : ⟨Aα− d, α− v⟩ ≤ 0 ∀v ∈ Ku(α) (11)

where, writing u = Z(f),

Ku(α) := Φ′(u)(α) + TK(u)(u) ∩ [f − Au]⊥.

(iii) the map Z′(f) : TW (f) → V can be extended to a bounded and continuous mapping from V ∗

to V by defining it via (11) for all d ∈ V ∗.

For the proof, see Section 6.2.

Remark 2.5 (Directional differentiability of Z). A simple corollary of Theorem 2.4 (i) is that the map
Z : Bδ̄(f) ∩W → V is directionally differentiable at f in every direction d ∈ RW (f) ⊂ V ∗:

lim
s↘0

Z(f + sd)− Z(f)

s
= Z′(f)(d).

Taking the direction from RW (f) ensures that the perturbed solution Z(f + sd) is well defined via
Assumption 2.1.

Example 2.6 (The radial cone RW (f)). Similarly to Section 1.2, let us consider

W := {g ∈ V ∗ : 0 ≤ g ≤ F}

with F ≥ k0 for some constant k0 > 0, and u := 0 and u := A−1F . Let us try to describe the radial
cone at different points in W .

■ Take d ∈ L∞
+ (Ω). Then sd ≥ 0 for all s > 0 and if s ≤ k0/∥d∥L∞(Ω), we have, for all φ ∈ V+,

⟨sd− F, φ⟩ = ⟨sd− k0, φ⟩+ ⟨k0 − F, φ⟩ ≤ 0,

so that sd ∈ W for sufficiently small s. This shows that L∞
+ (Ω) ⊂ RW (0).

■ In a similar way, take d ∈ L∞
− (Ω). For all s ≥ 0, we have F + sd ≤ F and if s ≤ k0/

∥d∥L∞(Ω), we have
⟨F + sd, φ⟩ = ⟨F − k0, φ⟩+ ⟨k0 + sd, φ⟩

and k0 + sd ≥ k0 + k0d/∥d∥L∞(Ω) = k0(1 + d/∥d∥L∞(Ω)) ≥ 0, thus F + sd ≥ 0 and we
have shown that L∞

− (Ω) ⊂ RW (F ).

■ Now consider a point f such that 0 < c0 ≤ f ≤ c1 < F where c0 and c1 are constants. Using
similar arguments as above, we can show L∞(Ω) ⊂ RW (f).

2.2 On the penalised problem

In this section, we address results for the penalised problem

Au+
1

ρ
σρ(u− Φ(u)) = f, (4)

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024
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which was presented in the introduction. We denote by Tρ : V ∗×H → V the solution map (f, w) 7→
u of the corresponding equation

Au+
1

ρ
σρ(u− Φ(w)) = f.

Here, we associate with the real-valued function σρ defined in (5) the operator σρ : V → V ∗ defined
as

⟨σρ(u), v⟩ =
∫
Ω

σρ(u)v.

If, given f ∈ V ∗ and a fixed ρ > 0, we have the availability of u, u such that

u ≤ Tρ(f, u), u ≥ Tρ(f, u), and u ≤ u, (12)

then there exist a minimal solution mρ(f) and maximal solution Mρ(f) to (4) on [u, u]. We will show
this in Proposition 3.10. In a similar way to before, we use Zρ to denote either Mρ or mρ.

Since we want to consider the limit ρ ↘ 0, we need Zρ to be defined for sufficiently small ρ, hence
(12) (which holds for a fixed ρ) needs to be modified. We do this in the next assumption, which kills
two birds with one stone: it also ensures that both Zρ and Z are defined on a neighbourhood (just like
we argued for Assumption 2.1) and not just at one point.

Assumption 2.7. Let f ∈ V ∗ and take a set W ⊆ V ∗ containing f and assume that there exist
u, u ∈ V and δ̄, ρ0 > 0 such that

u ≤ u, (13a)

u ≤ S(g, u) ∀g ∈ Bδ̄(f) ∩W, (13b)

u ≥ Tρ0(g, u) ∀g ∈ Bδ̄(f) ∩W. (13c)

The fundamental question is whether Mρ(f) and mρ(f) converge (in some sense) to M(f) and
m(f). In fact, we can even prove something stronger with the following joint (in ρ and the source term)
continuity result; its proof appears in Section 4.3.

Theorem 2.8 (Convergence of Zρ(g) to Z(f)). Let f ∈ V ∗ and W ⊆ V ∗ satisfy Assumption 2.7.
Assume (8) 1 and (9). Then

lim
ρ↘0
g→f

Zρ(g) = Z(f)

where the convergence g → f is understood in V ∗ and for g ∈ W .

As we said in Remark 2.2, having W ̸= V ∗ in Assumption 2.7 above makes it a weaker assumption
than if it held with W equal to the entire space V ∗, and leads to a convergence result with respect to
g that is perhaps weaker than one might first expect, but this is obviously natural since the extremal
maps only exist for such source terms.

By choosing W = {f} in the statement of the theorem, we get the corollary below. Note that the
assumption below essentially asks for the inequalities in (13) to hold only at (g replaced with) the
particular point f .

Corollary 2.9 (Convergence of Zρ(f) to Z(f)). Let f ∈ V ∗ and W := {f} satisfy Assumption 2.7
and assume (8) and (9). Then Zρ(f) → Z(f) in V .

1Instead of (8) we could assume that Φ: V → V is continuous, (24), (25) and (27).

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



Minimal and maximal solution maps of elliptic QVIs 9

Remark 2.10. This result uses the small Lipschitz condition (9) but it is not necessary to obtain the
convergence of Mρ(f) to M(f), see Theorem 4.8. It is an open problem whether mρ(f) converges
to m(f) under the general assumptions of Theorem 4.8.

In a similar fashion to Theorem 2.3 and Theorem 2.4, we have the following local Lipschitz and differ-
entiability results for Zρ, proven in Section 5 and Section 6.1 respectively.

Theorem 2.11 (Local Lipschitz continuity of Zρ). Let f ∈ V ∗ and W ⊆ V ∗ satisfy Assumption 2.7.
Assume (8) and (9). Then there exist ρ0 and δ > 0 such that for all ρ ≤ ρ0 and g ∈ Bδ(f) ∩W ,

∥Zρ(f)− Zρ(g)∥V ≤ C∥f − g∥V ∗

where C > 0 is a constant (which depends only on CL, Ca, Cb and the self-adjointness of A).

Theorem 2.12 (Hadamard differentiability of Zρ). Let f ∈ V ∗ and W ⊆ V ∗ satisfy Assumption 2.7.
Assume (8), (9) and

Φ is directionally differentiable at Zρ(f). (14)

Then for ρ sufficiently small,

(i) the map Zρ is Hadamard differentiable in the sense that if d ∈ TW (f), then for any sequence
dk → d in V ∗ with f + skdk ∈ W where sk ↘ 0,

Zρ(f + skdk)− Zρ(f)

sk
→ Z′

ρ(f)(d).

(ii) the derivative Z′
ρ(f)(d) is the unique solution of the equation

Aα +
1

ρ
σ′
ρ(u− Φ(u))(α− Φ′(u)(α)) = d (15)

where u = Zρ(f).

(iii) the map Z′
ρ(f) : TW (f) → V can be extended to a bounded and continuous mapping from

V ∗ to V by defining it via (15) for all d ∈ V ∗.

Exactly as in Remark 2.5, we obtain from Theorem 2.12 (i) the directional differentability of Zρ : Bδ̄(f)∩
W → V at f in every direction d ∈ RW (f) ⊂ V ∗:

lim
s↘0

Zρ(f + sd)− Zρ(f)

s
= Z′

ρ(f)(d).

2.3 On optimal control

Regarding existing literature on the derivation of stationarity systems for optimal control with QVI
constraints, we mention [26] and [3] in particular. The first work contains a strong stationarity system
characterisation in the absence of control constraints, whilst the latter work includes the derivation of
various forms of stationarity systems (including strong) with potential box constraints on the control. In
this work, we extend these results to the setting of minimal and maximal solution mappings and derive
a C-stationarity system.
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Suppose that
V

c
↪−→ H ↪→ V ∗ is a Gelfand triple

(
c
↪−→ means a compact embedding; by definition of the Gelfand triple, V

d
↪−→ H is a dense embedding)

and let Uad ⊂ H be a non-empty, closed and convex set2. Recall the control problem

min
f∈Uad

J(M(f),m(f), f). (2)

We make the next standing assumption, which guarantees the well definedness of (2).

Assumption 2.13. There exist u, u ∈ V such that

u ≤ u,

u ≤ S(g, u) ∀g ∈ Uad,

u ≥ S(g, u) ∀g ∈ Uad.

Regarding the objective functional J , we need the following assumptions in place. Observe that the
last two assumptions below are conditions that involve Φ.

Assumption 2.14. Regarding J(y, z, f), assume that

(i) J : V × V ×H → R is continuously Fréchet differentiable and bounded from below.

(ii) If (yn, zn) → (y, z) in V × V and fn ⇀ f in H , then

J(y, z, f) ≤ lim inf
n→∞

J(yn, zn, fn).

(iii) If {J(yn, zn, fn)} is bounded for a sequence {(yn, zn, fn)} ⊂ V × V × Uad, then {fn} is
bounded in H .

(iv) If Jy ̸≡ 0, for every f ∈ Uad, there exists ϵ∗ > 0 such thatΦ: Bϵ∗(M(f)) → V has a Lipschitz
constant satisfying CL < Ca/Cb or A is self-adjoint and CL < 2

√
Cb/Ca(1 + Cb/Ca)

−1.

(v) If Jz ̸≡ 0, for every f ∈ Uad, there exists ϵ∗ > 0 such that Φ: Bϵ∗(m(f)) → V has a Lipschitz
constant satisfying CL < Ca/Cb or A is self-adjoint and CL < 2

√
Cb/Ca(1 + Cb/Ca)

−1.

An example of J satisfying items (i)–(iii) above is

J(y, z, f) =
1

2
∥ay + bz − yd∥2H +

ν

2
∥f∥2H

given constants a, b ∈ R, ν > 0, and for some given yd ∈ H . When we choose a = 1, b = −1 and
yd ≡ 0, we recover the first objective functional in (3) and when a = 1 and b = 0 or vice versa, we
recover the second one in (3).

We remark that the assumptions in items (iv) and (v) are unfortunately rather unsatisfactory because
they impose local uniqueness around the extremal solutions for every source term in Uad.

Theorem 2.15 (Existence of optimal controls). Assume (8), Assumption 2.13 and Assumption 2.14.
Then there exists an optimal control f ∗ ∈ Uad to the problem (2).

2It would suffice to replace ‘closed and convex’ here with ‘weakly sequentially closed’ (which is a weaker requirement)
for the existence results below.
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The proof (see Section 7) is more or less standard and uses the direct method in the calculus of
variations. From now on, let

(y∗, z∗, f ∗) be an arbitrary local minimiser of (2)

with y∗ = M(f ∗) and z∗ = m(f ∗). We begin with the following primal characterisation of the min-
imiser.

Proposition 2.16 (Bouligand stationarity). Assume (8), Assumption 2.13, Assumption 2.14 and

if Jy ̸≡ 0, Φ is directionally differentiable at M(f ∗),

if Jz ̸≡ 0, Φ is directionally differentiable at m(f ∗).

Then

⟨Jy(y∗, z∗, f ∗),M′(f ∗)(h)⟩+⟨Jz(y∗, z∗, f ∗),m′(f ∗)(h)⟩+⟨Jf (y∗, z∗, f ∗), h⟩ ≥ 0 ∀h ∈ TUad(f
∗).

The proof of the proposition appears in Section 7.1.

For numerics, it is convenient to derive other forms of stationarity systems like C-stationarity. For this
purpose, we consider the penalised control problem

min
f∈Uad

J(Mρ(f),mρ(f), f). (16)

The following standing assumption is stronger than Assumption 2.13 and it implies the assumptions
of Theorem 2.11, which is needed for the existence of controls for the above control problem.

Assumption 2.17. There exist u, u ∈ V and ρ0 > 0 such that

u ≤ u,

u ≤ S(g, u) ∀g ∈ Uad,

u ≥ Tρ0(g, u) ∀g ∈ Uad.

We need some further regularity on Φ in the form of the next assumption. When Φ is continuously
Fréchet differentiable, these assumptions follow from Assumption 2.14 (iv), (v). See the discussion
around (35) and the proof of [3, Lemma 5.9].

Assumption 2.18. Assume the following:

(i) If Jy ̸≡ 0, assume that there exists ϵ > 0 such that

for all w ∈ Bϵ(y
∗), Φ is directionally differentiable at w and Φ′(w) is linear.

If Jz ̸≡ 0, the above holds with y∗ replaced by z∗.

(ii) If Jy ̸≡ 0, assume that for sequences vn → v,wn → w and qn ⇀ q in V with vn, v ∈ Bϵ(y
∗),

we have

(Id− Φ′(vn))
−1qn ⇀ (Id− Φ′(v))−1q in V , (17)

(Id− Φ′(vn))
−1wn → (Id− Φ′(v))−1w in V , (18)

If Jz ̸≡ 0, the above holds with y∗ replaced by z∗.
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We also need additional structure on the function spaces in the form of a Dirichlet space.

