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Local well-posedness and global stability of one-dimensional shallow water
equations with surface tension and constant contact angle
Jiaxu Li, Xin Liu, Dirk Peschka

Abstract

We consider the one-dimensional shallow water problem with capillary surfaces and moving contact
lines. An energy-based model is derived from the two-dimensional water wave equations, where we explicitly
discuss the case of a stationary force balance at a moving contact line and highlight necessary changes to
consider dynamic contact angles. The moving contact line becomes our free boundary at the level of shallow
water equations, and the depth of the shallow water degenerates near the free boundary, which causes
singularities for the derivatives and degeneracy for the viscosity. This is similar to the physical vacuum of
compressible flows in the literature. The equilibrium, the global stability of the equilibrium, and the local
well-posedness theory are established in this paper.

1 Introduction

The shallow water problem is a system of nonlinear partial differential equations that characterizes the motion
of thin fluid layers, considering gravitational, viscous, and Coriolis forces. It is commonly employed to model the
behavior of surface waves in oceans, lakes, and other geophysical flows and was first derived by Saint-Venant
[2]. Here, we consider the one-dimensional shallow water problem for a film height i := h(x,t) and a vertically
averaged horizontal velocity u := u(x,t) in a moving domain x € w = (a, b) with a = a(t) and b = b(¢),
which move together with the flow. About their three-dimensional variants, we call the points a, b contact lines,
see Figure Combining all the unknowns into a state vector ¢ = (a, b, h, u), this system has a Hamiltonian

b
%@y:/p@mm?+Umﬁm0d@ U(h,&) := 2h% + 2(|¢]* + o2). (1)

The first integrand of & is the kinetic energy, and the internal energy U has contributions from gravity and
surface energy. Here, g, 7y, a denote the constant of gravity, surface tension, and the contact slope (the tangent
of the contact angle). The height is non-negative and vanishes at the contact lines, i.e. h(xz,t) > 0 for a(t) <
z < b(t) and h(a(t),t) = h(b(t),t) = 0. The film height is zero outside the domain w(t). Alternatively, one
can formulate this problem using the momentum p := hu, which vanishes outside the domain w(t).
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Figure 1: Sketch of fluid film height b = h(x, t), horizontally uniform velocity field u = u(x, t), contact lines a = a(t),
b = b(t), contact angle 0 < ¥ < 1.

Then, for given initial data (h, w)(t = 0) = (ho, uo), a(0) = ap, and b(0) = by, the free boundary problem
describing the shallow water evolution ¢(t) is

O¢h + 0 (hu) = 0, (2a)
Op(hu) + Oy (hu?) + hOpm — 410y (hDpu) = 0 (2b)
a(t) = u(a(t),t) and b(t) = u(b(t),t), (2c)

where 7 = OpU — 05(09,0U) = gh — v0zzh and a := %a, b= %b. Here 1 € (0, 00) is a constant.
These equations are satisfied by h, u at time ¢ for all z € (a, b) and ensure conservation of mass and
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Jiaxu Li, Xin Liu, Dirk Peschka 2

conservation of momentum (2b). At the contact lines a(t) < b(t), we have the following kinematic and constant
contact angle boundary conditions

h(a(t),t) =0 and h(b(t),t) =0, (2d)

dzh(a(t),t) =a and Oyh(b(t),t) = —cu (2e)

Note that (2d), upon differentiation with respect to time, is equivalent to kinematic conditions of the form
Oh(a(t),t) + a(t) Ozh(a(t),t) =0,
Oh(b(t),t) + b(t) Ozh(b(t),t) =0,

which, together with and (2¢), imply (2c). Later, we will show that solutions of (2) with Hamiltonian (1) satisfy
an energy-dissipation balance

(2d)

b
L9 (q(t)) = —/ 441h|0pul?* dz < 0, (3)

and therefore obtain consistency with the second law of thermodynamics. With we ensure the conservation
of mass at the contact lines. The constant contact angle in emerges from a stationary force balance when
taking the derivative of the Hamiltonian 7.

A rigorous derivation of viscous shallow water equations without surface tension can be found in [10]. Formal
derivations of shallow water equations including surface tension based on asymptotic expansions can be found
in [16,,44,46l|48,58]. However, even without surface tension it was realized already by Lynch and Gray [43] that
the shallow water problem is a free boundary problem where wet regions {x : h(z,t) > 0} can advance into
or recede from dry regions {x : h(xz,t) = 0}. This has led to the development of more complex numerical
methods to treat the corresponding free boundary problem, cf. [3] and references therein. The class of methods
for the free boundary shallow water problem is mainly divided into Lagrangian and Eulerian methods: In the
Lagrangian approach, the free boundary problem is mapped to a fixed domain and solved there [1]. Such
approaches result in very precise but highly nonlinear partial differential equations, but can be difficult to solve
in higher dimensions and for topological transitions. Eulerian methods solve the shallow water problem on a
fixed domain and then try to maintain good properties using specialized techniques [45], e.g. non-negativity
of the height or density. Length scales L of most geophysical problems are way above typical capillary length
A = 4/7/g and thus surface tension can be neglected. Alternatively, the contact angle can be treated by
regularizing the surface energy with a wetting potential [36/46,/54], which avoids topological transitions and
maintains the global positivity of solutions.

