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The directed age-dependent random connection model with arc
reciprocity

Lukas Lüchtrath, Christian Mönch

Abstract

We introduce a directed spatial random graph model aimed at modelling certain aspects of
social media networks. We provide two variants of the model: an infinite version and an increasing
sequence of finite graphs that locally converge to the infinite model. Both variants have in common
that each vertex is placed into Euclidean space and carries a birth time. Given locations and birth
times of two vertices, an arc is formed from younger to older vertex with a probability depending
on both birth times and the spatial distance of the vertices. If such an arc is formed, a reverse arc
is formed with probability depending on the ratio of the endpoints’ birth times. Aside from the local
limit result connecting the models, we investigate degree distributions, two different clustering
metrics and directed percolation.

1 Motivation and background

A well established paradigm for the modelling of large, sparse networks occurring in the context of
the world wide web or social media is the preferential attachment (PA) mechanism [3, 26]: networks
are built recursively by adding nodes and links in such a way that new nodes prefer to be connected
to existing nodes if they have a high degree. PA networks typically are scale-free [8], i.e. have power
law degree distributions. They also tend to be robust under random attack if the degree distribution
is sufficiently heavy-tailed [7]. If their nodes are embedded into space and the attachment mecha-
nism interacts with the spatial geometry, then they can further be shown to display clustering effects
[29]. However, an obvious but important fact that was discussed very early in the context of webgraph
modelling, see e.g. [10], is that the link structure of typical real world networks is intrinsically directed.
Therefore such networks ought to be represented as directed graphs (digraphs). The currently avail-
able mathematical literature on scale-free digraph models is surprisingly sparse. There are essentially
only two models for which rigorous mathematical results answering most of the basic questions of
interest for network science are available: inhomogeneous random digraphs [6, 12] and the directed
configuration model [13, 34, 17]. Most preferential attachment models are intrinsically directed as well,
albeit in a deterministic way as an artefact of the recursive modelling scheme. Using solely the ‘arrow
of time’ to direct a preferential attachment network is in general a poor modelling choice, unless some
recursive effect dominates the real world network one intends to model1. Therefore PA networks are
typically studied as undirected graphs. An exception is the recent paper [14] in which a non-spatial
preferential attachment model with arc reciprocity is introduced.

Here, we propose a spatial PA-style directed network with arc reciprocity. One can think of the con-
struction mechanism as a recursive attachment scheme in which each preferentially established arc

1One example that comes to mind are scientific citation networks in which a publication sends an arc to every publication
it references.
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L. Lüchtrath, Ch. Mönch 2

triggers the potential creation of the corresponding reverse arc. Because degree-based PA mecha-
nisms lead to relatively complicated dependencies among the edges, we build our model from the
simplified age-based PA-scheme introduced in [21]. The approach of translating degree into age [19]
relies on the intuitive fact that preferential attachment creates a strong positive correlation between
age and high degree: only vertices that have been in the system for a long time acquire a sufficiently
high degree to attract many new connections. Conversely, the first few vertices of the PA-scheme tend
to have very high degrees [8, 20].

We provide two variants of the model in the following section, an infinite version that is analytically
easier to treat and a finite version which is more appealing from a modelling point of view and related
to the infinite model by a local limit theorem. Section 3 then investigates local properties of the model
such as degree distribution and clustering metrics and Section 4 is devoted to the existence of large
weakly connected components.

2 Model introduction

2.1 The directed Age-dependent Random Connection Model

We first describe our model ad hoc as an infinite digraph. In Section 2.2 we detail how this digraph
arises as the weak local limit [4, 2] of a directed PA-type sequence of growing networks. The vertex
set of the directed age-dependent random connection model (DARCM) is given by a unit intensity
Poisson process X onRd× (0, 1). We denote the vertices by x = (x, tx) ∈ X and call x ∈ Rd the
vertex’ location and tx ∈ (0, 1) the vertex’ birth time. For two vertices x = (x, tx) and y = (y, tx)
with ty < tx, we refer to y as being older than x and to x as being younger than y, respectively.
Almost surely, there are no vertices born at the same time. Our choice of identifying the second
vertex coordinate as birth time is rooted in the local limit representation of Section 2.2. To define the
distribution of arcs in the graph we introduce the following parameters:

(i) the spatial decay exponent δ > 1, defining the spatial profile ρ(x) = 1 ∧ x−δ for x > 0;

(ii) the power-law parameter γ ∈ (0, 1) tuning the tail decay of the degree distribution;

(iii) the edge intensity β > 0;

(iv) the reciprocity exponent Γ > 0.

The digraph D = D [β, γ, δ,Γ] is built using these parameters via the following procedure:

(A) Given X , each vertex x = (x, tx) forms an arc to each vertex y = (y, ty) with ty < tx
independently of all other potential arcs with probability

ρ
(
β−1tγyt

1−γ
x |x− y|d

)
. (1)

If an arc is formed during this step, we denote this by x→ y or y← x.