Assumption 2.19. Let V be a regular Dirichlet space and suppose that (·)+ : V → V is continuous.

We will not enter into an exposition about Dirichlet spaces here (see [3, Example 3.5] for a convenient
definition and comments on this as well as further references) but let us give some examples that
satisfy the above assumption. Suppose that D ⊂ Rn is a bounded Lipschitz domain. We can take
H = L2(D) and V = H1

0 (D) (thus Ω ≡ D), or H = L2(D) and V = H1(D) (thus Ω ≡ D).
Assuming a Dirichlet space structure enables us to define notions of capacity and quasi-continuity
(capacity is, loosely speaking, a way to measure sets finer than through the Lebesgue measure), see
[10, §2.1] or [29, Section 2] for the H1

0 (Ω) setting. In addition, it allows us to explicitly characterise the
critical cone appearing in Theorem 2.4 (see Remark 6.7) using capacity, and (more pertinently for us
in this section) the tangent cone as well, which is something we will use to prove a statement in the
stationarity system below. On that topic, note for any y ∈ V we can define3

{y = Φ(y)} ≡ {x ∈ Ω : y(x) = Φ(y)(x)},

which, when y is a solution of the QVI, is called the active or coincidence set. This set is defined up to
sets of capacity zero.

We will prove a version of C-stationarity (but note that this terminology is used somewhat inconsistently
in the literature). Before we proceed, let us record that owing to the complementarity characterisation
of solutions of QVIs (see e.g. [3, Proposition 2.1]), the statements y∗ = M(f ∗) and z∗ = m(f ∗)
imply (but are not necessarily equivalent to) that

Ay∗ − f ∗ + ξ∗1 = 0,

Az∗ − f ∗ + ξ∗2 = 0,

ξ∗1 ≥ 0 in V ∗, y∗ ≤ Φ(y∗), ⟨ξ∗1 , y∗ − Φ(y∗)⟩ = 0,

ξ∗2 ≥ 0 in V ∗, z∗ ≤ Φ(z∗), ⟨ξ∗2 , z∗ − Φ(z∗)⟩ = 0.

(19)

The main result in this section is the following, which will be proved through a succession of results in
Section 7.3.

Theorem 2.20 (C-stationarity). Assume (8), Assumption 2.14, Assumption 2.17, Assumption 2.18,
and Assumption 2.19. Take any local minimiser (y∗, z∗, f ∗) of (2) and define ξ∗1 , ξ

∗
2 as in (19). Then

there exist multipliers (p∗, q∗, λ∗, ζ∗) ∈ V × V × V ∗ × V ∗ satisfying the C-stationarity system

y∗ = M(f ∗), (20a)

z∗ = m(f ∗), (20b)

A∗p∗ + (Id− Φ′(y∗))∗λ∗ = −Jy(y∗, z∗, f ∗), (20c)

A∗q∗ + (Id− Φ′(z∗))∗ζ∗ = −Jz(y∗, z∗, f ∗), (20d)

f ∗ ∈ Uad : ⟨Jf (y∗, z∗, f ∗)− p∗ − q∗, f ∗ − v⟩ ≤ 0 ∀v ∈ Uad, (20e)

⟨λ∗, p∗⟩ ≥ 0, (20f)

⟨ζ∗, q∗⟩ ≥ 0, (20g)

⟨λ∗, v⟩ = 0 ∀v ∈ V : v = 0 q.e. on {y∗ = Φ(y∗)},
(20h)

⟨ζ∗, v⟩ = 0 ∀v ∈ V : v = 0 q.e. on {z∗ = Φ(z∗)},
(20i)

⟨ξ∗1 , (p∗)+⟩ = ⟨ξ∗1 , (p∗)−⟩ = ⟨ξ∗2 , (q∗)+⟩ = ⟨ξ∗2 , (q∗)−⟩ = 0. (20j)
3Strictly speaking, every y ∈ V has a quasi-continuous representative and we identify it with its representative. Then

the set {y = Φ(y)} is quasi-closed.
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The ‘q.e.’ appearing in (20h) and (20i) means quasi-everywhere and a statement holds q.e. if it holds
everywhere except on a set of capacity zero. Let us observe that (20h) and (20i) imply

⟨λ∗, y∗ − Φ(y∗)⟩ = 0

⟨ζ∗, z∗ − Φ(z∗)⟩ = 0.

It is worth noting that if Assumption 2.19 is not available, it is still possible to show that a subset of the
conditions above (called weak C-stationarity ) are satisfied, see Proposition 7.4. Therein, (20h), (20i)
and (20j) are missing. By assuming just the continuity of (·)+ : V → V , we can further show some
substitutes for the missing relations, see Proposition 7.5 and Lemma 7.7.

3 Properties of the penalised problem

This section culminates in a result that shows the existence (in a constructive way) of extremal solu-
tions to (4). To arrive at such a result, we first have to study some intermediary problems which will
also be of considerable use in later sections.

Recalling σρ from (5), let us point out that σρ : V → V ∗ is bounded (in the sense of nonlinear opera-
tors), increasing, T-monotone and hemicontinuous4. T-monotonicity and the fact that σρ is increasing
will be needed for the comparison results that are required for this paper. Note that the T-monotonicity
condition implies monotonicity [19, Lemma 2.1, Chapter 2]. Another important property is the following,
which shows that σρ is indeed a penalty operator.

Lemma 3.1. We have that

zρ ⇀ z in V and σρ(zρ) → 0 in V ∗ =⇒ z ≤ 0.

Proof. First observe that for any h ∈ H , we have σρ(h) → h+ in H . This is an immediate conse-
quence of the estimate

0 ≤ r+ − σρ(r) ≤
ρ

2

(see [13, Lemma 2.1 (iv)]). Suppose that zρ ⇀ z in V and σρ(zρ) → 0 in V ∗. By monotonicity, we
have for any λ > 0,

⟨σρ(zρ)− σρ(z + λv), zρ − z − λv⟩ ≥ 0 ∀v ∈ V.

Passing to the limit ρ↘ 0 here using the strong convergence of σρ(zρ) and the fact that σρ(z+λv) →
(z + λv)+ in H , we obtain

⟨(z + λv)+, λv⟩ ≥ 0 ∀v ∈ V.

Dividing through by λ and using (hemi-)continuity of (·)+ : H → H , we derive

⟨z+, v⟩ ≥ 0 ∀v ∈ V.

The arbitrariness of v then implies that z+ = 0.

4T-monotonicity in the nonlinear setting means ⟨σρ(u) − σρ(v), (u − v)+⟩ ≥ 0 and hemicontinuity means s 7→
⟨σρ(u+ sv), w⟩ is continuous for all u, v, w ∈ V .
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3.1 Results on a semilinear elliptic PDE

For f ∈ V ∗ and φ ∈ H , consider the equation

Au+
1

ρ
σρ(u− Φ(φ)) = f, (21)

the solution map of which we write
u = Tρ(f, φ),

so that Tρ : V ∗×H → V . The equation (21) has a unique solution (for fixed f and φ): the nonlinearity
is monotone, radially continuous and bounded, giving pseudomonotonicity of the full elliptic operator
by [21, Lemma 2.9 and Lemma 2.11] whereas coercivity follows from

⟨Au, u− Φ(φ)⟩+ 1

ρ
⟨σρ(u− Φ(φ)), u− Φ(φ)) ≥ Ca∥u∥2V − Cb∥u∥V ∥Φ(φ)∥V ,

leading to existence via [21, Theorem 2.6].

In the next two lemmas, we utilise the results of [27] to obtain Lipschitz estimates for Tρ.

Lemma 3.2. Assume that Φ is Lipschitz on U ⊂ V with Lipschitz constant CL ≥ 0 satisfying

CL <
Ca

Cb

or A is self-adjoint and CL < 2

√
Cb/Ca

1 + Cb/Ca

. (22)

Then, there exist constantsC ≥ 0, c̃ ∈ [0, 1) (depending only onCL,Ca,Cb and the self-adjointness
of A) such that for all u, v ∈ V and φ, ψ ∈ U , we have

⟨A(u− v), u− Φ(φ)− v + Φ(ψ)⟩ ≥ C
(
∥u− v∥2V − c̃2∥φ− ψ∥2V

)
.

Proof. This is precisely [27, Lemma 20]. Note that the linear and continuous operatorA is a derivative
of a convex function if and only if A is self-adjoint.

If the constantCL is larger than or equal to the allowed threshold from Lemma 3.2, the result no longer
holds, cf. [26, Theorems 3.6, 3.7]. Note that the latter constant in (22) is larger than the former one. If
CL < Ca/Cb, we may choose

C =
Ca

2
, c̃ =

CbCL

Ca

whereas in the other case we could choose

C =
CaCb

Ca + Cb

, c̃ =
(Ca + Cb)CL

2
√
CaCb

.

The next result will be crucial, since it shows that the map u 7→ Tρ(f, u) is a contraction under
appropriate assumptions.

Proposition 3.3. For all f, g ∈ V ∗ and φ, ψ ∈ H , we have

∥Tρ(f, φ)− Tρ(g, ψ)∥V ≤
√
2C−1

a ∥f − g∥V ∗ + C−1
a (

√
2Cb)∥Φ(ψ)− Φ(φ)∥V .

In case that Φ: V → V is locally Lipschitz in U ⊂ V with small Lipschitz constant CL satisfying (22)
and if φ, ψ ∈ U , then

∥Tρ(f, φ)− Tρ(g, ψ)∥V ≤ Ĉ∥f − g∥V ∗ + ĉ∥ψ − φ∥V

for some constants Ĉ ≥ 0, ĉ ∈ [0, 1), depending only on CL, Ca, Cb and the self-adjointness of A.

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



Minimal and maximal solution maps of elliptic QVIs 15

Proof. Let u = Tρ(f, φ) and v = Tρ(g, ψ). We have that

Au+
1

ρ
σρ(u− Φ(φ)) = f and Av +

1

ρ
σρ(v − Φ(ψ)) = g.

Testing the difference with u− Φ(φ)− v + Φ(ψ) and using monotonicity leads to

⟨A(u− v), u− Φ(φ)− v + Φ(ψ)⟩ ≤ ⟨f − g, u− Φ(φ)− v + Φ(ψ)⟩ (23)

and, consequently,

Ca∥u− v∥2V − Cb∥u− v∥V ∥Φ(φ)− Φ(ψ)∥V ≤ ∥f − g∥V ∗

(
∥u− v∥V + ∥Φ(φ)− Φ(ψ)∥V

)
.

Together with the estimates

Cb∥u− v∥V ∥Φ(φ)− Φ(ψ)∥V ≤ Ca

4
∥u− v∥2V +

C2
b

Ca

∥Φ(φ)− Φ(ψ)∥2V ,

∥f − g∥V ∗ ∥u− v∥V ≤ Ca

4
∥u− v∥2V +

1

Ca

∥f − g∥2V ∗ ,

we get

1

2
∥u− v∥2V ≤ C2

b

C2
a

∥Φ(φ)− Φ(ψ)∥2V +
1

Ca

∥f − g∥V ∗ ∥Φ(φ)− Φ(ψ)∥V +
1

C2
a

∥f − g∥2V ∗

≤
(
Cb

Ca

∥Φ(φ)− Φ(ψ)∥V +
1

Ca

∥f − g∥V ∗

)2

.

This shows the first estimate.

In order to arrive at the second estimate, we use Lemma 3.2 in (23) to obtain

C
(
∥u− v∥2V − c̃2∥φ− ψ∥2V

)
≤ ∥f − g∥V ∗ (∥u− v∥V + CL∥φ− ψ∥V ).

Together with

∥f − g∥V ∗ ∥u− v∥V ≤ C
1− c̃2

2
∥u− v∥2V +

1

2C(1− c̃2)
∥f − g∥2V ∗

we get

C
1 + c̃2

2
∥u− v∥2V ≤ 1

2C(1− c̃2)
∥f − g∥2V ∗ + ∥f − g∥V ∗ CL∥φ− ψ∥V + Cc̃2∥φ− ψ∥2V

≤

((
1√

2C(1− c̃2)
+

CL

2
√
Cc̃

)
∥f − g∥V ∗ +

√
Cc̃∥φ− ψ∥V

)2

.

This yields the claim.

The next lemma shows that the solution of the PDE converges to the solution of associated VI.

Lemma 3.4. For f ∈ V ∗ and φ ∈ H , we have Tρ(f, φ) → S(f, φ) in V as ρ↘ 0.

Proof. This is an extension of the classical penalty theory (see [11, Theorem 3.1] or [15, §5.3, Chapter
3]) to the varying σρ setting given in [3]. More precisely, since σρ is hemicontinuous (hence radially
continuous) and bounded, this follows by [3, Theorem 2.18].
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3.2 Order properties

In this section, we discuss various properties related to the partial order. The next lemma is funda-
mental: it will be used to show that (4) has minimal and maximal solutions.

Lemma 3.5. The map Tρ(·, ·) : V ∗ ×H → V is increasing.

Proof. Let f ≥ g, φ ≥ ψ and consider u = Tρ(f, φ) and v = Tρ(g, ψ). Testing the equation for
v − u with (v − u)+, we have

⟨A(v − u), (v − u)+⟩+ 1

ρ
⟨σρ(v − Φ(ψ))− σρ(u− Φ(φ)), (v − u)+⟩ = ⟨g − f, (v − u)+⟩.

