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Curvature effects in pattern formation: Well-posedness and
optimal control of a sixth-order Cahn–Hilliard equation

Pierluigi Colli, Gianni Gilardi, Andrea Signori, Jürgen Sprekels

Abstract

This work investigates the well-posedness and optimal control of a sixth-order Cahn–Hilliard
equation, a higher-order variant of the celebrated and well-established Cahn–Hilliard equation.
The equation is endowed with a source term, where the control variable enters as a distributed
mass regulator. The inclusion of additional spatial derivatives in the sixth-order formulation en-
ables the model to capture curvature effects, leading to a more accurate depiction of isothermal
phase separation dynamics in complex materials systems. We provide a well-posedness result
for the aforementioned system when the corresponding nonlinearity of double-well shape is regu-
lar and then analyze a corresponding optimal control problem. For the latter, existence of optimal
controls is established, and the first-order necessary optimality conditions are characterized via a
suitable variational inequality. These results aim at contributing to improve the understanding of
the mathematical properties and control aspects of the sixth-order Cahn–Hilliard equation, offer-
ing potential applications in the design and optimization of materials with tailored microstructures
and properties.

1 Introduction

The sixth-order Cahn–Hilliard equation represents an extension of the classical Cahn-Hilliard equation
that accounts for curvature effects and higher-order variations of the order parameter. Besides, it
provides a more accurate description of complex materials systems with intricate interface structures.
By employing a rigorous analysis, our aim is to contribute to the comprehension of the evolution of
complex materials, thereby paving the way for advanced applications in materials science.

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded and smooth domain and let T > 0. The initial-boundary value
problem under investigation reads as follows:

∂tϕ− div(m(ϕ)∇µ) = S(ϕ, u) := u− σϕ in Q, (1.1)

µ = −ε∆w + 1
ε
f ′(ϕ)w + νw in Q, (1.2)

w = −∆ϕ+ f(ϕ) in Q, (1.3)

∂nϕ = m(ϕ)∇µ · n = ∂nw = 0 on Σ, (1.4)

ϕ(0) = ϕ0 in Ω. (1.5)

Here, the parabolic cylinder Q and its boundary Σ are defined by

Q := Ω× (0, T ) and Σ := Γ× (0, T ), (1.6)

where Γ := ∂Ω denotes the boundary of Ω that is associated with a unit normal vector field n and
the outward normal derivative ∂n. The above system (1.1)–(1.5) can be viewed as a variant of the
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P. Colli, G. Gilardi, A. Signori, J. Sprekels 2

classical fourth-order Cahn–Hilliard equation [2] in the unknowns ϕ, µ, and w. The original Cahn–
Hilliard equation is widely used to describe isothermal separation processes in binary mixtures. The
variable ϕ represents the local proportion of one of the two components in the binary material and
serves as an order parameter. To simplify the analysis, it is usually normalized in such a way that
the pure states correspond to ϕ = ±1, while {−1 < ϕ < 1} represents the diffuse interface that
occurs in a ε-tubular neighborhood of the interface, with thickness parameter ε > 0. The variable µ in
equation (1.2) is referred to as the chemical potential and corresponds to the first variation of the free
energy E. Similarly, w is the first variational derivative of the Ginzburg–Landau free energy. Namely, it
holds that µ = δE

δϕ
and w = δG

δϕ
, where

E(ϕ) := F(ϕ) + νG(ϕ) =
1

2

∫
Ω

(−∆ϕ+ f(ϕ))2 + ν

∫
Ω

(ε
2
|∇ϕ|2 +

1

ε
F (ϕ)

)
, (1.7)

with natural definition of F and G. It is worth pointing out that E is a higher-order extension of the
Ginzburg–Landau free energy G which is associated with the classical Cahn–Hilliard equation. In
(1.7), F indicates a double-well shaped nonlinear potential, and f indicates its derivative. A prototype
of F is the classical regular potential given by

F (s) :=
1

4
(s2 − 1)2 for every s ∈ R. (1.8)

Next, the function u appearing in (1.1) is a prescribed distributed function that will play the role of the
control in the second part of our investigation. Finally, σ and ν are real constants, with σ positive, and
ϕ0 is a prescribed initial datum.

From (1.1), we realize that the mass flux is assumed to be proportional to the gradient of the chemical
potential µ through the mobility function m. This relationship leads to the variational structure:

∂tϕ = div(m(ϕ)∇µ) + S(ϕ, u), with µ =
δE

δϕ
.

As a consequence of the no-flux boundary condition in (1.4), integration of the equation over Ω leads
to the ODE relation

d

dt

( 1

|Ω|

∫
Ω

ϕ(t)
)

=
1

|Ω|

∫
Ω

S(ϕ(t), u(t)) for all t ∈ [0, T ],

which shows that the mass dynamics of the order parameter ϕ is ruled by the source term S(ϕ, u).
This represents a novelty in comparison with previous works on the system, where S ≡ 0 which
results in mass conservation (see, e.g., [16,17,25]).

In the Cahn–Hilliard context, the free energy reduces to G with ν = 1. On the other hand, considering
higher-order terms like the ones in F, it also can make sense to allow ν to be negative. It turns out that
the value and sign of ν in (1.7) are essential considerations in both modeling and practical applications
involving deformations of elastic vesicles under volume and surface constraints. Specifically, when
ν = 0, the energy function E simplifies to the well-established Willmore functional within the phase-
field formulation [4,5]. This simplification effectively captures the Canham–Helfrich bending energy of
surfaces, as demonstrated in, e.g., [8, 9]. Besides, when ν > 0, the energy function E is associated
with the Willmore regularization of the Ginzburg–Landau energy G. This regularization was employed,
for instance, in [1,27], to investigate anisotropy effects arising during the growth and coarsening of thin
films. Finally, the energy known as the functionalized Cahn–Hilliard (FCH) free energy arises when
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A sixth-order Cahn—Hilliard equation 3

the parameter ν takes negative values. This formulation of the energy was primarily developed for
mixtures characterized by an amphiphilic structure and nanoscale variations in functionalized polymer
chains: see, e.g., [11,21]. Extensive research has been conducted on the FCH energy, covering topics
such as minimization problems, bilayer structures, pearled patterns, and network bifurcations. Without
the claim of being exhaustive, we refer to [6, 7, 22, 23] and the references therein. The study of sixth-
order Cahn–Hilliard equations has sparked significant interest, and the applications are numerous: in
relation to the dynamics of oil-water-surfactant mixtures, we refer to [19,20,24]; the faceting of growing
surfaces is explored in works such as [14,15], while the phase-field-crystal equation is investigated in
references like [12, 13, 16, 17, 28]. The novelty in our contribution is the introduction of a source term
S into the system that accounts for mass transfer and exchange and leads to a deviation from the
standard assumption of mass conservation. In addition, we introduce a control variable in the definition
of the source whose inclusion allows us to manipulate and regulate the behavior of the source term.

Since we are not interested in the asymptotic behavior as the interface thickness parameter ap-
proaches zero, we set for convenience ε = 1. Moreover, due to our interest in the optimal control
application, we consider from the very beginning a constant mobility function m, that is, we set m to
unity for simplicity. Thus, the overall system we are going to analyze is the following:

∂tϕ−∆µ = S(ϕ, u) := u− σϕ in Q, (1.9)

µ = −∆w + f ′(ϕ)w + νw in Q, (1.10)

w = −∆ϕ+ f(ϕ) in Q, (1.11)

∂nϕ = ∂nµ = ∂nw = 0 on Σ, (1.12)

ϕ(0) = ϕ0 in Ω. (1.13)

As anticipated above, we address in the subsequent stage of our study an associated distributed
control problem, where u acts as the control variable. The tracking-type cost functional under consid-
eration is given by

J(u, ϕ) :=
α1

2

∫
Q

|ϕ− φQ|2 +
α2

2

∫
Ω

|ϕ(T )− φΩ|2 +
α3

2

∫
Q

|u|2 , (1.14)

where the coefficients αi, i = 1, 2, 3, are nonnegative real numbers (not all zero, to avoid a trivial
situation), and φQ and φΩ are given target functions defined in Q and Ω, respectively. The set of
admissible controls is given by

Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a.e. in Q}, (1.15)

where umin, umax ∈ L∞(Q) are prescribed functions satisfying umin ≤ umax a.e. in Q. The control
problem then consists in minimizing J on Uad under the constraint that ϕ is the first component of the
solution (ϕ, µ, w) to the state system associated with u. To summarize, we study the following optimal
control problem:

(P) min
u∈Uad

J(u, ϕ) subject to the constraint that (ϕ, µ, w) solves (1.9)–(1.13).

The plan of the paper is as follows. In the upcoming section, we provide a comprehensive list of the
specific assumptions we make and present our results. The well-posedness of the system (1.9)–(1.13)
is then studied in Section 3, and the control problem is investigated in the last Section 4.
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2 Notation, assumptions and results

To begin with, let us introduce some notation and conventions. Let Ω be an open set in Rd, with either
d = 2 or d = 3, which is assumed to be bounded, connected and smooth, and whose Lebesgue
measure is denoted by |Ω|. We denote the outward unit normal field on the boundary Γ := ∂Ω by
n and the corresponding outward normal derivative by ∂n. We fix a final time T > 0, recall the
definitions (1.6) of Q and Σ, and set

Qt := Ω× (0, t) for t ∈ (0, T ] . (2.1)

In this paper, we employ for any Banach space X the notation ‖ · ‖X , X∗, and 〈 · , · 〉X , to indicate
the corresponding norm, its dual space, and the related duality pairing between X∗ and X . The only
exceptions from this notation for norms are given by the space H introduced below and the standard
Lebesgue spacesLp(Ω) with p ∈ [1,+∞], whose norms are denoted by ‖ · ‖ and ‖ · ‖p, respectively.
Moreover, the symbol ‖ · ‖∞ might denote the norm in L∞(Q) as well, if no confusion may arise.
For simplicity, we use the same symbol for the norm in some space and that in any power thereof.
Accordingly, when dealing with vector-valued functions like the gradient of some scalar function, we
adopt shorthands like Lp(0, T ;X) orH1(0, T ;X) to denote Bochner spaces involving powers ofX .
Next, besides the space H announced before, we introduce two further spaces V and W . Indeed,
we set

H := L2(Ω), V := H1(Ω), and W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}. (2.2)

Norm and inner product are in the special case H indicated by ‖ · ‖ and ( · , · ), respectively. In
connection with the above spaces, we adopt the usual framework of Hilbert triplets by identifying H
and V ∗ with subsets of V ∗ and W ∗ in the usual way. Namely, we have that

〈z, v〉V =
∫

Ω
zv and 〈z, v〉W = 〈z, v〉V ,

for every z ∈ H , and v ∈ V and every z ∈ V ∗ and v ∈ W , respectively.

Then, we have that W ↪→ V ↪→ H ↪→ V ∗ ↪→ W ∗, with dense and compact embeddings.

Now, we list our assumptions on the structure of the system to be analyzed. We generally assume:

σ ∈ (0,+∞), λ ∈ [0,+∞) and ν ∈ R. (2.3)

F ∈ C4(R) can be written as F (s) = β̂(s)− λ

2
s2, s ∈ R, with β̂ convex. (2.4)

We set
f := F ′, β := β̂′ and γ := ββ′, (2.5)

so that

f(s) = F ′(s) = β(s)− λs and f ′(s) = β′(s)− λ, for every s ∈ R,

and require that

β(0) = β′′(0) = 0, and β′′′(s) ≥ 0 for every s ∈ R, (2.6)

lim
|s|→+∞

β′(s)

|s|
= +∞, (2.7)

|β′′(s)| ≤ Cβ(|β′(s)|+ 1) for some Cβ > 0 and every s ∈ R. (2.8)
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A sixth-order Cahn—Hilliard equation 5

Remark 2.1. Let us remark that our structural assumptions imply that

β, β′′ and γ are monotone. (2.9)

This is clear for β and β′′, since β̂ is convex and β′′′ = β̂(4) is nonnegative. As for γ, notice that γ′

is nonnegative, since β and β′′ possess the same sign. Moreover, we notice that |β(s)| must tend

to infinity as |s| approaches infinity as a consequence of (2.7), that the same is true for β̂ since it is

convex, and that β(0) = 0 implies that β̂ has a minimum point at zero. Hence, by l’Hôpital’s rule, we
deduce that

lim
|s|→∞

s

β(s)
= lim
|s|→∞

1

β′(s)
= 0 and lim

|s|→∞

s3

β̂(s)
= lim
|s|→∞

3s2

β(s)
= lim
|s|→∞

6s

β′(s)
= 0.

Thus, two consequences follow: first, it holds that β̂ grows faster than |s|3 as |s| tends to infinity, so
that

F is bounded from below. (2.10)

The second consequence regards the function g defined by

g(s) := −λsβ′(s) + (ν − λ)β(s) + (λ2 − λν)s for every s ∈ R, (2.11)

which we have to consider later on. We have that

lim
|s|→∞

g(s)

γ(s)
= 0 and lim

|s|→∞

sg(s)

γ(s)
= 0 . (2.12)

Finally, we observe that the above assumptions are not too restrictive and satisfied by a wide class
of smooth potentials with either polynomial or exponential growth; in particular, they are met by the
classical regular potential given by the expression (1.8).

At this point, we are ready to give a precise formulation of the problem (1.9)–(1.13) presented in the
Introduction. As anticipated, the control variable u plays the role of a prescribed and bounded forcing
term in the well-posedness part. Given a constant M > 0, as well as data ϕ0 and u satisfying

ϕ0 ∈ W and u ∈ L∞(Q) with ‖u‖∞ ≤M , (2.13)

we look for a triplet (ϕ, µ, w) with the regularity

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;W ), (2.14)

µ ∈ L2(0, T ;V ), (2.15)

w ∈ L2(0, T ;W ), (2.16)

that solves the following problem:

〈∂tϕ, v〉V +

∫
Ω

∇µ · ∇v + σ

∫
Ω

ϕv =

∫
Ω

uv a.e. in (0, T ), for every v ∈ V , (2.17)

−∆w + β′(ϕ)w + (ν − λ)w = µ a.e. in Q, (2.18)

−∆ϕ+ β(ϕ)− λϕ = w a.e. in Q, (2.19)

ϕ(0) = ϕ0 . (2.20)
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Notice that the boundary conditions ∂nϕ = 0 and ∂nw = 0 are contained in (2.14) and (2.16), while
the analogue for µ just holds in a generalized sense as a consequence of (2.17).

As for the assumption on u, we observe that M does not play any role if just well-posedness is
considered. However, when dealing with the control problem, we let u vary and need uniform bounds
for the corresponding solutions, so that the introduction of M is useful: it is worth noticing that the
bounds we are going to find are independent of u and depend just on M .

The first result of ours deals with well-posedness, regularity, and stability of the system (2.17)–(2.20).

Theorem 2.2. Let the assumptions (2.3)–(2.8) and (2.13) on the structure of the system and the data
be satisfied. Then, problem (2.17)–(2.20) has a unique solution (ϕ, µ, w) satisfying (2.14)–(2.16).
Moreover, the estimate

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;W ) + ‖µ‖L2(0,T ;V ) + ‖w‖L2(0,T ;W ) ≤ K1 (2.21)

holds true with a positive constant K1 that depends only on Ω, T , the structure of the system, the
initial datum ϕ0 and M .