(B) Given X and all arcs x → y created in (A), each vertex y = (y, ty) sends a reverse arc to
each x = (x, tx) with x → y independently of all other potential reverse arcs with probability
(ty/tx)

Γ. If such a reciprocal connection is made, we denote this event by x↔ y.
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Directed random connection model 3

Observe that δ controls the spatial decay of connection probabilities such that vertices in mutually
distant locations have a low probability of connecting. This effects gets stronger the larger the value
of δ. The strongest spatial restrictions are modelled by the case δ → ∞ which we identify with the
indicator function ρ = 1[0,1]. In contrast, the likelihood of a reciprocal connection does not depend
on the spatial locations and takes only birth times and the reciprocity exponent into account. The
assumptions δ > 1 and γ < 1 ensure that the expected number of arcs incident to any vertex
remains bounded.

For the choice of Γ = 0 each edge is oriented into both directions, thus Γ = 0 corresponds to
constructing an undirected graph denoted by G = D [β, γ, δ, 0]. The graph G is the age-dependent
random connection model introduced in [21]. Clearly, D can be generated from G by first pointing all
edges in G from younger end-vertex to older end-vertex and then adding reverse arcs by way of (B).

Let us very briefly motivate our construction. The locations of the vertices describe intrinsic connection
affinities and two vertices are more likely to connect if they are spatially close to each other. The age
of a vertex indirectly models its performative attractiveness in the graph, the older a vertex the more
arcs it attracts. These two sources of connections are intended to model the formation of social media
networks: users tend to follow either a friend, i.e. someone with intrinsic affinity to them, or ‘influencers’,
i.e. users who have accumulated a lot of followers already, this effect will become even more apparent
in the finite domain version of the model described in the next subsection.

2.2 A generative model on finite domains and a local limit procedure

We modify our construction to obtain a generative version of the model on a finite domain with periodic
boundary conditions, akin to the age-based preferential attachment model of [21]. Chose β > 0,γ ∈
(0, 1), δ > 1, and Γ ≥ 0 to build a growing sequence of directed graphs (Dt : t ≥ 0) in continuous
time as follows: At time t = 0, the graph D0 is the empty graph consisting of neither vertices nor
edges. Then

� vertices are born successively after independent standard exponential waiting times and are
placed uniformly at random and independent of all other locations on the d-dimensional unit
torus [−1/2, 1/2)d.

� Let τn be the birth time of the n-th vertex placed a location xn, which we denote by xn =
(xn, τn). Given the graph Dτn−, the graph build up to time τn consisting of the n−1 previously
arrived vertices, the new vertex
xn forms an arc to each already existing vertex xj = (xj, τj), j = 1, . . . , n− 1, born at time
τj < τn and located at xj , independently with probability

ρ
(τn d1(xn, xj)

d

β(τn/τj)γ

)
, (2)

where

dt(x, y) := min
{
|x− y + u| : u ∈ {− d

√
t, 0,

d
√
t}×d

}
denotes the standard metric on the d-dimensional torus of volume t.

� Whenever an arc xn → xj is formed, the older vertex xj forms an arc to xn independently
with probability (τj/τn)Γ.
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L. Lüchtrath, Ch. Mönch 4

We think of (Dt : t ≥ 0) as a growing network of social media users and of arcs representing a
‘follow’-type relation. Users/accounts arrive over time and establish arcs to already existing accounts
based on general popularity (modelled by age) and preexisting preference (modelled by spatial close-
ness). If an established account receives a new follower, they may decide if they wish to reciprocate
the relation, which happens with probability ‘birth time quotient to the Γ’. Since 1Γ = 1, if the two ac-
counts are approximately of the same age, the occurrence of a reverse arc is quite probable. However,
the older the old vertex is compared to the younger one, the less likely the presence of the reverse
arc becomes. Hence, it is a rare event for a popular (typically old) account to follow one of their many
younger followers, which captures the dynamics of real world social media networks.

Since the precise ordering of the birth times becomes irrelevant in the following, we go back to the
previously used notation and denote vertices by x = (x, tx), where x ∈ [−1/2, 1/2)d denotes the
location and tx ∈ (0,∞) the birth time of the vertex x. To relate (Dt : t ≥ 0) to D we need a two
step procedure of rescaling and localisation.

Rescaling. Define for any given t ∈ (0,∞) the rescaling map

ht :
[
− 1

2
, 1

2

)d × (0, t)→
[
− t1/d

2
, t

1/d

2

)d × (0, 1)

(y, s) 7→
(
t1/dy, s

t

)
.

