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Free generators and Hoffman’s isomorphism for the two-parameter shuffle
algebra

Leonard Schmitz, Nikolas Tapia

Abstract

Signature transforms have recently been extended to data indexed by two and more parameters. With free Lyndon
generators, ideas from B∞-algebras and a novel two-parameter Hoffman exponential, we provide three classes of iso-
morphisms between the underlying two-parameter shuffle and quasi-shuffle algebras. In particular, we provide a Hopf
algebraic connection to the (classical, one-parameter) shuffle algebra over the extended alphabet of connected matrix
compositions.
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1 Introduction

The collection of iterated integrals of a path (termed path signature) has been used as a tool for classification in various
settings since Chen’s seminal 1954 work [ 4 ]. In recent years—and in particular since pioneering work by Lyons and
collaborators on the use of signatures as features for data streams in the early 2010s [ 12 ,  15 ]—there has been a surge
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in the number of applications, which range from calibration of financial models [ 1 ] to motion recognition [ 3 ,  20 ] and deep
learning [  16 ]. We refer the interested reader to the surveys by Chevyrev and Kormilitzin [ 5 ], and Lyons and McLeod [ 17 ].
A discrete counterpart of the path signature has been introduced by one of the coauthors and collaborators [ 6 ,  7 ], and is
likewise starting to see some applications [ 8 ].

Signature transforms, both continuous and discrete, have been extended to data indexed by two and more parameters by
either following a topological approach [ 10 ], or an algebraic approach [ 9 ]. The algebraic picture in this setting becomes
considerably more involved, and two-parameter analogues of the shuffle [ 10 ] and quasi-shuffle algebras [ 9 ] enter the
frame.

It is a well-known fact that the set of Lyndon words provides an algebraic independent generating set of the (classical,
one-parameter) shuffle and quasi-shuffle algebra, e.g. [ 19 ], [ 13 , Thm. 2.6] or [ 11 , Prop. 6.4.14]. The Hopf algebra structure
from [ 9 , Thm. 2.12] guarantees that the two-parameter quasi-shuffle algebra of matrix compositions is free. In this article,
we address the following two questions posed in [ 9 , Sec. 6]:

1 Is there a free generating set akin to Lyndon words?

2 How are two-parameter shuffles and quasi-shuffles related to each other?

We provide full answers to both questions: in Theorem  3.12 we construct an explicit family (Bw )w ∈L of free generators
indexed by Lyndon words, and in Theorem  4.1 we introduce a two-parameter version of Hoffman’s isomorphism together
with its explicit inverse, verifying that the two-parameter shuffle and quasi-shuffle are isomorphic products in the matrix
composition Hopf algebra.

Note that (Bw )w ∈L simultaneously generates not only the two-parameter shuffle and quasi-shuffle algebra, but even the
(classical, one-parameter) shuffle algebra over the extended alphabet of connected matrix compositions. With this we
relate the (classical, one-parameter) framework [ 13 ] to the recent two-parameter development [ 9 ,  10 ,  21 ]. Using ideas from
the theory of B∞-algebras, we can extend this connection even to the level of Hopf algebras.

In Section  5.2 we conclude with a fruitful application of our suggested machinery: a novel and transparent proof of the
bialgebra relation with respect to diagonal deconcatenation and the two-parameter quasi-shuffle product, first stated in [ 9 ,
Thm. 2.12]. In particular, we can drastically simplify its original proof.

Notation

Throughout, let Ñ denote the rational number field, Î = {1, 2, . . . } the strictly positive integers, and Î0 = {0} ∪ Î
the non-negative integers. For every matrix a ∈ Mm×n with entries from an arbitrary set M , we denote by size(a) :=
(rows(a), cols(a)) := (m, n) ∈ Î2 the number of its rows and columns, respectively.

Let Ë be a commutative Ñ-algebra and (Md ,⋆, ε) be the free commutative monoid generated by d letters {1, . . . , d}.
Here,⋆ denotes the multiplication and ε the neutral element with respect to the latter. From [ 9 , Sec. 2] we recall the direct
sum,

H :=
⊕

a∈Comp

Ëa

of matrix compositions, i.e., matrices with entries inMd which do not contain ε-rows or ε-columns. Additionally to those
Md -valued matrices, Comp contains the empty composition denoted by e. Recall from [ 9 , Def. 2.1] that any two matrix
compositions a and b can be concatenated along the diagonal, c = diag(a, b). We denote by Compcon the subset of
connected compositions, i.e., all c which have only trivial decompositions, that is a = e or b = e.

Remark 1.1. We can identify Comp with the Kleene star of connected compositions Comp∗con. For this compare [ 9 ,
Lem. 2.3] which defines a one-to-one correspondence by sending the composition diag(u1, . . . , uℓ ) ∈ Comp to the
word u1 · · · uℓ ∈ Comp∗con. The empty composition e is identified with the empty word in Comp∗con. This identification
requires to select the explicit coproduct ∆ dual to diagonal concatenation, i.e. [ 9 , Def. 2.10]. Whenever we speak of such
an identification, we implicitly make this choice and write H = Ë⟨Compcon⟩.

Let len : Comp∗con → Î0 denote the length of monomials. With the identification from Remark  1.1 we have len(e) = 0
and len(a) := ℓ for every nonempty a = diag(u1, . . . , uℓ ) with u ∈ Compℓcon.
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Two-parameter shuffle algebras 3

2 The matrix composition Hopf algebra

We begin with recalling the two-parameter shuffle from [ 10 ], presented here in the language of [ 9 ]. Note that we define the
operation in the larger Ë-module H , i.e., we use the extended alphabet Compcon.

2.1 Two-parameter shuffles

For every n ∈ Î let Σn denote the permutations of {1, . . . , n}. As in the classical setting, let sh(m, s) with m, s ∈ Î
denote the subset of permutations q ∈ Σm+s such that q (1) < . . . < q (m) and q (m + 1) < . . . < q (m + s).

Definition 2.1. The two-parameter shuffle product is the bilinear mapping

� : H × H → H

determined on nonempty Ë-basis elements (a, b) ∈ Comp×Comp via

a� b :=
∑

p∈sh(rows(a),rows(b) )
q ∈sh(cols(a),cols(b) )

(
diag(a, b)p−1 (u ),q−1 (v )

)
u,v

and where a� e := e� a := a for all a ∈ Comp.

Example 2.2. [
1
]
�

[
2
]
=

[
1 ε
ε 2

]
+

[
ε 1
2 ε

]
+

[
ε 2
1 ε

]
+

[
2 ε
ε 1

]
[
1
]
�

[
2 3

]
=

[
1 ε ε
ε 2 3

]
+

[
ε 1 ε
2 ε 3

]
+

[
ε ε 1
2 3 ε

]
+

[
ε 2 3
1 ε ε

]
+

[
2 ε 3
ε 1 ε

]
+

[
2 3 ε
ε ε 1

]
Theorem 2.3. (H ,�,∆) is a graded, connected, and commutative Hopf algebra.

Proof. An elementary way of proving this is similar to [ 9 , Thm. 2.12]. Alternatively we can use the novel two-parameter ver-
sion of Hoffman’s isomorphism Φ developed in this article (Theorem  4.1 ), or an analogous proof presented in Section  5.2 

via the one-parameter framework. □

We can describe permutations in sh(m, s) ⊆ Σm+s with a one-hot matrix encoding, similar to [ 9 , Rem. 5.8] for quasi-
shuffles. With this we can understand the two-parameter shuffle product via suitable matrix actions on the row and column
space 

1
 .

Remark 2.4. The following subset of permutation matrices

SH(m, s) :=
{[
e ι1 · · · e ιm eκ1 · · · eκs

]
∈ Σm+s | ιp < ιp+1, κq < κq+1

}
is in one-to-one correspondence to sh(m, s).