Remark 2.3. The unique solution (ϕ, µ, w) to problem (2.17)–(2.20) satisfying (2.14)–(2.16) actually
enjoys the further regularity properties

ϕ ∈ L2(0, T ;H4(Ω)) and w ∈ L∞(0, T ;H) ∩ L2(0, T ;H3(Ω)), (2.22)

as we immediately prove by repeated use of elliptic regularity theory. Since ϕ is uniformly bounded
as a consequence of (2.14) and the continuity of the embedding W ↪→ L∞(Ω), we see that (2.14)
and (2.19) imply that w ∈ L∞(0, T ;H). Now, we observe that (2.14) also implies that |∇ϕ|2 ∈
L∞(0, T ;H), so that ∆β(ϕ) ∈ L∞(0, T ;H) and β(ϕ) ∈ L∞(0, T ;H2(Ω)). Thus, (2.19) and
(2.16) yield that ϕ ∈ L2(0, T ;H4(Ω)). Next, the regularity just obtained, and that of w in (2.16),
imply that ∇ϕ ∈ L2(0, T ;L∞(Ω)) and ∇w ∈ L2(0, T ;H). Hence, as w ∈ L∞(0, T ;H), it turns
out that ∇(β′(ϕ)w) ∈ L2(0, T ;H), i.e., β′(ϕ)w ∈ L2(0, T ;V ). Therefore, by also accounting
for (2.15), we conclude from (2.18) that w ∈ L2(0, T ;H3(Ω)). We could continue in improving the
regularity of ϕ. However, we just observe one more property of∇ϕ that will be needed in the sequel.
Namely, it holds that

|∇ϕ| ∈ L4(0, T ;L∞(Ω)), (2.23)

by virtue of the embedding L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)) ↪→ L4(0, T ;L∞(Ω)). We con-
clude this remark by observing that if (2.21) holds true for (ϕ, µ, w), then analogous estimates asso-
ciated to the regularity (2.22) and (2.23) are satisfied as well by the solution, since each of the above
steps also provides a corresponding estimate.

The second one regards continuous dependence of the solution with respect to the control variable u.

Theorem 2.4. Let the assumptions (2.3)–(2.8) on the structure of the system be fulfilled, as well as
(2.13) for ϕ0, and let ui ∈ L∞(Q), i = 1, 2, satisfy ‖ui‖∞ ≤M . If (ϕi, µi, wi) are the correspond-
ing solutions to system (2.17)–(2.20), then the estimate

‖ϕ1 − ϕ2‖C0([0,T ];V )∩L2(0,T ;H4(Ω)) + ‖µ1 − µ2‖L2(0,T ;H)

+ ‖w1 − w2‖L2(0,T ;W ) ≤ K2 ‖u1 − u2‖L2(0,T ;V ∗) (2.24)

holds true with a positive constant K2 that depends only on Ω, T , the structure of the system, the
initial datum ϕ0 and M .
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A sixth-order Cahn—Hilliard equation 7

As announced in the Introduction, we address an associated distributed control problem for system
(1.9)–(1.13). Here, we make our precise assumptions:

αi are nonnegative real numbers for i = 1, 2, 3. (2.25)

φQ ∈ L2(Q) and φΩ ∈ V. (2.26)

umin, umax ∈ L∞(Q) with umin ≤ umax a.e. in Q. (2.27)

Moreover, we define the cost functional, the control space, and the set of admissible controls, by
setting

J(u, ϕ) :=
α1

2

∫
Q

|ϕ− φQ|2 +
α2

2

∫
Ω

|ϕ(T )− φΩ|2 +
α3

2

∫
Q

|u|2 , (2.28)

U := L∞(Q), and Uad := {u ∈ U :umin ≤ u ≤ umax a.e. in Q}. (2.29)

Of course, for (2.28) to be meaningful, it suffices to require φΩ ∈ H , but that would not be enough to
handle the control problem for technical reasons that will be clarified later on (cf. Theorem 4.8). Thus,
the control problem under investigation is the following:

Minimize J(u, ϕ) under the conditions:

u ∈ Uad, and ϕ is the first component of the solution (ϕ, µ, w)

to the state system (2.17)–(2.20) associated with u. (2.30)

We have considered a basic form for the cost functional for simplicity. However, let us claim that we
can actually afford to include in the cost functional (2.28) an additional term involving the component
w and some target function wQ (see the forthcoming Remark 4.7).

In Section 4, we prove that there exist optimal controls and provide first-order necessary conditions
for u∗ to be an optimal control (or, more generally, a locally optimal control in the sense of Lp for
1 ≤ p ≤ +∞, see the concluding Remark 4.10), which reads as follows: if u∗ ∈ Uad is the optimal
control and (ϕ∗, µ∗, w∗) is the corresponding state, then the variational inequality∫

Q

(α3 u
∗ + p)(u− u∗) ≥ 0

is satisfied for every u ∈ Uad, where p is the first component of the solution (p, q, r) to a proper
adjoint system associated to (2.17)–(2.20). Here, for simplicity, we just confine ourselves to mention
that it is a suitable weak formulation of the following formal backward-in-time system

− ∂tp−∆r + σp+ f ′′(ϕ∗)w∗q − f ′(ϕ∗)r = α1(ϕ∗ − φQ) in Q,

q = −∆p in Q,

r + ∆q − νq − f ′(ϕ∗)q = 0 in Q,

complemented with the homogeneous Neumann boundary conditions for all the variables and the final
condition

p(T ) = α2(ϕ∗(T )− φΩ) in Ω.

We conclude this section by collecting some useful tools that will be employed throughout the paper.
Besides the Hölder inequality, we often account for the Young, Sobolev and Poincaré inequalities as

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024
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well as for some inequalities associated to elliptic regularity theory and to the compact embeddings
V ↪→ Lp(Ω) and W ↪→ V . In fact, we have

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0, (2.31)

‖v‖p ≤ CΩ‖v‖V for every v ∈ V and p ∈ [1, 6], (2.32)

‖v‖V ≤ CΩ

(
‖∇v‖+ |v|

)
for every v ∈ V , (2.33)

‖v‖W ≤ CΩ

(
‖∆v‖+ ‖v‖∗

)
for every v ∈ W , (2.34)

‖v‖p ≤ δ ‖∇v‖+ CΩ,p,δ ‖v‖∗ for every v ∈ V , p ∈ [1, 6) and δ > 0, (2.35)

‖v‖V ≤ δ ‖∆v‖+ CΩ,δ ‖v‖∗ for every v ∈ W and δ > 0, (2.36)

where v denotes the mean value of v and ‖ · ‖∗ a norm in V ∗ which will be introduced below in (2.40).
In the above inequalities, the constant CΩ depends only on Ω, while CΩ,δ and CΩ,p,δ also depend on
δ and (p, δ), respectively.

More generally, we define the generalized mean value v of a generic element v ∈ W ∗ by setting

v :=
1

|Ω|
〈v, 1〉W , (2.37)

where 1 stands for the constant function that takes the value 1 everywhere in Ω. For any s ∈ R, we
still denote by s the corresponding constant functions in Ω and Q. Notice that the above definition
(2.37) is meaningful, since 1 actually belongs toW , and that v reduces to the usual mean value when
v ∈ H . The same notation v is also employed if v is a time-dependent function.

Next, we recall an important tool which is commonly used when working with problems connected
to the Cahn–Hilliard equation. To this end, consider the weak formulation of the Poisson equation
−∆z = ζ with homogeneous Neumann boundary conditions. Namely, for a given ζ ∈ V ∗ (which
does not necessarily belong to H), we consider the problem of finding

z ∈ V such that

∫
Ω

∇z · ∇v = 〈ζ, v〉V for every v ∈ V . (2.38)

Since Ω is connected and smooth, it is well known that the above problem admits solutions z if and
only if ζ has zero mean value. Hence, we can introduce the following solution operator N by setting

N : dom(N) := {ζ ∈ V ∗ : ζ = 0} → {z ∈ V : z = 0}, N : ζ 7→ z, (2.39)

where z is the unique solution to (2.38) coupled with z = 0. It turns out that N is an isomorphism
between the above spaces, and it follows that the formula

‖ζ‖2
∗ := ‖∇N(ζ − ζ)‖2 + |ζ|2 for every ζ ∈ V ∗ (2.40)

defines a Hilbert norm in V ∗ that is equivalent to the standard dual norm of V ∗. From the above
properties, one can obtain the following identities:∫

Ω

∇Nζ · ∇v = 〈ζ, v〉V for every ζ ∈ dom(N) and v ∈ V , (2.41)

〈ζ,Nξ〉V = 〈ξ,Nζ〉V for every ζ, ξ ∈ dom(N), (2.42)

〈ζ,Nζ〉V =

∫
Ω

|∇Nζ|2 = ‖ζ‖2
∗ for every ζ ∈ dom(N). (2.43)
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A sixth-order Cahn—Hilliard equation 9

Moreover, we point out that

〈∂tζ(t),Nζ(t)〉V =
1

2

d

dt
‖ζ(t)‖2

∗ for a.a. t ∈ (0, T ) , (2.44)

which holds true for every ζ ∈ H1(0, T ;V ∗) satisfying ζ = 0 a.e. in (0, T ).

Finally, without further reference later on, we are going to employ the following convention: the small-
case symbol c denotes a generic constant that depends only on the structure of the system, Ω, T ,
the initial datum ϕ0, and the constant M that appears in (2.13). In particular, the values of c are
independent of u and the approximation parameter n we introduce in Section 3.1. Notice that the
meaning of c may vary from line to line and even within the same line. In addition, whenever a positive
constant δ enters the computation, the related symbol cδ, in place of a general c, denotes constants
that depend on δ, in addition. We use different notations for precise constants we could refer to, like,
e.g., in (2.32).

3 The state system

In this section, we prove Theorems 2.2 and 2.4. To this end, it is convenient to observe that our problem
can be formulated in an alternative equivalent way.

Proposition 3.1. If (ϕ, µ, w) satisfies (2.14)–(2.16) and solves (2.17)–(2.20), then the pair (ϕ, µ)
also solves the variational equation∫

Ω

∆ϕ∆v −
∫

Ω

∆β(ϕ) v −
∫

Ω

β′(ϕ)∆ϕv

+

∫
Ω

γ(ϕ) v + (2λ− ν)

∫
Ω

∆ϕv +

∫
Ω

g(ϕ) v

=

∫
Ω

µv a.e. in (0, T ), for every v ∈ W , (3.1)

where the function g : R → R is defined by (2.11). Conversely, if ϕ and µ satisfy the regularities in
(2.14)–(2.15) and the pair (ϕ, µ) solves (3.1), then we have the following:
(i) The function w given by

w := −∆ϕ+ β(ϕ)− λϕ (3.2)

satisfies (2.16) and the estimate

‖w‖L2(0,T ;W ) ≤ C
(
‖ϕ‖L2(0,T ;W ) + ‖µ‖L2(0,T ;H) + 1

)
, (3.3)

with a positive constant C that depends only on Ω, T and the structure of the system.
(ii) The triplet (ϕ, µ, w) solves (2.17)–(2.20).

Proof. We observe once and for all that (2.14), the continuous embedding W ↪→ L∞(Ω), and the
smoothness of β, imply that ϕ, β(ϕ), and β′(ϕ), are bounded in L∞(Q). Besides, throughout the
proof, we repeatedly owe to elliptic regularity theory.

Assume first that (ϕ, µ, w) satisfies (2.14)–(2.16) and solves the problem (2.17)–(2.19). Then, we
eliminate w in (2.18) by means of (2.19) to obtain that

−∆
(
−∆ϕ+ β(ϕ)− λϕ

)
+
(
β′(ϕ)− λ+ ν

)(
−∆ϕ+ β(ϕ)− λϕ

)
= µ a.e. in Q. (3.4)
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Now, we recall that w ∈ L2(0, T ;W ) and the identity

∆β(ϕ) = β′′(ϕ)|∇ϕ|2 + β′(ϕ)∆ϕ ,

where both |∇ϕ|2 and ∆ϕ belong to L∞(0, T ;H), the former since W ↪→ W 1,4(Ω). Hence,
∆β(ϕ) belongs to L∞(0, T ;H). Since ∂nβ(ϕ) = β′(ϕ)∂nϕ = 0 on Σ, we conclude that β(ϕ) ∈
L2(0, T ;W ), whence, by comparison in (2.19), we also have that ∆ϕ ∈ L2(0, T ;W ). Thus, we can
distribute the first Laplacian in (3.4) to the single summands. By recalling (2.11), we obtain that

∆2ϕ−∆β(ϕ)− β′(ϕ)∆ϕ+ γ(ϕ) + (2λ− ν)∆ϕ+ g(ϕ) = µ a.e. in Q . (3.5)

To derive (3.1), it suffices to multiply (3.5) by an arbitrary v ∈ W , integrate over Ω and use integration
by parts in the first integral along with the property that both ∆ϕ and v have a zero normal derivative
on Σ.

Conversely, assume that ϕ and µ fulfill (2.14)–(2.15) and the pair (ϕ, µ) solves (3.1). Then, since
∂nβ(ϕ) = 0 on Σ, it holds that∫

Ω

∆β(ϕ) v =

∫
Ω

β(ϕ)∆v a.e. in (0, T ), for every v ∈ W.

Hence, by recalling the definitions (2.5) and (2.11) of γ and g, we can rewrite (3.1) in the form∫
Ω

(
−∆ϕ− β(ϕ)− λϕ

)
(−∆v) +

∫
Ω

(
β′(ϕ)− λ+ ν

)(
−∆ϕ+ β(ϕ)− λϕ

)
v

=

∫
Ω

µv a.e. in (0, T ), for every v ∈ W.

Therefore, if w is given by (3.2), then w ∈ L∞(0, T ;H), and the equation (2.19) is satisfied. More-
over, since (3.1) has the form∫

Ω

∆ϕ∆v =

∫
Ω

hv for a.a. t ∈ (0, T ), for every v ∈ W ,

with h ∈ L2(0, T ;H), we deduce that ∆2ϕ ∈ L2(0, T ;H) and ∂n∆ϕ = 0 on Σ. Thus, we also
have that w ∈ L2(0, T ;H2(Ω)) and ∂nw = 0 on Σ, i.e., (2.16). Furthermore, it is clear that∫

Ω

w(−∆v) +

∫
Ω

(
β′(ϕ)− λ+ ν

)
w v =

∫
Ω

µv a.e. in (0, T ), for every v ∈ W,

from which we obtain (2.18) since w ∈ L2(0, T ;W ). Finally, we have that

‖w‖L2(0,T ;W ) ≤ c
(
‖µ‖L2(0,T ;H) + ‖w‖L2(0,T ;H)

)
≤ c

(
‖µ‖L2(0,T ;H) + ‖ϕ‖L2(0,T ;W ) + 1

)
,

that is, (3.3) with some computable constant C as in the statement.

Remark 3.2. Since both ϕ and w belong to L2(0, T ;W ), we conclude from (2.19) that

∆ϕ ∈ L2(0, T ;W ) . (3.6)

Hence, the first integral of (3.1) can be rewritten as
∫

Ω
∆2ϕv, and (3.1) itself is equivalent to

∆2ϕ−∆β(ϕ)− β′(ϕ)∆ϕ+ γ(ϕ) + (2λ− ν)∆ϕ+ g(ϕ) = µ a.e. in Q ,

that is, equation (3.5).

In summary, the problem (2.17)–(2.20) may be reformulated as:

Find (ϕ, µ) satisfying (2.14)–(2.15), (2.17), (3.1) and (2.20). (3.7)

In this new framework, due to (3.3), the stability estimate (2.21) is equivalent to the estimate obtained
by (2.21) itself by ignoring the part regarding w.
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3.1 Existence

In this section, we prove the existence and stability part of Theorem 2.2 by constructing a solution that
satisfies the estimate (2.21). By Proposition 3.1, we can consider the problem in the form expressed in
(3.7). To this end, we introduce a corresponding discretization by means of a Faedo–Galerkin scheme.