For fixed t > 0, denote the vertex set of Dt byXt. The rescaling map ht acts on the point setXt and is
extended canonically to the respective geometric digraphs graphs by defining ht(Dt) to be the graph
with vertex set ht(Xt) where an arc ht(x)→ ht(y) is present if and only if x→ y is present in Dt.
Note that ht(Xt) is distributed as a unit intensity Poisson point process on [− d√t/2,

d√t/2)d×(0, 1), i.e.
its points are located on the d-dimensional torus of volume t and carry birth times in (0, 1). Moreover,
for each ty < tx < t

ρ

(
tx
t

dt(t
1/dx, t1/dy)d

β
( tx/t
ty/t

)γ
)

= ρ
(tx d1(x, y)d

β(tx/ty)γ

)
as well as

( ty/t
tx/t

)Γ

=
( ty
tx

)Γ

,

hence ht(Dt) agrees in law with a restriction of D to vertices located in the spatial domain [− d√t/2,
d√t/2)d

with periodic boundary conditions. Note that this equality in law only holds for fixed t and does not ex-
tend to the process level. For instance, every given vertex in D has a fixed finite indegree, but the
indegree of a fixed vertex in Dt diverges, as more and more vertices arrive cf. [21].

Localisation. We are interested in the long time behaviour of the graphs (Dt : t ≥ 0) as seen
from a typical vertex. Almost surely, there will be at least one vertex in the system if t is sufficiently
large, hence from now on we work conditionally on the event that Dt is not the empty graph. For
each2 sufficiently large t, we choose a root vertex ot uniformly at random and perform a shift of
spatial coordinates such that ot is located at the origin 0 ∈ [1/2, 1/2)d. We denote the resulting rooted
geometric digraph by (Dt,ot). Extending the map ht to rooted digraphs in the obvious way, it is not
difficult to see that ht(Dt,ot) corresponds to a version of ht(Dt) with an additional vertex located at
the origin 0 ∈ [− d√t/2,

d√t/2)d.

The weak convergence theory of point processes, see e.g. [15], now strongly suggests that the
rescaled and localised family of random geometric digraphs

(
ht(Dt,ot) : t > 0

)
converges in

2Clearly, it suffices to update the root vertex only at the birth times of new vertices, since we are merely interested in
the one dimensional marginal distributions of the resulting family of rooted graphs.
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Directed random connection model 5

distribution to a variant (D ,o) of D with an additional vertex o = (0, t0) at the origin, cf. [28] for re-
lated general results for finite domains with non-periodic boundary conditions in the undirected setup.
A formal proof of this result can be given along the same lines as [29, Proposition 5]. As a corollary,
we obtain a distributional limit theorem in D∗, the space of rooted simple digraphs3 with metric

d∗
(
(G1, o1), (G2, o2)

)
) =

1

1 + sup{r : (G1, o1)
r' (G2, o2)}

,

where we write (G1, o1)
r' (G2, o2) if there exists a digraph isomorphism mapping the r-neighbourhood

of the root o1 in G1 to the r-neighbourhood of the root o2 in G2.

Theorem 2.1 (Local limit). For t ∈ N, let (Dt,ot) = ht(Dt,ot) ∈ D∗ denote the rooted simple
digraphs obtained from the rooted geometric graphs (Dt,ot) via rescaling. Let further denote (D ,o)
the rooted digraph obtained from generating D with an additional (root) vertex located at the origin.
Then

(Dt,ot) −→
t→∞

(D ,o) in distribution.

In the following section, we calculate local metrics for D . By virtue of Theorem 2.1, the corresponding
metrics for (Dt : t ≥ 0) converge to the corresponding limit values for (the rooted version of) D .

3 Local properties

In this section, we establish important local properties of (D ,o). Here, o denotes the additionally
added root vertex which can be seen as a typical vertex in D as explained in the previous paragraph.
We call a property local if it only depends on a bounded graph neighbourhood of o. Formally, such
properties have representations via continuous functionals on the space D∗. We begin by identifying
the degree distribution of o. Afterwards, we discuss clustering metrics.

In the following, we use the established notation f � g for non-negative functions to indicated that
f(x)/g(x) is bounded from zero and infinity.

3.1 Degree distribution

For a given vertex x we denote by

N in(x) := {y ∈ X : y→ x}

the vertices sending arcs to x in D and by ]N in(x) its indegree. If x = o, we simply write N in. For
outgoing arcs and outdegree, we use the analogous notations N out(x), resp. N out, and ]N out(x),
resp. ]N out.

3In fact, D∗ is the quotient space of equivalence classes of rooted graphs up to graph isomorphism, but we do not
distinguish between a graph and its isomorphism class here. For more background on D∗ and local weak convergence
see [1].
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L. Lüchtrath, Ch. Mönch 6

Lemma 3.1 (Degree distribution).