Example 2.5. For p ∈ sh(2, 1) with p (1) = 1, p (2) = 3 and p (3) = 2,

©­­«

1 ε
2 ε
ε 3

p−1 (u ),v
ª®®¬u,v =


1 ε
ε 3
2 ε

u,v =
©­«

1 0 0
0 0 1
0 1 0

 ·

1 ε
2 ε
ε 3

ª®¬u,v .
Lemma 2.6. For all nonempty a, b ∈ Comp, we have

a� b =
∑

P∈SH(rows(a),rows(b) )
Q∈SH(cols(a),cols(b) )

P diag(a, b)Q⊤.

1The matrix action on the row and column space in Comp is defined in [ 9 , Sec. 5.2].
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2.2 Block shuffles

Let (H , □�,∆) denote the classical Hopf algebra (H , □�,∆) over the extended alphabet Compcon which shuffles the blocks
(connected components with respect to ∆) of matrix compositions. A formal way of defining this block shuffle is provided
in Definition  2.8 .

Example 2.7. [
1
] □
�

[
2
]
=

[
1 ε
ε 2

]
+

[
2 ε
ε 1

]
[
1
] □
�

[
2 3

]
=

[
1 ε ε
ε 2 3

]
+

[
2 3 ε
ε ε 1

]
[
1
] □
�

[
2 ε ε
ε 3 4

]
=


1 ε ε ε
ε 2 ε ε
ε ε 3 4

 +

2 ε ε ε
ε 1 ε ε
ε ε 3 4

 +

2 ε ε
ε 3 4 ε
ε ε ε 1


Definition 2.8. The block shuffle product is the bilinear mapping

□
� : H × H → H ,

which satisfies the recursion

diag(a, u) □
� diag(b, v) = diag(a, u □

� diag(b, v)) + diag(b, diag(a, u) □
� v)

for a, b ∈ Compcon and u, v ∈ Comp, and such that the empty matrix composition e is the neutral element with respect to
this product.

With this we obtain the (classical, one-parameter) shuffle algebra over the extended alphabet Compcon.

Theorem 2.9. (H , □�,∆) is a graded, connected, and commutative Hopf algebra.

As in Lemma  2.6 , we encode block shuffles via matrix notation. For this, we index elements due to Remark  2.4 ,

SH(a, b) =



e⊤
σ−1 (1)
...

e⊤
σ−1 (a+b )

 | σ ∈ sh(a, b)


via its rows. To encode block shuffles let ⊗ be the Kronecker product of matrices and

bSHσ (u,v ) :=



e⊤
σ−1 (1) ⊗ Iu1
...

e⊤
σ−1 (a ) ⊗ Iua

e⊤
σ−1 (a+1) ⊗ Iv1

...
e⊤
σ−1 (a+b ) ⊗ Ivb


∈ SH

©­«
∑

1≤α≤a
uα ,

∑
1≤β≤b

vβ
ª®¬

be a block shuffle action matrix for every σ ∈ sh(a, b) and block sizes u = (u1, . . . ,ua ) and v = (v1, . . . ,vb ).

Lemma 2.10. For a = diag(u1, . . . , ua ) and b = diag(v1, . . . , vb ) with decompositions into connected compositions u
and v, we have

a
□
� b =

∑
σ∈sh(a,b )

bSHσ (rows(u), rows(v)) diag(a, b) bSHσ (cols(u), cols(v))⊤

where rows and cols is applied on the components of u and v, respectively.

We can write the two-parameter shuffle product (Definition  2.1 ) as a block shuffle (Definition  2.8 ) plus some lower order
terms with respect to the length in Comp.

DOI 10.20347/WIAS.PREPRINT.3087 Berlin 2024
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Lemma 2.11. For all a, b ∈ Comp,

a� b = a
□
� b +

∑
1≤i ≤ℓ

ci

where ci ∈ Comp with len(ci ) < len(a) + len(b) for all 1 ≤ i ≤ ℓ .

Proof. Follows with Lemmas  2.6 and  2.10 . □

2.3 Two-parameter quasi-shuffles

As in the classical setting, let qsh(m, s ; j ) with m, s, j ∈ Î denote the set of surjections

q : {1, . . . , m + s} ↠ {1, . . . , j }

such that q (1) < . . . < q (m) and q (m + 1) < . . . < q (m + s). From [ 9 , Def. 2.8] we recall the two-parameter
quasi-shuffle product

a
qs
� b =

∑
j ,k ∈Î

∑
p∈qsh(m,s ;j )
q ∈qsh(n,t ;k )


cp,q1,1 . . . cp,q1,k
...

...
cp,q
j ,1 . . . cp,q

j ,k

 (1)

where
cp,qx ,y = ⋆

u∈p−1 (x )
v ∈q−1 (y )

diag(a, b)u,v ∈ Md .

As discussed in [ 9 , Rem. 5.8 and Lem. 5.11], we know that qsh(m, s ; j ) is in one-to-one correspondence to

QSH(m, s ; j ) :=


[
e ι1 · · · e ιm eκ1 · · · eκs

]
∈ Î

j ×(m+s )
0

ι1 < · · · < ιm
κ1 < · · · < κs
right invertible


and that Equation ( 1 ) translates to

a
qs
� b =

∑
j ,k ∈Î

∑
P∈QSH(m,s ;j )
Q∈QSH(n,t ;k )

P diag(a, b)Q⊤.

From [ 9 , Thm. 2.12] we know that (H , qs
�,∆) is a graded, connected, and commutative Hopf algebra.

Similar as in Lemma  2.11 for two-parameter shuffles, we can write Equation ( 1 ) as a block shuffle plus some lower order
terms with respect to the length in Comp.

Lemma 2.12. For all nonempty a, b ∈ Comp,

a
qs
� b = a

□
� b +

∑
1≤i ≤ℓ

ci

where ci ∈ Comp with len(ci ) < len(a) + len(b) for all 1 ≤ i ≤ ℓ .

3 Free Lyndon generators

3.1 Total order on connected compositions

We equip Compcon with a total order, e.g. part  2 . of Definition  3.1 . Note that this explicit order is arbitrary, and can be
exchanged by any other total order. For convenience, this explicit choice is fixed throughout this section, and illustrated in
Example  3.2 .

Definition 3.1.
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1 Let (Md , >) be ordered degree-lexicoraphically with 1 < · · · < d. For arbitrary n ∈ Î, extend this lexicographically
to (Mn

d , >) via

p > q :=

{
p1 > q1 or

pi = qi for all i ≤ j − 1 and pj > qj ,

where p, q ∈ Mn
d .

2 For every n ∈ Î, let
(
Mn
d , >

)
be ordered according to part  1 . Using this, we equip (Compcon, >) with a strict total

order via

a > b :=


rows(a) > rows(b) or

(rows(a) = rows(b) and cols(a) > cols(b)) or

size(a) = size(b) and vec(a) > vec(b),
where a, b ∈ Compcon. Furthermore, let a > e for every a.

Example 3.2. For > according to part  2 . of Definition  3.1 , we have for instance[
1
]
<

[
2
]
<

[
1⋆ 2⋆ 3

]
<

[
1 2

]
<

[
2 1

]
<

[
1
2

]
<

[
2
1

]
<

[
1 ε
ε 2

]
.

Having a total order on Compcon we can extend it to Comp∗con. Note that we do not yet identify Comp∗con with Comp.

Definition 3.3. Let (Compcon, >) be totally ordered.

1 We recall the lexicographic order ≤lex on Comp∗con via

u ≤lex v :=

{
either \i ≤ min{len(u), len(v )} : ui < vi ∧ u j = vj [j ≤ i − 1

or \a ∈ Comp∗con : v = ua .