In this direction, let {λj}j≥1 and {ej}j≥1 be the sequence of the eigenvalues and an orthonormal
system of corresponding eigenfunctions of the Neumann problem for the Laplace equation, i.e., we
have that

0 = λ1 < λ2 ≤ λ3 ≤ . . . and lim
j→∞

λj = +∞ , (3.8)

ej ∈ V and

∫
Ω

∇ej · ∇v = λj

∫
Ω

ejv for every v ∈ V and j = 1, 2, . . . , (3.9)∫
Ω

eiej = δij for i, j = 1, 2, . . . , and {ej}j≥1 is a complete system in H , (3.10)

where δij is the Kronecker symbol. Notice that actually ej ∈ W , since Ω is assumed to be smooth,
and e1 is a constant eigenfunction. We set

Vn := span{e1, . . . , en}, for n = 1, 2, . . . , (3.11)

and observe that the union of these spaces is dense in both V andH . Besides, we point out once and
for all that V1 = span{e1} consists of the space of constant functions, which are therefore admissible
test functions in the Galerkin scheme.

Remark 3.3. We also notice that Vn ⊂ W for every n and that

Nv ∈ Vn for every v ∈ Vn with zero mean value. (3.12)

Indeed, if v ∈ Vn has zero mean value, then it can be represented as v =
∑n

j=2cjej for suitable
coefficients cj , j = 2, . . . , n. On the other hand, the condition z = Nv means that

z ∈ W, z = 0 and −∆z = v in Ω, (3.13)

whence from (3.9) it easily follows that z :=
∑n

j=2λ
−1
j cjej ∈ Vn solves (3.13).

Next, let Pn : H → Vn be the orthogonal projection operator onto Vn, and let Y be any of the spaces
H , V and W . Then, we have that

‖Pnv‖Y ≤ CΩ ‖v‖Y for every v ∈ Y , (3.14)

where the constant CΩ (with CΩ = 1 if Y = H) depends only on Ω. Moreover, if v ∈ L2(0, T ;Y )
and vn is defined by vn(t) := Pn(v(t)) for a.a. t ∈ (0, T ), then

‖vn‖L2(0,T ;Y ) ≤ CΩ ‖v‖L2(0,T ;Y ), and vn → v strongly in L2(0, T ;Y ). (3.15)

These properties are straightforward if Y = H , whereas for the other cases, we refer, e.g., to [3,
Rem 3.3].

We are now ready to state the discrete problem: find a pair (ϕn, µn) with

ϕn ∈ H1(0, T ;Vn) and µn ∈ L2(0, T ;Vn), (3.16)
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∫
Ω

∂tϕn v +

∫
Ω

∇µn · ∇v + σ

∫
Ω

ϕnv =

∫
Ω

uv a.e. in (0, T ), for every v ∈ Vn, (3.17)∫
Ω

∆ϕn ∆v −
∫

Ω

∆β(ϕn) v −
∫

Ω

β′(ϕn)∆ϕn v

+

∫
Ω

γ(ϕn) v + (2λ− ν)

∫
Ω

∆ϕn v +

∫
Ω

g(ϕn) v

=

∫
Ω

µn v a.e. in (0, T ), for every v ∈ Vn, (3.18)∫
Ω

ϕn(0) v =

∫
Ω

ϕ0 v for every v ∈ Vn, (3.19)

where the last condition implies that ϕn(0) = Pn(ϕ0).

Theorem 3.4. For every n ∈ N, there exists a unique pair (ϕn, µn) satisfying (3.16)–(3.19).

Proof. First of all, let us fix n ∈ N. We expand the sought solution in the form

ϕn(t) =
n∑
j=1

ϕnj(t)ej , µn(t) =
n∑
j=1

µnj(t)ej ,

and introduce the real unknowns of the problem, which are the vector-valued functions ϕn, µn and
un (to be intended as columns), by setting, for a.a. t ∈ (0, T ),

ϕn(t) := (ϕnj(t))
n
j=1 , µn(t) := (µnj(t))

n
j=1 and un(t) := (unj(t))

n
j=1 ,

where unj(t) =

∫
Ω

u(t)ej for j = 1, . . . , n.

We aim at presenting the above problem as a system of ordinary differential equations in the unknown
(ϕn,µn). To this end, we recall the identity

−∆β(ϕn) = −β′′(ϕn)|∇ϕn|2 − β′(ϕn)∆ϕn.

From this, for i = 1, . . . , n, we have that∫
Ω

(
−∆β(ϕn)− β′(ϕn)∆ϕn

)
ei

= −
∫

Ω

β′′(ϕn)
∣∣∣ n∑
j=1

ϕnj∇ej
∣∣∣2 ei − 2

∫
Ω

β′(ϕn)
n∑
j=1

ϕnjλjejei .

Then, the system (3.16)–(3.18) is equivalent to the vector-valued system

ϕn ∈ H1(0, T ;Rn) and µn ∈ L2(0, T ;Rn) , (3.20)

ϕ′n + Aµn + σϕn = un , (3.21)

B2ϕn + B(ϕn)− 2F(ϕn) + G(ϕn)− (2λ− ν)Bϕn = µn , (3.22)

where the matrices A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 are defined by

aij :=

∫
Ω

∇ej · ∇ei and bij := λiδij, for i, j = 1, . . . , n,
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and B : Rn → Rn, F : Rn → Rn and G : Rn → Rn are the functions whose ith components, for
i = 1, . . . , n, are defined by

Bi(s1, . . . , sn) := −
∫

Ω

{
β′′
(∑n

j=1sjej

)∣∣∣ n∑
j=1

sj∇ej
∣∣∣2 ei} ,

Fi(s1, . . . , sn) :=

∫
Ω

{
β′
(∑n

j=1sjej

) n∑
j=1

sjλjejei

}
,

Gi(s1, . . . , sn) :=

∫
Ω

{
(γ + g)

(∑n
j=1sjej

)
ei

}
.

Notice that these functions are well-defined, since the eigenfunctions are bounded in view of the
embedding W ↪→ L∞(Ω). For the same reason, one can differentiate under the integral sign, so that
they are (at least) of class C1. At this point, we eliminate µn in (3.21) by using (3.22) as definition
of µn, thus obtaining a system of ordinary differential equations in the only unknown ϕn. The local
Lipschitz continuity just observed ensures that every Cauchy problem for this system has a unique
maximal solution (which is even more regular than required). This is the case if the initial condition
for ϕn is that derived from (3.19), so that the discrete problem (3.16)–(3.19) has a unique maximal
solutionϕn defined in some interval [0, Tn], with Tn ∈ (0, T ]. To complete the proof, we have to show
that Tn = T . We do this by proving some a priori estimates that are uniform with respect to n. Since
the established bounds prove to be useful in the following, we start to enumerate them.

First a priori estimate. To begin with, we recall the previous comment concerning the space V1. We
then test (3.17) by 1/|Ω|∈ V1 to obtain an ordinary differential equation for ϕn. Namely, we have that

d

dt
ϕn + σϕn = u a.e. in (0, Tn) . (3.23)

By also observing that ϕn(0) = ϕ0, we immediately deduce that

‖ϕn‖L∞(0,Tn) ≤ C∗ , (3.24)

where, for further reference, we have used the special symbol C∗ instead of c.

Second a priori estimate. We recall the definition (2.39) of N and (3.12), and we interpret the
functions ϕn and u as space-independent functions defined in Ω × (0, Tn), and thus (3.23) as a
partial differential equation. We multiply it by v, integrate over Ω, subtract the result from (3.17), and
test the resulting equation by N(ϕn − ϕn). At the same time, we test (3.18) by ϕn − ϕn. Then, we
add the resulting equalities to each other. By recalling the properties (2.39)–(2.44) of N, which also
produce a cancellation, we rearrange the terms and infer that a.e. in (0, Tn) it holds that

d

dt
‖ϕn − ϕn‖2

∗ + σ‖ϕn − ϕn‖2
∗

+

∫
Ω

|∆ϕn|2 +

∫
Ω

β′(ϕn)|∇ϕn|2 +

∫
Ω

γ(ϕn)(ϕn − ϕn)

=

∫
Ω

β′(ϕn)∆ϕn (ϕn − ϕn)− (2λ− ν)

∫
Ω

∆ϕn (ϕn − ϕn)

−
∫

Ω

g(ϕn)(ϕn − ϕn) +

∫
Ω

uN(ϕn − ϕn) , (3.25)
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where in the last term we have written u in place of u − u since N(ϕn − ϕn) is orthogonal to the
space of constant functions V1 to which u belongs. As for the left-hand side, we notice that β′ is
nonnegative, so that we just have to deal with the last term, but this can be readily handled by using
that γ is monotone, as remarked in (2.9). Namely, there exist some δ0 > 0 and C0 > 0, such that

γ(s)(s− s0) ≥ δ0|γ(s)| − C0 for every s ∈ R and s0 ∈ [−C∗, C∗] , (3.26)

where C∗ is the constant introduced in (3.24). This inequality is similar to the one proved in [18,
Appendix, Prop. A.1] (see also the detailed argument given in [10, p. 908] with a fixed s0, which works
in the present case with only minor modifications). By applying it, we find that∫

Ω

γ(ϕn)(ϕn − ϕn) ≥ δ0

∫
Ω

|γ(ϕn)| − c a.e. in (0, Tn) . (3.27)

Now, we consider the terms on the right-hand side of (3.25). We have that∫
Ω

β′(ϕn)∆ϕn (ϕn − ϕn) = −
∫

Ω

∇ϕn ·
(
β′′(ϕn)(ϕn − ϕn)∇ϕn + β′(ϕn)∇ϕn

)
= −

∫
Ω

(
β′′(ϕn)− β′′(ϕn)

)
(ϕn − ϕn)|∇ϕn|2 −

∫
Ω

(
β′′(ϕn)(ϕn − ϕn) + β′(ϕn)

)
|∇ϕn|2

≤ −
∫

Ω

(
β′′(ϕn)(ϕn − ϕn) + β′(ϕn)

)
|∇ϕn|2 a.e. in (0, Tn), (3.28)

where we have used the monotonicity of β′′ implied by (2.6). To estimate the last integral, we perform
almost everywhere in Ω × (0, Tn) a Taylor expansion of β′ about ϕn using the integral remainder,
and then first account for the sign of β′′′ and then for (3.24). Then, we have almost everywhere in
Ω× (0, Tn) that

−
(
β′′(ϕn)(ϕn − ϕn) + β′(ϕn)

)
= −β′(ϕn)− 2β′′(ϕn)(ϕn − ϕn)−

[∫ 1

0

β′′′
(
ϕn + s(ϕn − ϕn)

)
(1− s) ds

]
(ϕn − ϕn)2

≤ −β′(ϕn)− 2β′′(ϕn)(ϕn − ϕn) ≤ Ĉ (|ϕn|+ 1) , (3.29)

where we have employed the special symbol Ĉ instead of c, since now we use its precise value. Now
observe that by (2.7) we can find some s1 > 0 such that

Ĉ(|s|+ 1) ≤ 1

2
β′(s) for |s| > s1.

At this point, we fix an arbitrary t ∈ (0, Tn) for which (3.25) and (3.27)–(3.29), written at the argument
t, hold true (we know that this is actually the case for almost every t ∈ (0, Tn)). We then put Ω1 :=
{x ∈ Ω : |ϕn(x, t)| > s1} and conclude that

Ĉ

∫
Ω

(|ϕn(t)|+ 1)|∇ϕn(t)|2 = Ĉ

∫
Ω1

(|ϕn(t)|+ 1)|∇ϕn(t)|2 + Ĉ

∫
Ω\Ω1

(|ϕn(t)|+ 1)|∇ϕn(t)|2

≤ 1

2

∫
Ω

β′(ϕn(t))|∇ϕn(t)|2 + Ĉ (s1 + 1)

∫
Ω

|∇ϕn(t)|2 ,
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where we also used that β′ is nonnegative. For the last integral, we make use of the compactness
inequality (2.36), which yields that

Ĉ (s1 + 1)

∫
Ω

|∇ϕn(t)|2 ≤ 1

4

∫
Ω

|∆ϕn(t)|2 + c ‖ϕn(t)‖2
∗

≤ 1

4

∫
Ω

|∆ϕn(t)|2 + c ‖ϕn(t)− ϕn(t)‖2
∗ + c ,

where c is independent of both t and n. Thus, we deduce that

−
∫

Ω

(
β′′(ϕn)(ϕn − ϕn) + β′(ϕn)

)
|∇ϕn|2 ≤ c

∫
Ω

(|ϕn|+ 1)|∇ϕn|2

≤ 1

2

∫
Ω

β′(ϕn)|∇ϕn|2 +
1

4

∫
Ω

|∆ϕn|2 + c ‖ϕn − ϕn‖2
∗ + c a.e. in (0, Tn). (3.30)

With this, the estimation of the first term on the right-hand side of (3.25) is completed. Next, by Young’s
inequality and the compactness inequality (2.36), we have that

− (2λ− ν)

∫
Ω

∆ϕn (ϕn − ϕn) ≤ 1

8

∫
Ω

|∆ϕn|2 + c

∫
Ω

|ϕn − ϕn|2

≤ 1

4

∫
Ω

|∆ϕn|2 + c ‖ϕn − ϕn‖2
∗ a.e. in (0, Tn). (3.31)

To treat the next term of (3.25), we observe that (2.12) ensures, similar to above, the existence of
some s2 > 0 such that

|g(s)|
(
|s|+ C∗

)
≤ δ0

2
|γ(s)| whenever |s| > s2 ,

where C∗ is the constant appearing in (3.24) and δ0 is the same as in (3.26).

We now consider an arbitrary t ∈ (0, Tn) for which (3.25) and (3.27)–(3.31), evaluated at t, hold true
(this is the case for a.e. t ∈ (0, Tn)), and put Ω2 := {x ∈ Ω : |ϕn(x, t)| > s2}. Then, it turns out
that

−
∫

Ω

g(ϕn(t))(ϕn(t)− ϕn(t))

≤
∫

Ω2

|g(ϕn(t))| (|ϕn(t)|+ C∗) +

∫
Ω\Ω2

|g(ϕn(t))| (|ϕn(t)|+ C∗)

≤ δ0

2

∫
Ω

|γ(ϕn(t))|+ c ,

where, again, c is independent of both t and n. Finally, we easily see that∫
Ω

uN(ϕn − ϕn) ≤ c ‖u‖∗ ‖N(ϕn − ϕn)‖V ≤ c ‖ϕn − ϕn‖2
∗ + c a.e. in (0, Tn),

where we have used the inequalities ‖v‖∗ ≤ c ‖v‖∞ for v ∈ L∞(Ω) with v = u, and ‖u‖∞ ≤ M ,
which we assumed in (2.13). At this point, we go back to (3.25), collect the estimates just proved, and
rearrange the terms. Ignoring a nonnegative term on the left-hand side, we deduce that

d

dt
‖ϕn − ϕn‖2

∗ +
1

2

∫
Ω

|∆ϕn|2 +
1

2

∫
Ω

β′(ϕn)|∇ϕn|2 +
δ0

2

∫
Ω

|γ(ϕn)|

≤ c ‖ϕn − ϕn‖2
∗ + c a.e. in (0, Tn).
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Now, we integrate over (0, t) with an arbitrary t ∈ (0, Tn]. This integration produces the initial
value ϕn(0), and since ϕn(0) is the H-orthogonal projection of ϕ0 onto Vn by (3.19), we have that

‖ϕn(0)‖∗ ≤ c ‖ϕn(0)‖ ≤ c ‖ϕ0‖ .

Thus, by applying the Gronwall lemma, we can conclude that

‖ϕn‖L∞(0,Tn;V ∗) ≤ c . (3.32)

Now, since Rn is finite dimensional, there holds with some cn > 0 the inequality

|(s1, . . . , sn)| ≤ cn

∥∥∥∑n
j=1 sjej

∥∥∥
V ∗

for every (s1, . . . , sn) ∈ Rn.

Hence, (3.32) implies that
‖ϕn‖L∞(0,Tn;Rn) ≤ cn ,

that is, that ϕn is uniformly bounded. Since ϕn is also maximal, it has to be global. Thus, Tn = T ,
and the proof is complete.