Since Φ(φ) ≥ Φ(ψ) we have v − Φ(ψ) ≥ v − Φ(φ) and hence by the increasingness property,
σρ(v − Φ(ψ)) ≥ σρ(v − Φ(φ)). This implies from above that

⟨A(v − u), (v − u)+⟩+ 1

ρ
⟨σρ(v − Φ(φ))− σρ(u− Φ(φ)), (v − u)+⟩ ≤ 0

and hence, using T-monotonicity, we get (v − u)+ = 0 so that v ≤ u.

Lemma 3.6. We have
ρ ≤ κ =⇒ Tρ(f, φ) ≤ Tκ(f, φ).

Proof. Let uρ = Tρ(f, φ) and uκ = Tκ(f, φ). We have

A(uρ − uκ) +
1

ρ
σρ(uρ − Φ(φ))− 1

κ
σκ(uκ − Φ(φ)) = 0,

and we manipulate

1

ρ
σρ(uρ − Φ(φ))− 1

κ
σκ(uκ − Φ(φ))

=

(
1

ρ
− 1

κ

)
σρ(uρ − Φ(φ)) +

1

κ
(σρ(uρ − Φ(φ))− σκ(uκ − Φ(φ)))

=

(
1

ρ
− 1

κ

)
σρ(uρ − Φ(φ)) +

1

κ
(σρ(uρ − Φ(φ))− σρ(uκ − Φ(φ)))

+
1

κ
(σρ(uκ − Φ(φ))− σκ(uκ − Φ(φ)))

which, when tested with (uρ − uκ)
+, is non-negative (the first term by ρ ≤ κ, the second by T-

monotonicity and the third because σρ satisfies ρ ≤ κ =⇒ σρ ≥ σκ).

We should expect that the solution of the VI is dominated by the solution of the penalised equation.

Lemma 3.7. We have S(f, φ) ≤ Tρ(f, φ).

Proof. Let uρ = Tρ(f, φ) and v = S(f, φ). Take as test function in the VI for v the function v− (v−
uρ)

+ and combine to get

⟨A(v − uρ), (v − uρ)
+⟩ − 1

ρ
⟨σρ(uρ − Φ(φ)), (v − uρ)

+⟩ ≤ 0.
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Since v ≤ Φ(φ), we have uρ −Φ(φ) ≤ uρ − v and the increasing property of σρ as well as the fact
that σρ ≡ 0 on (−∞, 0] implies that

⟨σρ(uρ − Φ(φ)), (v − uρ)
+⟩ ≤ ⟨σρ(uρ − v), (v − uρ)

+⟩ ≤ 0.

Using this fact above, we deduce that ⟨A(v − uρ), (v − uρ)
+⟩ ≤ 0 which gives the claim.

Before we move on, let us prove, with the aid of a result from this section, a claim we made earlier in
Section 1.2.

Lemma 3.8. The example in Section 1.2 satisfies every assumption on sub- and supersolutions in
the paper. More precisely, with W , u and u defined as in Section 1.2, any f ∈ W and the set W
satisfy Assumption 1.1, Assumption 2.1, Assumption 2.7, Assumption 2.13 and Assumption 2.17 (with
W = Uad), Assumption 3.9 and Assumption 4.6.

Proof. It suffices to show that u and u are sub- and supersolutions for S(f, ·) and Tρ(f, ·) for all
f ∈ W . It is not difficult to see this:

■ Since Φ is increasing, for all ρ ≥ 0, we have u = Tρ(F,∞) ≥ Tρ(F, u) ≥ Tρ(f, u) for any
f ≤ F because of Lemma 3.5 (for ρ > 0) and [20, §4:5, Theorem 5.1] (for ρ = 0). Thus u is
a supersolution of S(f, ·) and Tρ(f, ·) for all f ∈ W .

■ If f ∈ W , for all ρ ≥ 0, we have Tρ(f, 0) ≥ Tρ(0, 0) = 0 again by the above-cited results
and since f ≥ 0. Hence u is a subsolution for S(f, ·) and Tρ(f, ·) for all f ∈ W .

3.3 Minimal and maximal solutions of PDEs

Let us assume the existence of a sub- and supersolution for Tρ(f, ·) and prove our earlier claim that
(4) has extremal solutions.

Assumption 3.9 (Well definedness of Zρ(f)). Given f ∈ V ∗, assume that there exist u, u ∈ V such
that

u ≤ Tρ(f, u), u ≥ Tρ(f, u), and u ≤ u.

This assumption is exactly (12). Arguing like in Proposition 1.2, we have the following.

Proposition 3.10. Under Assumption 3.9, there exist a minimal solution mρ(f) and maximal solution
Mρ(f) to

Au+
1

ρ
σρ(u− Φ(u)) = f (4)

on [u, u].

Proof. Due to Lemma 3.5, it follows by the Birkhoff–Tartar theorem [5, §15.2, Proposition 2] that the
set of fixed points of u 7→ Tρ(f, u) is non-empty and possesses a minimal and maximal solution on
the interval [u, u].

Now, we focus on ways to approximate these extremal solutions by sequences.
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Definition 3.11. Define the iterative sequence {unρ} by

unρ = Tρ(f, u
n−1
ρ ),

u0ρ = u,

and {unρ} by

unρ = Tρ(f, u
n−1
ρ ),

u0ρ = u.

Note that {unρ} is a decreasing sequence and {unρ} is an increasing sequence (see the proof of the
next result). In fact, unρ approaches Mρ(f) from above and unρ approaches mρ(f) from below.

Proposition 3.12 (Strong convergence). Under Assumption 3.9, assume (8) or that

Φ: V → V is weakly sequentially continuous, (24)

V
c
↪−→ H. (25)

Then
unρ ↘ Mρ(f) and unρ ↗ mρ(f) strongly in V as n→ ∞.

Proof. For readibility, let us write un instead of unρ . Each un satisfies

Aun +
1

ρ
σρ(u

n − Φ(un−1)) = f.

By definition of supersolution, u0 = u ≥ Tρ(f, u) = u1, and since we have shown above that Tρ(f, ·)
is increasing, we obtain in this fashion that un ≥ un+1 so that {un} is a decreasing sequence.

Note also that u1 ≥ Tρ(f, u) ≥ u, hence un ≥ u for all n. Define v0 = Φ(u). Then we have
v0 ≤ Φ(un) for all n since Φ is increasing, therefore,

⟨σρ(un − Φ(un−1)), un − v0⟩ = ⟨σρ(un − Φ(un−1))− σρ(v0 − Φ(un−1)), un − v0⟩ ≥ 0

by monotonicity. Testing the un equation with un − v0,

Ca∥un∥2V ≤ ∥f∥V ∗ ∥un∥V + ∥f∥V ∗ ∥v0∥V + Cb∥un∥V ∥v0∥V

and this leads to a uniform bound in V . Thus un ⇀ u in V for some u, for the entire sequence by
monotonicity (see e.g. [3, Lemma 2.3]). Take any solution u∗ = Tρ(f, u

∗) with u∗ ≤ u0. It follows
that u∗ ≤ u1 by applying Tρ(f, ·) to both sides. Likewise, u∗ ≤ un and hence u∗ ≤ u, so if u is a
solution of the limiting problem, it must be the largest solution. Let us show now that u does solve the
limiting equation, i.e., that u = Tρ(f, u).

Satisfaction of the equation.

Case 1. Under complete continuity (8), making the transformation wn = un −Φ(un−1), we can write
the equation for un as

Awn +
1

ρ
σρ(w

n) = f − AΦ(un−1).
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Call the operator on the left-hand side Â. By monotonicity, we have for all v ∈ V ,

0 ≤ ⟨Â(wn)− Â(v), wn − v⟩ = ⟨f − AΦ(un−1)− Â(v), wn − v⟩,

and hence, noting that wn ⇀ u− Φ(u) =: w and Φ(un−1) → Φ(u) by (8) (observe that it suffices
to have this complete continuity only for monotonic sequences),

0 ≤ ⟨f − AΦ(u)− Â(v), w − v⟩ ∀v ∈ V.

Since Â is radially continuous, by Minty’s trick [21, Lemma 2.13], we obtain Â(w) = f −AΦ(u), i.e.,

Aw +
1

ρ
σρ(w) = f − AΦ(u).

Since w = u− Φ(u), we see that u = Tρ(f, u).

Case 2. Otherwise, by (24) and the Lipschitz continuity of σρ : H → H and the fact that V
c
↪−→ H , we

obtain σρ(un − Φ(un−1)) ⇀ σρ(u − Φ(u)) in V ∗. This lets us pass to the limit in the equation for
un.

Strong convergence. It remains for us to show that un → u in V strongly.

Case 1. By using Proposition 3.3, we obtain the continuous dependence estimate

∥un − u∥V ≤ C
∥∥Φ(un−1)− Φ(u)

∥∥
V
,

we can pass to the limit on the right-hand side using (8), yielding un → u.

Case 2. In the second case, we test the equation for un − u with un − u and manipulate

Caρ∥un − u∥2V ≤ ⟨σρ(u− Φ(u))− σρ(u
n − Φ(un−1)), un − u⟩H∗,H

→ 0

with the convergence because we have σρ(un − Φ(un−1)) → σρ(u− Φ(u)) in H∗ by the compact
embedding (25), and un − u→ 0 in H for the same reason.

Remark 3.13. If we assume that Φ: H → V is continuous, (25) implies (8). Since the aforementioned
continuity of Φ and (25) typically do hold in examples, the above result is rather a powerful property
that we attain without cost.

In some sense, the conclusion of Proposition 3.12 improves the similar convergence result of [3,
Theorem 2.18] where it was shown that, in greater generality and in the absence of the assumption
that Φ is increasing, solutions of (4) converge along a subsequence to some solution of the QVI (1).
Here, we are able to select precisely the minimal or maximal solution as the limiting objects thanks to
the strengthened structure.

4 Convergence to the QVIs

We now consider the limiting behaviour of Mρ and mρ as ρ ↘ 0 and show that they converge to the
expected limits under some circumstance. First, we need some more properties.

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



A. Alphonse, M. Hintermüller, C. N. Rautenberg, G. Wachsmuth 20

4.1 Properties with respect to varying ρ

In the next lemma, we show that ρ 7→ Zρ is increasing. In other words, Zρ shrinks as ρ gets smaller
(this is natural since we expect Zρ to converge to the solution of the constrained problem). Recall
Definition 3.11.

Lemma 4.1. Let ρ, κ > 0 and assume that u is a subsolution and u is a supersolution of both Tρ(f, ·)
and Tκ(f, ·) with u ≤ u. If ρ ≤ κ, then

unρ ≤ unκ and unρ ≤ unκ.

Thus if the assumptions of Proposition 3.12 hold, then

Mρ(f) ≤ Mκ(f) and mρ(f) ≤ mκ(f).

Proof. Set uρ := Mρ(f) uκ := Mκ(f). We have u1ρ = Tρ(f, u) ≤ Tκ(f, u) = u1κ by Lemma 3.6.
Hence u2ρ = Tρ(f, u

1
ρ) ≤ Tρ(f, u

1
κ) ≤ Tκ(f, u

1
κ) = u2κ by the increasing property of Lemma 3.5

and again Lemma 3.6. The same holds when one replaces the supersolution by the subsolution. This
implies the first claim and then taking n→ ∞, using Proposition 3.12 implies the second.

Remark 4.2. In the above lemma, we could consider two different pairs of sub/supersolution for Tρ
and Tκ. We can prove the same result (but Zρ and Zκ would be defined on different intervals of
course) if we assume the subsolution (supersolution) for the ρ problem is less than or equal to than
the subsolution (supersolution) for the κ problem. We leave the details to the reader.

In a similar fashion to Definition 3.11, we introduce the following.

Definition 4.3. Define the sequences

ûn = S(f, ûn−1),

û0 = u,

and

ũn = S(f, ũn−1),

ũ0 = u.

The map S can be thought of as T0 (i.e., Tρ with ρ = 0).

Proposition 4.4 (Lemmas 3.2 and 3.3 of [2]). Under Assumption 1.1, assume (8). Then ûn ↘ M(f)
and ũn ↗ m(f) in V .

This proposition corresponds to the convergence results of Proposition 3.12 for the ρ = 0 case.

The next lemma shows that the unconstrained iterates (which solve PDEs) are greater than the con-
strained iterates which solve VIs).

Lemma 4.5. If {unρ}, {ûn} and {unρ}, {ũn} are defined as above with the same initial elements u
and u respectively, then unρ ≥ ûn and unρ ≥ ũn.

Proof. This is essentially Lemma 4.1 with ρ = 0.

We have, using Lemma 3.7 , u1ρ = Tρ(f, u) ≥ S(f, u) = û1, and hence u2ρ = Tρ(f, u
1
ρ) ≥

S(f, u1ρ) ≥ S(f, û1) = û2, and so on. Here, we have used the increasing property of S(f, ·). The
same applies with the supersolution replacing the subsolution.
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4.2 The ρ↘ 0 limit

We want to prove that the penalised extremal solutions converge to the (non-penalised) extremal
solutions in the limit ρ↘ 0. First, we have to guarantee that all these objects exist.