However, for microfluidic wetting and dewetting problems surface tension plays a vital role [6,/13] but the con-
sidered fluids are often very viscous. Any viscous hydrodynamic model needs to address the so-called “no-slip
paradox” discovered by Huh & Scriven and Dussan & Davis [15}[31] for example by modification of the no-
slip boundary condition with an appropriate Navier-slip or free-slip boundary condition. Corresponding formal
asymptotic techniques result in thin-film models [6,48] of the form

8th - 630 [’I?’L(h) 630(_78:vxh + ah[]int)] =0, (4)

where Uint = Uint(h) is an intermolecular potential with a similar role as U in () and m(h) = %|h\3 + bh?
is a degenerate mobility with Navier-slip length b. The thin-film free boundary problem with moving contact lines
is well-understood mathematically [415]21123,/35], in particular regarding the (lack of) regularity near a moving
contact line, e.g. cf. [18}22}/24]. Numerical algorithms with stationary and dynamic force balance at a moving
contact line have been investigated in dimension d = 1 [51,/52] and d = 2 [53] based on energy-variational
arguments. In particular, the importance of dynamic contact angles [57] based on microscopic arguments and
formulated in a thermodynamic framework should be emphasized [55,/56].

Without surface tension, the shallow water problem can be seen as an important special case of the com-
pressible isentropic Navier-Stokes equations (viscous Saint-Venant system). Here, the height is replaced by the
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 3

density h = p and one assumes a density-dependent viscosity coefficient, such that

Op + Ox(pu) = 0, (5a)
A (pu) + 0z (pu?) + 0. P — 20, (1u(p)dpu) = 0, (5b)

with P = p2 and 1(p) = up. For the general isentropic Navier-Stokes equations one considers P = p* and
w(p) = p® with the adiabatic index > 1 and ac > 0.

Dry regions {x : h(x,t) = 0} in the shallow water equations correspond to vacuum {z : p(z,t) = 0} in
the compressible Navier-Stokes system. There is a large amount of literature about the long-time existence and
asymptotic behavior of solutions to the system (5) in the case 1(p) is constant (o« = 0). When the initial density
is strictly away from the vacuum, see Kazhikhov [34] and Hoff [28] for strong solutions, Hoff and Smoller [30] for
weak solutions. When the initial density contains a vacuum, this leads to some singular behaviors of solutions,
such as the failure of continuous dependence of weak solutions on initial data [29] and the finite time blow-up of
smooth solutions [33}/59], and even non-existence of classical solutions with finite energy [37].

Therefore, one may consider density-dependent viscosity case (o > 0). It is reasonable for compressible
Navier-Stokes equations, see Liu-Xin-Yang [39], a viscous Saint-Venant system for the shallow waters, see
Gerbeau-Perthame [19], and some geophysical flows, see [7-9]. In particular, Didier-Benoit-Lin studied a com-
pressible fluid model of Korteweg type in [9]:

pr + div(pu) =0, (62)
(pu) + div(pu ® u) = div (=PI 4 2upDu) + vpVAp, (6b)
see also Danchin-Desjardins [12], Hao-Hsiao-Li [26], Germain-LeFloch [20].

The vacuum-free boundary problem of (5) has attracted a vast of attractions in recent years. In the case that the
viscosity is constant, Luo-Xin-Yang [40] studied the global regularity and behavior of the weak solutions near
the interface when the initial density connects to vacuum states in a very smooth manner. Zeng [61] showed the
global existence of smooth solutions for which the smoothness extends all the way to the boundary. In the case
that the viscosity is density-dependent, the global existence of weak solutions was studied by many authors, see
[60] without external force, and [14,47,/62] with external force and the references therein. By taking the effect of
external force into account, Ou-Zeng [49] obtained the global well-posedness of strong solutions and the global
regularity uniformly up to the vacuum boundary. When the viscosity coefficient vanishes at vacuum, Li-Wang-Xin
[38] first establishes the local well-posedness of classic solutions of system (5) without surface tension.