The rest of the present subsection is devoted to the existence and stability part of Theorem 2.2. To
this end, we first upgrade and improve the estimates already obtained, and then perform further ones.
The first estimate (3.24) yields an L∞ bound for ϕn. However, we immediately find from (3.23) that
the derivative of ϕn is bounded as well. Hence, we have that

‖ϕn‖W 1,∞(0,T ) ≤ c . (3.33)

Next, the above argument involving Gronwall’s lemma, which now can be applied for arbitrary t ∈
(0, T ], leads to the estimate

‖ϕn − ϕn‖L∞(0,T ;V ∗) + ‖∆ϕn‖L2(0,T ;H) + ‖β′(ϕn)|∇ϕn|2‖L1(Q) + ‖γ(ϕn)‖L1(Q) ≤ c . (3.34)

Thus, on account of (3.33), we realize that ϕn is bounded in L∞(0, T ;V ∗), and by also invoking the
elliptic regularity theory, we conclude that

‖ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;W ) ≤ c . (3.35)

Third a priori estimate. We now test (3.18) by 1 ∈ V1, obtaining that

|Ω|µn = −
∫

Ω

β′(ϕn)∆ϕn +

∫
Ω

(
γ(ϕn) + g(ϕn)

)
a.e. in (0, T ). (3.36)

Now, by also accounting for the growth condition in (2.8), we infer that∣∣∣−∫
Ω

β′(ϕn)∆ϕn

∣∣∣ =
∣∣∣∫

Ω

∇ϕn · ∇β′(ϕn)
∣∣∣

≤
∫

Ω

|β′′(ϕn)| |∇ϕn|2 ≤ c

∫
Ω

(β′(ϕn) + 1)|∇ϕn|2 a.e. in (0, T ). (3.37)

On the other hand, the definition (2.11) of g, (2.12), and the continuity of the involved functions, im-
ply that

|g(s)| ≤ c (|γ(s)|+ 1) for every s ∈ R. (3.38)
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Hence, recalling (3.34)–(3.35), we conclude that

‖µn‖L1(0,T ) ≤ c . (3.39)

Fourth a priori estimate. We test (3.17) by µn and have a.e. in (0, T ) that∫
Ω

∂tϕn µn +

∫
Ω

|∇µn|2 =

∫
Ω

(u− σϕn)µn . (3.40)

Next, we rewrite (3.18) in terms of the original potential, as∫
Ω

∆ϕn ∆v −
∫

Ω

∆f(ϕn) v −
∫

Ω

f ′(ϕn)∆ϕn v

− ν
∫

Ω

∆ϕn v +

∫
Ω

f(ϕn) f ′(ϕn) v + ν

∫
Ω

f(ϕn) v

=

∫
Ω

µn v a.e. in (0, T ), for every v ∈ Vn ,

and test it by ∂tϕn. Moreover, we perform an integration by parts on the left-hand side, where we recall
that both ϕn and ∂tϕn are W -valued. We obtain that∫

Ω

(−∆ϕn) (−∆∂tϕn)−
∫

Ω

f(ϕn)∆∂tϕn −
∫

Ω

f ′(ϕn)∆ϕn ∂tϕn

− ν
∫

Ω

∆ϕn ∂tϕn +

∫
Ω

f(ϕn) f ′(ϕn) ∂tϕn + ν

∫
Ω

f(ϕn) ∂tϕn

=

∫
Ω

µn ∂tϕn a.e. in (0, T ), (3.41)

and recognize the time derivative of E(ϕn) (see (1.7)) on the left-hand side. Hence, by adding the
equalities (3.40) and (3.41) to each other, rearranging, and noting an obvious cancellation, we de-
duce that

d

dt
E(ϕn) +

∫
Ω

|∇µn|2 =

∫
Ω

(u− σϕn)µn a.e. in (0, T ).

Integration over (0, t), for an arbitrary t ∈ (0, T ], then yields that, recalling the definition (2.1) of Qt,

1

2

∫
Ω

|−∆ϕn(t) + f(ϕn(t))|2 +
ν

2

∫
Ω

|∇ϕn(t)|2 + ν

∫
Ω

F (ϕn(t))+

∫
Qt

|∇µn|2

=
1

2

∫
Ω

|−∆ϕn(0) + f(ϕn(0))|2 +
ν

2

∫
Ω

|∇ϕn(0)|2 + ν

∫
Ω

F (ϕn(0))

+

∫
Qt

(u− σϕn)µn for every t ∈ [0, T ]. (3.42)

The left-hand side is bounded from below (see (2.10)). As for the terms involving the initial value,
we recall that ϕ0 ∈ W and that ‖ϕn(0)‖W is bounded (see (2.13) and Remark 3.3). Thus, also
‖ϕn(0)‖∞ is bounded due to the continuous embedding W ↪→ L∞(Ω), so that all of the terms
involving the initial value are bounded. Let us estimate the last term on the right-hand side of (3.42). It
holds that ∫

Qt

(u− σϕn)µn =

∫
Qt

(u− σϕn)(µn − µn) +

∫
Qt

(u− σϕn)µn ,
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where the Young and Poincaré inequalities imply that∫
Qt

(u− σϕn)(µn − µn) ≤ 1

2

∫
Qt

|∇µn|2 + c

∫
Qt

(|u|2 + |ϕn|2
)
≤ 1

2

∫
Qt

|∇µn|2 + c .

In the last inequality, we made use of (2.13) and (3.39), which also justify the computations to follow.
Indeed, owing to (3.35) as well, we can estimate the remaining term this way:∫

Qt

(u− σϕn)µn ≤ c

∫ T

0

‖u(s)− σϕn(s)‖∗ ‖µn(s)‖V ds

= c

∫ T

0

‖u(s)− σϕn(s)‖∗ |µn(s)| ds ≤ c ‖u− σϕn‖L∞(0,T ;V ∗) ‖µn‖L1(0,T ) ≤ c .

Collecting the above computations, we conclude that

‖−∆ϕn + f(ϕn)‖L∞(0,T ;H) + ‖∇ϕn‖L∞(0,T ;H)

+ ‖F (ϕn)‖L∞(0,T ;L1(Ω))+‖∇µn‖L2(0,T ;H) ≤ c .

By a standard argument regarding the elliptic operator −∆ + f(·), and accounting for (3.34) once
more, we deduce that

‖ϕn‖L∞(0,T ;W ) + ‖f(ϕn)‖L∞(0,T ;H) + ‖F (ϕn)‖L∞(0,T ;L1(Ω))+‖∇µn‖L2(0,T ;H) ≤ c . (3.43)

Fifth a priori estimate. Thanks to the continuous embedding W ↪→ L∞(Ω), we have that
L∞(0, T ;W ) ↪→ L∞(Q). Therefore, also using the regularity of the nonlinearities, we deduce from
(3.43) that

‖ϕn‖∞ ≤ c , ‖β′(ϕn)‖∞ ≤ c , and ‖γ(ϕn)‖∞ ≤ c , a.e. in (0, T ) .

Hence, coming back to (3.36) and (3.38), we conclude that

‖µn‖L∞(0,T ) ≤ c ,

which, together with (3.43) and Poincaré’s inequality, produces

‖µn‖L2(0,T ;V ) ≤ c . (3.44)

Sixth a priori estimate. We take any v ∈ L2(0, T ;V ) and define vn ∈ L2(0, T ;Vn) by setting
vn(t) := Pnv(t) for a.a. t ∈ (0, T ). Then, we test (3.17) by vn. Noting that ∂tϕn(t) ∈ Vn for a.a.
t ∈ (0, T ), and owing to the above estimates along with Remark 3.3, we obtain that∫

Q

∂tϕn v =

∫
Q

∂tϕn vn =

∫
Q

(u− σϕn)vn −
∫
Q

∇µn · ∇vn

≤ c ‖vn‖L2(0,T ;V ) ≤ c ‖v‖L2(0,T ;V ) ,

from which it is readily seen that
‖∂tϕn‖L2(0,T ;V ∗) ≤ c . (3.45)
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Conclusion of the existence proof. Eventually, by letting n tend to infinity, we find a solution (ϕ, µ)
to the equations (2.17) and (3.1) that satifies the initial condition (2.20). Recalling all the above es-
timates, and invoking well-known compactness results (for the strong compactness see, e.g., [26,
Sect. 8, Cor. 4]), we have that, as n→∞,

ϕn → ϕ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;W ),

strongly in C0([0, T ];V ) and uniformly in Q , (3.46)

µn → µ weakly in L2(0, T ;V ) , (3.47)

for some pair (ϕ, µ), and at least for a (nonrelabeled) subsequence. Notice that also the inequality
obtained from (2.21) by ignoring the part regarding w is satisfied, due to the semicontinuity of norms.

By (3.46), {ϕn(0)} converges to ϕ(0) strongly in V . On the other hand, since ϕn(0) is the H-
projection ofϕ0 onto Vn, it converges toϕ0 strongly inH . Hence, the initial condition (2.20) is satisfied.
We show that the equations (2.17) and (3.1) are satisfied as well. Since {ϕn} is uniformly bounded
in L∞(Q), and since the involved nonlinearities in the original system are smooth and thus Lipschitz
continuous on bounded sets, we can deduce that

β(i)(ϕn)→ β(i)(ϕ) uniformly in Q, for i = 0, 1, 2. (3.48)

At this point, we write the time-integrated version of (3.17) and (3.18), namely∫
Q

∂tϕn vn+

∫
Q

∇µn · ∇vn + σ

∫
Q

ϕnvn =

∫
Q

uvn for every vn ∈ L2(0, T ;Vn) , (3.49)∫
Q

∆ϕn ∆vn −
∫
Q

∆β(ϕn) vn −
∫
Q

β′(ϕn)∆ϕn vn

+

∫
Q

γ(ϕn) vn + (2λ− ν)

∫
Q

∆ϕn vn +

∫
Q

g(ϕn) vn

=

∫
Q

µn vn for every vn ∈ L2(0, T ;Vn) . (3.50)

Our aim is to take the limit as n → ∞ in these equations with V - or W -valued test functions. We fix
v ∈ L2(0, T ;V ) and take as vn in (3.49) the function defined by setting vn(t) := Pnv(t) for a.a.
t ∈ (0, T ). Then, {vn} converges to v strongly in L2(0, T ;V ) by Remark 3.3, and we have that∫

Q

∂tϕv +

∫
Q

∇µ · ∇v + σ

∫
Q

ϕv =

∫
Q

uv .

Since v is arbitrary in L2(0, T ;V ), this is equivalent to (2.17). Similarly, given an arbitrary v ∈
L2(0, T ;W ), we test (3.50) by the function vn defined as before. Now, {vn} converges to v strongly
in L2(0, T ;W ). To take the limit in (3.50), it is convenient to transform one of the terms as follows:

−
∫
Q

∆β(ϕn) vn =

∫
Q

β′(ϕn)∇ϕn · ∇vn .

Then we obtain that∫
Q

∆ϕ∆v +

∫
Q

β′(ϕ)∇ϕ · ∇v −
∫
Q

β′(ϕ)∆ϕv

+

∫
Q

γ(ϕ) v + (2λ− ν)

∫
Ω

∆ϕv +

∫
Q

g(ϕ) v =

∫
Q

µ v . (3.51)

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



P. Colli, G. Gilardi, A. Signori, J. Sprekels 20

Now, we have that {ϕn} converges to ϕ strongly in C0([0, T ];W 1,4(Ω)) thanks to the just quoted
strong compactness result and the compactness of the embedding W ↪→ W 1,4(Ω). It follows that
{∇ϕn} converges to∇ϕ strongly in C0([0, T ];L4(Ω)), and {|∇ϕn|2} converges to |∇ϕ|2 strongly
in C0([0, T ];H). Since

∆β(ϕn) = β′′(ϕn)|∇ϕn|2 + β′(ϕn)∆ϕn ,

we deduce that {∆β(ϕn)} strongly converges (at least) in L2(0, T ;H), as n→∞, and that its limit
must be ∆β(ϕ), due to (3.48). Hence we can write∫

Q

β′(ϕ)∇ϕ · ∇v = −
∫
Q

∆β(ϕ) v

in (3.51). Since v is arbitrary in L2(0, T ;W ), we infer that (3.51) is equivalent to (3.1), thus concluding
the proof.

3.2 Uniqueness and continuous dependence

This subsection is devoted to the proof of the uniqueness of the solution to the problem (2.17)–(2.20)
and the continuous dependence estimate (2.24). Thanks to Proposition 3.1, we can deal with the
alternative formulation in (3.7). The outline of our strategy is as follows: (i) prove an inequality in the
direction of (2.24) for arbitrary pairs of solutions; (ii) derive uniqueness; (iii) complete the proof
of (2.24). First, let us fix two functions ui ∈ L∞(Q) with ‖ui‖∞ ≤ M , i = 1, 2, consider arbitrary
corresponding solutions (ϕi, µi) as given by Theorem 2.2, and set for convenience

u := u1 − u2 , ϕ := ϕ1 − ϕ2 , and µ := µ1 − µ2 .

We first write (2.17) for both solutions and take the difference. We thus find that

〈∂tϕ, v〉V +

∫
Ω

∇µ · ∇v + σ

∫
Ω

ϕv =

∫
Ω

uv a.e. in (0, T ), for every v ∈ V . (3.52)

We test this equation by 1/|Ω|, obtaining an identity for ϕ, which we then multiply by any v ∈ V to
obtain the equation

〈∂tϕ, v〉V + σ

∫
Ω

ϕv =

∫
Ω

uv a.e. in (0, T ), for every v ∈ V . (3.53)

Next, we take the difference between (3.52) and (3.53) and test it byN(ϕ−ϕ). Recalling the properties
(2.39)–(2.44), we have a.e. in (0, T ) that

1

2

d

dt
‖ϕ− ϕ‖2

∗ +

∫
Ω

µ(ϕ− ϕ) + σ ‖ϕ− ϕ‖2
∗ =

∫
Ω

(u− u)N(ϕ− ϕ) . (3.54)

At the same time, we write (3.1) for both solutions and test the difference by ϕ−ϕ. Upon rearranging,
we obtain that∫

Ω

|∆ϕ|2 = −
∫

Ω

∇
(
β(ϕ1)− β(ϕ2)

)
· ∇ϕ

+

∫
Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
(ϕ− ϕ)−

∫
Ω

(
γ(ϕ1)− γ(ϕ2)

)
(ϕ− ϕ)

+ (2λ− ν)

∫
Ω

|∇ϕ|2 −
∫

Ω

(
g(ϕ1)− g(ϕ2)

)
(ϕ− ϕ) +

∫
Ω

µ(ϕ− ϕ) . (3.55)
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Now, we estimate the integrals on the right-hand side. For a while, we allow the values of c to depend
on the solutions we have fixed. In particular, since ϕ1 and ϕ2 are bounded, we can make use of the
Lipschitz continuity of the nonlinearities on their range, the Lipschitz constant being dependent on
these solutions. To begin with, we have for the right-hand side of (3.54) that∫

Ω

(u− u)N(ϕ− ϕ) =

∫
Ω

uN(ϕ− ϕ) ≤ ‖N(ϕ− ϕ)‖V ‖u‖V ∗

≤ c ‖ϕ− ϕ‖∗ ‖u‖∗ ≤
σ

2
‖ϕ− ϕ‖2

∗ + c ‖u‖2
∗ .

Next, we deal with the right-hand side of (3.55). To estimate the first term, we recall that β′ is nonneg-
ative, the continuity of the embedding W ↪→ W 1,4(Ω), and the regularity (2.14) for ϕ1. Moreover, we
owe to the Lipschitz continuity of β′ and the Hölder inequality, and apply the compactness inequal-
ity (2.36). For every δ > 0, it holds that

−
∫

Ω

∇
(
β(ϕ1)− β(ϕ2)

)
· ∇ϕ = −

∫
Ω

(
β′(ϕ1)∇ϕ1 − β′(ϕ2)∇ϕ2

)
· ∇ϕ

= −
∫

Ω

(
β′(ϕ1)− β′(ϕ2)

)
∇ϕ1 · ∇ϕ−

∫
Ω

β′(ϕ2)|∇ϕ|2 ≤ c

∫
Ω

|ϕ| |∇ϕ1| |∇ϕ|

≤ c ‖ϕ‖4 ‖∇ϕ1‖4 ‖∇ϕ‖ ≤ c ‖ϕ‖2
V ≤ δ

∫
Ω

|∆ϕ|2 + cδ ‖ϕ‖2
∗ .