Assumption 4.6 (Well definedness of Z(f) and Zρ(f) for all ρ sufficiently small). Given f ∈ V ∗,
assume that there exist u, u ∈ V and ρ0 > 0 such that

u ≤ u,

u ≤ S(f, u),

u ≥ Tρ0(f, u).

Remark 4.7. The statements
u ≤ S(f, u)

and
u ≤ Tρ(f, u) ∀ρ ≤ ρ0

are equivalent. One direction follows from the convergence result (as ρ → 0) of Lemma 3.4 and the
other from Lemma 3.7.

Under this assumption, u ≤ S(f, u) ≤ Tρ(f, u) for all ρ (see the above remark), and

u ≥ Tρ0(f, u) ≥ Tρ(f, u) ≥ S(f, u) ∀ρ ≤ ρ0

so that (u, u) are a sub- and supersolution pair for both Tρ(f, ·) (for all ρ ≤ ρ0)) and S(f, ·). This
means that both Assumption 1.1 and (12) (i.e., Assumption 3.9) are satisfied and both Zρ(f) and
Z(f) are well defined objects in [u, u], for all ρ ≤ ρ0.

Theorem 4.8. Assume Assumption 4.6 and the weak sequential continuity (24). Then Mρ(f) ↘
M(f) weakly in V and mρ(f) ↘ u weakly in V , where u ∈ V is a solution of (1). If (8) holds, then
the convergences are strong.

Proof. As mentioned above, M(f) and Mρ(f) exist for all 0 < ρ ≤ ρ0 by Assumption 4.6. Define
uρ := Mρ(f). Since u ≤ S(f, u) ≤ Φ(u) ≤ Φ(uρ) for all ρ, if we set v0 := u, we can test the uρ
equation with uρ − v0 and we get that {uρ} is bounded by using

⟨σρ(uρ − Φ(uρ)), uρ − v0⟩ = ⟨σρ(uρ − Φ(uρ))− σρ(v0 − Φ(uρ)), uρ − v0⟩ ≥ 0.

Hence uρ ⇀ u in V for a subsequence that we have relabelled. This implies that ρ(f − Auρ) =
σρ(uρ − Φ(uρ)) → 0 in V ∗. Then, testing the equation for uρ with uρ − v for v ∈ V and using the
monotonicity formula

⟨σρ(uρ − Φ(uρ)), uρ − v⟩ ≥ ⟨σρ(v − Φ(uρ)), uρ − v⟩ ∀v ∈ V (26)

(this follows by the monotonicity of σρ; see the proof of [3, Theorem 2.18]), we have

⟨Auρ, uρ⟩+
1

ρ
⟨σρ(v − Φ(uρ)), uρ − v⟩ ≤ ⟨f, uρ − v⟩+ ⟨Auρ, v⟩.

Let v ∈ V be such that v ≤ Φ(u). Since u ≤ uρ (as Lemma 4.1 shows that {uρ} is a decreasing
sequence), v ≤ Φ(uρ) and hence the second term on the left disappears. We can pass to the limit and
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use weak lower semicontinuity to obtain that u solves the expected inequality. By (24), uρ−Φ(uρ)⇀
u − Φ(u) in V , which in conjunction with the fact that σρ(uρ − Φ(uρ)) → 0 implies by Lemma 3.1
that u ≤ Φ(u) so that u solves (1).

We also have, using Lemma 4.5 for the first inequality and with the limits below being weak,

uρ = Mρ(f) = lim
n
unρ ≥ lim

n
ûn ≥ M(f)

(recall ûn = S(f, ûn−1) is defined above) where we used Proposition 4.4 for the final inequality.
Passing to weak limit in ρ proves the result.

For strong convergence, we begin by defining vρ := u+ Φ(uρ)− Φ(u) which satisfies

vρ → u in V ,

vρ ≤ Φ(uρ),

uρ − vρ = (uρ − u) + (Φ(u)− Φ(uρ))⇀ 0 in V ,

with the first line thanks to (8). Testing the equation for uρ with uρ − vρ, we have

⟨A(uρ − vρ), uρ − vρ⟩ = ⟨f, uρ − vρ⟩ −
1

ρ
⟨σρ(uρ − Φ(uρ)), uρ − vρ⟩ − ⟨Avρ, uρ − vρ⟩

and to this we apply the monotonicity formula (26) and coercivity of A to find

Ca∥uρ − vρ∥2V ≤ ⟨f, uρ − vρ⟩ −
1

ρ
⟨σρ(vρ − Φ(uρ)), uρ − vρ⟩ − ⟨Avρ, uρ − vρ⟩

= ⟨f, uρ − vρ⟩ − ⟨Avρ, uρ − vρ⟩. (since vρ ≤ Φ(uρ))

The right-hand side converges to zero, hence uρ − vρ → 0 strongly in V , implying uρ → u.

The claim for the minimal solution follows similar lines as the above to deduce that the weak limit u is
a solution to (1).

Note that we are not (yet) able to identify u above as the minimal solution and prove that mρ(f) ⇀
m(f) in the above theorem under such general circumstances. it appears difficult to do this because
unρ ≥ ũn (by virtue of unρ being a solution of the unconstrained problem) and thus in the limit we
do not obtain anything useful. This has been an open problem as identified in [7, Chapter 4, Remark
1.4]. But we can identify the desired limit with a contractive argument under different assumptions, see
Corollary 2.9, which we will prove below.

4.3 The ρ↘ 0 limit under a contraction assumption

By assuming the small Lipschitz constant assumption (9), we can prove the convergence result that we
wanted. It is convenient to introduce the following notation. Considering the cases Z = m or Z = M,
we define the mappings Zn : R+ ∪ {0} × V ∗ → V via

Zn(ρ, g) := Tρ(g, Z
n−1(ρ, g)),

Z0(ρ, g) :=

{
u if Z = m

u if Z = M

where u, u are given and independent of ρ and g (to be fixed later). For convenience, we define
T0(g, φ) := S(g, φ). With this, note that Zn(0, g) = S(g, Zn−1(0, g)).
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Lemma 4.9. If Φ: V → V is continuous, then for each n, the map Zn : R+×V ∗ → V is continuous
at all points from the set {0} × V ∗.

Proof. We show this by induction. It is clear for n = 0 as Z0 is constant in its arguments. Assume
that Zn(ρ, g) → Zn(0, f) as (ρ, g) → (0, f). The inductive step is:

Zn+1(ρ, g)− Zn+1(0, f) = Tρ(g, Z
n(ρ, g))− T0(f, Z

n(0, f))

= [Tρ(g, Z
n(ρ, g))− Tρ(f, Z

n(0, f))]

+ [Tρ(f, Z
n(0, f))− T0(f, Z

n(0, f))].

The first bracket is continuous due to Proposition 3.3 and the induction hypothesis and the second
bracket is continuous due to Lemma 3.4.

Lemma 4.10. Assume that Φ: V → V is continuous and f ∈ V ∗ is such that (9) and

Zn(0, f) → Z(f). (27)

Then for every ϵ > 0, there exist N ∈ N and ρ0, δ > 0 such that

Zn(ρ, g) ∈ Bϵ(Z(f)) ∀n ≥ N, ρ ∈ [0, ρ0], g ∈ Bδ(f). (28)

Regarding the above assumptions, note that we are implicitly assuming that Z(f) is defined (it would
be true if f , u and u satisfy Assumption 1.1, see Proposition 4.4).

Proof. Without loss of generality, we assume ϵ ≤ ϵ∗. Let us first record some useful estimates. Due
to (27), we get N ∈ N such that n ≥ N gives Zn(0, f) ∈ Bϵ/2(Z(f)). For g ∈ V ∗ and ρ ≥ 0 we
have ∥∥ZN(ρ, g)− Z(f)

∥∥
V
≤
∥∥ZN(ρ, g)− ZN(0, f)

∥∥
V
+
∥∥ZN(0, f)− Z(f)

∥∥
V

≤
∥∥ZN(ρ, g)− ZN(0, f)

∥∥
V
+
ϵ

2
.

The function ZN is continuous at (0, f) due to the previous lemma. This, together with Lemma 3.4,
means that we can choose ρ0 > 0 and δ > 0 such that

ZN(ρ, g) ∈ Bϵ(Z(f)) ∀ρ ∈ [0, ρ0], g ∈ Bδ(f),

∥Tρ(f,Z(f))− T0(f,Z(f))∥V ≤ 1− ĉ

2
ϵ ∀ρ ∈ [0, ρ0],

δ ≤ 1− ĉ

1 + Ĉ

ϵ

2
.

Here, the constants Ĉ ≥ 0 and ĉ ∈ [0, 1) are chosen as in Proposition 3.3.

By induction over n, we show that (28) holds. To this end, suppose that n ≥ N , ρ ∈ [0, ρ0] and
g ∈ Bδ(f) are given such that Zn(ρ, g) ∈ Bϵ(Z(f)). Using the definition of Zn+1, we find∥∥Zn+1(ρ, g)− Z(f)

∥∥
V
= ∥Tρ(g, Zn(ρ, g))− T0(f,Z(f))∥V
≤ ∥Tρ(g, Zn(ρ, g))− Tρ(f,Z(f))∥V + ∥Tρ(f,Z(f))− T0(f,Z(f))∥V

≤ ∥Tρ(g, Zn(ρ, g))− Tρ(f,Z(f))∥V +
1− ĉ

2
ϵ.
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Since Zn(ρ, g) ∈ Bϵ(Z(f)) ⊂ Bϵ∗(Z(f)), we can apply Proposition 3.3 and get∥∥Zn+1(ρ, g)− Z(f)
∥∥
V
≤ Ĉ∥f − g∥V ∗ + ĉ∥Zn(ρ, g)− Z(f)∥V +

1− ĉ

2
ϵ

≤ Ĉδ + ĉϵ+
1− ĉ

2
ϵ

≤ ϵ.

This shows Zn+1(ρ, g) ∈ Bϵ(Z(f)). By induction, (28) follows.

The important point in the previous result is that (28) holds for ρ ≤ ρ0 and g ∈ Bδ(f) uniformly in n.

Let us now prove the theorem on the convergence of Zρ(g) → Z(f).

Proof of Theorem 2.8. We take u and u in the definition of Z0 to satisfy Assumption 2.7. By Assump-
tion 2.7, Assumption 4.6 is satisfied for every source term in Bδ̄(f) ∩W and we get that Z and Zρ

are well defined on the set Bδ̄(f) ∩W for small ρ.

Step 1. By Lemma 4.10 (note that Φ is continuous by (8)) there exist N ∈ N and ρ0, δ > 0 such that
Zn(ρ, g) ∈ Bϵ∗/2(Z(f)) as long as n ≥ N , ρ ≤ ρ0 and g ∈ Bδ(f). Without loss of generality, we

can assume that δ ≤ δ̂. For g ∈ Bδ(f), let us define the sequence

yn := Tρ(g, y
n−1)

y0 := ZN(ρ, g).

i.e., yn = ZN+n(ρ, g). As noted, we have y0 ∈ Bϵ∗/2(Z(f)) under the stated conditions on ρ and
g. We claim that Tρ(g, ·) : Bϵ∗/2(Z(f)) → Bϵ∗/2(Z(f)) is a contraction for sufficiently small ρ and g
sufficiently close to f . Indeed, take φ ∈ Bϵ∗/2(Z(f)), g ∈ Bδ∗(f) where

δ∗ =
(1− ĉ)ϵ∗

4(Ĉ + 1)

and take ρ small enough (let us say ρ ≤ ρ1) so that Tρ(f,Z(f)) ∈ BĈδ∗(Z(f)) (this is possible by
Lemma 3.4). Then using Proposition 3.3 and (9),

∥Tρ(g, φ)− Z(f)∥V ≤ ∥Tρ(g, φ)− Tρ(f,Z(f))∥V + ∥Tρ(f,Z(f))− Z(f)∥V

≤ Ĉ∥g − f∥V ∗ + ĉ∥φ− Z(f)∥V +
(1− ĉ)ϵ∗

4

≤ (1− ĉ)ϵ∗

4
+
ĉϵ∗

2
+

(1− ĉ)ϵ∗

4

=
ϵ∗

2

so that Tρ(g, ·) is invariant on the ball in question. For the contraction property, due to Proposition 3.3
and (9),

∥Tρ(g, φ)− Tρ(g, ψ)∥V ≤ ĉ∥φ− ψ∥V ∀φ, ψ ∈ Bϵ∗/2(Z(f))

where ĉ ∈ [0, 1).

Hence, by Banach’s fixed point theorem, we obtain yn → y in V where y = Tρ(g, y). That is,
Zn(ρ, g) → Z∞(ρ, g) for some Z∞(ρ, g). Furthermore, we have

∥yn − y∥V ≤ ĉ
∥∥yn−1 − y

∥∥
V
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which implies
∥yn − y∥V ≤ ĉn∥y0 − y∥V

i.e. ∥∥ZN+n(ρ, g)− Z∞(ρ, g)
∥∥
V
≤ ĉn

∥∥ZN(ρ, g)− Z∞(ρ, g)
∥∥
V
≤ ϵĉn

since ZN(ρ, g), Z∞(ρ, g) ∈ Bϵ/2(Z(f)). Recall that the above holds as long as n ≥ N , ρ ≤
min(ρ0, ρ1) and g ∈ Bmin(δ,δ∗)(f).