2 Let the graded lexicographic order on Comp∗con be denoted by <grlex, that is

u <grlex v :=

{
len(u) < len(v ) or

len(u) = len(v ) and u <lex v .

The order <grlex in part  2 . of Definition  3.3 is len-compatible by construction, i.e., elements are first ordered by its length,
and afterwards lexicographically to break ties. Furthermore it is a monomial order, i.e.,

a <grlex b =⇒ uav <grlex ubv

for all a, b,u,v ∈ Comp∗con.

Example 3.4. We continue with Example  3.2 , i.e., we have a total order on Compcon according to Definition  3.1 . Let <grlex

be due to Definition  3.3 , e.g.,[
1
]
<grlex

[
1⋆ 2⋆ 3

]
<grlex

[
1 ε
3 2

]
<grlex

[
1
] [
2
]
<grlex

[
2
] [
1
]
<grlex

[
1
2

] [
3
] [
4
]
.

While the order of Compcon from Definition  3.1 was arbitrary, the way Definition  3.3 extends it to Comp∗con is crucial for the
following section.

3.2 Lyndon words

A word w ∈ Comp∗con is a Lyndon word, if and only if it is nonempty and lexicographically strictly smaller than any of its
proper suffixes, that is w <lex v for all nonempty words v ∈ Comp∗con such that w = uv and u ∈ Comp∗con is nonempty.
Let L = L(Compcon, <lex) be the set of Lyndon words over the alphabet Compcon. We define a family (Bw )w ∈L of
compositions via

Bw := diag(w1, . . . ,wlen(w ) ) (2)

for everyw = w1 . . .wlen(w ) ∈ L.

DOI 10.20347/WIAS.PREPRINT.3087 Berlin 2024
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Example 3.5. In the setting of Example  3.4 , we have for instance[
1
]
,
[
2
]
,
[
1
] [
2
]
,
[
3
] [1
2

]
,
[
1 2

] [1
2

]
∈ L,

and as non-examples, [
2
] [
1
]
,

[
1
2

] [
3
]
,

[
1
2

] [
1 2

]
,

[
1
2

] [
3
] [
4
]
< L.

In Theorem  3.12 we show that (Bw )w ∈L is a family of free generators for the block shuffle algebra, as well as for two-
parameter shuffle algebra, and for the two-parameter quasi-shuffle algebra. Definition  3.6 treats these three products from
above in parallel, and requires the so-called CFL factorization of words.

For nonempty u ∈ Comp∗con let (a1, . . . , ap ) be its Chen-Fox-Lyndon (CFL) factorization, i.e., we have u = a1 . . . ap
and a1 ≥lex · · · ≥lex ap for ai ∈ L with 1 ≤ i ≤ p . This factorization always exists and it is unique, see e.g. [ 11 ,
Thm. 6.1.27].

Definition 3.6. Let (H ,m, +) be a commutative Ë-algebra. For every nonempty word u ∈ Comp∗con we define

Bm
u := m (Ba1 , . . . ,Bap ) ∈ H

where (a1, . . . , ap ) is the CFL factorization of u , and Bai is according to Equation ( 2 ). If u is empty, we define Bm
u := e.

Note that for every Lyndon wordw ∈ L the identification in Remark  1.1 and Bw from eq. ( 2 ) provide the same element in
H . Otherwise, if u = u1 . . . ulen(u ) < L is nonempty with ui ∈ Compcon for 1 ≤ i ≤ len(u), then Definition  3.6 yields Bm

u ,
which is distinct from diag(u1, . . . , ulen(u ) ).

Example 3.7. We continue with the framework of Example  3.5 .

1 For Lyndon wordw =
[
3
] [1
2

]
∈ L we have

Bm
w = Bw =


3 ε
ε 1
ε 2


regardless of the product m in H .

2 For u =

[
1
2

] [
3
]
∈ Comp∗con we have a = (a1, a2) = (

[
1
2

]
,
[
3
]
) ∈ L2.

In the algebras (H , □�, +) and (H ,�, +) we have

B
□
�

u = Ba1
□
� Ba2 =

[
1
2

]
□
�

[
3
]

and B �u = Ba1 � Ba2 =
[
1
2

]
�

[
3
]
.

From now on, we identify Comp∗con with Comp as discussed in Remark  1.1 . Then, <grlex extends to the graded lexicoraphic
order in H = Ë⟨Compcon⟩. Let lm : H \ {0} → Comp denote the leading monomial with respect to <grlex.

Corollary 3.8. For every a, b ∈ H \ {0}, we have

lm(a □
� b) = lm(a � b) = lm(a qs

� b).

Proof. This is an immediate consequence of Lemmas  2.11 and  2.12 . □

For nonempty a ∈ Comp let Bm
a := Bm

u1 ...ulen(a) be according to Definition  3.6 , and where u is the decomposition of a into
connected compositions. Furthermore, let Bm

e := e.

Lemma 3.9. In the three Ë-algebras (H ,m, +) with m ∈ { □
�,�,

qs
�} we have

lm(Bm
a ) = a

for every a ∈ Comp.
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Proof. Clearly lm(e) = e, hence we can assume that a is nonempty. We use induction over the length of a, i.e., we show

lm(Bm
u1 ...un ) = diag(u1, . . . , un )

for every n ∈ Î and ui ∈ Compcon with 1 ≤ i ≤ n . The base case n = 1 is clear with Compcon ⊆ L. For the induction
step, let (a1, . . . , ap ) be the CFL factorization of a word u1 . . . un with length n . The case p = 1 is clear again with
Compcon ⊆ L. Assuming p > 1, the CFL decompositions of u := a1 and v := a2 . . . ap are a1 and (a2, . . . , ap )
respectively. Clearly u ∈ L hence Bm

u = diag(u1, . . . , uℓ ) for a unique ℓ ∈ Î. Furthermore len(v ) < n , thus inductively

lm(Bm
v ) = lm(Bm

uℓ+1 ...un ) = diag(uℓ+1, . . . , un ). (3)

Now we have to distinguish between the underlying product m.

1 If m =
□
� then

B
□
�

u1 ...un = B
□
�

a1

□
� · · · □

� B
□
�

ap = B
□
�

u

□
� B

□
�

v

= diag(u1, . . . , uℓ )
□
� diag(uℓ+1, . . . , un )

thus with a basic fact [ 11 , Thm. 6.2.2] about Lyndon words,

lm(B
□
�

u1 ...un ) = lm(diag(u1, . . . , uℓ )
□
� diag(uℓ+1, . . . , un ))

= diag(u1, . . . , un ).

2 In the remaining cases m ∈ {�, qs
�} we use p − 1 times Corollary  3.8 , and also part  1 ., that is

lm(Bm
u1 ...un ) = lm(B

□
�

u1 ...un ) = diag(u1, . . . , un ).

□

Corollary 3.10. Via the Ë-algebras (H ,m, +) with m ∈ { □
�,�,

qs
�} we obtain three distinct Ë-bases (Bm

a )a∈Comp for
the underlying Ë-module (H , +).

Proof. We know that Comp is a Ë-basis of H . Lemma  3.9 implies that (Bm
a )a∈Comp expands invertibly triangularly with

respect to Comp for every mso it is a Ë-basis, too. □

We recall another fact about Lyndon words.

Lemma 3.11. The family (Bw )w ∈L freely generates (H ,m, +) if and only if (Bm
a )a∈Comp is a Ë-basis of (H , +).

Proof. Consider for instance [ 11 , Lem. 6.3.7]. □

Theorem 3.12. The family (Bw )w ∈L freely generates the three Ë-algebras (H , □�, +), (H ,�, +) and (H , qs
�, +).