In this paper, we provide the ingredients to combine well-established models for moving contact lines that are
valid on microscopic length scales with the shallow water problem on intermediate scales, where the capillary
length is still relevant. We develop a theory to describe phenomena that combine capillarity, moving contact
lines, and inertia. The major difficulty lies in the moving boundary and the degeneracy near the vacuum. We
first investigate the stability of the stationary equilibrium. In particular, we analyze the linearized system and
find the key energy functional , in which the concavity of the equilibrium plays an important role. Then we
move on to investigate the nonlinear stability theory, showing that the weighted, degenerate energy functional
is strong enough to control the nonlinearities globally in time, thanks to Hardy’s inequality. Finally, we sketch the
local well-posedness theory for general initial data.

This paper is organized as follows: In Section |2, we give a brief derivation of system (2)) from two-dimensional
viscous water wave equations and summarize our main results in Section We recall some weighted em-
bedding inequalities in Section[3] In Section [4] we reformulate the free boundary problem (2) in the Lagrangian
coordinates and state the main results of this paper. Then we present the linear stability and nonlinear stability
in Sections[B]to [7]and therefore finish the proof of asymptotic stability of the stationary equilibrium. Section[g]is
devoted to the local well-posedness theory for general initial data.

2 Shallow water equations with surface tension
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Jiaxu Li, Xin Liu, Dirk Peschka 4

2.1 Shallow water approximation

In the following, we will provide a systematic derivation of the one-dimensional shallow water equations with
surface tension and moving contact lines from the two-dimensional water wave equations, which we state below.
For the water wave model we follow the mathematical models presented and analyzed, for example, in [25}(55].

Let 0 < e < 1 be the asymptotically small thickness of the liquid film, u := (u,w)(z, z,t) be the two-
dimensional velocity field, p := p(z, z,t) be the pressure potential, and eh := eh(x,t) be the height of the
liquid film. Using the height, similar to Figure[1] we define the time-dependent domain

Qe(t) :=={(z,2) 1z € w(t),0 < z < eh(x,t)} for w(t) := (a(t),b(t)).
Additionally, we define the two free boundaries

Th(t) == {(z,¢h(z,t)) 1 a(t) <z < b(t)} CT(t)  and
Lo(t) :={(2,0) : a(t) <z <b(t)} CI'(t),

i.e. the top and bottom part of I'(¢) = 02 (t). The outer normal on 'y () is

o 1 —€e0yh(x,t)
n.(z,z,t) := (RN NIDEE < ) > )

With these definitions for a shallow domain, the viscous water wave equations can be written as

ou+u-Vu+ div(pJIz — p(Vu+ VuT)) = —gce, in Qc(t), (7a)
divua=0,u+0,w=0 in Qc(t), (7b)

with kinematic conditions for the evolution of the boundaries I';,(¢), T'o(¢)

e(ath + u|z:eh8xh) - w|z=eh =0, (7¢)
a(t) = u(a(t),0,t), b(t) =u(b(t),0,t). (7d)

The stress boundary condition on the moving boundary I', (%) is

(pﬂz — u(Vu+ VuT)) n, = —0, <68’”h>n6. (7e)

1+ €2|0;h|?

On the bottom boundary Iy (¢) we have an impermeability boundary condition and a free slip boundary condition

w=0 on Ty(t), (7f)
du=0 on Ty(t). (79)

Instead of free slip (7g), also a Navier-slip condition © — #.0,u = 0 with slip length & > 0 in the sense of
[10,46] are possible boundary conditions on I'o(¢). However, a no-slip boundary condition « = 0 would be
infeasible on I'y(t) since this generates a logarithmic singularity in the energy dissipation. The final missing
condition for the contact angle 0 < ¥ < 7/2 s

€edzh(a(t),t) =tany and €0, h(b(t),t) = —tan?. (7h)

Note that this system has the Hamiltonian

H, = / (5\u|2 + gez> dzdz +/ Ye (\/ 1+ €2|0;h|? — cos ﬁ)dm, (8)
Qe Ty
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 5

as a driving energy functional for the evolution with %%E < 0. Moreover, in the shallow water regime, we
employ a smallness assumption of the contact slope « of the form

1—cosd = %620(2 < 1, 9)

for some given a = ©(1). Then one can check that as € — 0, the leading order of #. is exactly the Hamiltonian
Z of the shallow water system, i.e., ().

For convenience, note that (7a) can be rewritten component-wisely as,

Opu + u0yu + woyu + 0y (p — 2u0,u) — pd,(Oyw + 0,u) = 0, (10a)
Ow + udzw + woyw + 0, (p — 210, w) — pdy(0yu + Jpw) = —ge, (10b)

and at z = eh(z, t) can be rewritten using the two components
(p — 2u0u)(—€dsh) — p(Orw + Ou) = —ve0y <\/14f;7gzhl2> (—edzh), (10c)

We will use an asymptotic scaling for surface tension «. and gravity g. in the shallow water approximation’s final
stages. Guided by [50], we derive shallow water equations with surface tension and moving contact lines from

(7).