We can rewrite this as

∥Zn(ρ, g)− Z∞(ρ, g)∥V ≤ ϵĉn−N for n ≥ 2N , ρ ≤ min(ρ0, ρ1) and g ∈ Bmin(δ,δ∗)(f),

where we note that the right-hand side of the inequality is independent of ρ and g.

Step 2. Assumption 2.7 implies that Assumption 3.9 is satisfied for all g ∈ Bδ̄(f) ∩ W and small
enough ρ and thus for g taken in Bδ̄(f) ∩ W , we can apply Proposition 3.12 which allows us to
identify Z∞(ρ, g) = Zρ(g).

Conclusion. To summarise, we have shown

Zn(ρ, g) → Zρ(g) uniformly in ρ, g ∈ Bδ(f) ∩W as n→ ∞,

while from Lemma 4.9, we have

Zn(ρ, g) → Zn(0, f) as ρ↘ 0, g → f.

Thus, we can interchange the iterated limits and get (the limit g → f below should be understood for
g ∈ W )

lim
ρ↘0
g→f

Zρ(g) = lim
ρ↘0
g→f

lim
n→∞

Zn(ρ, g) = lim
n→∞

lim
ρ↘0
g→f

Zn(ρ, g) = lim
n→∞

Zn(0, f) = Z(f).

By taking u, u in the definition of Z0 to satisfy Assumption 4.6 (rather than Assumption 2.7) and
arguing similarly to above, we obtain Corollary 2.9.

Remark 4.11. Examining Section 3 and Section 4, we see that there is a constructive way to approach
the minimal and maximal solutions: we start at a subsolution or a supersolution, solve iteratively to get
unρ or unρ (see Definition 3.11) for a large n, take ρ small and we will be close to the minimal solution or
the maximal solution, thanks to the results of Proposition 3.12 and either Theorem 4.8 or, in the case
of the maximal solution, Corollary 2.9. This can be useful for numerical realisations.

5 Local Lipschitz continuity of Z and Zρ

Local Lipschitz continuity for these maps does not immediately follow from the continuous dependence
estimate of Proposition 3.3 if we impose only the local Lipschitz condition of Φ (as in the statement
of the result below), since we do not know a priori that (even if f and g are close enough) Zρ(f) and
Zρ(g) are in the neighbourhood where Φ is Lipschitz with a small Lipschitz constant. Instead, we have
to argue using the results of the above section.

DOI 10.20347/WIAS.PREPRINT.3093 Berlin 2024



A. Alphonse, M. Hintermüller, C. N. Rautenberg, G. Wachsmuth 26

Proof of Theorem 2.11. Since by Theorem 2.8, Zρ(g) ∈ Bϵ∗(Z(f)) for all g ∈ W sufficiently close
to f and ρ sufficiently small, we obtain via Proposition 3.3 and (9), for ĉ < 1, the estimate

∥Zρ(f)− Zρ(g)∥V ≤ Ĉ∥f − g∥V ∗ + ĉ∥Zρ(f)− Zρ(g)∥V .

Regarding Lipschitz continuity for Z, a first thought might be that we could pass to the limit in ρ in
the inequality of Theorem 2.11 but the assumptions with respect to Tρ would still be needed with that
approach. We argue differently.

Proof of Theorem 2.3. The idea is that if we had that Z(g) ∈ Bϵ∗(Z(f)) for g sufficiently close to
f , we can, like in the above proof, once again apply Proposition 3.3 (with ρ = 0) and the smallness
assumption (9) to obtain the result.

Thus, we need the result of Theorem 2.8 for ρ = 0 (without any assumptions on σρ or other ρ-
dependent quantities. This can be achieved by simply noting that the arguments of Section 4.3 still
hold with ρ = 0 and with Assumption 2.7 replaced by Assumption 2.1. The proofs of the results can
be modified in the obvious way but let us point out that in the proof of Theorem 2.8, we need to use
Proposition 4.4 in place of Proposition 3.12 (observe that (7) implies Assumption 1.1).

It is worth noting that the Lipschitz constants in Theorem 2.3 and Theorem 2.11 are both exactly

Ĉ

1− ĉ

with ĉ and Ĉ given in Proposition 3.3.

6 Directional differentiability

In this section, we shall prove that Zρ and Z are directionally differentiable maps (and also Hadamard
differentiable in a certain sense). Our line of attack is based on the iteration approach from [1] (where
we approximate the QVI solutions by a sequence of solutions of VIs, derive expansion formula for the
elements of the sequence and then pass to the limit) combined with some refinements in [27]. We
start with the analysis for Zρ.

6.1 Differentiability for Zρ

An essential task is to obtain differentiability for Tρ in its arguments. In the equation defining Tρ,
observe that the nonlinearity σρ : V → V ∗ is Hadamard differentiable and the derivative is bounded
in the direction: in fact, when seen as a real-valued function, σρ is C1, and by using the Lipschitzness
and boundedness of σ′

ρ, we have that σρ : V → V ∗ is Gâteaux differentiable [12, Theorem 8] (thus,
it is also Hadamard differentiable since σρ is Lipschitz). We use this fact below.

Lemma 6.1. Let f ∈ V ∗ and assume that Φ is directionally differentiable at φ ∈ V . Then Tρ : V ∗ ×
V → V is directionally differentiable at (f, φ), i.e.,

lim
s↘0

Tρ(f + sd, φ+ sh)− Tρ(f, φ)

s
= T ′

ρ(f, φ)(d, h) for d ∈ V ∗ and h ∈ V,
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where T ′
ρ(f, φ)(d, h) = δ is the unique solution of the equation

Aδ +
1

ρ
σ′
ρ(u− Φ(φ))(δ − Φ′(φ)(h)) = d. (29)

Proof. First, it is easy to see that (29) has a unique solution: if we make a transformation δ̂ = δ −
Φ′(φ)(h), we have

Aδ̂ +
1

ρ
σ′
ρ(u− Φ(φ))(δ̂) = d− AΦ′(φ)(h)

and this is uniquely solvable by the Lax–Milgram lemma because the linear operator A + 1
ρ
σ′
ρ(u −

Φ(φ)) is coercive and bounded5.

Let y := Tρ(f + sd, φ + sh), u := Tρ(f, φ) and define δ as the solution of (29). Let us make the

transformation ŷ = y − Φ(φ+ sh), û = u− Φ(φ) and (as above) δ̂ = δ − Φ′(φ)(h) so that

Aŷ +
1

ρ
σρ(ŷ) = f + sd− AΦ(φ+ sh),

Aû+
1

ρ
σρ(û) = f − AΦ(φ),

Aδ̂ +
1

ρ
σ′
ρ(û)(δ̂) = d− AΦ′(φ)(h).

Multiplying by s the last equation and subtracting the latter two equations from the first and adding and
subtracting ρ−1σρ(û+ sδ̂), we obtain

A(ŷ − û− sδ̂) +
1

ρ

(
σρ(ŷ)− σρ(û+ sδ̂)

)
+

1

ρ

(
σρ(û+ sδ̂)− σρ(û)− sσ′

ρ(û)(δ̂)
)
= −Als(φ, h),

where ls is the remainder term associated to Φ. The above is, using the fact that σρ is directionally
differentiable,

A(ŷ − û− sδ̂) +
1

ρ

(
σρ(ŷ)− σρ(û+ sδ̂)

)
+

1

ρ
oms (û, δ̂) = −Als(φ, h),

where oms denotes the remainder term of σρ. Testing with ŷ − û− sδ̂ and using monotonicity,

Ca

∥∥∥ŷ − û− sδ̂
∥∥∥
V
≤ 1

ρ

∥∥∥oms (û, δ̂)∥∥∥
V ∗

+ Cb∥ls(φ, h)∥V .

Now note that ŷ − û− sδ̂ = y − u− sδ − ls(φ, h) so that

Ca∥y − u− sδ∥V ≤ 1

ρ
∥oms (u− Φ(φ), δ − Φ′(φ)(h))∥V ∗ + (Ca + Cb)∥ls(φ, h)∥V .

Dividing by s and sending s→ 0 proves the result.

5In general, if σρ is directionally differentiable at w ∈ V , then σ′
ρ(w) : V → V ∗ is a monotone operator; this follows

from

⟨σ′
ρ(w)(a)− σ′

ρ(b), a− b⟩ = 1

s
⟨σρ(w + sa)− om(s, a)− σρ(w + sb) + om(s, b), a− b⟩

≥ 1

s
⟨om(s, b)− om(s, a), a− b⟩.
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Suppose that we are

given f ∈ V ∗ and a set W ⊆ V ∗ satisfying Assumption 2.7

so that Zρ(g) and Z(g) are well defined for all g ∈ Bδ̄(f) ∩ W and sufficiently small ρ. Let d ∈
TW (f), so there exist {dk} with dk → d in V ∗ and {sk} with sk ↘ 0 such that f + skdk ∈ W .
Define

ukn := Tρ(f + skdk, u
k
n−1),

uk0 := Zρ(f).

For convenience, let us also define
u := Zρ(f).

We have omitted writing the dependence on ρ in these definitions for ease of reading. In the following,
we need, in particular, that Φ is locally Lipschitz onBϵ∗(Z(f)) and takeCL as in (22) from Lemma 3.2,
i.e., we assume (9). An alternative approach could be to instead assume it is locally Lipschitz on
Bϵ∗(Zρ(f)); this would entail a different set of assumptions to below.

Lemma 6.2. Assume (8), (9) and Assumption 2.7. If ρ is sufficiently small and k is sufficiently large,
we have

ukn → uk := Zρ(f + skdk) in V as n→ ∞.

Proof. We take ρ small enough and K > 1 (to be specified later) such that uk0 = u = Zρ(f) ∈
Bϵ∗/K(Z(f)) ⊂ Bϵ∗(Z(f)), possible thanks to Corollary 2.9 6.

If k is sufficiently large, we have f + skdk ∈ Bδ̄(f), and we have by assumption that f + skdk ∈ W .
Hence, by Assumption 2.7, for ρ sufficiently small and k sufficiently large, Zρ(f+skdk) is well defined
and Zρ(f + skdk) ∈ Bϵ∗(Z(f)), due to the local Lipschitz property for Zρ, see Theorem 2.11.

We next show that the operator Tρ(f + skdk, ·) maps the ball Bϵ∗(Z(f)) onto itself, if k and K are
large enough. We take an arbitrary φ ∈ Bϵ∗(Z(f)). By using Zρ(f) = Tρ(f,Zρ(f)) and by utilising
Proposition 3.3, we get

∥Tρ(f + skdk, φ)− Z(f)∥V ≤ ∥Tρ(f + skdk, φ)− Zρ(f)∥V + ∥Zρ(f)− Z(f)∥V

≤ skĈ∥dk∥V ∗ + ĉ∥φ− Zρ(f)∥V +
ϵ∗

K
.

Here, Ĉ ≥ 0 and ĉ ∈ [0, 1) are given by Proposition 3.3. For the second term on the right-hand side,
we employ the triangle inequality to get

∥φ− Zρ(f)∥V ≤ ∥φ− Z(f)∥V ∥Z(f)− Zρ(f)∥V ≤ ϵ∗ +
ϵ∗

K
.

Altogether, we arrive at

∥Tρ(f + skdk, φ)− Z(f)∥V ≤ skĈC1 + ĉ

(
ϵ∗ +

ϵ∗

K

)
+
ϵ∗

K

where C1 is the uniform bound on the dk. The right-hand side is less than ϵ∗ if k is sufficiently large
and K is chosen large enough (we need K > (1 + ĉ)(1− ĉ)−1).

6We could instead apply Theorem 4.8 if Zρ = Mρ is under consideration; this would lead to different assumptions
being required for this result.
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This proves the mapping property Tρ(f + skdk, ·) : Bϵ∗(Z(f)) → Bϵ∗(Z(f)). Using Proposition 3.3
again, we find Tρ(f + skdk, ·) is a contraction on Bϵ∗(Z(f)). Hence, the assertions follow from the
celebrated Banach fixed point theorem, since Zρ(f + skdk) is a fixed point of Tρ(f + skdk; ·) on
Bϵ∗(Z(f)).

The next proposition shows that if Φ is differentiable at u = Zρ(f), we can obtain a Taylor expansion
for ukn.

Proposition 6.3. Let (9) and (14) hold. For ρ sufficiently small, we have for each n,

lim
k→∞

ukn − u

sk
= αn

where αn := T ′
ρ(f, u)(d, αn−1), i.e.,

Aαn +
1

ρ
σ′
ρ(u− Φ(u))(αn − Φ′(u)(αn−1)) = d.

Proof. First of all, due to Proposition 3.3 (which gives local Lipschitzness for Tρ around V ∗×Bϵ∗(Z(f)))
and Lemma 6.1 (which gives directional differentiability of Tρ at (f, u)) we find that Tρ is Hadamard
differentiable at (f, u) because we have taken ρ such that u ∈ Bϵ∗(Z(f)).

We use a proof by induction. The base case is obviously true (with αn = 0). Assume (1/sk)(u
k
n −

u) → αn. Then we have

ukn+1 − u

sk
=
Tρ(f + skdk, u

k
n)− Tρ(f, u)

sk

=
Tρ(f + skdk, u+ sk(

uk
n−u
sk

))− Tρ(f, u)

sk
→ T ′

ρ(f, u)(d, αn)

where we used that Tρ is Hadamard differentiable and dk → d.