(a) For the indegree of o in D = D [β, γ, δ,Γ], we have for all γ ∈ (0, 1) and Γ > 0 that

P0(]N in = k) = k−1−1/γ+o(1), as k ↑ ∞, and

(b) for the outdegree of o in D = D [β, γ, δ,Γ], we have for all γ ∈ (0, 1) that

(i) if Γ > γ, then ]N out is Poisson distributed with parameter β/(Γ−γ),

(ii) if 0 < Γ < γ, then ]N out is mixed Poisson distributed with mixing density

f out(λ) = (γ − Γ)−(2+1/(γ−Γ))
(
β
λ

)1+1/(γ−Γ)
1(β/(γ−Γ),∞)(λ)

and therefore
P0(]N out = k) = k−1−1/(γ−Γ)+o(1), as k ↑ ∞.

Proof. The incoming edges of o are all edges to younger neighbours of o in G plus the edges to
older neighbours where a reciprocal arc has been added. From [21, Proposition 4.1(d)], the number of
younger neighbours in G from (0, u) (i.e. the root’s mark is given by U0 = u) is mixed Poisson with
mixing density

f in(λ) � λ−1−1/γ.

The older incoming neighbours of (0, u) form a Poisson process on Rd × (0, u) with intensity

( s
u
)Γρ(β−1sγu1−γ|x|d)dxds.

Since (s/u)Γ ≤ 1, the number of such neighbours is at most Poisson distributed with parameter
β/(1−γ) [21, Proposition 4.1(c)]. Hence, the indegree of o in D is bounded from below by the number
of younger neighbours of o in G and from above by the number of younger neighbours of o in G plus
an independent Poisson distributed random variable. As the number of younger neighbours of o in G
is heavy tailed with power-law exponent τ = 1+ 1/γ, cf. [21, Lemma 4.4] both bounds are of the same
order, proving (a).

Similarly, the outgoing neighbours of o in D are the older neighbours of o in G plus the younger
ones where a reciprocal arc has been added. The number of the first type is again Poisson distributed
independently of the root’s mark. For fixed mark U0 = u, the latter form a Poisson process on Rd ×
(u, 1) with intensity

(u
s
)Γρ
(
β−1uγs1−γ|x|d

)
dx ds.

The expected number of such vertices is∫ 1

u

ds (u
s
)Γ

∫
Rd

dx ρ(β−1uγs1−γ|x|d)

� βu−γ
∫ 1

u

(u
s
)Γsγ−1ds � βuΓ−γ

∫ 1

u

sγ−Γ−1 ds � β

|γ − Γ|
(1 ∨ u−γ+Γ).

Hence, if Γ > γ, the outdegree is Poisson distributed with a parameter independent of u. If Γ < γ,
then the outdegree is mixed Poisson distributed and

P0(]N out = k) =

1∫
0

e
βuΓ−γ

γ−Γ

(
βuΓ−γ

γ−Γ

)k
k!

du �
∞∫

β/(γ−Γ)

e−λ
λk

k!
f out(λ)dλ.
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Directed random connection model 7

Hence, by Stirling’s formula, we have

P0(]N out = k) � 1

Γ(k + 1)

∫ ∞
0

e−λλk−
1/(γ−Γ)−1dλ � k−1−1/(γ−Γ),

as k →∞, concluding the proof.

3.2 Clustering

In this section, we discuss two clustering measures. Firstly, the local friend clustering coefficient and
secondly the interest clustering number. The idea of the friend clustering coefficient is that two friends
of a typical vertex are more likely to be friends with each other than two general typical vertices. Here,
a ‘friendship’ denotes a reciprocal connection, and the corresponding clustering coefficient measures
the density of strongly connected triangles. This coincides with our motivation of the model that the
network consists mainly of typical (young) vertices and some very influential (old) vertices. While the
influential vertices are those with much larger in than outdegree, the typical vertices should tend to
form triangles, just like in the age-dependent random connection model in the undirected case. The
friend clustering coefficient is a straightforward adaptation from the undirected setting, cf. [21].

The idea of interest clustering was proposed in Trolliet et al. [35] explicitly for directed social networks.
Our localised adaptation of their coefficient appears here for the first time. It is based on the idea that
in an (online) social network, the clustering is also driven by common interests. Whereas the friend
clustering coefficient is a metric intended to capture purely the social aspect of network formation, the
interest clustering number combines the social with the informational aspect.

We first define both clustering metrics only in the infinite limit model (D ,o) and provide integral rep-
resentations for them and then consider the finite models (Dt : t ≥ 0).

The friend clustering coefficient. In this section, we call two given vertices x and y friends in D

if x ↔ y. Let
↔
V 2 the set of all vertices having at least two friends in D . For x ∈

↔
V 2, we define the

friend clustering coefficient as

cfc(x) :=

∑
y,z∈X : ty>tz

1{x↔y}1{x↔z}1{y↔z}(
](N out(x)∩N in(x))

2

) .