Step 1: Re-scaling the vertical variables. Owing to the vertical scale of the shallow domain, it is natural to
introduce the changes of variables
z:=¢€Z and w:=¢€eW. (11)

The system (7) can be recast, using (u, W, p) in the (x, Z, t)-coordinates in the rescaled fluid domain () :=
{(z,2) :x € w(t),0 < Z < h(x,t)}. Equations (7a)—(7b) transform into

Opu + uzu + Wozu + 0y (p — 2u0,u) — %ﬂ@z(é@xw + %ﬁzu) =0, (12a)
eQ(GtW + u0 W + WozW) + 0z(p — 2u0;W) — 10y (Ozu + 628IW) = —€ge, (12b)
Oyu+ 0zW =0, (12¢)

and the kinematic condition becomes
8th+u’Z:hazh— W‘Z:h =0. (12d)

Meanwhile, boundary conditions can be rewritten as

(p — 210010) (—eDoh) — (€W + ~050)
€

o, (——%h N ean Z=h el
—YeOy — - , = ’t R
ol < 1+e2|8xh]2>( €dzh) on {(z (z,1))}
1 edzh
—1(=0zu + €0, W) (—€dzh) + (p — 2u07zW) = =40y | ————
N(E ZU T € )(—e€ )+ (p oz W) gt < 1+62‘azh‘2> (12f)
on {(z,Z = h(z,1))},
Wlz—0 =0, 0zu|z—o=0. (129)

In the following, the barotropic component (vertical average) of an arbitrary function f(z, Z, t) is defined by

— 1

h(zx,t)
fan = [ reznaz (13

DOI 10.20347/WIAS.PREPRINT.3084 Berlin 2023



Jiaxu Li, Xin Liu, Dirk Peschka 6

This definition allows for trivial identities of the form
Oi(hf) = (Oth) flz=n +hdf and y(hf) = (9sh)f|z=p + hOsf. (14)
Furthermore, for f = u we have an exact continuity equation
O;h + 0, (ht) = 0, (15)

for any solution of (7). This follows from the short computation
h h
0. (hu) = 0;,3/ u(x, Z,t)dZ = (8xh)u|zzh+/ Opu(x, Z,t)dZ
0 0

h
@l ~ [ 0:W(a 2110z TED —opn,
0

Step 2: Multiscale analysis. The leading ¢ ~2-order of implies
0zzu = O(e%), (16)

and integrating that in Z using gives dzu = O(€?). Integrating in Z and using yields that at
the leading order

(p — 2102 W — pdyu)(z, Z,t) = —€geZ + C(z,t) + O(€%), 47
where C' = egch — uoyulz—p, — €Y0xzh,
at (z, Z, t). Therefore, integrating in Z from 0 to h(x,t) yields
hﬁ + ,U/aac(hﬂ) - MU|Z=haxh = _G’Yehaa:a:h - /Jhaxu’Z:h
+59:h° + O(€),
where we have used and (12d). Using we can rewrite as

O+ 0y (u?) + 07(Wu) + 0,(p — 2u0pu) — € 2pdzzu — pdz W = 0,

where integration in Z from 0 to h using (12d), (12g), and yields
Oy (W) + Oy (hu2) + 0, (hp — 2uhdyu) = [(p — 2010,u)Oyh + pOW + L pdzul
+ [U‘Z:h (ath + udg h — W)|Z:h]
=0 via
S e (05h)Dpsh + O(2). (19)

’Z:h

Substituting Ap from into yields
O (W) + Oy (hu?) + 0p(5geh®) — €YehOpazh

= 0, (2uh0yu + 10, (hT) — pu| z—pOph + phdyu|z—p) + O(€2)
= 0, (310, () — 3pt| z—pOph+phdpu| z—p) + O(€2), (20)

where we have used the identity h0,u = 0, (hu) — u|z=p0xh.

Step 3: Barotropic approximation. This step will finish the formal derivation of shallow water equations with
surface tension. Thanks to (T6), one can derive that

z hy 17
u(z, Z,t) = u(x, t) +/ Ozu(z, 2’ t)dZ" — flz/ (/ Ozu(z, Z',t) dZ’) dz
0 0o \Jo
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 7

= T(z,t) + O(?).