Lemma 6.4. Let (9) and (14) hold. We have that αn → α in V , where α is the unique solution of

Aα +
1

ρ
σ′
ρ(u− Φ(u))(α− Φ′(u)(α)) = d.

Furthermore, the map d 7→ α is bounded and continuous from V ∗ to V .

Proof. Consider the map β 7→ α defined as the solution mapping of

Aα +
1

ρ
σ′
ρ(u− Φ(u))(α− Φ′(u)(β)) = d,

i.e., the map T ′
ρ(f, u)(d, ·). We show that it is a contraction. By using β, β̂ ∈ V and the associated

solutions α, α̂ ∈ V , we get

A(α− α̂) +
1

ρ

(
σ′
ρ(u− Φ(u))(α− Φ′(u)(β))− σ′

ρ(u− Φ(u))(α̂− Φ′(u)(β̂))
)
= 0.

Testing with α− Φ′(u)(β)− α̂ + Φ′(u)(β̂) and using monotonicity, we obtain

⟨A(α− α̂), α− Φ′(u)(β)− α̂ + Φ′(u)(β̂)⟩ ≤ 0.
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Now, since Φ′(u) : V → V is Lipschitz with the same Lipschitz constant CL as Φ, we obtain via
similar arguments to [27] (see also the proof of Proposition 3.3 following (23)) that T ′

ρ(f, u)(d, ·) is a
contraction since CL satisfies (22). The Banach fixed point theorem gives the result.

The map d 7→ α defined through (15) is sensible for all d ∈ V ∗ by the above procedure, and it is
bounded as can be seen by testing with α − Φ′(u)(α) and using the smallness condition on CL of
Lemma 3.2. For continuity, if dn → d in V ∗ and αn and α are the associated derivatives, we have

⟨A(αn − α), αn − Φ′(u)(αn)− α + Φ′(u)(α)⟩ ≤ ⟨dn − d, αn − Φ′(u)(αn)− α + Φ′(u)(α)⟩

and making use again of the Lipschitz property of Φ′(u), we conclude the claim from

∥αn − α∥V ≤ C∥dn − d∥V ∗ .

Lemma 6.5. Let the assumptions of Theorem 2.11 hold. If k is sufficiently large and ρ is sufficiently
small, we have

lim
n→∞

ukn − u

sk
=
uk − u

sk
uniformly in k and ρ.

In [1, §5.3], three of the present authors showed that (under a different setup to what we have here)
the limit lims↘0

us
n−s
s

is uniform in n. Here though, like in [27, Theorem 32], we will show uniformity in
k (and ρ) in the limit n→ ∞.

Proof. We argue similarly to [27, Proof of Theorem 32]. In the proof of Lemma 6.2, we have used the
Banach fixed point theorem to obtain the convergence of the sequence ukn. This directly yields the
a-priori estimate ∥∥ukn − uk

∥∥
V
≤ ĉk

∥∥uk0 − uk
∥∥
V
≤ ĉnCsk∥dk∥V ∗ ,

where we used that uk0 − uk = Zρ(f) − Zρ(f + skdk) and the estimate from Theorem 2.11. This
shows that ∥∥ukn − uk

∥∥
V

sk
→ 0 as n→ ∞ uniformly in k and ρ.

Using ukn − uk = ukn − u− (uk − u), we deduce the result.

We now prove our differentiability result for Zρ.

Proof of Theorem 2.12. The above results allow us to switch limits:

lim
k→∞

uk − u

sk
= lim

k→∞
lim
n→∞

ukn − u

sk
= lim

n→∞
lim
k→∞

ukn − u

sk
= lim

n→∞
αn = α.

This is exactly the Hadamard differentiability claim (i). The remaining assertions on the derivative have
been shown in Lemma 6.4.
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6.2 Differentiability for Z

We cannot pass to the limit in ρ to deduce that Z is differentiable because we do not have uniformity in
ρ or s of the appropriate expression but we may repeat the arguments in Section 6.1 with ρ taken to be
zero and with Assumption 2.1 rather than Assumption 2.7. Let us point out the changes. For the ρ = 0
version of Lemma 6.1, we have from similar arguments to [1, Propositon 1] the following, making use
of the differentiability of the VI solution map result in [25] given under a general vector lattice setting,
which generalises Mignot’s result in [16].

Lemma 6.6. Let Φ be directionally differentiable at φ ∈ V and take f ∈ V ∗. Then S : V ∗×V → V
is directionally differentiable at (f, φ) and we have

S(f + sd, φ+ sh)− S(f, φ)

s
→ S ′(f, φ)(d, h) for d ∈ V ∗ and h ∈ V ,

where the derivative S ′(f, φ)(d, h) = δ is the solution of the inequality

δ ∈ Ku(φ, h) : ⟨Aδ − d, δ − v⟩ ≤ 0 ∀v ∈ Ku(φ, h)

where u = S(f, φ) and

Ku(φ, h) := Φ′(φ)(h) + TK(φ)(u) ∩ [f − Au]⊥.

Above, recall that TK(φ)(u) is the tangent cone, which can be defined as the closure RK(φ)(u).

Remark 6.7. When we are in a Dirichlet space setting (see the discussion around Assumption 2.19),
we obtain an explicit expression for the tangent cone and we in fact have that

Ku(φ, h) = {w ∈ V : w ≤ Φ′(φ)(h) q.e. on {u = Φ(φ)} and ⟨Au− f, w − Φ′(φ)(h)⟩ = 0}.

Let us assume (8), (9), (10) and Assumption 2.1. Similarly to before, we let d ∈ TW (f), so that there
exist {dk} with dk → d in V ∗ and {sk} with sk ↘ 0 such that f + skdk ∈ W . Define

ukn := S(f + skdk, u
k
n−1),

uk0 := Z(f),

and u = Z(f).

■ Lemma 6.2 still holds with ukn → uk := Z(f + skdk) if we use Theorem 2.3 instead of
Theorem 2.11.

■ In Proposition 6.3, we may use Lemma 6.6 instead of Lemma 6.1 and we have instead that
αn := S ′(f, u)(d, αn−1) which satisfies d− Aαn ∈ NKu(u,αn−1)(αn), i.e.,

αn ∈ Ku(u, αn−1) : ⟨Aαn − d, αn − v⟩ ≤ 0 ∀v ∈ Ku(u, αn−1).

■ The result of Lemma 6.4 still holds. The map for the derivative is well defined for all d ∈ V ∗: we
can consider the VI

α ∈ Ku(β) : ⟨Aα− d, α− v⟩ ≤ 0 ∀v ∈ Ku(β)

and use a fixed point approach, just like in the proof of Lemma 6.4 (or see [3, Proposition 3.9]).
For the continuity of the derivative, a similar argument to that above works (or see [3, Proposition
3.12]). Lemma 6.5 also holds if we again use Theorem 2.3.

■ Finally, arguing similarly to the proof of Theorem 2.12, we can prove Theorem 2.4.
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7 Optimal control and stationarity

The proof for the existence of optimal points is straightforward.

Proof of Theorem 2.15. Let {fn} ⊂ Uad be an infimising sequence with yn = M(fn) and zn =
m(fn), i.e.,

J(yn, zn, fn) → inf
f∈Uad,
y=M(f),
z=m(f)

J(y, z, f).

Then by Assumption 2.14 (iii), {fn} is bounded in H and therefore, there exists f ∗ ∈ H such that,
for a subsequence,

fnj
⇀ f ∗ in H.

The weak sequential closedness of Uad yields that f ∗ ∈ Uad. By Assumption 2.14 (iv) and (v), (9)

holds in a ball around the points M(f ∗) and m(f ∗). Using H
c
↪−→ V ∗, we have fnj

→ f ∗ in V ∗ so
fnj

∈ Bδ(f
∗) sufficiently far along the sequence.

Since Bδ̄(f) ∩ Uad ⊂ Uad for any f ∈ Uad, by Assumption 2.13, we have that Assumption 2.1
holds (with W selected as Uad). Thus we can use Theorem 2.3, and pass to the limit to discover
(ynj

, znj
) = (M(fnj

),m(fnj
)) → (M(f ∗),m(f ∗)) = (y∗, z∗) in V .

To see that this point is optimal, we observe that (dispensing with the subsequence notation now),
using Assumption 2.14 (ii),

J(y∗, z∗, f ∗) ≤ lim inf
n→∞

J(yn, zn, fn) ≤ lim
n→∞

J(yn, zn, fn) = min
f∈Uad

y=M(f),
z=m(f)

J(y, z, f).

7.1 Bouligand stationarity

Working directly with the nonsmooth optimisation problem, we can obtain a Bouligand stationarity
characterisation of local minimisers (as in the case for variational inequalities, see [16, §5] and [18,
Lemma 3.1]).

Proof of Proposition 2.16. Take h in the radial cone of Uad at f ∗ so that it is an admissible direction.
Writing ys = M(f ∗ + sh) and zs = m(f ∗ + sh), we obtain by Theorem 2.4 that

ys = y∗ + sα + o(s) and zs = z∗ + sβ + o(s),

where o is a remainder term and α = M′(f ∗)(h) and β = m′(f ∗)(h). It follows that (f ∗+sh, ys, zs)
can be made arbitrarily close to (f ∗, y∗, z∗) if s is sufficiently small.

By definition of local minimiser, we have J(ys, zs, f ∗ + sh) − J(y∗, z∗, f ∗) ≥ 0 for s sufficiently
small. Dividing by s and taking the limit, using the fact that J is (at least) Hadamard differentiable, this
yields

Jy(y
∗, z∗, f ∗)(α) + Jz(y

∗, z∗, f ∗)(β) + Jf (y
∗, z∗, f ∗)(h) ≥ 0 ∀h ∈ RUad(f

∗),

and by density and continuity of the derivatives appearing above with respect to the direction, also for
h ∈ TUad(f

∗).
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7.2 The penalised problem

We will not work directly with the penalised problem (16) but instead a modified problem in order to
prove that every minimiser is a stationarity point. This is a classical localisation approach.

Proposition 7.1. Assume (8). For any local minimiser (y∗, z∗, f ∗) of (2), there exists a sequence of
locally optimal points (y∗ρ, z

∗
ρ, f

∗
ρ ) of

min
f∈Uad

J(Mρ(f),mρ(f), f) +
1

2
∥f − f ∗∥2H (30)

such that (y∗ρ, z
∗
ρ, f

∗
ρ ) → (y∗, z∗, f ∗) in V × V ×H .

Proof. Denote by γ the radius such that f ∗ is a minimiser on Uad ∩ BH
γ (f ∗) (the latter object is the

closed ball in H of radius γ with centre f ∗).

Define the augmented functional J̄(y, z, f) := J(y, z, f) + 1
2
∥f − f ∗∥2H that appears in (30) and

consider the problem
min

f∈Uad∩BH
γ (f∗)

J̄(Mρ(f),mρ(f), f). (31)

By the same proof as for Theorem 2.15 with the obvious modifications, we find that there exists an
optimal point to this problem, which we denote by (ȳρ, z̄ρ, f̄ρ). From

J̄(ȳρ, z̄ρ, f̄ρ) ≤ J̄(Mρ(f
∗),mρ(f

∗), f ∗), (32)

and using Zρ(f
∗) → Z(f ∗) (due to Theorem 2.8) and the continuity of J̄ , we have

lim sup
ρ→0

J̄(ȳρ, z̄ρ, f̄ρ) ≤ J(y∗, z∗, f ∗).

On the other hand, it follows from (32) and Theorem 2.8 that J̄(ȳρ, z̄ρ, f̄ρ) is uniformly bounded, and

hence, due to Assumption 2.14 (iii), we obtain the existence of f̂ such that (for a subsequence that we
have relabelled) f̄ρ ⇀ f̂ in H with the convergence strong in V ∗.

We have
Mρ(f̄ρ)−M(f̂) = (Mρ(f̄ρ)−Mρ(f̂)) + (Mρ(f̂)−M(f̂))

and availing ourselves of the Lipschitz estimate of Theorem 2.11 (with the Lipschitz constant indepen-
dent of ρ), we have that the first term above converges to zero and the second term does also due
to Corollary 2.9. Hence ȳρ → ŷ := M(f̂) and, arguing similarly, z̄ρ → ẑ := m(f̂). By the identity
lim sup(an) + lim inf(bn) ≤ lim sup(an + bn) and weak lower semicontinuity, this gives

lim sup
ρ→0

J̄(ȳρ, z̄ρ, f̄ρ) ≥ J(ŷ, ẑ, f̂)+ lim sup
ρ→0

∥∥f̄ρ − f ∗∥∥2
H
≥ J(y∗, z∗, f ∗)+ lim sup

ρ→0

∥∥f̄ρ − f ∗∥∥2
H
,

with the last inequality because (y∗, z∗, f ∗) is a local minimiser and f̂ ∈ BH
γ (f ∗). Combining these

two inequalities shows that f̂ = f ∗ and f̄ρ → f ∗ in H . The latter fact implies that for ρ sufficiently
small, f̄ρ ∈ BH

γ (f ∗) automatically and hence the feasible set in (31) can be taken to be just Uad.