If x 6∈
↔
V 2, we set its friend clustering coefficient to be zero.

Lemma 3.2 (Friend clustering). For all β > 0, γ ∈ (0, 1), δ > 1, and Γ ≥ 0, we have

E0c
fc(o) =

∫ 1

0

du P(Y(u) ↔ X(u))P(0,u)

( ⋃
k≥2

F(0,u)(k)
)
> 0,

where F(o,u(k) is the event that the root (o, u) has k friends and X(u) and Y(u) are two independent
random variables distributed according to the normalised measure λfu/λ

f
u(R

d) with

λf
u =

(
( s
u
)Γρ
(
β−1sγu1−γ|x|d

)
1{s<u} + (u

s
)Γρ
(
β−1s1−γuγ|x|d

)
1{s≥u}

)
ds dx.

We do not give the proof here as it works analogously to the undirected ARCM [21, Theorem 5.1].
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The interest clustering number. Consider two vertices x,y ∈
→
V 2 and define the quantity

cic(y|x) =

0, if ](
→
N(y) ∩

→
N(x)) < 2,∑

u,v∈X 1{y→u,y→v}1{x→u,x→v}∑
u,v∈X 1{y→u or y→v}1{x→u,x→v}

, otherwise.

Note that cic(y|x) is at most 1. Let P0,x denote the law of the digraph D constructed from a vertex
set with two additional vertices o,x located at 0 and x ∈ Rd, respectively. Then we call

nic(o) =

∫
Rd

E0,xc
ic(x|o) dx

the interest clustering number of D . The number nic(o) can be interpreted as a localised version of the
‘interest clustering coefficient’ proposed in [35] for directed graphs derived from social and information
network data. An important difference is that nic(o) ∈ (0,∞) is not a normalised quantity. A large
value of nic(o) implies that typical vertices who share a common interest (i.e. both send an arc to a
third vertex) are likely to have further common interests, whereas a small value of nic(o) indicates
that interests are formed more or less independently of each other. To formulate our result regarding
interest clustering in D , we need the two numbers µII(x) and µI0(x) given by

µII(x) =

∫
Rd

∫ 1

0

∫ 1

0

∫ u∧s

0

(
t
u

)Γ
ρ
(
β−1tγu1−γ|y|d

)(
t
s

)Γ
ρ
(
β−1tγs1−γ|x− y|d

)
dt

+ 1{u<s}

∫ s

u

ρ
(
β−1uγt1−γ|y|d

)(
t
s

)Γ
ρ
(
β−1tγs1−γ|x− y|d

)
dt

+ 1{s<u}

∫ u

s

(
t
u

)Γ
ρ
(
β−1tγu1−γ|y|d

)
ρ
(
β−1sγt1−γ|x− y|d

)
dt

+

∫ 1

s∨u
ρ
(
β−1uγt1−γ|y|d

)
ρ
(
β−1sγt1−γ|x− y|d

)
dt du ds dy,

and

µI0(x) =

∫
Rd

∫ 1

0

∫ 1

0

∫ u∧s

0

(
t
u

)Γ
ρ
(
β−1tγu1−γ|y|d

)(
t
s

)Γ
ρ
(
β−1tγs1−γ|x− y|d

)
dt

+ 1{u<s}

∫ s

u

ρ
(
β−1uγt1−γ|y|d

)(
1−

(
t
s

)Γ
ρ
(
β−1tγs1−γ|x− y|d

))
dt

+ 1{s<u}

∫ u

s

(
t
u

)Γ
ρ
(
β−1tγu1−γ|y|d

)(
1− ρ

(
β−1sγt1−γ|x− y|d

))
dt

+

∫ 1

s∨u
ρ
(
β−1uγt1−γ|y|d

)(
1− ρ

(
β−1sγt1−γ|x− y|d

))
dt du ds dy.

Lemma 3.3 (Interest clustering). For all β > 0, γ ∈ (0, 1), δ > 1, and Γ ≥ 0, we have

nic(o) =

∫
Rd

dx
∞∑
k=2

e−µII(x)µII(x)k

k!

− 2µI0(x)

∫ ∞
0

ds eµI0(x)(e−2s−1)
(

eµII(x)(e−s−1)−s − e−µII(x)−s − e−µII(x)−2sµII(x)
)
.

Proof. Under P0,x, the number YII of vertices connected to both o and x is Poisson distributed with pa-
rameter µII = µII(x) and the number YI0 of vertices connected to o but not to x is Poisson distributed

DOI 10.20347/WIAS.PREPRINT.3090 Berlin 2024



Directed random connection model 9

with parameter µI0 = µI0(x) and independent of YII. On the event {YII > 1}, we have∑
u,v∈X 1{y→u,y→v}1{x→u,x→v}∑
u,v∈X 1{y→u or y→v}1{x→u,x→v}

=
YII(YII − 1)

YII(YII − 1) + 2YIIYI0
=

YII − 1

YII − 1 + 2YI0
.