Now observe that the procedure used to derive (3.23) can be applied to ϕ and u, so that the pointwise
values of ϕ can be estimated by the L2 norm of u, and thus also by the norm of u in L2(0, T ;V ∗).
We therefore have

|ϕ| ≤ c ‖u‖L2(0,T ;V ∗) a.e. in (0, T ),

whence we conclude that

‖ϕ‖2
∗ ≤ 2 ‖ϕ− ϕ‖2

∗ + 2 ‖ϕ‖2
∗ ≤ 2 ‖ϕ− ϕ‖2

∗ + c |ϕ|2 ≤ 2 ‖ϕ− ϕ‖2
∗ + c ‖u‖2

L2(0,T ;V ∗) .

Therefore, we find that

−
∫

Ω

∇
(
β(ϕ1)− β(ϕ2)

)
· ∇ϕ ≤ δ

∫
Ω

|∆ϕ|2 + cδ ‖ϕ− ϕ‖2
∗ + cδ ‖u‖2

L2(0,T ;V ∗) .

Mimicking this argument, we find for the next term that∫
Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
(ϕ− ϕ)

=

∫
Ω

(
β′(ϕ1)− β′(ϕ2)

)
∆ϕ1 (ϕ− ϕ) +

∫
Ω

β′(ϕ2)∆ϕ (ϕ− ϕ)

≤ c ‖ϕ‖4 ‖∆ϕ1‖ ‖ϕ− ϕ‖4 + c ‖∆ϕ‖ ‖ϕ− ϕ‖
≤ c ‖ϕ‖V ‖ϕ− ϕ‖V + c ‖∆ϕ‖ ‖ϕ− ϕ‖

≤ c ‖ϕ− ϕ‖2
V + c ‖u‖2

L2(0,T ) + δ

∫
Ω

|∆ϕ|2 + cδ ‖ϕ− ϕ‖2

≤ 3δ

∫
Ω

|∆ϕ|2 + cδ ‖ϕ− ϕ‖2
∗ + c ‖u‖2

L2(0,T ;V ∗) .

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



P. Colli, G. Gilardi, A. Signori, J. Sprekels 22

Since γ and g are Lipschitz continuous on the range of the solutions under consideration, the sum S
of the next three terms can be treated as before using the compactness inequality, namely

S ≤ ‖ϕ‖2‖ϕ− ϕ‖2 + ‖ϕ− ϕ‖2
V ≤ 2δ

∫
Ω

|∆ϕ|2 + cδ ‖ϕ− ϕ‖2
∗ + c ‖u‖2

L2(0,T ;V ∗) .

At this point, we add (3.54) and (3.55) to each other and notice the cancellation of the terms involving
the chemical potentials. Then, we account for all of the above estimates, choose δ small enough,
integrate with respect to time, and apply the Gronwall lemma to conclude that

‖ϕ‖L∞(0,T ;V ∗) + ‖∆ϕ‖L2(0,T ;H) ≤ c ‖u‖L2(0,T ;V ∗) . (3.56)

In this estimate, the constant c depends on the solutions we have considered. Nevertheless, by apply-
ing it in the case u1 = u2, we derive that ϕ1 = ϕ2. Then, by also considering the third components
wi of the solutions to the original problem, and recalling first (2.19) and then (2.18), we deduce that
w1 = w2 and µ1 = µ2. This proves the uniqueness part of Theorem 2.2.

Now, we come back to (3.56) and observe that the uniqueness just established implies that the solu-
tions ϕi, for i = 1, 2, at hand must coincide with those constructed in our existence proof. Therefore,
their norms we have considered in this proof are uniformly bounded as specified in the stability in-
equality. We conclude that the constant c that appears in (3.56) can be estimated in terms of Ω, T ,
the structure of the system, the initial datum ϕ0 and M .

So, from now on, the symbol c denotes constants that just depend on Ω, T , the structure of the system,
the initial datum ϕ0, and M , as before, since the norms of the solutions involved in our argument can
be controlled by the stability estimate (2.21). In particular, this holds for the estimate

‖ϕ‖L∞(0,T ;V ∗)∩L2(0,T ;W ) ≤ c ‖u‖L2(0,T ;V ∗) , (3.57)

which is obtained from (3.56) on account of elliptic regularity.

We are now going to continue the stability analysis of (2.17)–(2.20) with respect to the control variable.
This will be a crucial result in the derivation of first-order optimality conditions for the associated optimal
control problem. Thus, we write (2.17) for both solutions and test the difference by ϕ. At the same time,
recalling (3.6), we write (3.1) for both solutions and test the difference by −∆ϕ. Then we add the
resulting equalities to each other and rearrange, noticing that a cancellation occurs. By this procedure,
we obtain a.e. in (0, T ) that

1

2

d

dt

∫
Ω

|ϕ|2 + σ

∫
Ω

|ϕ|2 +

∫
Ω

|∇∆ϕ|2

=

∫
Ω

uϕ−
∫

Ω

(
∆β(ϕ1)−∆β(ϕ2)

)
∆ϕ

−
∫

Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
∆ϕ+

∫
Ω

(
γ(ϕ1)− γ(ϕ2)

)
∆ϕ

+ (2λ− ν)

∫
Ω

|∆ϕ|2 +

∫
Ω

(
g(ϕ1)− g(ϕ2)

)
∆ϕ , (3.58)

and we have to estimate the terms on the right-hand side. The first one is trivial, and the second
integral is estimated as follows:

−
∫

Ω

(
∆β(ϕ1)−∆β(ϕ2)

)
∆ϕ =

∫
Ω

(
β′(ϕ1)∇ϕ1 − β′(ϕ2)∇ϕ2

)
· ∇∆ϕ

≤ δ

∫
Ω

|∇∆ϕ|2 + cδ

∫
Ω

|β′(ϕ1)∇ϕ1 − β′(ϕ2)∇ϕ2|2 ,
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where δ is an arbitrary positive constant to be chosen later on. Now, by accounting for the Lipschitz
continuity of β′, Hölder’s inequality, the regularity of ϕ1, and the continuity of the embedding V ↪→
L4(Ω), we can bound the last integral in the following form:∫

Ω

|β′(ϕ1)∇ϕ1 − β′(ϕ2)∇ϕ2|2 ≤ 2

∫
Ω

|β′(ϕ1)− β′(ϕ2)|2 |∇ϕ1|2 + 2

∫
Ω

|β′(ϕ2)|2 |∇ϕ|2

≤ c ‖ϕ‖2
4 ‖∇ϕ1‖2

4 + c ‖ϕ‖2
V ≤ c ‖ϕ‖2

V .

For the third term on the right-hand side of (3.58), we proceed with a similar argument, obtaining that

−
∫

Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
∆ϕ = −

∫
Ω

((
β′(ϕ1)− β′(ϕ2)

)
∆ϕ1 + β′(ϕ2)∆ϕ

)
∆ϕ

≤ c ‖ϕ‖4 ‖∆ϕ1‖ ‖∆ϕ‖4 + c

∫
Ω

|∆ϕ|2 ≤ c ‖ϕ‖2
V + δ

∫
Ω

|∇∆ϕ|2 + cδ ‖ϕ‖2
W .

Finally, the last three terms of (3.58) can be treated in a straightforward way. At this point, we integrate
(3.58) with respect to time, account for all of the estimates we have established, choose δ small
enough, and apply (3.57) to conclude that

‖ϕ‖C0([0,T ];H)∩L2(0,T ;H3(Ω)) ≤ c ‖u‖L2(0,T ;V ∗) . (3.59)

Now, we recall Remark 3.2, write (2.17) for both solutions, and test the difference by −∆ϕ. At the
same time, we write (3.5) for both solutions, multiply the difference by ∆2ϕ, and integrate over Ω.
Then, we add the resulting equalities to each other. Since a cancellation occurs in the terms involv-
ing µ, we have a.e. in (0, T ) that

1

2

d

dt

∫
Ω

|∇ϕ|2 + σ

∫
Ω

|∇ϕ|2 +

∫
Ω

|∆2ϕ|2

=

∫
Ω

u(−∆ϕ) +

∫
Ω

(
∆β(ϕ1)−∆β(ϕ2)

)
∆2ϕ

+

∫
Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
∆2ϕ−

∫
Ω

(
γ(ϕ1)− γ(ϕ2)

)
∆2ϕ

− (2λ− ν)

∫
Ω

∆ϕ∆2ϕ−
∫

Ω

(
g(ϕ1)− g(ϕ2)

)
∆2ϕ . (3.60)

As for the right-hand side, we immediately have that∫
Ω

u(−∆ϕ) ≤ c ‖u‖∗ ‖∆ϕ‖V ≤ ‖u‖2
∗ + c ‖ϕ‖2

H3(Ω) ,

while the next terms need some treatment. Since ∆β(ϕi) = β′(ϕi)∆ϕi + β′′(ϕi)|∇ϕi|2, for i =
1, 2, we can handle the second and third term on the right-hand side as∫

Ω

(
∆β(ϕ1)−∆β(ϕ2)

)
∆2ϕ+

∫
Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
∆2ϕ

= 2

∫
Ω

(
β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2

)
∆2ϕ+

∫
Ω

(
β′′(ϕ1)|∇ϕ1|2 − β′′(ϕ2)|∇ϕ2|2

)
∆2ϕ

≤ δ

∫
Ω

|∆2ϕ|2 + cδ

∫
Ω

|β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2|2

+ cδ

∫
Ω

∣∣β′′(ϕ1)|∇ϕ1|2 − β′′(ϕ2)|∇ϕ2|2
∣∣2 .

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



P. Colli, G. Gilardi, A. Signori, J. Sprekels 24

Besides, we have that∫
Ω

|β′(ϕ1)∆ϕ1 − β′(ϕ2)∆ϕ2|2 ≤ c

∫
Ω

|ϕ|2 |∆ϕ1|2 + c

∫
Ω

|∆ϕ|2

≤ c ‖ϕ‖2
4 ‖∆ϕ1‖2

4 + c

∫
Ω

|∆ϕ|2 ≤ c ‖ϕ‖2
V ‖ϕ1‖2

H3(Ω) + c

∫
Ω

|∆ϕ|2

≤ c ‖ϕ1‖2
H3(Ω)

∫
Ω

|∇ϕ|2 + c ‖ϕ1‖2
H3(Ω) ‖ϕ‖2

L∞(0,T ;H) + c

∫
Ω

|∆ϕ|2 ,

and we observe at once that the function t 7→ ‖ϕ1(t)‖H3(Ω) is estimated in L2(0, T ) (see Re-
mark 2.3). This will be sufficient when we apply the Gronwall lemma to the first term of the last line
after time integration, and useful to estimate the time integral of the second one in terms of u on
account of (3.59). In order to control the term containing β′′, we observe that

β′′(ϕ1)|∇ϕ1|2 − β′′(ϕ2)|∇ϕ2|2

=
(
β′′(ϕ1)− β′′(ϕ2)

)
|∇ϕ1|2 + β′′(ϕ2)∇ϕ · ∇ϕ1 + β′′(ϕ2)∇ϕ2 · ∇ϕ ,

so that∣∣β′′(ϕ1)|∇ϕ1|2 − β′′(ϕ2)|∇ϕ2|2
∣∣2 ≤ c |ϕ|2 |∇ϕ1|4 + c |∇ϕ|2 |∇ϕ1|2 + c |∇ϕ2|2 |∇ϕ|2

≤ c ‖∇ϕ1‖4
∞ |ϕ|2 + c

(
|∇ϕ1|2 + |∇ϕ2|2

)
|∇ϕ|2 .

Therefore, we deduce that∫
Ω

∣∣β′′(ϕ1)|∇ϕ1|2 − β′′(ϕ2)|∇ϕ2|2
∣∣2

≤ c ‖∇ϕ1‖4
∞‖ϕ‖2

L∞(0,T ;H) + c

∫
Ω

(
‖∇ϕ1‖2

∞ + ‖∇ϕ2‖2
∞
)
|∇ϕ|2 ,

and we observe that (2.23) applied to ϕ1 ensures that, after integration over time, the last two terms
can be controlled, the former by a direct estimate, and the latter via Gronwall’s lemma. The last three
terms of (3.60) can be treated without any difficulty. Then, by integrating (3.60) with respect to time,
combining all the inequalities we have established, choosing δ small enough, accounting for (3.57)
and (3.59), and applying the Gronwall lemma, we arrive at

‖ϕ‖C0([0,T ];V )∩L2(0,T ;H4(Ω)) ≤ c ‖u‖L2(0,T ;V ∗) . (3.61)

This concludes the proof of the part of (2.24) concerning the difference ϕ = ϕ1 − ϕ2. It remains to
prove the estimates regarding the other components of the solutions. To this end, it suffices to write
(2.19) and (2.18) for both solutions, take the differences, and compare with the estimates already
obtained.

4 The control problem

In this section, we deal with the control problem presented in Section 2. It is understood that in the
entire section all of the assumptions made on the state system and the initial datum ϕ0, which ensure
the validity of Theorems 2.2 and 2.4, are in force, as well as those related to the control problem,
i.e., conditions (2.25)–(2.27). Moreover, the generic constants denoted by c can also depend on the

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



A sixth-order Cahn—Hilliard equation 25

latter. Here, in the control problem, the variable u no longer plays just the role of a fixed and bounded
source term, but it enters (2.17)–(2.20) as a control variable, which justifies the introduction of the
upper bound given by M . Furthermore, we recall that the cost functional, the space U, and the set
Uad of admissible controls, are defined in (2.28)–(2.29). We also set

Y := H1(0, T ;W ∗) ∩ L2(0, T ;W ) (4.1)

and recall that, for every u ∈ U, there exists a unique solution (ϕ, µ, w) to problem (2.17)–(2.20).
Since ϕ belongs to Y, we could define the control-to-state mapping as a mapping from U into Y as
u 7→ ϕ. However, it is convenient to consider just a neighborhood of the set Uad of admissible controls
as the domain of S. So, we introduce the set UR and the solution map S : UR → Y by setting

UR := {u ∈ U : ‖u‖∞ < R}, where R := max{‖umin‖∞, ‖umax‖∞}+ 1, (4.2)

UR 3 u 7→ S(u) := ϕ, where (ϕ, µ, w) is the unique solution

to the problem (2.17)–(2.20) associated with u. (4.3)

We notice at once that we can apply Theorem 2.2 with M = R and Remark 2.3. By also accounting
for the regularity of F in (2.4), we obtain, in particular, that

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;W )∩L2(0,T ;H4(Ω)) + ‖µ‖L2(0,T ;V ) + ‖w‖L∞(0,T ;H)∩L2(0,T ;W )

+
4∑
i=0

‖F (i)(ϕ)‖∞ + ‖∆f ′(ϕ)‖L∞(0,T ;H) + ‖∇f ′(ϕ)‖L2(0,T ;L∞(Ω)) ≤ c (4.4)

for every u ∈ UR. This estimate will be used throughout the whole section. In the next three subsec-
tions, we prove the existence of an optimal control, the Fréchet differentiability of the solution mapping
S, and the first-order necessary condition for optimality presented in Section 2.

4.1 Existence of an optimal control

First, let us prove that the minimization problem introduced in (2.30) admits at least one solution.