Finally, since the limit point f̂ = f ∗ is independent of the subsequence that was taken, it follows by the
subsequence principle that the entire sequence {f̄ρ} converges. From this, we also gain convergence
for {ȳρ} and {z̄ρ} (by repeating the above arguments).
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7.3 C-stationarity

Via Proposition 7.1, we obtain the existence of minimisers (y∗ρ, z
∗
ρ, f

∗
ρ ) of (30) such that

(y∗ρ, z
∗
ρ, f

∗
ρ ) → (y∗, z∗, f ∗) in V × V ×H .

Thus, for any ϵ > 0, we can find a ρ0 such that ρ ≤ ρ0 implies

(y∗ρ, z
∗
ρ) ∈ Bϵ(y

∗)×Bϵ(z
∗).

We make the standing assumption Assumption 2.18 (i) on the local differentiability of Φ and linearity
of the derivative on the above balls. Observe that (14) (which in this context is the assumption that
Φ is differentiable at Zρ(f

∗
ρ )) follows from these assumptions: since Zρ(f

∗
ρ ) → Z(f ∗) (thanks to

Theorem 2.8), for sufficiently small ρ, Zρ(f
∗
ρ ) ∈ Bϵ(Z(f

∗)) and Φ is differentiable at these points too.

In the next result, we meet the conditions to apply the directional differentiability result of Theorem 2.12.

Proposition 7.2. Let (8) hold. For any optimal point (y∗ρ, z
∗
ρ, f

∗
ρ ) of (30), there exists (p∗ρ, q

∗
ρ) ∈ V ×V

such that

A∗p∗ρ +
1

ρ
(Id− Φ′(y∗ρ))

∗σ′
ρ(y

∗
ρ − Φ(y∗ρ))p

∗
ρ = −Jy(y∗ρ, z∗ρ, f ∗

ρ ),

A∗q∗ρ +
1

ρ
(Id− Φ′(z∗ρ))

∗σ′
ρ(z

∗
ρ − Φ(z∗ρ))q

∗
ρ = −Jz(y∗ρ, z∗ρ, f ∗

ρ ),

⟨Jf (y∗ρ, z∗ρ, f ∗
ρ )− p∗ρ − q∗ρ, f

∗
ρ − v⟩+ (f ∗

ρ − f ∗, f ∗
ρ − v)H ≤ 0 ∀v ∈ Uad.

(33)

Proof. Defining Ĵ(f) := J̄(Mρ(f),mρ(f), f) we consider the reduced problem

min
f∈Uad

Ĵ(f).

Note that we may use the chain rule (e.g., see [8, Proposition 2.47]) to differentiate Ĵ since it is the
composition of a C1 map with a directionally differentiable map. Now, at the optimal point f ∗

ρ , we have

Ĵ(f ∗
ρ + sh)− Ĵ(f ∗

ρ ) ≥ 0 for all h ∈ RUad(f
∗
ρ ), hence

⟨Ĵ ′(f ∗
ρ ), h⟩ ≥ 0 ∀h ∈ RUad(f

∗
ρ ).

We calculate, with y∗ρ = Mρ(f
∗
ρ ) and z∗ρ = mρ(f

∗
ρ ),

⟨Ĵ ′(f ∗
ρ ), h⟩ = ⟨Jy(y∗ρ, z∗ρ, f ∗

ρ ),M
′
ρ(f

∗
ρ )(h)⟩+ ⟨Jz(y∗ρ, z∗ρ, f ∗

ρ ),m
′
ρ(f

∗
ρ )(h)⟩+ ⟨Jf (y∗ρ, z∗ρ, f ∗

ρ ), h⟩
= ⟨M′

ρ(f
∗
ρ )

∗Jy(y
∗
ρ, z

∗
ρ, f

∗
ρ ) +m′

ρ(f
∗
ρ )

∗Jz(y
∗
ρ, z

∗
ρ, f

∗
ρ ), h⟩+ ⟨Jf (y∗ρ, z∗ρ, f ∗

ρ ), h⟩
+ (f ∗

ρ − f ∗, h)H

with the adjoint well defined since Z′
ρ(f

∗
ρ ) is a bounded linear map thanks to Assumption 2.18 (i)

(which implies that the derivative satisfies a linear PDE, see (15)). It is easy to see that the previous
inequality in fact holds for all h ∈ TUad(f

∗
ρ ) by a simple density argument.

Defining θ∗ρ := −
(
M′

ρ(f
∗
ρ )

∗(Jy(y
∗
ρ, z

∗
ρ, f

∗
ρ )) +m′

ρ(f
∗
ρ )

∗(Jz(y
∗
ρ, z

∗
ρ, f

∗
ρ ))
)
, we write the above as

⟨Jf (y∗ρ, z∗ρ, f ∗
ρ )− θ∗ρ, h⟩+ (f ∗

ρ − f ∗, h)H ≥ 0 ∀h ∈ TUad(f).
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Take v ∈ Uad, then h := v − f ∗
ρ is in the tangent cone. With this choice of h we recover

⟨Jf (y∗ρ, z∗ρ, f ∗
ρ )− θ∗ρ, v − f ∗

ρ ⟩+ (f ∗
ρ − f ∗, v − f ∗

ρ )H ≥ 0 ∀v ∈ Uad.

Let us characterise each term in θρ. First, observe that

p := M′
ρ(g)

∗(d) ⇐⇒ A∗p+
1

ρ
(Id− Φ′(vρ))

∗σ′
ρ(vρ − Φ(vρ))p = d where vρ = Mρ(g)

and a similar formula holds for m′
ρ(f)

∗(w). Note that these adjoint maps (which are solution maps
of linear PDEs) are linear in w. Hence if we define p∗ρ := M′

ρ(f
∗
ρ )

∗(−Jy(y∗ρ, z∗ρ, f ∗
ρ )) and q∗ρ :=

m′
ρ(f

∗
ρ )

∗(−Jz(y∗ρ, z∗ρ, f ∗
ρ )), they satisfy θ∗ρ = p∗ρ+ q

∗
ρ and the equations stated in the proposition.

Before proceeding, let us record some facts. Due to the Lipschitz condition Assumption 2.14 (iv), (v),
we have

(Id− Φ′(w)) : V → V is invertible for w ∈ Bϵ(y
∗) if Jy ̸≡ 0, and for w ∈ Bϵ(z

∗) if Jz ̸≡ 0, (34)

which follows from the Neumann series, and the inverse satisfies ∥(Id− Φ′(w))−1v∥V ≤ (1 −
CL)

−1∥v∥V for all v ∈ V . For an arbitrary v ∈ V , we set u = (Id− Φ′(w))−1v. Then we have

⟨A(Id− Φ′(w))−1v, v⟩ = ⟨Au, (Id− Φ′(w))u⟩ ≥ C ′
a∥u∥

2
V ≥ C ′

a

(1 + CL)2
∥v∥2V

for someC ′
a depending only onCL, Ca, Cb and the self-adjointedness ofA, by using Lemma 3.2 (see

also [27]) adapted to the operator Φ′(w). Thus we have shown that

A(Id− Φ′(w))−1 : V → V ∗ is uniformly bounded and uniformly coercive (35)

for w belonging to the same sets as in (34), see also [26, Lemmas 3.3, 3.5].

Lemma 7.3. Under Assumption 2.18 (ii), if Jy ̸≡ 0, for sequences vn → v and qn ⇀ q in V with
vn, v ∈ Bϵ(y

∗), we have

lim inf
n→∞

⟨A(Id− Φ′(vn))
−1qn, qn⟩ ≥ ⟨A(Id− Φ′(v))−1q, q⟩. (36)

A similar result holds if Jz ̸≡ 0 with the obvious modifications.

Proof. Let Tn := (Id− Φ′(vn))
−1. We have, due to the coercivity above,

0 ≤ ⟨ATn(qn − q), qn − q⟩ = ⟨ATnqn, qn⟩ − ⟨ATnqn, q⟩ − ⟨ATnq, qn⟩+ ⟨ATnq, q⟩

Rearranging,

⟨ATnqn, qn⟩ ≥ ⟨ATnqn, q⟩+ ⟨ATnq, qn⟩ − ⟨ATnq, q⟩

taking the limit inferior, using on the right-hand side (17) for the first and last terms and (18) for the
second term, we obtain the desired statement.

For convenience and because of structural reasons, the proof of Theorem 2.20 will be realised via the
next three propositions. First, we show that a system of so-called weak C-stationarity is satisfied, see
[3, §5] for the terminology.
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Proposition 7.4 (Weak C-stationarity). There exists (p∗, q∗, λ∗, ζ∗) ∈ V ×V ×V ∗ ×V ∗ satisfying

y∗ = M(f ∗), (37a)

z∗ = m(f ∗), (37b)

A∗p∗ + (Id− Φ′(y∗))∗λ∗ = −Jy(y∗, z∗, f ∗), (37c)

A∗q∗ + (Id− Φ′(z∗))∗ζ∗ = −Jz(y∗, z∗, f ∗), (37d)

f ∗ ∈ Uad : ⟨Jf (y∗, z∗, f ∗)− p∗ − q∗, f ∗ − v⟩ ≤ 0 ∀v ∈ Uad, (37e)

⟨λ∗, p∗⟩ ≥ 0, (37f)

⟨ζ∗, q∗⟩ ≥ 0. (37g)

In this and the following proofs, for ease of reading, we will omit the stars in ρ-dependent notation as
p∗ρ and simply write this as pρ.

Proof. By construction, we already know that (yρ, zρ, fρ) → (y∗, z∗, f ∗) in V × V × H due to
Proposition 7.1. We now need to pass to the limit in the system (33) for the adjoint states and the
optimal control. We write the arguments just for pρ; obvious modifications will work for the qρ equation
too.

1. Satisfaction of the equation. The weak form of the equation for pρ is

⟨A∗pρ, φ⟩+
1

ρ
⟨σ′

ρ(yρ − Φ(yρ))pρ, (Id− Φ′(yρ))φ⟩ = −⟨Jy(yρ, zρ, fρ), φ⟩ ∀φ ∈ V.

By defining v := (Id− Φ′(yρ))φ, thanks to the invertibility property (34), this can be transformed to

⟨A∗pρ, (Id− Φ′(yρ))
−1v⟩+ 1

ρ
⟨σ′

ρ(yρ − Φ(yρ))pρ, v⟩ = −⟨Jy(yρ, zρ, fρ), (Id− Φ′(yρ))
−1v⟩ ∀v ∈ V.

Now, selecting v = pρ, using the coercivity (35), the monotonicity of σρ (which implies that ⟨σ′
ρ(v)(h), h⟩ ≥

0 for all v, h ∈ V ), Young’s inequality with γ > 0 and the uniform boundedness of Jy (see Assump-
tion 2.14 (i)) and of (Id− Φ′(yρ))

−1 (see the discussion above (35)), we obtain

C ′
a∥pρ∥

2
V ≤ Cγ + γ∥pρ∥2V .

Selecting γ sufficiently small so that the right-most term is absorbed onto the left, we obtain a bound
on {pρ} independent of ρ. This gives rise to the convergence (for a subsequence that has been
relabelled)

pρ ⇀ p.

In a similar way, we also obtain qρ ⇀ q. Define

λρ :=
1

ρ
σ′
ρ(yρ − Φ(yρ))

∗pρ,

µρ :=
1

ρ
(Id− Φ′(yρ))

∗σ′
ρ(yρ − Φ(yρ))

∗pρ = −Jy(yρ, zρ, fρ)− A∗pρ,

the latter of which, since the right-hand side converges, satisfies

µρ ⇀ µ := −Jy(y, z, f)− A∗p. (38)

Setting λ := (Id− Φ′(y)∗)−1µ in (38) we get (37c).
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2. Inequality relating multiplier to adjoint. Again using monotonicity of σρ,

⟨Jy(yρ, zρ, fρ) + A∗pρ, (Id− Φ′(yρ))
−1pρ⟩ = −⟨µρ, (Id− Φ′(yρ))

−1pρ⟩

= −1

ρ
⟨σ′

ρ(yρ − Φ(yρ))
∗pρ, pρ⟩ ≤ 0,

and taking the limit superior of this, we obtain (noting that (Id−Φ′(yρ))
−1pρ ⇀ (Id−Φ′(y))−1p by

(17))

0 ≥ lim sup
ρ→0

⟨Jy(yρ, zρ, fρ) + A∗pρ, (Id− Φ′(yρ))
−1pρ⟩

≥ lim sup
ρ→0

⟨Jy(yρ, zρ, fρ), (Id− Φ′(yρ))
−1pρ⟩+ lim inf

ρ→0
⟨A(Id− Φ′(yρ))

−1pρ, pρ⟩

(using lim sup(an + bn) ≥ lim sup(an) + lim inf(bn))

≥ ⟨Jy(y, z, f), (Id− Φ′(y))−1p⟩+ ⟨A(Id− Φ′(y))−1p, p⟩
= ⟨−µ∗, (Id− Φ′(y))−1p⟩

using the continuity of the Fréchet derivative from Assumption 2.14 (i) and (36) for the final inequality.
This shows (37f).