Hence,

E0,xc
ic(x|o) =

∞∑
k=2

e−µII
µkII
k!

(k − 1)E0,x

[ 1

k − 1 + 2YI0

]
=
∞∑
k=2

e−µII
µkII
k!

(k − 1)

∫ ∞
0

E0,xe−s(k−1+2YI0) ds

=
∞∑
k=2

e−µII
µkII
k!

(k − 1)

∫ ∞
0

eµI0(e−2s−1)−s(k−1) ds

=
∞∑
k=2

e−µII
µkII
k!

(
1 +

∫ ∞
0

e−s(k−1) d
ds

eµI0(e−2s−1) ds
)
.

Since
d
ds

eµI0(e−2s−1) = −2µI0eµI0(e−2s−1)−2s,

we have

E0,xc
ic(x|o) =

∞∑
k=2

e−µII
µkII
k!

(
1− 2µI0

∫ ∞
0

eµI0(e−2s−1)−s(k+1) ds
)

=
∞∑
k=2

e−µII
µkII
k!
− 2µI0

∫ ∞
0

eµI0(e−2s−1)

∞∑
k=2

e−µII
µkII
k!

e−s(k+1) ds.

The last sum can be rewritten as

∞∑
k=2

e−µII
µkII
k!

e−s(k+1) = eµII(e−s−1)−s − e−µII−s − e−µII−2sµII,

and integrating the whole expression for E0,xc
ic(x|o) over x ∈ Rd now yields the representation

given in the lemma.

Clustering in (Dt : t ≥ 0). It is straightforward to see, that both metrics are positive and local,
i.e. continuous with respect to d∗. Hence Theorem 2.1 implies that the finite systems (Dt) asymp-
totically display both forms of clustering, in the sense that the corresponding statistically averaged
metrics converge to the metrics of the limit system D . To arrive at the same conclusion by defining the
average clustering metrics ad hoc for the finite model and evaluate suitable limiting expressions analyt-
ically would require a more careful mathematical treatment. The use of the general local convergence
framework allows us to avoid these complications.

Theorem 3.4 (Asymptotics of average clustering metrics). We have that

1

]V (Dt)

∑
x∈V (Dt)

cfc(x)→ E0c
fc(o) in probability,
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and that
1

]V (Dt)

∑
x∈V (Dt)

∑
y∈V (Dt)

cic(y|x)→ nic(o) in probability.

Sketch. The first statement is immediate from Theorem 2.1, upon noticing that the averaging corre-
sponds to choosing a uniform root at which to evaluate cfc(·) and taking expectations. The same holds
true for the outer averaging in the second expression; an application of Campbell’s formula [31] then
reduces the inner summation to an integral as in the definition of nic(o).

4 Directed percolation

Originally introduced by Broadbent and Hammersley in 1957 [9], percolation has drawn a lot of at-
tention from the mathematical community and is widely studied until today. The most fundamental
question in percolation theory is whether an infinite connected component (cluster ) exists. If such a
component exists, the graph can be seen as well connected whereas if no such component exists the
graph decomposes into a collection of disjoint finite clusters. Since the existence of an infinite cluster
is monotone in the edge density β and a 0-1-event, one needs to only establish the existence of a
critical intensity βc ∈ (0,∞) such that an infinite component is almost surely present in the graph if
β > βc but almost surely absent if β < βc. For undirected translation invariant models in Rd it is well
established that there is at most one unique infinite component present [11, 30]. If βc = 0, the graph
is also referred to being robust. Percolation was studied for various models since its introduction, see
e.g. [24, 32, 16, 18, 22, 23]. A related but typically more difficult question is whether or not a growing
sequence of graph contains a (unique) component of linear size. Whether in general percolation in the
local limit has a bearing on the existence of linear components in the approximating graph sequence
has recently been investigated in [27].

In our directed setting, there are now two types of connected components, weak and strong ones. Let
us denote by x −→ y the event that there exists a directed path from x to y in D . Then, x and y
belong to the same weakly connected component if either x −→ y or y −→ x. On the contrary, x
and y belong to a strongly connected component if x −→ y and y −→ x which we denote from now
on as x←→ y. This gives rise to three components of the root (resp. a given vertex) to consider:

→
C = {x ∈ X : o −→ x},

←
C = {x ∈ X : x −→ o}, and

↔
C = {x ∈ X : o←→ x}.