From this approximation we deduce in particular that u| ;—j, = @+ ©(€?) and that u2 = %> + O(€?) and thus

yields
O (h) + Oy (hu?) + 05(59eh®) — €YehOpzah = 4u0y(h0, ) + O(e?). (21)

Finally, consider a scaling where eg. = g = O(1) and ey, = v = ©O(1). Formally passing the limit e — 0T
in (T5) and (21) and renaming u(x, t) := u(x,t) leads to the shallow water equations with surface tension
Oth + 0, (hu) = 0, (22a)
Oy (hu) + Oy (hu?®) + 05(3h?) — YhOpauh = 410 (hOzu). (22b)
to be satisfied for x € w(t), and therefore we have recovered and (2b). By expanding for small slopes
we obtain
Ozh(a(t),t) =a and  0yh(b(t),t) = —a, (22c)

and the kinematic conditions remain as they were. A rigorous derivation of viscous shallow water equations
without surface tension can be found in [10]. A rigorous derivation of system in the case when h > 0, i.e.,
the non-degenerate case, follows similarly.

In this work, our goal is to investigate the case when system degenerates. In particular, we focus on the
casewhenw = {h > 0} = w(t) C Ris a domain evolving together with the flow, and i has compact support.
At the boundary of the support, these equations are supplemented by the boundary conditions (2cj2d|[2€), which
were untouched by the shallow water approximation.

2.2 Conservation laws and contact angle
We start by deriving a few conservation laws and energy balances for solutions to the shallow water problem.

Conservation of mass: Taking the time derivative of the volume of the incompressible fluid, i.e. the integral of
h over w(t), yields

e , .
% hde B _hul + h(v)b — h(a)a B 0, (23)
)

Balance of momentum: Assuming constant contact angle, integrating the momentum p = hw and using the

divergence form of yields
d b(t) b
— hudx = —/ YOy hOpzh dz = —1yamhy2\" =0. (24)
dt a(t) a 2 a

Balance of energy: Taking the L?-inner product of with u and integrating by part in the resultant lead to,
thanks to (22a),

df, [*¥ 2 2 ’ ’ 2
dt{Q/() hlu|* + g|h| dx} —7/ (3th3mhda:+/ 4ph|0yul”dx = 0. (25)
a(t a a

Moreover, by applying integration by parts further, one can calculate that

b b
—y / OyhOpgh dz = 7 / Ouchdph da — ~(8ihdh)|]

b
_ g/ 040 h? Az + 5 (u|2,h[?)| (26)

d b
~a /. 110.h)* dz + 3 (u|0zh[?)

b
a’
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Jiaxu Li, Xin Liu, Dirk Peschka 8

where we have used and (2c). At this point, we want to explore the impact of using a constant contact
angle on the energy balance. For constant contact angle (2€), using we find

b
(|d:h?)]) = (b - a)a? = % o? dz. 27)
Next, substituting into leads to
dfL o o 2 2 2 ’ 2
ul2 hlu|* + gh® 4+ ~v(|0zh|* + o) dz| = — | 4ph|Oyul” dx. (28)

This is the energy balance that we stated before in (3). The static contact angle produces a thermodynamic
consistent shallow water model in the sense %% < 0 with the Hamiltonian ().

Remark 1. Formally, different equivalent variants of boundary and kinematic conditions at a, b are possible for
the water wave equation, i.e. (2¢]2d) or or combinations thereof. Similar arguments as in [38, remark 2]
show that, classical solution to with moving boundary satisfy

Optt|g=ap = 0. (29)

For s € {a, b}, taking the time-derivative of the slope at © = s gives

d

0h(s(0), 0]y, = (@0l + 5050:h))|, B (~02(uh) + udh),

s=ab
— (—20,h0,u) B o. (30)
and therefore imposing implies that the contact angle does not change from its initial value. While the rest of

the manuscript centers on a constant contact angle and free slip, we now briefly discuss a more general contact
line model and the impact of a finite Navier slip length Z..

2.3 Dynamic contact angle and Navier slip

Models with dynamic contact angle use a dynamic stress balance at the contact line, a well-established con-
cept in hydrodynamic models using variational arguments and dissipative processes. A general thermodynamic
consistent model for a dynamic contact angle in the spirit of [52}/55] but applied to the shallow water problem

replaces by
va(t) = [a® = (8;h(a(t),1))’] and vh(t) = —[a® — (9:h(b(t),1))?]. (31)

For example, in [46] it is shown that a scale ﬁ662 = # = O(1) leads to a modified momentum balance, where
instead of one has

O (hu) + az(huQ) + hOym — 410y (hOyu) + £ u =0, (32)

while all other equations remain as they were. Redoing the previous computation for the energy-dissipation

balance for gives
df, o) 2 2 ’ 2 -1,2
—93 hlul* + g|h|“dx p = [ ~OthOzzh — 4ph|0zul® + &~ u” dx. (33)
di a(t) a

Similar as in but now with dynamic contact angle we get

(uldzh[?)]> = 6{(8xh)|i:b —a?+ a2} - a{(@xh)\i:a — a1 OP}
(34)

[

. . . b
'v(a® + 0% + (b —a)a® = v(a® +b?) + jt/ o? dz.