3. VI relating control to adjoint. Finally, writing the VI relating uρ and θρ := pρ + qρ in (33) as

0 ≤ ⟨Jf (yρ, zρ, fρ)− θρ, v − fρ⟩+ (fρ − f ∗, v − fρ)H = ⟨Jf (yρ, zρ, fρ), v − fρ⟩ − ⟨θρ, v − fρ⟩
+ (fρ − f ∗, v − fρ)H ∀v ∈ Uad

and taking the limit inferior here and using the continuity of Jf from Assumption 2.14 (i) and the identity
lim infn(an + bn) ≤ lim supn an + lim inf bn, we get the desired inequality.

The next results (till the end of this section) use the fact that (·)+ : V → V is continuous. Furthermore,
the next proposition uses weak sequential continuity of the map too.

Proposition 7.5 (Orthogonality conditions). We have

⟨ξ∗1 , (p∗)+⟩ = ⟨ξ∗1 , (p∗)−⟩ = ⟨ξ∗2 , (q∗)+⟩ = ⟨ξ∗2 , (q∗)−⟩ = 0.

In the proof, we use specific properties of the fact that H is a Lebesgue space. The proof is almost
identical to that of [3, Theorem 5.11] but we give it here for completeness.

Proof. Let us introduce the sets

M1(ρ) := {0 ≤ yρ − Φ(yρ) < ϵ} and M2(ρ) := {yρ − Φ(yρ) ≥ ϵ}.

Since ⟨ξρ, yρ − Φ(yρ)⟩ → ⟨ξ∗, y − Φ(y)⟩ = 0, we find

1

ρ

∫
M1(ρ)

(yρ − Φ(yρ))
3

2ϵ
+

1

ρ

∫
M2(ρ)

(
yρ − Φ(yρ)−

ϵ

2

)
(yρ − Φ(yρ)) → 0,

and as both integrands are non-negative,∥∥∥∥∥χM1(ρ)(yρ − Φ(yρ))
3
2

√
ρϵ

∥∥∥∥∥ → 0 and

∥∥∥∥χM2(ρ)(yρ − Φ(yρ)− ϵ
2
)

√
ρ

∥∥∥∥ → 0, (40)
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where for the second convergence we used the fact that yρ − Φ(yρ) ≥ yρ − Φ(yρ)− ϵ/2 ≥ 0. We
calculate

⟨ξρ, pρ⟩ =
1

ρ

∫
M1(ρ)

(yρ − Φ(yρ))
2

2ϵ
pρ +

1

ρ

∫
M2(ρ)

(
yρ − Φ(yρ)−

ϵ

2

)
pρ

≤ 1

2

∥∥∥∥χM1(ρ)
(yρ − Φ(yρ))

3/2

√
ρϵ

∥∥∥∥ ∥∥∥∥(yρ − Φ(yρ))
1/2

√
ρϵ

χM1(ρ)pρ

∥∥∥∥
+

∥∥∥∥∥χM2(ρ)

(
yρ − Φ(yρ)− ϵ

2

)
√
ρ

∥∥∥∥∥
∥∥∥∥χM2(ρ)pρ√

ρ

∥∥∥∥ . (41)

Now, using (40), the first factor in each term above converges to zero and hence the above right-hand
side will converge to zero if we are able to show that the second factor in each term remains bounded.
Since µρ and (Id− Φ′(yρ))

−1pρ are bounded (for the latter, see (34) and the discussion), so is their
duality product, and therefore

C ≥ |⟨µρ, (Id− Φ′(yρ))
−1pρ⟩|

=
1

ρ

∣∣∣∣∫
Ω

σ′
ρ(yρ − Φ(yρ))(pρ)

2

∣∣∣∣
=

1

ρ

∫
Ω

χM1(ρ)
yρ − Φ(yρ)

ϵ
(pρ)

2 +
1

ρ

∫
Ω

χM2(ρ)(pρ)
2.

Both of the terms on the right-hand side are individually bounded uniformly in ρ as the integrands are
non-negative. This fact then implies from (41) that

⟨ξ∗, p∗⟩ = 0.

Replacing pρ by (pρ)
+ in (41) and in the above calculation, we also obtain in the same way (utilising

the fact7 that vn ⇀ v in V implies that v+n ⇀ v+ in V )

⟨ξ∗, (p∗)+⟩ = 0.

We are left to show the conditions (20h) and (20i) on the multipliers. To do so, we will follow an
approach motivated by [29, Lemma 2.6].

Lemma 7.6. If gn ⇀ g in V ∗ and sn → s in V with sn ≥ 0 and

⟨gn, v⟩ = 0 ∀v ∈ V, 0 ≤ v ≤ sn,

then
⟨g, v⟩ = 0 ∀v ∈ V, 0 ≤ v ≤ s.

Proof. Let v ∈ V with 0 ≤ v ≤ s be given. Set vn := inf(v, sn), which satisfies 0 ≤ vn ≤ sn and
vn → v. Thus,

0 = ⟨gn, inf(v, sn)⟩ → ⟨g, v⟩.

7This is due to the compact embedding V
c
↪−→ H and the fact that (·)+ : H → H is continuous as well as the

boundedness of (·)+ : V → V that we assumed in the introduction.
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In the next lemma, we use the fact that

σρ(z) = σρ(z − v) ∀v ∈ V, 0 ≤ v ≤ z−.

This essentially means that σρ(z) ignores changes of z in the regions where z is already negative.

Lemma 7.7. We have
⟨λ∗, v⟩ = 0 ∀v ∈ V, 0 ≤ v ≤ Φ(y∗)− y∗.

The condition on λ∗ means, roughly speaking, that λ∗ vanishes on the inactive set on which y∗ −
Φ(y∗) < 0.

Proof. The property on σρ stated above immediately implies

σ′
ρ(z)v = 0 ∀v ∈ V, 0 ≤ v ≤ z−.

Using the definition of λρ, we find

⟨λρ, v⟩ =
1

ρ
⟨σ′

ρ(yρ − Φ(yρ))v, pρ⟩ = 0 ∀v ∈ V, 0 ≤ v ≤ (yρ − Φ(yρ))
−

by the above property of σ′
ρ. As (yρ −Φ(yρ))

− → (y∗ −Φ(y∗))− = Φ(y∗)− y∗, Lemma 7.6 yields
the claim.

Obviously, a similar condition also holds for ζ∗.

Proposition 7.8. Let Assumption 2.19 hold. We have

⟨λ∗, v⟩ = 0 ∀v ∈ V : v = 0 q.e. on {y∗ = Φ(y∗)},
⟨ζ∗, v⟩ = 0 ∀v ∈ V : v = 0 q.e. on {z∗ = Φ(z∗)}.

Hence, the system (20) is satisfied.

Proof. Set ŷ := Φ(y∗) − y∗. Since ŷ ∈ V , it has a quasi-continuous representative and we will
identify ŷ with its representative. Define the active set

A := {ŷ = 0}.

Let v ∈ V with v ≥ 0 and v = 0 q.e. on A be given. Since we have the following expression for
the tangent cone of V+ (see [8, Theorem 6.57] in the V = H1

0 (Ω) setting or [17, Lemme 3.2] in the
general Dirichlet space setting):

TV+(ŷ) = {φ ∈ V : φ ≥ 0 q.e. on A},

it follows that v ∈ TV +(ŷ) and hence, there exists a sequence {vn} with vn → v in V and vn ≤ tnŷ
for some tn > 0. Thus,

0 ≤ max(0, vn/tn) ≤ ŷ

and we can apply the conclusion of Lemma 7.7 and get

⟨λ∗,max(0, vn/tn)⟩ = 0.

Multiplying by tn and passing to the limit n→ ∞ gives

⟨λ∗, v⟩ = 0 for all v ≥ 0, v = 0 q.e. on A.

Then, using the decomposition v = v+ − v−, we obtain the result.
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Remark 7.9 (E -almost C-stationarity). Define the inactive sets

I1 = {y∗ < Φ(y∗)} and I2 = {z∗ < Φ(z∗)}.

The following argument shows that the conditions

∀τ > 0,∃Eτ ⊂ I1 with |I1 \ Eτ | ≤ τ : ⟨λ∗, v⟩ = 0 ∀v ∈ V : v = 0 a.e. on Ω \ Eτ , (42)

∀τ > 0,∃Eτ ⊂ I2 with |I2 \ Eτ | ≤ τ : ⟨ζ∗, v⟩ = 0 ∀v ∈ V : v = 0 a.e. on Ω \ Eτ , (43)

are an easy consequence of Proposition 7.8 and of the regularity of the Lebesgue measure. For every
τ > 0, there exists an open set Oτ with {y∗ = Φ(y∗)} ⊂ Oτ and |Oτ \ {y∗ = Φ(y∗)}| ≤ τ .
Using I1 = Ω \ {y∗ = Φ(y∗)} and Eτ := Ω \ Oτ we get Eτ ⊂ I1 and |I1 \ Eτ | ≤ τ by taking
complements. Next, we take an arbitrary function v ∈ V with v = 0 a.e. on Ω \ Eτ = Oτ . Since
Oτ is open, this gives v = 0 q.e. on Oτ and, in particular, v = 0 q.e. on {y∗ = Φ(y∗)}. Thus,
Proposition 7.8 yields ⟨λ∗, v⟩ = 0 and we get (42).

Remark 7.10 (Regularity of optimal control). Suppose we have Jf (y, z, f) = νf and we take Uad to
be of the box constraint type

Uad = {u ∈ H : ua ≤ u ≤ ub a.e. in Ω}

for given functions ua, ub ∈ H . The VI relating f ∗ and p∗ is, in this case,

f ∗ ∈ Uad : ⟨νf ∗ − p∗ − q∗, f ∗ − v⟩ ≤ 0 ∀v ∈ Uad,

Using the characterisation in [14, §II.3],

1

ν
(p∗ + q∗) +

(
ua −

p∗ + q∗

ν

)+

−
(
p∗ + q∗

ν
− ub

)+

= f ∗

and it follows that f ∗ ∈ V if ua and ub belong to V .

7.4 Alternative stationarity conditions

In some papers, e.g. [22], in direct analogy with the finite dimensional setting, rather than the inequality
condition (20f), the stronger condition

⟨λ∗, ψp∗⟩ ≥ 0 for all sufficiently smooth and non-negative ψ

is required in order to satisfy the terminology C-stationarity. We can show this holds under an additional
assumption.

Proposition 7.11 (Satisfaction of alternative criterion in C-stationarity). Under the conditions of The-
orem 2.20, assume also that for qρ ⇀ q in V ,

lim inf
ρ→0

⟨A∗qρ, (Id−Φ′(y∗ρ))
−1(ψqρ)⟩ ≥ ⟨A∗q, (Id−Φ′(y∗))−1(ψq)⟩ ∀ψ ∈ W 1,∞(Ω) with ψ ≥ 0.

(44)
Then the inequality condition (20f) can be strengthened to

⟨λ∗, ψp∗⟩ ≥ 0 ∀ψ ∈ W 1,∞(Ω) with ψ ≥ 0.

Under the obvious modifications to the above assumption, (20g) can also be strengthened similarly.
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Proof. Testing the equation for pρ with (Id − Φ′(yρ))
−1(ψpρ), noticing that ψpρ ⇀ ψp in V and

arguing in a similar way to the proof of Proposition 7.4,

lim sup
ρ→0

−⟨µρ, (Id− Φ′(yρ))
−1(ψpρ)⟩ = lim sup

ρ→0
⟨Jy(yρ, zρ, fρ), (Id− Φ′(yρ))

−1(ψpρ)⟩

+ lim inf
ρ→0

⟨A∗pρ, (Id− Φ′(yρ))
−1(ψpρ)⟩

≥ ⟨Jy(y, z, f), (Id− Φ′(y))−1(ψp)⟩
+ ⟨A∗p, (Id− Φ′(y))−1(ψp)⟩

(using Assumption 2.14 (i) and (44))

= −⟨µ, (Id− Φ′(y))−1(ψp)⟩
= −⟨λ, ψp⟩.

On the other hand, we have

⟨µρ, (Id− Φ′(yρ))
−1(ψpρ)⟩ = ⟨λρ, ψpρ⟩ =

1

ρ

∫
Ω

σ′
ρ(yρ − Φ(yρ))(pρ)

2ψ ≥ 0

which implies the result.

Remark 7.12. Some works (such as [13]) call the system (20) C-stationarity only if the ‘q.e.’ in condi-
tions (20h) and (20i) are replaced by ‘a.e’. Note that this is a stronger condition.

8 Conclusion

In conclusion, we have provided a thorough theory of Lipschitz and differential stability for M and m
and the penalised versions. We studied in depth the penalised problem (4) and its properties and used
it to derive stationarity conditions for a general class of optimisation problems with the extremal maps
as constraints. We conclude with some remarks.

■ Applying this theory to real-world phenomena (such as the thermoforming model from [1] or
an application in biomedicine [23]) in this context and studying numerical schemes in line with
Remark 4.11 are natural next steps.

■ It would be interesting to derive strong stationarity conditions for (2) using the approaches of
[28, 3].

■ Resolving whether in Theorem 4.8 mρ(f) indeed converges (weakly) to m(f) or providing a
counterexample is open.

■ We aim to investigate whether the convergence result for Mρ(f) in Theorem 4.8 can be used
to obtain differentiability results for M without the small Lipschitz assumption (2.14).
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