In this article, we focus on the weak-connectedness event

{]
→
C =∞} := {o −→∞}

only, other percolation questions are left for future work. The event o −→ ∞ can be interpreted
as the situation that news spread through the networks (Dt) by the most influential vertices can
reach a positive proportion of the network. In order to make this rigorous however, one would need a
convergence result for a weak giant component similar to the undirected case. Since this is not a local
event, Theorem 2.1 cannot be applied and an extension of [27] for the directed case is needed. Note
however, that in digraphs the existence of a large weakly connected component can occur even if the
local limit does not weakly percolate, see e.g. [33], which cannot happen in undirected graphs, hence
the situation is more complex as in the undirected setting.

Similar to the undirected case, we are interested in the critical intensity

~βc := ~βc(γ, δ,Γ) = sup
{
β > 0 : P0{o −→∞} = 0

}
.
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If one restricts the graph to edges that point in both directions and vertices with birth time larger than
1/2, it is easy to see that this graph can be compared with a undirected (long-range) random connection
model for which the existence of an infinite component in dimensions d ≥ 2 and for δ ∈ (1, 2) in
d = 1 is well-known [32]. Hence, we immediately infer ~βc <∞ in these cases. Therefore, we deal
with the question of positivity of the critical intensity here.

Theorem 4.1 (Positivity of critical intensity). Consider the DARCM D = D [β, γ, δ,Γ] with β > 0,
γ ∈ (0, 1), δ > 1, and Γ ≥ 0.

(i) If γ < (δ+Γ)/(δ+1), then
→
βc > 0 and

(ii) if γ > (δ+Γ)/(δ+1), then
→
β c = 0.

The proof further elaborates the ideas for the undirected case in [22]. There, it was shown that the most
promising strategy for building a long path is to use young intermediate ‘connectors’ to connect old
vertices and if γ > δ/(δ+1) the age’s influence is strong enough compared to the geometric restrictions
such that this strategy can be repeated indefinitely with positive probability regardless of the edge
intensity. We will adapt the strategy of [22] to the directed setting. Let us write

x
2−−→

x,y
y

for the event that x is connected to y by a directed path of length 2 where the intermediate vertex is
younger than both x and y. Key to the proof of Theorem 4.1 is the following lemma.

Lemma 4.2 (Two-connection-lemma). Consider D = D [β, γ, δ,Γ] with β > 0, γ ∈ (0, 1), δ > 1,
and Γ ≥ 0.

(a) Assume γ < (δ+Γ)/(δ+1). Let x = (x, t) and y = (y, s) be two given vertices that satisfy
|x− y|d ≥ β(t ∧ s)−γ(s ∨ t)γ−1. Then we have

Px,y

(
x

2−−→
x,y

y
)
≤ Ex,y

[
]{z = (z, u) : u > t and x→ z→ y}

]
≤ βC Px,y(x→ y).

(3)

for some C > 0 only depending on γ, δ,Γ, and the dimension d.

(b) Let γ > (δ+Γ)/(δ+1) and fix two interdependent constants

α1 ∈
(
1, γ−Γ

δ(1−γ)

)
and α2 ∈

(
α1,

α1(γδ−1)+γ−Γ
δ−1

)
.

Let x = (x, t) be a given vertex with t < 1/2 and define the event

E(x) =
{
∃y = (y, s) : s < tα1 , |x− y|d < t−α2 and x

2−−→
x,y

y
}
.

For each β > 0 there exists some a < 0 such that Px

(
E(x)

)
≥ 1− e−ta .

Proof. We start by proving (a) and focus on the case s < t. The other case works analogously.
Observe that the first inequality in (3) is simply a moment bound, and we hence focus on the second
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inequality. By our assumptions on the distance of x and y we have

Ex,y

[
]{z = (z, u) : u > t and x→ z→ y}

]
≤
∫
Rd

dz
∫ 1

t

du
(
t
u

)Γ
ρ
(

1
β
tγu1−γ|x− z|d

)
ρ
(

1
2dβ
sγu1−γ|x− y|d

)
1
{|y−z|>

|x−y|
2
}

+

∫
Rd

dz
∫ 1

t

du
(
t
u

)Γ
ρ
(

1
2dβ
tγu1−γ|x− y|d

)
ρ
(

1
β
sγu1−γ|y − z|d

)
1
{|x−z|≥

|x−y|
2
}

≤ βC
(

1
β
sγt1−γ|x− y|d

)−δ
= βC ρ

(
1
β
sγt1−γ|x− y|d

)
,

where we integrated both integrals separately and have used that indicator functions are bounded by
1, a change of variables together with the integrability of ρ, as well as γ < (δ+Γ)/(δ+1) and our distance
assumption.