DOI 10.20347/WIAS.PREPRINT.3084 Berlin 2023



Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 9

Substituting (2634) into leads to the energy-dissipation balance
b
1% = -2 where o= / [4ph|0pul? + 67 ?] dz + v(a® + b?). (35)
a

By this computation, we have identified two new terms in the dissipation <. Reconsidering the previous conser-
vation of momentum we get

b(t) b b .
% " hudx = /a 67w da — %thﬂz = /a 6y da — %(d +0).

At least formally, in the limit =1, 7 — 0 we recover the energy and momentum balance for the constant contact
angle, whereas with finite v, £~ the momentum is not conserved due to friction with the supporting interface
at z = 0. The shallow water system with dynamic angle is thermodynamic consistent in the sense that
the Hamiltonian (free energy) decreases (35). While it is an interesting mathematical question to consider the
regularity of solutions as x — a, b in the (singular) limits of vanishing or infinite p, v, 71 in the following we
setv, 471 = 0.

2.4 Equilibrium

In this subsection, we look for a stationary equilibrium g(x,t) = gs(z) with gs = (as, bs, hs, us) of with
constant/static contact angle (2¢), i.e. us = 0 and o > 0. That is

Os(2h2) — YhsOpzohs =0 and  Ophg(bs) = —phs(as) = —a, (36)

inws := (as, bs) = {hs > 0}. One can explicitly solve for hs from

2R/A _ (o(z+R)/X (R—x)/A
e +1—(e +e )
hs(x) = a) ( TR ) . (37)
where A\ = \/~/g is the capillary length and bs = —as = R sets the center of mass to the origin. With

dynamic contact angle, this solution is the unique long-time limit up to translation and the droplet radius R is
determined by the mass of the droplet. For static contact angle, the long-time behavior can be characterized
by translation and by allowing arbitrary constant droplet speeds u(x,t) = us € R, h(x,t) = hs(z — ust),
a(t) = —R + ust, b(t) = R + ust. Generic equilibrium solutions for various R are shown in Figure [2| For
R < X the droplet shape is parabolic hs(z) ~ 93¢ (1 — (%)?), whereas for L >> X it has a pancake shape

hs(x) =~ a\ away from the contact line.

1k y / 7 \ v Y T
’é // // \ \\
EO.S / y X \\*
\ \ @ \ \
-15 -10 0 10 15
z[A]

Figure 2: Equilibrium solutions hs for increasing R/\ € {i, %, 1,2,4,8,16} (blue lines) and parabolic shapes with
same R/ (red dashed lines).
2.5 Summary of shallow water equations and main results

We summarize the shallow water equations with surface tension in this subsection. To simplify the presentation,
we assume that

(38)
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Then the shallow water equations with surface tension and constant contact angle, together with (2c}2d|

[2€), read

O¢h + 05 (hu) = 0, in w(t), (39a)
Or(hu) 4+ 9y (hu?) + 95(h?) — 2hOpeuh = 20, (hdyu), in w(t), (39b)
Or h( ),t) = =0, h( (t),t) = —1, for ¢ € (0,00), (39c)
dpu(b(t),t) = Opu(a(t),t) =0, for t € (0,00), (39d)
a= u(a(t),t), b=u(b(t),t), for t € (0,00), (39)
where w(t) = (a(t), b(t)). Alternatively, can be written in the conservative form:
O (hu) + Oy (hu®) + 0y [h® — 2hyzh + |0k [%] = 20, (hOzu). (39p")
The equilibrium is given by
e2+1 et gpel®
hs(z) = R Vo € (—1,1), (40)
satisfying
he' = R (41)
Here we have chosen
= —1,bs = 1. (42)
The main results of this paper can be summarized, in an informal way, as follows:
Theorem 1 (Informal statement of main theorems). (i) Given general initial data (a, b, h, u)|=0 = (ag, bo, ho, uo),

as long as h satisfies some convexity condition, there exists a unique local-in-time strong solution to sys-
tem (39). See Theorem(3, below, in Section[§ for full description

(ii) With small enough perturbation, the equilibrium state is asymptotically stable. In particular, there ex-
ists a global unique strong solution to system near (40), and the solution converges to the equilibrium
state as time goes to infinity. See Theorem|[2, below, in Section[4.3 for a full description.