Proof. Follows with Corollary  3.10 and Lemma  3.11 . □

Tables  1 and  2 provide examples of non-trivial expressions in terms of their generators. One way of producing these is by
using Corollary  3.10 and <grlex to subtract leading terms by Bm

u when considered as monomials in Bw forw ∈ L.

3.3 Isomorphisms due to Lyndon generators

Corollary 3.13. We have (H , □�, +) � (H ,�, +) � (H , qs
�, +) as Ë-algebras.

In Theorem  4.1 and corollary  5.6 we lift this statement even to the level of Hopf algebras. Note that the explicit mappings
constructed in Corollary  3.13 are not compatible with ∆, and thus, they cannot be considered as isomorphisms of Hopf
algebras.
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Comp (H , □�, +) in terms of its free generators (Bw )w ∈L[
2 ε
ε 1

] [
1
] □
�

[
2
]
−

[
1 ε
ε 2

]
[
1 ε
ε 1

]
1
2

[
1
] □
�

[
1
]

[
1 2 ε
ε ε 3

] [
1 2

] □
�

[
3
]
−

[
3 ε ε
ε 1 2

]

ε 1 ε
1 ε ε
ε ε 1


[
ε 1
1 ε

]
□
�

[
1
]
−


1 ε ε
ε ε 1
ε 1 ε


2 ε ε
ε 3 ε
ε ε 1


[
2 ε
ε 3

]
□
�

[
1
]
−

[
2
] □
�

[
1 ε
ε 3

]
+


1 ε ε
ε 3 ε
ε ε 2


3 ε ε
ε 1 ε
ε ε 2


[
3
] □
�

[
1 ε
ε 2

]
−


1 ε ε
ε 2 ε
ε ε 3

 −

1 ε ε
ε 3 ε
ε ε 2


3 ε ε
ε 2 ε
ε ε 1


[
1
] □
�

[
2
] □
�

[
3
]
−

[
2 ε
ε 3

]
□
�

[
1
]
−

[
3
] □
�

[
1 ε
ε 2

]
+


1 ε ε
ε 2 ε
ε ε 3


1 ε ε
ε 2 ε
ε ε 1


[
1 ε
ε 2

]
□
�

[
1
]
− 2


1 ε ε
ε 1 ε
ε ε 2


Table 1: Block shuffles

Proof of Corollary  3.13 . With the universal property of (H , □�, +), we obtain an isomorphism of algebras Ψ to (H ,�, +)
by setting Ψ(Bw ) := Bw for every w ∈ L. Its inverse is defined analogously via Ψ−1 (Bw ) = Bw . The remaining
isomorphisms are constructed in the same way. □

In the following, we illustrate one of the isomorphisms from Corollary  3.13 .

Example 3.14. Let Ψ be the Ë-algebra isomorphism from (H , □�, +) to (H ,�, +). Lyndon generators are mapped to
each other, e.g.

Ψ(
[
1
]
) =

[
1
]

or Ψ(
[
1 ε
ε 2

]
) =

[
1 ε
ε 2

]
.

Otherwise we write compositions in terms of their generators and apply Ψ such that it respects sums and products, e.g.,

Ψ(
[
2 ε
ε 1

]
) = Ψ(

[
1
] □
�

[
2
]
−

[
1 ε
ε 2

]
) = Ψ(

[
1
]
) � Ψ(

[
2
]
) − Ψ(

[
1 ε
ε 2

]
)

=
[
1
]
�

[
2
]
−

[
1 ε
ε 2

]
=

[
2 ε
ε 1

]
+

[
ε 2
1 ε

]
+

[
ε 1
2 ε

]
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Comp (H ,�, +) in terms of its free generators (Bw )w ∈L[
2 ε
ε 1

] [
1
]
�

[
2
]
−

[
1 ε
ε 2

]
−

[
ε 1
2 ε

]
−

[
ε 2
1 ε

]
[
1 ε
ε 1

]
1
2

[
1
]
�

[
1
]
−

[
ε 1
1 ε

]
[
1 2 ε
ε ε 3

] [
1 2

]
�

[
3
]
−

[
3 ε ε
ε 1 2

]
−

[
1 ε 2
ε 3 ε

]
−

[
ε ε 3
1 2 ε

]
−

[
ε 3 ε
1 ε 2

]
−

[
ε 1 2
3 ε ε

]

ε 1 ε
1 ε ε
ε ε 1


[
ε 1
1 ε

]
�

[
1
]
−


1 ε ε
ε ε 1
ε 1 ε

 − 2


ε ε 1
1 ε ε
ε 1 ε

 − 2


ε 1 ε
ε ε 1
1 ε ε

 − 3


ε ε 1
ε 1 ε
1 ε ε


Table 2: Two-parameter shuffles

or

Ψ(
[
3 ε ε
ε 1 2

]
) = Ψ(

[
1 2

] □
�

[
3
]
−

[
1 2 ε
ε ε 3

]
)

= Ψ(
[
1 2

]
) � Ψ(

[
3
]
) − Ψ(

[
1 2 ε
ε ε 3

]
)

=
[
1 2

]
�

[
3
]
−

[
1 2 ε
ε ε 3

]
=

[
3 ε ε
ε 1 2

]
+

[
1 ε 2
ε 3 ε

]
+

[
ε ε 3
1 2 ε

]
+

[
ε 3 ε
1 ε 2

]
+

[
ε 1 2
3 ε ε

]
.

However, an isomorphism of Hopf algebras is not obtained with this construction, as illustrated in the following.

Example 3.15. We continue in the framework of Example  3.14 , i.e., let Ψ be the Ë-algebra isomorphism from (H , □�, +)
to (H ,�, +). Then, with [

1
]
,
[
2
]
,
[
1
] [
2
]
,
[
1
] [
1
] [
2
]
∈ L,

and Equation ( 2 ), we have

(Ψ ⊗ Ψ) ◦ ∆(

1 ε ε
ε 1 ε
ε ε 2

)
=


1 ε ε
ε 1 ε
ε ε 2

 ⊗ e +
[
1
]
⊗

[
1 ε
ε 2

]
+ Ψ(

[
1 ε
ε 1

]
) ⊗

[
2
]
+ e ⊗


1 ε ε
ε 1 ε
ε ε 2


, ∆(


1 ε ε
ε 1 ε
ε ε 2

) = ∆ ◦ Ψ(

1 ε ε
ε 1 ε
ε ε 2

),
since with Table  1 ,

Ψ(
[
1 ε
ε 1

]
) = Ψ( 1

2

[
1
] □
�

[
1
]
)

=
1

2

[
1
]
�

[
1
]
=

[
1 ε
ε 1

]
+

[
ε 1
1 ε

]
,

[
1 ε
ε 1

]
so Ψ does not respect the coproduct ∆.

4 Hoffman’s isomorphism for two parameters

In this section we introduce a novel two-parameter version of Hoffman’s isomorphism (Definition  4.2 ) together with its
explicit inverse (Lemma  4.11 ). With this we obtain the following main result.
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Theorem 4.1. The Hopf algebras (H ,�,∆) and (H , qs
�,∆) are isomorphic.

We prove this in this section. A sequence I = (I1, . . . , Iℓ ) ∈ Îℓ of positive integers is called a (classical, one-parameter)
composition of n ∈ Î0, if I1 + · · · + Iℓ = n . Conventionally the empty composition is counted as the sole composition of
0. Denote the set of all compositions of n by C(n).

For nonempty a ∈ Comp, I ∈ C(rows(a)) and J ∈ C(cols(a)) let aI ,J denote the action of I and J on the rows
and columns of a, respectively. This action is formally provided in Definition  4.7 . Let len(I ) = ℓ denote the length and
I ! = I1! . . . I len(I ) ! the factorial of I ∈ Îℓ .

The following explicit mapping Φ is motivated by Hoffman’s isomorphism [ 13 , Thm. 2.5], and here generalized for two
parameters.