We also start the proof of (b) by calculating the expected number of vertices y being part of the event
E(x). Using similar arguments as above, it is straight forward to deduce that this expectation is lower
bounded by

ctΓ−γ+α2(δ−1)−α1(γδ−1),

for some constant c > 0. The proof finishes with the observation that due to our choices of α1 and
α2, we have a := Γ− γ + α2(δ− 1)− α1(γδ− 1) < 0 and therefore Px(E(x)) ≥ 1− e−cta .

of Theorem 4.1. The proof works similarly to the proof carried out in [22] and shall hence only be
sketched. Observe first, that the origin starts a path o −→ ∞ using young connectors to connect to
older and older vertices with strictly positive probability if the root itself is old enough by Lemma 4.2 (b),
proving Part (ii).

To prove Part (i), we want to bound the probability that the root o starts a directed, short-cut free
path of length n by a term that goes to 0 as n → ∞ for small enough β. Here, a directed path
P = (x0, . . . ,xn) is called shortcut-free, if N in(xj)∩ P = xj−1 and N out(xj)∩ P = xj+1 for all
j = 1, . . . , n− 1. Note that there always exists a directed shortcut-free path to infinity if there exists
a directed path to infinity at all. To make use of the previous lemma, we work from now on in the graph
D̂ defined by taking D and adding each bi-directed arc x↔ y (if not already there) whenever x and
y do not fulfil the distance condition of Lemma 4.2 (a). By definition, in a short-cut free path in D̂ we
always have

|xi − xj|d > β(ti ∧ tj)−γ(ti ∨ tj)γ−1, whenever |i− j| ≥ 2.

From Lemma 4.2 (a), we infer that for all vertices fulfilling this distance condition, it is more probable to
be connected by a direct arc than through a single connector. To make use of this fact, let us introduce
the notion of a path’s skeleton.

For a path P we call the collection of vertices with running minimum age from both sides the skeleton
of P . That is, we start from the initial vertex (x0, t0) and search for the first vertex (xj1 , tj1) that has
birth time tj1 < t0. Starting from this vertex again we search for the next vertex with smaller birth
time still until we reach the oldest vertex of the path. Afterwards we do the same but starting from
the last vertex of the path (xn, tn) and going backwards across the indices. Another possibility to
identify the path’s skeleton is the following: We call a vertex xj ∈ P \ {x0,xn} local maximum if
tj > tj−1 and tj > tj+1. Put differently, xj is younger than its preceding and subsequent vertex.
We now successively remove all local maxima from P as follows: First, take the local maximum in P
with the greatest birth time, remove it from P and connect its former neighbours by a directed edge
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t

Figure 1: Methodical sketch of the outlined step by step removal of local maxima to observe the skeleton path (the black
vertices).

oriented from preceding to subsequent vertex. In the resulting path, we take the local maximum of
greatest birth time and remove it, repeating until there is no local maximum left, see Figure 1.

The idea is now the following. Between each two skeleton vertices, we remove all local maxima step
by step and replace them by direct arcs. The probabilistic costs for each such replacement is the
probability of an arc times βC . Since all combinatorics involved are also of exponential order in the
subpath’s length, cf. [22, Lemma 2.3], we infer for two given vertices x and y satisfying the distance
condition

Px,y

(
x

k−−→
x,y

y
)
≤ (β · 4C)k−1Px,y(x→ y),

where x
k−−→

x,y
y denotes the event that x is connected to y by a direct path of length k where all

intermediate vertices are younger than x and y. Let now x0,x1, . . . ,xk = y be a given skeleton
and let us write x

n−−−−→
x0,...,xk

xk for the event that there is a directed path from x0 to xk with skeleton

x0,x1, . . . ,xk. We can then use the BK-inequality [5] in a version of [25] as outlined in [22, Eq.(11)]
to deduce

Px0,x1,...,xk

(
x

n−−−−→
x0,...,xk

y
)
≤ (β C)n−k

(
n

k

) k∏
j=1

Pxj−1,xj(xj−1 → xj) (4)

for some new constant C > 1. Define now An to be the event that o starts a directed path of length
n that ends in the oldest vertex of the path. In other words, the path has a skeleton with strictly
decreasing birth times. Using (4) and Mecke’s equation [31], we obtain

P(An) ≤
n∑
k=1

[
(β C)n−k

(
n

k

) ∫
x0=0,x1,...xk∈Rd
1>t0>t1>···>tk

k⊗
j=0

dxj
k∏
j=1

Pxj−1,xj(xj−1 → xj)

]

The last equation can be easily calculated similarly as done in [22, Lemma 2.4] from which we infer
P0(An) ≤ (β C)n for some C > 1. Choosing β < 1/C , we infer from the Borel-Cantelli Lemma that
almost surely there is a finite N such that An does not occur for all n > N . This however implies that
every infinite path has bounded from below birth time because a path with birth times approaching
zero contains sub paths ending in its oldest vertex of arbitrary length. This concludes the proof as it is
easy to see that no such infinite paths can exist for small intensities β.
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