3 Preliminaries

In this section, we recall some weighted embedding inequalities. The following general version of the Hardy
inequality whose proof can be found in [27] will be used often in this paper:
Lemma 1 (Hardy’s inequality, LP version). Let k and p > 1 be given real numbers, and g be a function with

bounded right-hand side in the following inequalities. Then

1
W ifk+ — > 1, one has
p

1
/0 (s"g(s))"ds < C&p/((sklg'(S)\)p + (Sklg(sﬂ)p) ds; (43)
Witk + 1 < 1, one has
P
1
|60 - g ds < i, [ (g0 ds. (@4)
0
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 11

Next, the following weighted Poincare inequality can be found in [17]:

Lemma 2 (Weighted Poincare’s inequality). Let hs be given as in (40). Suppose that g satisfies

1
/ hsg d¢ = 0.
-1
Then one has
1 1
/ helgl? d¢ < C / helOeg? de (@5)
-1 -1
and
1 1
/#W%SC/JMMP%- (46)

4 Lagrangian formulation and main results

4.1 Lagrangian coordinates with reference to the equilibrium profile

To investigate the stability profile of the shallow water equations with surface tension (39), we introduce the
Lagrangian coordinates (£, t) in a way that captures the equilibrium profile as coefficients. Define x = n(&, t)

by

n(&,t) 3

/ h(z,t)dx = / hs(z) dz. (47)
a(t) -1

b(t) 1
/ h(z,t)dx = / hs(x) dz, (48)
a(t) -1

which, thanks to the conservation of mass (23), is a restriction on the initial data. Then taking the space and
time derivatives (O¢ and 0;) in the (&, t)-coordinates leads to, for { € I = (—1,1),

In particular, we assume

h(n(gat)vt)afn(é.at) = hs(£)> (49)
n(&t) n(&:t)
hm@mwwmw:—/@ oh(a.t)de = [ 0,() (e, 1) da

) (50)
= h(n (€, 1), yuln(&,1), 1),

where (39a) is used. Notably, is equivalent to the Lagrangian flow map [11],[32], and the benefit of is
that it captures the equilibrium [41,142]. Therefore, system can be recast in the (£, t)-coordinates as

hs(§)
hEt) = —250 am(e,t) = u(€, t), 51
(&,t) Fen(e, ) (€, t) = u(é,t) (51a)
o)t (o (s (a)
hsOru + O —2hg—| — | =—
H 5<(3§77) Ogn \ Oen \ Oem \ Ogm

(51b)

-9 (hs 85“)

“\9n den )’
Oenle=—1,1 =1, Ocule=—1,1 =0, (51c)

where we have used the same notations for the variables h, u in the Lagrangian coordinates as in the original
Euclidean coordinates. Notice that (51c) is equivalent to (39¢), which can be seen from Remark [i]
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We consider the solution 7 to system (57) near the equilibrium 75(§) = . Thanks to and (B1¢), we
consider 7(&, t) as follows:

n,t)=&+0 with 859‘5:,171 =0. (52)

Notice that u = 0yn = ;6. Then in terms of the perturbation variable 6, system (57) can be written as

hs 2 hs 1 1 hs
hsO0 -2
STt +<(1+05) )5 1+9£<1+9§<1+9§(1+9§>§)5)5
hs >
=2( —= 0 ), with Oe—_11 =0.
((1+9£)2 ) +le

or equivalently, in the conservative form

he \? h 1 1 h
Db + s —_ s
t {<1+95> 1+951+0§[1+95<1+95)5L

1 hs 2 hs ) .
L —of " 9. ), with Ocfem iy =0.
+[1+95<1+95>J }g <(1+95)2 ) with Bele=-11

4.2 Main result: Asymptotic stability

(83)

We now state the main stability result in this paper. For simplicity, we denote I = (—1, 1) in the rest of the paper.
The asymptotic stability of the stationary state of system can be stated in the Lagrangian coordinates as
follows:

Theorem 2 (Asymptotic Stability). Let hs be the equilibrium defined in (40). There exists a constant(0 < ¢ < 1
such that if the total initial energy &g defined in (156)), below, satisfies

&y < g, (54)
then the system admits a unique global strong solution (1, w) in I x [0, 00) with

n,me — 1 € C'([0,00); L*(I)), mee, hsdin € C([0,00); L*(I)),
h320¢n € L((0,00); L*(I)), u,ug, hi/*u; € C([0,00); LA(1)), (55)
et uee, hi/2uyy, hsO3u € L>([0, 00); L*(1)),

Moreover, we have the following asymptotic stability:
gNL(t) = gNL,l(t) + SNL’z(t) < Ce_clt, (56)

for any t € [0, 00) and some constants C,C € (0,00), where xt,,1 and &t, 2 are defined in (100) and
(101), below, respectively.