Theorem 4.1. There exists at least one optimal control for the control problem (2.30), that is, there
exists some u∗ ∈ Uad such that

J(u∗, S(u∗)) ≤ J(u, S(u)) for every u ∈ Uad. (4.5)

Proof. We use the direct method of the calculus of variations. In this direction, we observe that J is
bounded from below as it is nonnegative. Then, observing that Uad is nonempty, we take a minimiz-
ing sequence {un} and, for every n, denote by (ϕn, µn, wn) the corresponding state. Since Uad is
bounded in U, we can assume without loss of generality that

un → u∗ weakly star in L∞(Q)

for some u∗ ∈ Uad, as Uad is convex and closed. Now, we notice that the stability estimate (4.4)
holds true for (ϕn, µn, wn) and some constant independent of n. Thus, we can assume without loss
of generality that, as n→∞,

ϕn → ϕ∗ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;W ),

µn → µ∗ weakly in L2(0, T ;V ),

wn → w∗ weakly in L2(0, T ;W ),
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for some limit triplet (ϕ∗, µ∗, w∗). Since the stability estimate implies that {ϕn} is bounded inL∞(Q),
we can suppose that the nonlinearities involved in the state system are Lipschitz continuous. On the
other hand, the above convergence property of {ϕn}, and well-known strong convergence results
(see, e.g., [26, Sect. 8, Cor. 4]), imply the strong convergence of {ϕn} to ϕ∗ as n → ∞, e.g., in
L∞(Q). Thus, it is immediately seen that (ϕ∗, µ∗, w∗) is the solution to the state system correspond-
ing to u∗, that is, ϕ∗ = S(u∗). Therefore, we also conclude that

lim
n→∞

J(un, ϕn) = J(u∗, ϕ∗).

Now, since {un} is supposed to be a minimizing sequence, the right-hand side of the equality is a
minimum of J, meaning that u∗ is an optimal control.

4.2 The control-to-state operator

This subsection is devoted to analyze some differentiability properties of the control-to-state mapping
S defined in (4.3). Namely, we are going to show its Fréchet differentiability between suitable Banach
spaces. Prior to exploring this further, it is crucial to introduce two preliminary lemmas.

Lemma 4.2. The space H1(0, T ;W ) is dense in H1(0, T ;W ∗) ∩ L2(0, T ;H).

Proof. Let z ∈ H1(0, T ;W ∗) ∩ L2(0, T ;H). We define cj and zn by means of the eigenfunctions
of the eigenvalue problem (3.8)–(3.10) as follows:

cj(t) := (z(t), ej) for j ≥ 1 and zn(t) :=
n∑
j=1

cj(t)ej for n ≥ 1 and a.e. t ∈ (0, T ).

Then cj ∈ H1(0, T ) for every j, and zn ∈ H1(0, T ;W ) for every n. We claim that {zn} con-
verges strongly to z in H1(0, T ;W ∗) ∩ L2(0, T ;H). The strong convergence in L2(0, T ;H) is
rather straightforward, because

lim
n→∞
‖z − zn‖2

L2(0,T ;H) = lim
n→∞

∑
j>n

∫ T

0

|cj(t)|2 dt = 0 .

Note that the function v 7→ |v|2 + ‖∆v‖2 is the square of a norm in W that is equivalent to the
standard one, as one can see arguing by contradiction and using the compact embedding W ↪→ V
and the elliptic regularity theory. Hence, the map L : v 7→ {(v, ej)}∞j=1 is a topological isomorphism
from W onto the weighted space `2

λ defined by

`2
λ :=

{
(aj)

∞
j=1 :

∞∑
j=1

|λjaj|2 < +∞
}
, with the norm defined by

‖(aj)‖2
λ := |a1|2 +

∞∑
j=2

|λjaj|2 .

It follows that the adjoint operator L∗ : (`2
λ)
∗ → W ∗ is a topological isomorphism. Therefore, every

ζ ∈ W ∗ admits a representation of the form

ζ =
∞∑
j=1

bjej with
∞∑
j=2

|λ−1
j bj|2 < +∞ .
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Moreover, this representation is unique, and bj = 〈ζ, ej〉W for every j. Furthermore, the function

W ∗ 3 ζ 7→ |〈ζ, e1〉W |2 +
∞∑
j=2

|λ−1
j 〈ζ, ej〉W |2

is the square of a norm in W ∗ that is equivalent to the standard one. It thus remains to prove that

lim
n→∞

∑
j>n

λ−2
j

∫ T

0

|c′j(t)|2 dt = 0 ,

but this is readily seen, since
∞∑
j=2

λ−2
j

∫ T

0

|c′j(t)|2 dt ≤ c ‖∂tz‖2
L2(0,T ;W ∗)≤ c .

Lemma 4.3. The identity

〈∂tζ(t),Nζ(t)〉W =
1

2

d

dt
‖ζ(t)‖2

∗ for a.a. t ∈ (0, T ) (4.6)

holds true for every ζ ∈ H1(0, T ;W ∗) ∩ L2(0, T ;H) satisfying ζ = 0 a.e. in (0, T ).

Proof. Let ζ ∈ H1(0, T ;W ∗)∩L2(0, T ;H) satisfy ζ = 0 a.e. in (0, T ). By Lemma 4.2, we can find
a sequence {ξn} in H1(0, T ;W ) that converges to ζ strongly in H1(0, T ;W ∗) ∩ L2(0, T ;H). We
next set ζn := ξn− ξn, so that ζn = 0. Thus, the sequence {ζn} converges to ζ − ζ = ζ strongly in
H1(0, T ;W ∗)∩L2(0, T ;H), and the identity (4.6) holds for ζn. Thus, for every fixed s ≤ t in [0, T ],
we have that ∫ t

s

〈∂tζn(τ),Nζn(τ)〉W dτ =
1

2

(
‖ζn(t)‖2

∗ − ‖ζn(s)‖2
∗
)
.

On the other hand, since (the restriction of) N is a continuous linear operator from the subspace of H
of the zero mean value functions into W , by the elliptic regularity theory, the convergence of {ζn} to
ζ in L2(0, T ;H) implies that {Nζn} converges to Nζ strongly in L2(0, T ;W ). Hence, we have that

lim
n→∞

∫ t

s

〈∂tζn(τ),Nζn(τ)〉W dτ =

∫ t

s

〈∂tζ(τ),Nζ(τ)〉W dτ .

Now, we observe that V coincides with the real interpolation space (W,H)1/2, the interpolation being
understood in the sense of the trace method in Hilbert spaces. We deduce that V ∗ = (H,W ∗)1/2,
so that we have the continuous embedding

H1(0, T ;W ∗) ∩ L2(0, T ;H) ↪→ C0([0, T ];V ∗) .

It follows that the convergence of {ζn} to ζ in H1(0, T ;W ∗) ∩ L2(0, T ;H) as n → ∞ implies the
strong convergence in V ∗ of the pointwise values. As a result, it follows that

lim
n→∞
‖ζn(s)‖∗ = ‖ζ(s)‖∗ and lim

n→∞
‖ζn(t)‖∗ = ‖ζ(t)‖∗ ,

and we conclude that ∫ t

s

〈∂tζ(τ),Nζ(τ)〉W dτ =
1

2

(
‖ζ(t)‖2

∗ − ‖ζ(s)‖2
∗
)
.

Since s and t are arbitrary in [0, T ], this is equivalent to (4.6), and the proof is complete.
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Remark 4.4. Let us remark that, arguing along the same lines as above, the analogous formula

〈∂tz,∆z〉W = −1

2

d

dt
‖∇z‖2 a.e. in (0, T ), (4.7)

can be shown for every z ∈ H1(0, T ;W ∗) ∩ L2(0, T ;W ) such that ∆z ∈ L2(0, T ;W ). Let us
sketch the corresponding proof. First, we set

W1 := {v ∈ W : ∆v ∈ W},

and consider the formal sum
∞∑
j=1

cjej . (4.8)

Then, (4.8) represents an element of W if and only if
∑∞

j=1 |λjcj|2 < +∞. Besides, it follows that
(4.8) characterizes an element of either W1, or W ∗, or V , if and only if

∞∑
j=1

|λ2
jcj|2 < +∞ , or

∞∑
j=2

|λ−1
j cj|2 < +∞ , or

∞∑
j=1

|λ1/2
j cj|2 < +∞ ,

respectively. It follows that the interpolation space (W1,W
∗)1/2 coincides with V , implying the conti-

nuity of the embedding

H1(0, T ;W ∗) ∩ L2(0, T ;W1) ↪→ C0([0, T ];V ) .

Finally, the same argument as that given in the proof of the above lemma entails (4.7).

Our result on the Fréchet differentiability of S involves the linearized system we introduce in the sub-
sequent lines. For fixed u ∈ UR and h ∈ L2(0, T ;H), the linearized system corresponding to u and
the variation h consists in looking for a triplet (ψ, η, ω) satisfying

(ψ, η, ω) ∈
(
H1(0, T ;W ∗) ∩ L2(0, T ;W )

)
× L2(0, T ;H)× L2(0, T ;W ) , (4.9)

〈∂tψ, v〉W−
∫

Ω

η∆v + σ

∫
Ω

ψv =

∫
Ω

hv a.e. in (0, T ), for every v ∈ W , (4.10)∫
Ω

∇ω · ∇v +

∫
Ω

f ′′(ϕ)wψv +

∫
Ω

f ′(ϕ)ωv + ν

∫
Ω

ωv =

∫
Ω

ηv

a.e. in (0, T ), for every v ∈ V , (4.11)∫
Ω

∇ψ · ∇v +

∫
Ω

f ′(ϕ)ψv =

∫
Ω

ωv a.e. in (0, T ), for every v ∈ V , (4.12)

ψ(0) = 0 , (4.13)

where ϕ and w are the components of the solution (ϕ, µ, w) to the state system associated with u.
We observe that the continuous embedding H1(0, T ;W ∗) ∩ L2(0, T ;W ) ↪→ C0([0, T ];H) gives
a precise meaning to the initial condition (4.13). We also notice that (4.11) and (4.12) could have been
written in the form

−∆ω + f ′′(ϕ)wψ + f ′(ϕ)ω+ν ω = η and −∆ψ + f ′(ϕ)ψ = ω a.e. in Q ,

due to the regularity of ω and ψ given by (4.9), because the space W inherently encodes the bound-
ary conditions. Nevertheless, in the following we prefer to keep on working with the aforementioned
variational formulation.
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Theorem 4.5. For every u ∈ UR and h ∈ L2(0, T ;H), problem (4.10)–(4.13) has a unique solution
(ψ, η, ω) with the regularity specified in (4.9). Moreover, the estimate

‖ψ‖H1(0,T ;W ∗)∩L2(0,T ;W ) + ‖η‖L2(0,T ;H) + ‖ω‖L2(0,T ;W ) ≤ K3 ‖h‖L2(0,T ;H) (4.14)

holds true with a positive constant K3 that depends only on Ω, T , the structure of the system, and the
upper bound R.

Proof. We recall (4.4), and we start by proving uniqueness. It is worth noting that a portion of the
insights we are about to unveil also contributes significantly to the proof of existence.

First a priori estimate. Testing (4.10) by 1/|Ω| yields an ordinary differential equation for the mean
value ψ, namely

d

dt
ψ + σ ψ = h a.e. in (0, T ) . (4.15)

From (4.13), we infer that ψ(0) = 0. Thus, we readily deduce that

‖ψ‖H1(0,T ) ≤ c ‖h‖L2(0,T ;H) . (4.16)

Second a priori estimate. We first multiply (4.15) by a generic v ∈ W and integrate over Ω.
Then, we take the difference between (4.10) and the equality just obtained and test it by N(ψ − ψ)
(recall (2.39)). Thanks to Lemma 4.3, along with the definition of N, we find that

1

2

d

dt
‖ψ − ψ‖2

∗ +

∫
Ω

η (ψ − ψ) + σ ‖ψ − ψ‖2
∗ =

∫
Ω

hN(ψ − ψ) a.e. in (0, T ) .

At the same time, we test (4.11) and (4.12) by ψ−ψ and ψ−ω, respectively, and rearrange the terms
to obtain, in the order, that∫

Ω

∇ω · ∇ψ =

∫
Ω

η(ψ − ψ)−
∫

Ω

(
f ′′(ϕ)ψ w + f ′(ϕ)ω + νω

)
(ψ − ψ) ,∫

Ω

|∇ψ|2 −
∫

Ω

∇ψ · ∇ω +

∫
Ω

|ω|2 =

∫
Ω

ω ψ −
∫

Ω

f ′(ϕ)ψ (ψ − ω) .

At this point, we add the above equalities to each other, noticing that some cancellations occur. We
infer that

1

2

d

dt
‖ψ − ψ‖2

∗ + σ ‖ψ − ψ‖2
∗ +

∫
Ω

|∇ψ|2 +

∫
Ω

|ω|2

=

∫
Ω

hN(ψ − ψ)−
∫

Ω

f ′′(ϕ)ψ w (ψ − ψ) +

∫
Ω

ω ψ

+

∫
Ω

f ′(ϕ)ω ψ −
∫

Ω

f ′(ϕ) |ψ|2 + ν

∫
Ω

ω(ψ − ψ) a.e. in (0, T ) . (4.17)

The right-hand side is easily dealt with, in particular, by using the compacness inequality (2.35) to
handle theH norm of ψ−ψ, since one can owe to the Gronwall lemma after time integration. We just
detail how to handle the most delicate term, i.e., the one involving w. On account of (3.33), it suffices
to estimate the analogue obtained by replacing ψ by ψ − ψ. We have that

−
∫

Ω

f ′′(ϕ)w |ψ − ψ|2 ≤ ‖f ′′(ϕ)‖∞ ‖w‖ ‖ψ − ψ‖2
4 .

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



P. Colli, G. Gilardi, A. Signori, J. Sprekels 30

Observing that the product ‖f ′′(ϕ)‖∞ ‖w‖ is estimated in L∞(0, T ) by virtue of (4.4), and owing to
the compactness inequality (2.35), we deduce that

−
∫

Ω

f ′′(ϕ)w |ψ − ψ|2 ≤ 1

2

∫
Ω

|∇ψ|2 + c ‖ψ − ψ‖2
∗ a.e. in (0, T ) .

Therefore, after integrating (4.17) with respect to time, we apply Gronwall’s lemma as announced and
obtain, recalling also (4.16), that

‖ψ‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖ω‖L2(0,T ;H) ≤ c ‖h‖L2(0,T ;H) . (4.18)

Consequence. By applying (4.18) in the case h = 0, we obtain that ψ = ω = 0. Then (4.11) yields
that η = 0. Since the system (4.10)–(4.13) is linear, this proves the uniqueness part of the statement.

It remains to prove the existence of a solution and the estimate (4.14). This can be done by a dis-
cretization procedure like the Faedo–Galerkin scheme, with the same set of eigenfunctions as that
used for Theorem 2.2: the unknowns of the discrete problem are Vn-valued, and the analogues of
(4.10)–(4.12) are satisfied for every v ∈ Vn. One obtains a linear system that can be solved on ac-
count of the zero initial condition derived from (4.13). Then, one performes a priori estimates and let n
tend to infinity. However, for the sake of brevity, we limit ourselves to demonstrating formal estimates,
acknowledging that the test functions we employ are admissible at the discrete level, especially when
only the variational form of the problem is considered since ∆kv ∈ Vn ⊂ W for every k, n and
v ∈ Vn. Since also estimates (4.16) and (4.18) can be performed at the discrete level, we can account
for them in the sequel.