Definition 4.2. Let Φ be the Ë-linear mapping from (H ,�,∆) to (H , qs
�,∆) which satisfies Φ(e) := e and

Φ(a) :=
∑

I ∈C(rows(a) )
J ∈C(cols(a) )

1

I !J !
aI ,J

for every nonempty Ë-basis element a ∈ Comp.

Example 4.3.

Φ(
[
1
]
) =

[
1
]
, Φ(

[
1
2

]
) =

[
1
2

]
+ 1

2

[
1⋆ 2

]
,

Φ(
[
1 ε
ε 2

]
) =

[
1 ε
ε 2

]
+ 1

2

[
1
2

]
+ 1

2

[
1 2

]
+ 1

4

[
1⋆ 2

]
,

Φ(

1 ε
ε 2
ε 3

) =

1 ε
ε 2
ε 3

 +
1

2

[
1 2
ε 3

]
+ 1

2

[
1 ε
ε 2⋆ 3

]
+ 1

2


1
2
3


+ 1

4

[
1⋆ 2
3

]
+ 1

4

[
1

2⋆ 3

]
+ 1

12

[
1⋆ 2⋆ 3

]
We first show that Φ is multiplicative.

Lemma 4.4. For all a, b ∈ Comp,

Φ(a� b) = Φ(a) qs
� Φ(b).

4.1 Row and column action on matrix compositions

In order to prove Lemma  4.4 , we rewrite Definition  4.2 using matrix notation. For this, we introduce a one-hot matrix
encoding of a (classical, one-parameter) composition.

Lemma 4.5. For all v , ℓ ∈ Î, the set

fuse(v , ℓ) :=
{[
e ι1 . . . e ιℓ

]
∈ Îv×ℓ0 | ι1 ≤ · · · ≤ ιℓ and ιj − ιj −1 ≤ 1

}
is in one-to-one correspondence to the set {I ∈ C(ℓ) | len(I ) = v } of compositions with length v .

Example 4.6. The one-hot encodings of all C(4) with length 2 are given by

fuse(2, 4) =
{[
1 1 1 0
0 0 0 1

]
,

[
1 1 0 0
0 0 1 1

]
,

[
1 0 0 0
0 1 1 1

]}
.

Proof of Lemma  4.5 . For any a ∈ Î let
a .e i :=

[
e i . . . e i

]
∈ Îv×a0 . (4)

With this we obtain a bijective mapping via [
I1.e1 . . . Iv .ev

]
∈ fuse(v , ℓ)

for every I ∈ C(ℓ) with len(I ) = v . □
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Definition 4.7. For all nonempty a ∈ Comp and

(I , J ) ∈ C(rows(a)) × C(cols(a))

let
(P,Q) ∈ fuse(len(I ), rows(a)) × fuse(len(J ), cols(a))

denote the corresponding one-hot encodings due to Lemma  4.5 . Then, we set

aI ,J := PaQ

using the matrix action of P and Q on the rows and columns of a, respectively. For P let P! := I ! denote the factorial of its
corresponding composition I .

The one-hot encodings of compositions satisfy the following properties.

Lemma 4.8. For all ℓ = ℓ1 + ℓ2 and v = v1 + v2 we have{
diag(U, V) ∈ fuse(ℓ,v ) size(U) = (ℓ1,v1)

size(V) = (ℓ2,v2)

}
= diag(fuse(ℓ1,v1), fuse(ℓ2,v2)),

where the operation diag is applied entrywise.

Lemma 4.9. If V = diag(V1, V2) ∈ fuse(ℓ ,v ) with Vi ∈ fuse(ℓi ,vi ) for i ∈ {1, 2}, then V! = V1!V2!.

Furthermore, all matrices in fuse(v , ℓ) are right invertible, and Definition  4.2 translates to

Φ(a) =
∑
u,v ∈Î

∑
U∈fuse(u,rows(a) )
V∈fuse(v ,cols(a) )

1

U!V!
UaV⊤. (5)

4.2 Multiplication

From the proof of [ 13 , Thm. 2.5] we recall the following combinatorial (one-parameter) argument in the language of our
one-hot matrix encodings. We apply this argument on both axes simultaneously, and thus show that Φ is multiplicative
(Lemma  4.4 ).

Lemma 4.10. Let a, b ∈ Î be fixed.

1 For all u1,u2, j ∈ Î, the mapping

Mu1,u2,j : QSH(u1,u2; j ) × fuse(u1, a) × fuse(u2, b) → Î
j ×(a+b )
0

(A,U1,U2) ↦→ A diag(U1,U2)

is injective.

2 For all j ∈ Î and W ∈ Im(N j ) with

N j : fuse(j , a + b) × SH(a, b) → Î
j ×(a+b )
0

(U, P) ↦→ UP

there is a unique U such that N j (U, P) = W.

3 For all j ∈ Î,

Im(N j ) =
⊎
u1,u2

Im(Mu1,u2,j ).

4 Each non-empty preimage N −1
j (UP) has the cardinality

#N −1
j (UP) = U!

U1!U2!

where UP = A diag(U1,U2) due to part  3 .
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Despite this being well-known, we provide a proof for completeness.

Proof of Lemma  4.10 . The elements in Im(Mu1,u2,j ) are given by actions on the columns in A, that is

A diag(U1,U2)

=
[
e ι1 . . . e ιu1 eκ1 . . . eκu2

] [I1.e1 . . . Iu1 .eu1 0 . . . 0
0 . . . 0 J1.e1 . . . Ju2 .eu2

]
=

[
I1.e ι1 . . . Iu1 .e ιu1 J1.eκ1 . . . Ju2 .eκu2

]
(6)

where t .e i is according to eq. ( 4 ) for t ∈ Î. Whenever[
I1.e ι1 . . . Iu1 .e ιu1 J1.eκ1 . . . Ju2 .eκu2

]
=

[
I ′1.e ι′1 . . . I ′u1 .e ι′u1 J ′1.eκ′1 . . . J ′u2 .eκ′u2

]
then I = I ′, J = J ′, ι = ι′ and κ = κ′, i.e., part  1 .

For part  2 . let UP = U′P′ with U,U′ ∈ fuse(j , a + b) and P, P′ ∈ SH(a, b). Then U = U′P′P−1, and therefore U = U′

due to P′P−1 ∈ Σa+b .

For part  3 . the elements UP ∈ Im(N j ) are given by U, acting on the rows in

P =
[
eσ1 . . . eσa+b

]
=

[
eµ1 . . . eµa eν1 . . . eνb

]
with permutation σ ∈ Σa+b and two strictly increasing and disjoint µ and ν. This determines unique K ∈ C(j , a + b) and

m, n ∈ Î
j
0 such that

UP =
[
K1.e1 . . . K j .e j

] [
eσ1 . . . eσa+b

]
(7)

=
[
m1.e1 . . . m j .e j n1.e1 . . . n j .e j

]
with 0.e i encoding an empty block whenever mi or n i is zero for 1 ≤ i ≤ j . We obtain eq. ( 6 ) by viewing m and n as
elements I ∈ C(u1, a) and J ∈ C(u2, b), i.e., by omitting all the j − u1 zero entries in m, and the j − u2 zero entries in
n . This implies

Im(N j ) ⊆
⋃
u1,u2

Im(Mu1,u2,j ). (8)

In eq. ( 6 ) we can count the number of non-zero rows u1 and u2 in the first a and remaining b columns, which implies that
the union in eq. ( 8 ) is disjoint. In part  2 . we showed already that the only freedom for eq. ( 7 ) comes from different choices
of P. In particular there are exactly

K1! . . .K j !

m1! . . .m j !n1! . . . n j !
=

K1! . . .K j !

I1! . . . I len(I ) !J1! . . . J len(J ) !
=

U!

U1!U2!

choices of P′ ∈ SH(a, b) such that UP = UP′ is satisfied. It remains to show equality in eq. ( 8 ). For this let

W ∈
⊎
u1,u2

Im(Mu1,u2,j ),

so there are unique u1 and u2 such that W ∈ Im(Mu1,u2,j ). With part  1 . there is a unique

(A,U1,U2) ∈ QSH(u1,u2; j ) × fuse(u1, a) × fuse(u2, b)

such that W = A diag(U1,U2). Let ι, κ, I and J as in eq. ( 6 ). Since A is right invertible there exist disjoint ι̃1 < · · · < ι̃a
and κ̃1 < · · · < κ̃b such that {ι̃1, . . . , ι̃a } = {ι1, . . . , ιu1 }, {κ̃1, . . . , κ̃b } = {κ1, . . . , κu1 } and

{ι̃1, . . . , ι̃a } ∪ {κ̃1, . . . , κ̃b } = {ι1, . . . , ιu1 } ∪ {κ1, . . . , κu2 } = {1, . . . , a + b}.

This defines
P :=

[
e ι̃1 . . . e ι̃a e κ̃1 . . . e κ̃b

]
∈ SH(a, b).

Choose now U ∈ fuse(j , a + b) such that N j (U, P) = UP = W. □

With this we verify that Φ is multiplicative.
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Proof of Lemma  4.4 . For all nonempty matrix compositions a and b,

Φ(a� b) =
∑
j
k

∑
U∈fuse(j ,rows(diag(a,b) ) )
V∈fuse(k ,cols(diag(a,b) ) )
P∈SH(rows(a),rows(b) )
Q∈SH(cols(a),cols(b) )

1

U!V!
UP diag(a, b)Q⊤V⊤

 4.10 .  4 

=
∑
j
k

∑
UP∈Im(N j )
VQ∈Im(Nk )

#N −1
j (UP)#N −1

k (VQ)
U!V!

UP diag(a, b)Q⊤V⊤

(  9 )
=

∑
j
k
u1
u2
v1
v2

∑
U1∈fuse(u1,rows(a) )
U2fuse(u2,rows(b) )
V1∈fuse(v1,cols(a) )
V2∈fuse(v2,cols(b) )

A∈QSH(u1,u2;j )
B∈QSH(v1,v2;k )

1

U1!U2!V1!V2!
A diag(U1aV⊤

1 ,U2bV⊤
2 )B

⊤

= Φ(a) qs
� Φ(b),

with summands

UP diag(a, b)Q⊤V⊤ = M (A,U1,U2) diag(a, b)M (B, V1, V2)⊤

= A diag(U1,U2) diag(a, b)diag(V1, V2)⊤B⊤

= A diag(U1aV⊤
1 ,U2bV⊤

2 )B
⊤, (9)

with Lemma  4.10 . 3 , and due to elementary block arithmetic. □

4.3 Invertibility

We provide the explicit inverse of our two-parameter Hoffman’s isomorphism.

Lemma 4.11. The homomorphism Φ is invertible, where

Φ−1 (a) :=
∑

I ∈C(rows(a) )
J ∈C(cols(a) )

(−1)rows(a)−len(I )+cols(a)−len(J )

I1 . . . I len(I ) J1 . . . J len(J )
aI ,J

for every nonempty a ∈ Comp.

Example 4.12.

Φ−1 (
[
1
]
) =

[
1
]
, Φ−1 (

[
1
2

]
) =

[
1
2

]
− 1

2

[
1⋆ 2

]
,

Φ−1 (
[
1 ε
ε 2

]
) =

[
1 ε
ε 2

]
− 1

2

[
1
2

]
− 1

2

[
1 2

]
+ 1

4

[
1⋆ 2

]
In order to prove this, we introduce further notation. For two fixed formal power series in one variable t , and without
constant term,

f =
∑
i ∈Î

fi t
i , g =

∑
i ∈Î

gi t
i ∈ t · Ë⟦t⟧,

we define a Ë-linear evaluation evalf ,g ∈ End(H ) via

evalf ,g (a) :=
∑

I ∈C(rows(a) )
J ∈C(cols(a) )

fI1 . . . fI len(I ) gJ1 . . . gJ len(J ) aI ,J

for every Ë-basis element a ∈ Comp. For every i ∈ Î0 let [t i ]f := fi denote the coefficient of f at monomial t i . We
introduce the two-parameter generalization of [ 14 , Thm. 3.1].
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Lemma 4.13. We have
evalf ,p ◦ evalg ,q = evalf ◦g ,p◦q

for every f , g , p, q ∈ t · Ë⟦t⟧.

We recall the one-parameter argument from [ 14 , eq. (9)],

[t k ] (f ◦ g ) =
k∑
j=1

[t j ]f [t k ]g j (10)

for every f , g ∈ t · Ë⟦t⟧ and k ∈ Î. Let a ∈ Comp be fixed. For I ∈ C(rows(a)) with len(I ) = x and J ∈ C(x ) let

J ◦ I := (I1 + · · · + IJ1 , IJ1+1 + · · · + IJ1+J2 , . . . , IJ1+···+Jℓ−1+1 + Ix ) ∈ C(rows(a))

denote the concatenation of I and J . Note that len(J ◦ I ) = len(J ). Recall further from [ 14 , eq. (11)] that for all K ∈
C(rows(a)),

[tK1 ] (f ◦ g ) . . . [tK len(K ) ] (f ◦ g )

=

rows(a)∑
x=1

∑
J ∈C(x )

len(J )=len(K )

∑
I ∈C(rows(a) )

J◦I=K

[t J1 ]f . . . [t J len(K ) ]f [t I1 ]g . . . [t Ix ]g . (11)

Proof of Lemma  4.13 . We use the recalled one-parameter argument from above on rows and columns, i.e.

evalf ◦g ,p◦q (a)

=
∑

K ∈C(rows(a) )
L∈C(cols(a) )

[tK1 ] (f ◦ g ) . . . [tK |K | ] (f ◦ g ) [t L1 ] (p ◦ q ) . . . t L |L |) (p ◦ q )aK ,L

(  11 )
=

∑
K ∈C(rows(a) )
L∈C(cols(a) )
1≤x≤rows(a)
1≤y ≤cols(a)

∑
J ∈C(x )
B∈C(y )

len(J )=len(K )
len(B )=len(L )

∑
I ∈C(rows(a) )
A∈C(cols(a) )

with
J◦I=K
B◦A=L

(∏
a

[t Ia ]g
) (∏

b

[tAb ]q
) (∏

s

[t Js ]f
) (∏

r

[t Br ]p
)

aK ,L

=
∑

I ∈C(rows(a) )
A∈C(cols(a) )

(∏
a

[t Ia ]g
) (∏

b

[tAb ]q
)©­­­­­­­­­­«

∑
1≤x≤rows(a)
1≤y ≤cols(a)

∑
J ∈C(x )
B∈C(y )

with
len(I )=x
len(A)=y

(∏
s

[t Js ]f
) (∏

r

[t Br ]p
) (

aI ,A
)
J ,B

ª®®®®®®®®®®¬
=

∑
I ∈C(rows(a) )
A∈C(cols(a) )

[t I1 ]g . . . [t I len(I ) ]g [tA1 ]q . . . [tAlen(A) ]q evalf ,p
(
aI ,A

)
= evalf ,p ◦ evalg ,q (a)

for every Ë-basis element a ∈ Comp. □

Proof of Lemma  4.11 . This follows by choosing f (t ) := g (t ) := e t − 1 in the situation of Lemma  4.13 . □

4.4 Comultiplication

Lemma 4.14. The homomorphism Φ respects deconcatenation, i.e.,

(Φ ⊗ Φ) ◦ ∆ = ∆ ◦ Φ.