Third a priori estimate. We test (4.12) by −∆ψ. By virtue of (4.18), we derive an estimate for ∆ψ
in L2(0, T ;H); from elliptic regularity theory we then infer that

‖ψ‖L2(0,T ;W ) ≤ c ‖h‖L2(0,T ;H) . (4.19)

Fourth a priori estimate. We test (4.10), (4.11), and (4.12), by ψ, −∆ψ, and ∆ω, respectively.
Then, we sum up and rearrange. Thanks to the occurring cancellations and an integration by parts in
the terms involving ∆ω, we obtain that

1

2

d

dt

∫
Ω

|ψ|2 + σ

∫
Ω

|ψ|2 +

∫
Ω

|∇ω|2

=

∫
Ω

hψ −
∫

Ω

(
f ′′(ϕ)wψ + f ′(ϕ)ω + νω

)
(−∆ψ)−

∫
Ω

(
f ′′(ϕ)ψ∇ϕ+ f ′(ϕ)∇ψ

)
· ∇ω ,

and we are left with estimating the right-hand side. We just consider the most delicate terms, since the
others are easier and can be left as an exercise to the interested reader. We recall (4.4) and (4.19)
and point out that

−
∫

Ω

f ′′(ϕ)wψ(−∆ψ)−
∫

Ω

f ′′(ϕ)ψ∇ϕ · ∇ω

≤ c ‖w‖2 ‖ψ‖2
∞ + c ‖∆ψ‖2 +

1

2

∫
Ω

|∇ω|2 + c ‖∇ϕ‖2 ‖ψ‖2
∞

≤ c ‖ψ‖2
W +

1

2

∫
Ω

|∇ω|2 .

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



A sixth-order Cahn—Hilliard equation 31

Hence, after integrating over time, and also accounting for (4.18) and (4.19), we conclude that

‖ψ‖L∞(0,T ;H) + ‖ω‖L2(0,T ;V ) ≤ c ‖h‖L2(0,T ;H) . (4.20)

Fifth a priori estimate. We test (4.10), (4.11), and (4.12), by−∆ψ, ∆2ψ, and−∆3ψ, respectively,
sum up, perform some integrations by parts, and account for some cancellations. This leads us to the
identity

1

2

d

dt

∫
Ω

|∇ψ|2 + σ

∫
Ω

|∇ψ|2 +

∫
Ω

|∆2ψ|2

= −
∫

Ω

h∆ψ − ν
∫

Ω

ω∆2ψ −
∫

Ω

f ′′(ϕ)wψ∆2ψ

−
∫

Ω

f ′(ϕ)ω∆2ψ +

∫
Ω

f ′(ϕ)ψ∆3ψ . (4.21)

As before, we just handle the terms on the right-hand side that need some treatment, while leaving
the simpler ones for the reader to follow. Integrating with respect to time, and owing to (4.4) and (4.20),
we obtain that

−
∫
Qt

f ′′(ϕ)wψ∆2ψ ≤ c

∫ t

0

‖w(s)‖∞ ‖ψ(s)‖ ‖∆2ψ(s)‖ ds

≤ 1

4

∫
Qt

|∆2ψ|2 + c ‖w‖2
L2(0,T ;W ) ‖ψ‖2

L∞(0,T ;H) ≤
1

4

∫
Qt

|∆2ψ|2 + c ‖h‖2
L2(0,T ;H) .

Next, integrating with respect to time, invoking (4.4) once more and the above estimates, we have that∫
Qt

f ′(ϕ)ψ∆3ψ =

∫
Qt

(
(∆f ′(ϕ))ψ + 2(∇f ′(ϕ)) · ∇ψ + f ′(ϕ)∆ψ

)
∆2ψ

≤ 1

4

∫
Qt

|∆2ψ|2 + c ‖∆f ′(ϕ)‖2
L∞(0,T ;H) ‖ψ‖2

L2(0,T ;W )

+ c

∫ t

0

‖∇f ′(ϕ(s))‖2
∞ ‖∇ψ(s)‖2 ds+ c

∫
Qt

|∆ψ|2

≤ 1

4

∫
Qt

|∆2ψ|2 + c ‖h‖2
L2(0,T ;H) + c

∫ t

0

‖∇f ′(ϕ(s))‖2
∞ ‖∇ψ(s)‖2 ds ,

and we observe that the function t 7→ ‖∇f ′(ϕ(s))‖2
∞ is estimated in L1(0, T ). Therefore, after

integration of (4.21) and application of Gronwall’s lemma, we conclude that

‖∇ψ‖L∞(0,T ;H) + ‖∆2ψ‖L2(0,T ;H) ≤ c ‖h‖L2(0,T ;H) ,

whence, by elliptic regularity theory,

‖ψ‖L∞(0,T ;V )∩L2(0,T ;H4(Ω)) ≤ c ‖h‖L2(0,T ;H) . (4.22)

Consequences. By testing (4.12) by ∆2ω and integrating by parts we get the identity∫
Ω

|∆ω|2 = −
∫

Ω

∆2ψ∆ω +

∫
Ω

∆(f ′(ϕ)ψ) ∆ω ,
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whence, integrating over time and invoking Young’s inequality,∫
Qt

|∆ω|2 ≤ c

∫
Qt

|∆2ψ|2 + c

∫
Qt

|∆(f ′(ϕ)ψ)|2 .

Using (4.4) and the estimates proved above, it is not difficult to see that the right-hand side is bounded
by c ‖h‖2

L2(0,T ;H), whence, by elliptic regularity,

‖ω‖L2(0,T ;W ) ≤ c ‖h‖L2(0,T ;H) . (4.23)

Testing (4.11) by η then easily yields that

‖η‖L2(0,T ;H) ≤ c ‖h‖L2(0,T ;H) . (4.24)

Finally, by comparison in (4.10) (at the discrete level one should argue as we did to obtain (3.45)),
we readily find that

‖∂tψ‖L2(0,T ;W ∗) ≤ c ‖h‖L2(0,T ;H) . (4.25)

This concludes the proof.

We are now ready to prove the Fréchet differentiability of the map S defined in (4.3).

Theorem 4.6. The control-to-state mapping S is Fréchet differentiable in UR as a mapping from UR ⊂
U into Y. Moreover, given u ∈ UR, the Fréchet derivativeDS(u)∈ L(U,Y) is the linear operator that
maps any h ∈ U into the componentψ of the solution (ψ, η, ω) to the linearized problem (4.10)–(4.13)
associated with u and the variation h.

Proof. The map described in the statement actually belongs to L(U,Y) as a consequence of (4.14)
in Theorem 4.5. To prove the claim, we fix some u ∈ UR and show that

lim
‖h‖∞→0

‖S(u+ h)− S(u)− ψ‖Y
‖h‖∞

= 0 , (4.26)

where ψ is the first component of the solution to the linearized associated to u and h. Without loss of
generality, we assume that ‖h‖∞ < R− ‖u‖∞, so that u+ h also belongs to the open set UR. We
denote by (ϕ, µ, w) and (ϕh, µh, wh) the solutions to the state system corresponding to u and u+h,
respectively, and notice that the uniform bound (2.21) given by Theorem 2.2 holds true for both of
them. Moreover, (ψ, η, ω) denotes the solution to the linearized system as in the statement, and we
set for convenience

ψh := ϕh − ϕ− ψ , ηh := µh − µ− η , and ωh := wh − w − ω .

We aim at proving an inequality that implies (4.26). Namely, we are going to prove that

‖ψh‖H1(0,T ;W ∗)∩L2(0,T ;W ) + ‖ωh‖L2(0,T ;V ) ≤ c ‖h‖2
L2(0,T ;V ∗) , (4.27)
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where the first norm, due to the above definitions, is nothing but the numerator of (4.26). To this end,
we observe that (ψh, ηh, ωh) solves the following problem:

〈∂tψh, v〉W −
∫

Ω

ηh ∆v + σ

∫
Ω

ψhv = 0 a.e. in (0, T ), for every v ∈ W , (4.28)∫
Ω

∇ωh · ∇v + ν

∫
Ω

ωhv =

∫
Ω

ηhv −
∫

Ω

Λ1 v

a.e. in (0, T ), for every v ∈ V , (4.29)∫
Ω

∇ψh · ∇v =

∫
Ω

ωhv −
∫

Ω

Λ2 v a.e. in (0, T ), for every v ∈ V , (4.30)

ψh(0) = 0 , (4.31)

where we have set for brevity

Λ1 := f ′(ϕh)wh − f ′(ϕ)w − f ′′(ϕ)ψw − f ′(ϕ)ω

= [f ′(ϕh)− f ′(ϕ)− f ′′(ϕ)ψ]w + [f ′(ϕh)− f ′(ϕ)](wh − w) + f ′(ϕ)ωh

Λ2 := f(ϕh)− f(ϕ)− f ′(ϕ)ψ .

We notice at once that expanding f ′ and f around ϕ (namely, around ϕ(x, t) for almost all fixed (x, t)
in Q) by means of Taylor’s formula with integral remainder, we find that

f ′(ϕh)− f ′(ϕ)− f ′′(ϕ)ψ = f ′′(ϕ)ψh +R1 ,

f(ϕh)− f(ϕ)− f ′(ϕ)ψ = f ′(ϕ)ψh +R2 ,

where the remainders R1 and R2 have the form

R1 =
[∫ 1

0

(1− s)f ′′′(sϕh + (1− s)ϕ)) ds
]
(ϕh − ϕ)2 ,

R2 =
[∫ 1

0

(1− s)f ′′(sϕh + (1− s)ϕ)) ds
]
(ϕh − ϕ)2 .

Hence, we have that

Λ1 = [f ′′(ϕ)ψh +R1]w + [f ′(ϕh)− f ′(ϕ)](wh − w) + f ′(ϕ)ωh ,

and Λ2 = f ′(ϕ)ψh +R2 , (4.32)

where the remainders satisfy

|R1| ≤ c (ϕh − ϕ)2 and |R2| ≤ c (ϕh − ϕ)2 a.e. in Q , (4.33)

since both ϕ and ϕh are uniformly bounded inL∞ as a consequence of (2.21) and the integration vari-
able s attains values in [0, 1]. In the estimates to follow, it is understood that δ is a positive parameter
whose value will be chosen at the end of the computations.

First a priori estimate. First observe that ψh has zero mean value, which directly follows from
testing (4.28) by 1/|Ω| and using (4.31). Next, we test (4.28), (4.29), and (4.30), by Nψh, ψh, and
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ψh − ωh, respectively, and add the resulting equalities to each other. By noting some cancellations,
and recalling Lemma 4.3, we have that, a.e. in (0, T ),

1

2

d

dt
‖ψh‖2

∗ + σ ‖ψh‖2
∗ +

∫
Ω

|∇ψh|2 +

∫
Ω

|ωh|2

= −
∫

Ω

Λ1 ψ
h +

∫
Ω

Λ2 (ωh − ψh) + (1− ν)

∫
Ω

ωhψh . (4.34)

As the last three terms on the left-hand side are nonnegative, we just have to estimate the integrals
on the right-hand side. By the expression of Λ1 given in (4.32), the term

∫
Ω

Λ1 ψ
h may be written as

sum of three contributions, namely,

I1 :=

∫
Ω

[f ′′(ϕ)ψh +R1]wψh , I2 :=

∫
Ω

[f ′(ϕh)− f ′(ϕ)](wh − w)ψh ,

and I3 :=

∫
Ω

f ′(ϕ)ωhψh .

Now, observe that I3, as well as the last term of (4.34), can easily be treated using the Young and
compactness inequalities. The latter inequality is also used to deal with I1. Indeed, on account of
(4.33), we have that

|I1| ≤ c I ′1 + c I ′′1 , where I ′1 :=

∫
Ω

|w| |ψh|2 and I ′′1 :=

∫
Ω

(ϕh − ϕ)2 |w| |ψh| .

The term I ′1 can immediately be estimated with the help of (2.21) and (2.22) (cf. Remark 2.3) as

I ′1 ≤ ‖w‖L∞(0,T ;H) ‖ψh‖2
4 ≤ δ

∫
Ω

|∇ψh|2 + cδ ‖ψh‖2
∗ ,

while the estimation of I ′′1 requires more work. We estimate its time integral by first using the Hölder,
Sobolev, and Poincaré inequalities, where we recall that ψh has zero mean value. Then, we apply the
stability estimate for w related to (2.22), Young’s inequality, and the continuous dependence inequality
(2.24) with u1 = u+ h and u2 = u. Thus, we find out that∫

Qt

|ϕh − ϕ|2 |w| |ψh| ≤
∫ t

0

‖ϕh(s)− ϕ(s)‖2
6 ‖w(s)‖2 ‖ψh(s)‖6 ds

≤ c

∫ t

0

‖ϕh(s)− ϕ(s)‖2
V ‖w(s)‖ ‖ψh(s)‖V ds

≤ c

∫ t

0

‖ϕh(s)− ϕ(s)‖2
V ‖w(s)‖ ‖∇ψh(s)‖ ds

≤ 1

2

∫
Qt

|∇ψh|2 + c ‖w‖2
L∞(0,T ;H) ‖ϕh − ϕ‖4

L∞(0,T ;V )

≤ 1

2

∫
Qt

|∇ψh|2 + c ‖h‖4
L2(0,T ;V ∗) , (4.35)

completing the estimate of |I1|. Next, we observe that

|I2| ≤ ‖ψh‖2 + c ‖ϕh − ϕ‖2
4 ‖wh − w‖2

4

DOI 10.20347/WIAS.PREPRINT.3085 Berlin 2024



A sixth-order Cahn—Hilliard equation 35

and we can apply the compactness inequality once more to the first term, while we observe that (2.24)
ensures that ∫ t

0

‖ϕh(s)− ϕ(s)‖2
4 ‖wh(s)− w(s)‖2

4 ds

≤ c ‖ϕh − ϕ‖2
L∞(0,T ;V ) ‖wh − w‖2

L2(0,T ;V ) ≤ c ‖h‖4
L2(0,T ;V ∗) .

Now, we consider the term involving Λ2. By recalling (4.32) and (4.33), we have that∫
Ω

Λ2 (ωh − ψh) =

∫
Ω

(
f ′(ϕ)ψh +R2

)
(ωh − ψh) ≤ c

∫
Ω

(
|ψh|+ (ϕh − ϕ)2

)
(|ωh|+ |ψh|).

Hence, it can be estimated with the same ideas as we used to prove (4.35) and is even easier. At this
point, we return to (4.34), integrating it with respect to time. By choosing δ small enough, and applying
the Gronwall lemma, we conclude that

‖ψh‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖ωh‖L2(0,T ;H) ≤ c ‖h‖2
L2(0,T ;V ∗) . (4.36)

Then, using (4.36) to estimate the right-hand side of (4.30), we deduce that

‖ψh‖L2(0,T ;W ) ≤ c ‖h‖2
L2(0,T ;V ∗) . (4.37)

Second a priori estimate. For the sake of brevity, we argue only formally. However, we notice
that (ψh, ηh, ωh) can be approximated by Vn-valued functions (recall (3.11)), since this is true for
(ϕh, µh, wh), (ϕ, µ, w), and (ψ, η, ω). Hence, the estimate we are going to perform can be justified
rigorously. We test (4.28), (4.29), and (4.30), by ψh, −∆ψh, and ∆ωh, add the resulting identities,
and account for some cancellations. We then obtain that a.e. in (0, T ) it holds

1

2

d

dt
‖ψh‖2 + σ ‖ψh‖2 + ‖∇ωh‖2 = ν

∫
Ω

ωh∆ψh +

∫
Ω

Λ1 ∆ψh −
∫

Ω

Λ2 ∆ωh . (4.38)

The first term on the right-hand side can easily be treated by the Hölder inequality and (4.36)–(4.37).
As for the next term, we apply the Young inequality and (4.37). We then see that we are led to treat
the integral of |Λ1|2. By recalling (4.32) and (4.33), we have that∫

Ω

|Λ1|2 ≤ c ‖w‖2
∞ ‖ψh‖2 + c ‖ϕh − ϕ‖4

4 ‖w‖2
∞ + c ‖ϕh − ϕ‖2

4 ‖wh − w‖2
4 + c ‖ωh‖2 .

By noting that the function s 7→ ‖w(s)‖2
∞ is bounded in L1(0, T ) by (2.21), we can treat the first

addend by the Gronwall lemma after time integration. On the other hand, the time integrals of the
remaining terms on the right-hand side can be treated by owing to (2.21), (2.24) and (4.36). Namely,
we conclude that ∫

Qt

|Λ1|2 ≤ c ‖h‖4
L2(0,T ;V ∗) .