In order to prove Lemma  4.14 we introduce splittings similar to [ 9 , Sec. 5.3].
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Definition 4.15. For fixed a = diag(u1, . . . , ulen(a) ) and 0 < α < len(a), we say that

(U, V) ∈ fuse(u, rows(a)) × fuse(v , cols(a))

is α -decomposable, if
(U, V) = (diag(U1,U2), diag(V1, V2)) (12)

with u = u1 + u2 and v = v1 + v2 such that

(U1,U2) ∈ fuse

(
u1,

∑
1≤i ≤α

rows(ui )
)
× fuse

©­«u2,
∑

α+1≤i ≤ len(a)
rows(ui )ª®¬

and

(V1, V2) ∈ fuse

(
v1,

∑
1≤i ≤α

cols(ui )
)
× fuse

©­«v2,
∑

α+1≤i ≤ len(a)
cols(ui )

ª®¬.
Lemma 4.16. If (U, V) is α -decomposable, then its decomposition from eq. ( 12 ) is unique.

Similar to [ 9 , Lem. 5.21] we describe the block structure of matrix compositions after the action due to Definition  4.7 .

Lemma 4.17. For fixed U,V and a, the set

{(x, y) ∈ Comp2 | x , e , y ∧ diag(x, y) = UaV⊤}

is in one-to-one correspondence to all splittings,

S
a
U,V := {1 ≤ α < len(a) | (U, V) is α -decomposable}.

Proof. If α ∈ Sa
U,V then (U, V) is α -decomposable, and therefore,

UaV⊤ = diag(U1,U2) diag(u1, . . . , ulen(a) ) diag(V1, V2)
= diag(U1 diag(u1, . . . , uα )V1,U2 diag(uα+1, . . . , ulen(a) )V2) (13)

=: diag(x(α ) , y(α ) ),

where different α yield x(α ) and y(α ) of varying size.

Conversely, with size(ui ) = (ui ,vi ) and cumulative sum u i := u1 + · · · + ui , if

UaV⊤ = ⋆1≤s≤ len(a)
[
eµ (u (s−1) +1) · · · eµus

]
vs

[
e ι (vs +1) · · · e ιv (s+1)

]⊤
= diag(x, y)

with size(x) = (j1, k1) then all s -indexed factors[
eµ (u (s−1) +1) · · · eµus

]
vs

[
e ι (vs +1) · · · e ιv (s+1)

]⊤
=: diag(x(s )

1 , y
(s )
1 )

decompose with size(x(s )
1 ) = (j1, k1). Furthermore, x(s )

1 has all entries equal to ε or y(s )
1 does. With UaV⊤ ∈ Comp

and increasing µ and ι, there is a unique 0 ≤ α ≤ len(a) such that x(1)
1 , . . . , x

(α )
1 have entries different from ε, and

x(α+1)
1 , . . . , x(len(a) )

1 have all entries equal to ε. Therefore, U and V are of shape ( 12 ). If UaV⊤ = diag(x′, y′) has a
second decomposition with resulting splitting α ′ ∈ Sa

U,V then rows(x) < rows(x′) and cols(x) < cols(x′) without loss of
generality, thus α < α ′. □

Proof of Lemma  4.14 . Let a = diag(u1, . . . , ua ) with len(a) = a , and for simplicity,

∆̃(b) := ∆(b) − b ⊗ e − e ⊗ b
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for every b. Then, with Lemma  4.17 ,

∆̃ ◦ Φ(a) =
∑
u,v

∑
U∈fuse(u,rows(a) )
V∈fuse(v ,cols(a) )

1

U!V!
∆(UaV⊤) − Φ(a) ⊗ e − e ⊗ Φ(a)

=
∑
u,v

∑
U∈fuse(u,rows(a) )
V∈fuse(v ,cols(a) )

1

U!V!

∑
x,y∈Comp \{e}
diag(x,y)=UaV⊤

x ⊗ y

(  13 )
=

∑
u,v

∑
U,V

1

U!V!

∑
α∈Sa

U,V

U1 diag(u1, . . . , uα )V⊤
1 ⊗ U2 diag(uα+1, . . . , ua )V⊤

2

 4.9 

=
∑
u,v

∑
U,V

∑
1≤α<a

such that U,V
α -decomposable

U1 diag(u1, . . . , uα )V⊤
1

U1!V1!
⊗

U2 diag(uα+1, . . . , uα )V⊤
2

U2!V2!

=
∑

1≤α<a

∑
u,v

∑
U,V

α -decomposable

U1 diag(u1, . . . , uα )V⊤
1

U1!V1!
⊗

U2 diag(uα+1, . . . , ua )V⊤
2

U2!V2!

 4.8 

=
∑

1≤α<a

©­­«
∑
u1
v1

∑
U1
V1

U1 diag(u1, . . . , uα )V⊤
1

U1!V1!

ª®®¬ ⊗
©­­«
∑
u2
v2

∑
U2
V2

U2 diag(uα+1, . . . , ua )V⊤
2

U2!V2!

ª®®¬
=

∑
1≤α<a

Φ(diag(u1, . . . , uα )) ⊗ Φ(diag(uα+1, . . . , ua ))

= (Φ ⊗ Φ) ◦ ∆̃(a)

and thus the claim with Φ(e) = e. □

Putting it all together, we can prove the main result of this section.

Proof of Theorem  4.1 . Use Definition  4.2 and Lemmas  4.4 ,  4.11 and  4.14 . □

5 Implicit isomorphisms of Hopf algebras

Let us recall from Remark  1.1 that as a coalgebra, H = Ë⟨Compcon⟩ is isomorphic to a deconcatenation coalgebra, and
therefore it is cofree over Compcon. This means in particular that we have some tools at our disposal for defining Hopf
maps to and from H . We denote by π : H → Compcon the projection, orthogonal to⊕

a∈Comp \Compcon

Ëa.

We note that for any a, b ∈ Comp,

π (a □
� b) = 0. (14)

Let (C ,∆C ) be any graded connected coalgebra. By cofreeness of H , a coalgebra homomorphism Ψ : C → H is
characterized by its projectiol

ψ B π ◦ Ψ : C + → Compcon,

where C + = ker ϵC denotes the augmentation ideal, and moreover

Ψ =
∑
n≥1

diag ◦ψ⊗n ◦ ∆̃(n−1)
C

.

Further still, Ψ is a coalgebra isomorphism if and only if ψ is a linear isomorphism.

As a consequence, two coalgebra morphisms Ψ,Ψ′ : C → H coincide if and only ifψ = ψ′. Applying this toC = H ⊗H ,

and the maps
□
� ◦ (Ψ ⊗Ψ) and Ψ ◦�, we see that a coalgebra morphism Ψ is a bialgebra morphism, if and only if these

are equal. By cofreeness and eq. ( 14 ) this condition is equivalent to requiring that for any a, b ∈ Comp,

ψ (a� b) = 0. (15)
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One can make use of this condition together with certain maps that decompose elements in H as two-parameter shuffle

polynomials to obtain bialgebra (hence Hopf algebra) homomorphisms from (H ,�) to (H , □�).

5.1 Leray’s theorem

In this section m denotes either�,
qs
� or

□
�. For f , g ∈ End(H ) we have the convolution product

f ∗ g := m ◦ (f ⊗ g ) ◦ ∆ ∈ End(H ),

and in particular, f ∗0 := id and f ∗k := f ∗ f ∗(k −1) for every k ∈ Î. The mapping id−µ ◦ ϵ with counit ϵ and unit µ is
∗-nilpotent, i.e., for all a ∈ H there is k ∈ Î such that f ∗k (a) = 0. This defines the Eulerian idempotent

e := log∗ (id) :=
∑
k ≥1

(−1)k −1

k
(id−µ ◦ ϵ)k ∈ End(H ).

Note that
(ker ϵ)2 := {m (a ⊗ b) | a, b ∈ ker ϵ}

is a Ë-submodule of ker ϵ.

For the following two results see [ 18 , Sec. 7], [ 2 , Sec. 4.3] or [ 11 , Thm. 1.7.29].

Lemma 5.1. We have

1 ker e = Ë + (ker ϵ)2 and

2 Im e � (ker ϵ)⧸(ker ϵ)2 as Ë-modules.

Theorem 5.2 (Leray). H � Sym(Im e) as Ë-algebras.

If Ë is a field and B a Ë-basis of Im e, then H � Ë[B] as Ë-algebras, where Ë[B] denotes the polynomial algebra over
B considered as a set of symbols.

By definition the identity
id = exp∗ (e)

holds, thus we get an explicit decomposition of any matrix composition as a polynomial in elements of Im e, namely

u1 . . . uℓ =
∑

I ∈C(ℓ )

1

len(I )!m
(
e(u1 . . . uI1 ) ⊗ · · · ⊗ e(uI1+···+I len(I )−1+1 . . . uℓ )

)
.

From Lemma  5.1 we see that e fulfills condition ( 15 ). However, it is not always true that Im e ⊂ Compcon, as the following
example shows.

Example 5.3. Let m be the two-parameter shuffle product�. Then

e

( [
1 ε
ε 2

] )
=

[
1 ε
ε 2

]
− 1

2

( [
1 ε
ε 2

]
+

[
ε 1
2 ε

]
+

[
ε 2
1 ε

]
+

[
2 ε
ε 1

] )
=

1

2

( [
1 ε
ε 2

]
−

[
2 ε
ε 1

] )
− 1

2

[
ε 1
2 ε

]
− 1

2

[
ε 2
1 ε

]
< Compcon .

Combining Theorem  5.2 with results from the previous section we obtain the following result.

Theorem 5.4. Let Log
□
�

�
: (H ,�) → (H , □�) be the unique bialgebra map induced by π ◦ e. It is an isomorphism, and

its inverse

Exp�□
�

: (H , □�) → (H ,�)
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is recursively given by

πn

(
Exp�□
�

(πm (a))
)
= −

m∑
k=n

πn ◦ Exp�□
�

◦ πk ◦ Log
□
�

�
◦ πm (a), n ≤ m,

where for k ∈ Î, πk : H → Compkcon denotes the canonical projection onto the space of matrix compositions with exactly

k connected blocks. The same holds after replacing� by
qs
�.

Proof. Note that the restriction of Log
□
�

�
to Compcon is the identity map, thus it is a linear isomorphism. Hence, it is

an isomorphism of algebras. The formula for Exp�□
�

follows from a general expression for inversion of lower-triangular

maps. □

Remark 5.5. Note that in the terminology of [ 14 , Prop. 4.1] the map π ◦ e is a contraction, and the map Log
□
�

�
is the

corresponding expansion.

In particular, by considering appropriate compositions of the exponential and logarithm maps we obtain:

Corollary 5.6. We have (H , □�,∆) � (H ,�,∆) � (H , qs
�,∆) as Hopf algebras.

5.2 Application: New proof of the two-parameter bialgebra relation

In this section we present a new proof of the bialgebra relation in (H , qs
�,∆), using the isomorphism to the (classical,

one-parameter) block shuffle algebra introduced in this article.

Proof of Thm. 5.24 in [ 9 ]. With isomporphism Ψ from (H , □�,∆) to (H , qs
�,∆) according to Theorem  5.4 ,

∆◦ qs
� = ∆◦ qs

� ◦(Ψ ⊗ Ψ) ◦ (Ψ−1 ⊗ Ψ−1)

= ∆ ◦ Ψ ◦ □
� ◦ (Ψ−1 ⊗ Ψ−1)

= (Ψ ⊗ Ψ) ◦ ∆ ◦ □
� ◦ (Ψ−1 ⊗ Ψ−1)

 2.9 

= (Ψ ⊗ Ψ) ◦ ( □� ⊗ □
�) ◦ (id ⊗τ ⊗ id) ◦ (∆ ⊗ ∆) ◦ (Ψ−1 ⊗ Ψ−1)

= ( qs
� ⊗ qs

�) ◦ Ψ⊗4 ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗ ∆) ◦ (Ψ−1 ⊗ Ψ−1)

= ( qs
� ⊗ qs

�) ◦ (id ⊗ τ ⊗ id) ◦ Ψ⊗4 ◦ (∆ ⊗ ∆) ◦ (Ψ−1 ⊗ Ψ−1)

= ( qs
� ⊗ qs

�) ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗ ∆) ◦ (Ψ ⊗ Φ) ◦ (Ψ−1 ⊗ Ψ−1)

= ( qs
� ⊗ qs

�) ◦ (id ⊗ τ ⊗ id) ◦ (∆ ⊗ ∆),

where τ denotes the flip homomorphism determined by τ (a ⊗ b) := b ⊗ a for all a, b ∈ Comp. □

6 Conclusions and outlook

We have used free Lyndon generators, ideas from B∞-algebras, and a novel two-parameter Hoffman’s exponential to
provide three different classes of isomorphisms between the two-parameter shuffle and quasi-shuffle algebra. In particular,
we have provided a Hopf algebraic connection to the (classical, one-parameter) shuffle algebra over the extended alphabet
of connected matrix compositions.

1 The here suggested machinery should be useful also for [ 10 ,  21 ] since it provides free generators and an underlying
Hopf algebra structure for two-parameter mapping space signatures. In particular, it is now possible to manage all
coefficients that are algebraically dependent through shuffling. This is one of the primary reasons to consider log
signatures in the one-parameter setting.

2 Already in [ 9 , Sec. 6] we addressed the issue to generalize our work for p > 2 parameters. The new strategy applied
in Section  5.2 should allow us to work around elementary block-tensor arithmetic and prevent us from notational
clutter.

DOI 10.20347/WIAS.PREPRINT.3087 Berlin 2024



L. Schmitz, N. Tapia 20

3 The unsolved question from [ 9 , Sec. 6] regarding the computational complexity of the two-parameter sums signature,
taken at an arbitrary matrix composition, can now be reduced to a set of free generators introduced in this article.
For example Theorem  3.12 provides the relation[

1 ε
ε 1

]
=

1

2

[
1
] qs
�

[
1
]
−

[
ε 1
1 ε

]
−

[
1
1

]
−

[
1 1

]
− 1

2

[
1⋆ 1

]
which allows us to compute for every eventually zero Z : Î2 → Ëd the matrix(

⟨SS02;t (Z ),
[
ε 1
1 ε

]
⟩
)
1≤t1≤T1
1≤t2≤T2

∈ ËT1×T2

in linear time O(T1T2). So far, the (iteratively) chained coefficients from [ 9 , Thm 4.5] and the algebraic relations ac-
cording to quasi-shuffles do not yield linear complexity algorithms for all coefficients of the two-parameter signature.
Can we understand which coefficients are not computable in linear time via chaining or even other approaches?

4 The isomorphisms due to Sections  3 ,  4 and  5 are all different from each other. While the Lyndon isomorphisms of
algebras (Corollary  3.13 ) do not respect the underlying copruduct ∆ dual to diagonal concatenation, the way we
define the isomorphism of Hopf algebras Φ inspired by Hoffman (Definition  4.2 ) seems independent of the explicit ∆.
Does Φ respect other coproducts such as deconcatenation along the antidiagonal? Can we make the isomorhism Φ
unique up to certain conditions? Can we find a natural isomorphism from one-parameter to two-parameter shuffles
which does not depend on ∆ using theory related to cumulants?
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