Finally, by (4.32) and (4.33), we have that

−
∫

Ω

Λ2 ∆ωh ≤ δ ‖∇ωh‖2 + cδ ‖∇Λ2‖2 ≤ δ ‖∇ωh‖2 + cδ ‖ψh‖2
V + cδ ‖∇R2‖2 .
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Since we can owe to (4.37), it remains to estimate the last term. To this aim, we compute ∇R2 by
differentiating, under the integral sign as well, and subsequently obtain

∇R2 = 2(ϕh − ϕ)∇(ϕh − ϕ)

∫ 1

0

(1− s)f ′′(sϕh + (1− s)ϕ)) ds

+ (ϕh − ϕ)2

∫ 1

0

(1− s)f ′′′(sϕh + (1− s)ϕ))
(
s∇ϕh + (1− s)∇ϕ

)
ds .

Then, we deduce that

|∇R2| ≤ c |ϕh − ϕ| |∇(ϕh − ϕ)|+ c
(
|∇ϕh|+ |∇ϕ|

)
(ϕh − ϕ)2 a.e. in Q.

Therefore, it turns out that

‖∇R2‖2 ≤ c ‖ϕh − ϕ‖2
4 ‖∇(ϕh − ϕ)‖2

4 + c
(
‖∇ϕh‖2

6 + ‖∇ϕ‖2
6

)
‖ϕh − ϕ‖4

6 ,

from which we infer∫ t

0

‖∇R2(s)‖2 ds ≤ c ‖ϕh − ϕ‖2
C0([0,T ];V ) ‖ϕh − ϕ‖2

L2(0,T ;W )

+ c
(
‖ϕh‖2

L∞(0,T ;W ) + ‖ϕ‖2
L∞(0,T ;W )

)
‖ϕh − ϕ‖4

L∞(0,T ;V )

≤ c ‖h‖4
L2(0,T ;V ∗) , (4.39)

where the last inequality follows from (2.21) and (2.24). At this point, we come back to (4.38), integrate
it with respect to time, choose δ small enough, and apply Gronwall’s lemma. By also accounting for
(4.36), we conclude that

‖ψh‖L∞(0,T ;H) + ‖ωh‖L2(0,T ;V ) ≤ c ‖h‖2
L2(0,T ;V ∗) . (4.40)

Conclusion. By revisiting the expressions of Λ1 and Λ2 and their treatement in the above calcula-
tions, and accounting for the estimates on ψh and ωh we have obtained, we deduce that

‖Λ1‖L2(0,T ;H) ≤ c ‖h‖2
L2(0,T ;V ∗) and ‖Λ2‖L2(0,T ;H) ≤ c ‖h‖2

L2(0,T ;V ∗) .

Hence, by comparison, first in (4.29) and then in (4.28), we deduce that

‖ηh‖L2(0,T ;H) ≤ c ‖h‖2
L2(0,T ;V ∗) and ‖∂tψh‖L2(0,T ;W ∗) ≤ c ‖h‖2

L2(0,T ;V ∗) .

The last inequality, when combined with (4.37) and (4.40), yields (4.27), and the proof is complete.

Remark 4.7. The inequality (4.27) also shows the Fréchet differentiability of the map u 7→ w as
a mapping from UR into L2(0, T ;V ), where w is the third component of the solution to the state
system corresponding to u. Thus, we could have considered in the cost functional (2.28) an integral
depending on w of the type (α4/2)

∫
Q
|w − wQ|2 with some target function wQ ∈ L2(Q) and a

nonnegative constant α4. The whole theory could have been developed with minor changes, indeed.
However, such a target term is not that relevant from the modeling viewpoint. Therefore, its inclusion
would be rather a mathematical extension, wherefore we decided to not include it, being aware that it
may be handled from a mathematical standpoint.
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4.3 Necessary conditions for optimality

By virtue of the Fréchet differentiability result given by Theorem 4.6, along with the continuous em-
bedding H1(0, T ;W ∗) ∩ L2(0, T ;W ) ↪→ C0([0, T ];H) and the quadratic structure of the cost
functional (2.28), we can apply the chain rule to the composite mapping

UR → (UR × Y)→ R given by u 7→ (u, ϕ) := (u, S(u)) 7→ J(u, ϕ) .

Since the control problem consists in minimizing this mapping on Uad and Uad is convex, a necessary
condition for some u∗ to be an optimal control is that the variational inequality

α1

∫
Q

(ϕ∗ − φQ)ψ + α2

∫
Ω

(ϕ∗(T )− φΩ)ψ(T ) + α3

∫
Q

u∗(u− u∗) ≥ 0 (4.41)

holds true for every u ∈ Uad, where ψ is the first component of the solution (ψ, η, ω) to the linearized
problem associated with h := u − u∗ and the components ϕ∗ and w∗ of the state (ϕ∗, µ∗, w∗)
corresponding to u∗. However, this condition is not satisfactory, since it requires to solve the linearized
system infinitely many times as u varies in Uad. Let us briefly mention that proceeding as suggested in
Remark 4.7 would introduce an additional term of the form α4

∫
Q

(w∗ − wQ)ω in (4.41), with ω being
the third component of the solution (ψ, η, ω) to the linearized problem associated with h := u− u∗.
As usual, this unpleasant situation is overcome by the introduction of a proper adjoint problem associ-
ated with the above optimal control and the corresponding state. This problem consists in looking for
a triplet (p, q, r) satisfying

p ∈ H1(0, T ;W ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H4(Ω) ∩W ), q ∈ L2(0, T ;W ),

and r ∈ L2(0, T ;H), (4.42)

− 〈∂tp, v〉W −
∫

Ω

r∆v + σ

∫
Ω

pv +

∫
Ω

ξ∗qv +

∫
Ω

ζ∗rv

=

∫
Ω

ρ1v a.e. in (0, T ), for every v ∈ W , (4.43)

q + ∆p = 0 a.e. in Q, (4.44)∫
Ω

rv −
∫

Ω

∇q · ∇v − ν
∫

Ω

qv −
∫

Ω

ζ∗qv

= 0 a.e. in (0, T ), for every v ∈ V , (4.45)

p(T ) = ρ2, (4.46)

where, for brevity, we have set

ξ∗ := f ′′(ϕ∗)w∗, ζ∗ := f ′(ϕ∗), ρ1 := α1(ϕ∗ − φQ)

and ρ2 := α2(ϕ∗(T )− φΩ) . (4.47)

Theorem 4.8. In addition to the current assumptions, suppose φΩ ∈ V . Then the adjoint problem has
a unique solution (p, q, r) satisfying (4.42).

Proof. We first perform a basic estimate and prove uniqueness. Then we sketch how the same esti-
mate can be used to prove existence.
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The basic estimate. We test (4.43) first by p, and then by q, and respectively obtain that

− 〈∂tp, p〉W −
∫

Ω

r∆p+ σ

∫
Ω

|p|2 = −
∫

Ω

ξ∗qp−
∫

Ω

ζ∗rp+

∫
Ω

ρ1p ,

− 〈∂tp, q〉W −
∫

Ω

r∆q = −σ
∫

Ω

pq −
∫

Ω

ξ∗|q|2 −
∫

Ω

ζ∗rq +

∫
Ω

ρ1q .

Now, we notice that (4.42) and (4.44) yield that ∆p ∈ L2(0, T ;W ). Thus, we can take the duality
beween ∂tp and equation (4.44) leading to

〈∂tp, q〉W + 〈∂tp,∆p〉W = 0 .

Next, for a positive constant K whose value is chosen later on, we test (4.44) by Kq and integrate by
parts to infer that

K

∫
Ω

|q|2 = K

∫
Ω

∇q · ∇p .

Now, we test (4.44) by r. Moreover, we perform an integration by parts in (4.45), write the resulting
equality as a differential equation, multiply by r and integrate over Ω. Finally, we test (4.45) as it is
by −q. We obtain the following identities:∫

Ω

qr +

∫
Ω

r∆p = 0∫
Ω

|r|2 +

∫
Ω

∆q r = ν

∫
Ω

qr +

∫
Ω

ζ∗qr

−
∫

Ω

rq +

∫
Ω

|∇q|2 = −ν
∫

Ω

|q|2 −
∫

Ω

ζ∗|q|2 .

At this point, we add all of the equalities we have listed above to each other and notice several can-
cellations leading to the identity

− 〈∂tp, p〉W + 〈∂tp,∆p〉W + σ

∫
Ω

|p|2 +K

∫
Ω

|q|2 +

∫
Ω

|r|2 +

∫
Ω

|∇q|2

= −
∫

Ω

ξ∗pq +

∫
Ω

ζ∗pr +

∫
Ω

ρ1p− σ
∫

Ω

pq −
∫

Ω

ξ∗|q|2 +

∫
Ω

ζ∗qr +

∫
Ω

ρ1q

+K

∫
Ω

∇q · ∇p+ ν

∫
Ω

qr +

∫
Ω

ζ∗qr − ν
∫

Ω

|q|2 −
∫

Ω

ζ∗|q|2 . (4.48)

In order to treat the left-hand side, we first note that

−〈∂tp, p〉W = −1

2

d

dt
‖p‖2 .

On the other hand, as a direct consequence of Remark 4.4, we have that the second term on the
left-hand side can be interpreted as

〈∂tp,∆p〉W = −1

2

d

dt
‖∇p‖2 .

Therefore, by integrating (4.48) over (t, T ) and observing that the assumption φΩ ∈ V and the
regularity of ϕ∗ ensure that ρ2 ∈ V , the sum of the first two terms is given by

1

2
‖p(t)‖2

V−
1

2
‖ρ2‖2

V .
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As for the time integral of the right-hand side, we recall (2.21) but do not detail how to estimate it.
However, it is easy to see that one can play with the Young inequality and choose K large enough
in order to apply the Gronwall lemma. In this connection, the terms involving ζ∗ are easy to handle,
since ζ∗ is bounded. The terms involving ξ∗ require some attention. However, we know that ξ∗ ∈
L∞(0, T ;H), and thus we can estimate the only critical term by means of the compactness inequality
(2.35) as follows:

−
∫ T

t

∫
Ω

ξ∗|q|2 ≤
∫ T

t

‖ξ∗(s)‖ ‖q(s)‖2
4 ds

≤ c

∫ T

t

‖q(s)‖2
4 ds ≤

1

4

∫ T

t

∫
Ω

|∇q|2 + c

∫ T

t

∫
Ω

|q|2,

where the last term can be absorbed by choosing a sufficiently large K . Thus, we can conclude that

‖p‖L∞(0,T ;V ) + ‖q‖L2(0,T ;V ) + ‖r‖L2(0,T ;H) ≤ c
(
‖ρ1‖L2(0,T ;H) + ‖ρ2‖V

)
. (4.49)

Uniqueness. Recalling that (4.49) has been rigorously obtained under the regularity assumptions
(4.42), and applying it with ρ1 and ρ2 replaced by zero, we conclude that the solution is (0, 0, 0). Since
the problem is linear, this proves uniqueness.

Existence. As in the case of the original system (2.17)–(2.20) and of the linearized system (4.10)–
(4.13), one can construct a solution to (4.43)–(4.46) by starting from a Faedo–Galerkin scheme with
the same set of eigenfunctions as considered before. Then, estimate (4.49) can be rigorously per-
formed at the discrete level. In fact, the argument we have used can even be simplified, since the
discrete solution is smooth. Once the analogue of (4.49) is obtained, one can derive further estimates
by comparison in the discrete equations (see, e.g., the argument used to prove (3.45)). The formal
analogues on our system are

‖∆q‖L2(0,T ;H) ≤ c , whence ‖q‖L2(0,T ;W ) ≤ c ,

‖∆p‖L2(0,T ;W ) ≤ c , whence ‖p‖L2(0,T ;H4(Ω)) ≤ c ,

‖∂tp‖L2(0,T ;W ∗) ≤ c ,

which are obtained by comparison in (4.45), (4.44), and (4.43), respectively. Once estimates like these
are proved at the discrete setting, one can easily let the discretization parameter tend to infinity and
obtain a solution to problem (4.43)–(4.46).

We conclude the paper by proving a first-order necessary condition for optimality.

Theorem 4.9. Let u∗ ∈ Uad be an optimal control, and let (ϕ∗, µ∗, w∗) be the corresponding state.
Then ∫

Q

(α3 u
∗ + p)(u− u∗) ≥ 0 for every u ∈ Uad, (4.50)

where p is the first component of the solution (p, q, r) to the corresponding adjoint problem. In partic-
ular, if α3 > 0, then the optimal control u∗ is the H-projection of −p/α3 onto Uad.

Proof. We fix u in Uad and write the linearized system (4.10)–(4.13) associated with the optimal
control u∗, the corresponding state (ϕ∗, µ∗, w∗), and the variation h := u − u∗, and test the three
equations by p, q, and r, respectively. More precisely, regarding (4.12), on account of the regularity of
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ψ given in (4.9), we replace the first integral by −
∫

Ω
∆ψ v and then test by r. At the same time, we

test (4.43) by−ψ, multiply (4.44) by η, and integrate over Ω, and test (4.45) by ω. Hence, by recalling
the definitions of ξ∗ and ζ∗ given in (4.47), we obtain a.e. in (0, T ) the identities

〈∂tψ, p〉W−
∫

Ω

η∆p+ σ

∫
Ω

ψp =

∫
Ω

(u− u∗)p ,∫
Ω

∇ω · ∇q +

∫
Ω

f ′′(ϕ∗)w∗ψq +

∫
Ω

f ′(ϕ∗)ωq + ν

∫
Ω

ωq =

∫
Ω

ηq ,

−
∫

Ω

∆ψ r +

∫
Ω

f ′(ϕ∗)ψr =

∫
Ω

ωr ,

〈∂tp, ψ〉W +

∫
Ω

r∆ψ − σ
∫

Ω

pψ −
∫

Ω

f ′′(ϕ∗)w∗qψ −
∫

Ω

f ′(ϕ∗) rψ

= −
∫

Ω

ρ1ψ ,∫
Ω

qη +

∫
Ω

∆p η = 0 ,∫
Ω

rω −
∫

Ω

∇q · ∇ω − ν
∫

Ω

qω −
∫

Ω

f ′(ϕ∗) qω = 0 .

At this point, we add all of them to each other and integrate over (0, T ). Due to obvious cancellations,
what remains is the identity∫ T

0

(
〈∂tψ(t), p(t)〉W + 〈∂tp(t), ψ(t)〉W

)
dt =

∫
Q

(u− u∗)p−
∫
Q

ρ1ψ ,

and an application of the well-known integration-by-parts formula in the framework of the Hilbert triplet
(W,H,W ∗), combined with (4.13) and (4.46), yields that∫

Q

ρ1ψ +

∫
Ω

ρ2ψ(T ) =

∫
Q

(u− u∗)p .

Therefore, by recalling (4.47) and using the above equality in (4.41), we obtain (4.50).

Remark 4.10. Since the optimal control problem (P) is nonconvex, it will usually have many local
minima. In this connection, recall that a control u∗ ∈ Uad is called locally optimal for (P) in the sense
of Lp for p ∈ [1,+∞] if and only if there is some τ > 0 such that J(u∗, S(u∗)) ≤ J(u, S(u)) for
all u ∈ Uad with ‖u − u∗‖p ≤ τ . It is easily seen that any locally optimal control in the sense of Lp

for some p ∈ [1,+∞) is also locally optimal in the sense of L∞. We now claim that the variational
inequality (4.50) is valid also for every control which is locally optimal in the sense of any p ∈ [1,+∞].
Indeed, it is easily observed that for every locally optimal control u∗ in the sense of L∞ the variational
inequality (4.41) must be satisfied. By the same argument as above, then also (4.50) must be valid.
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