Remark 2. For general initial height ho > 0 in [a, b], we can define a diffeomorphism 79 from [—1, 1] to [a, b]

such that
10(&) 13
/ ho(x) dx:/ hs(x) dx, (57)
a —1

which is agree with (47).
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 13

5 Linear stability analysis

Assuming 0 = ©O(g) with small £ representing the size of perturbation, from (517, one can write down the
following linear equation:

hsOubh — 2(hZ01¢)  + 2hsb) Deeehs + 2hsD¢ (¢ Deehs) + 2hsOge (01,¢0¢hs)

(58)
+2h56§55 (hsel’g) = 285 (hsel’gt), with 91,5’§:_1,1 =0,
where we have substituted with and (42), i.e.,
85115 = 8§§§hs with (59)
O¢hs(1) = —0¢hs(—1) = =1 and hg(1) = he(—1) =0,
which can be solved as (40), and satisfies
e? 41 eftL pel=¢
8§§hs:hs_62_1:_ 21 < 0. (60)
Moreover, one can rewrite the ‘surface tension’ terms as
2h5917§8§§£hs + 2h56§ (9175355115) + 2h565§ (917585113) + 2h56§§5 (hselé) 61)
= 20¢ (4hsOcehsbh e — 2|0chs|*O1¢ + Oc(h301¢)).
Therefore, can be written as
hsOub) — 20¢[(hZ + 2|0¢hs|* — 4hsDeehs)bre] + 20¢e (h20, ¢c)
. (28))
= 26& (hsgl@g), with 9175‘527171 =0.
5.1 L2 stability
Taking the L>2-inner product of with ¢y ; yields
d (1
{3 [ el g+ [ loeh — ancogens + mdioe? ac
(62)

+/W$&gp%}+?/%M@F%:U

Moreover, by taking the time derivatives in (8]) and performing the same arguments as above, one can derive
the same estimates as in with 6 replaced by 0f°0), for any k € N; that is

d (1
dt{2/hs\af+lelyz dé + /(2\8§h312 — 4hsOcchs + h2)|0F 0 ¢|? dE
(63)
+/ IAREA dg} + z/hsaf+1917§|2 d¢ = 0.
On the other hand, from (58]), one can derive
d
G [t as= [mo o 64
Without loss of generality, we assume that
/hsel,t d¢ =0 and /hsﬂl d¢ = 0. (65)
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In addition, integrating from £ = —1 to £ yields
2h5001,¢ — 20 (h30e¢) + 2(2|0chs|* — 4hsOgehs + h3)bh e

¢ (66)
= / (hsOub)(0) do.
-1
Taking the L2-inner product of with 0y ¢ yields
d
dt/hswl,gﬁ d§+2/h§|91,§5|2 dé + 2/(2‘a§hs|2 — 4hsOcehs + h2)|01¢]* d€
(67)

—— [ dutr-0rdg =~ [ man-ordae [ o dc
Notice that, thanks to (65), applying imples that
/hswu\? d¢ < /hs|8591¢\2 d¢ and /hsyelﬁ d¢ S /hs|8591|2 de. (68)
Therefore, there exists a constant ¢; € (0, co) such that, after adding with ¢; x (67),
%é’o + Do =0, (69)
where

1

80 ::i

[ bulbl? g+ [ @l0ch]? - ahudechs + )lorgl dg
+/yh5\2191,££|2 d§+c1/hsyel7§|2 d§+c1/h58t01-01 de,

Do 5:2/hs’0175t|2 d¢ - Cl/hs|91,t|2 d£+2c1/h§!91,55|2 d¢

+ 201 /(28£hs|2 — 4hgOcehs + h2) |01 ¢ dE,

satisfying, thanks to (68),

1
02 5 [ ulou? d€ + [ 06h]? — ahdeeh+ )61 ? de
+/|hs|2|91,§g\2 d§+t1/hs

1/2 1/2
- S04 d . /hsﬁ 2d >
C1 </h ‘91,7&’ f) < ‘ 1| 3 72)

1 C1

z%—&)/m@9@+/M%mﬁ%M%m+@wmﬂﬁ

+/M$M&P®+q(/MMA%K—o/mMP@)

2 [1h 2004122 + 10l 2 + [ hsOreell T2 + R 201172

ng

Ohe

and
Do 2 |7 *0ellz + [1hsbreclliz + 1rell7 2 Eo- (73)
Therefore, yields the exponential decay in time, i.e.,
16:(0) 17 < (172000172 + 161e(D) 172 + [|hsbree(t)][72 S e (74)
and
/€A°S{\\h§/z9l,gt(8)\\%z + |[Psbree () 172 + 10e(s)l|72} ds S 1. (75)

for some Ao € (0, 00).
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5.2 Linear Elliptic estimates
To estimate the nonlinearities in the original equation (517), it is important to capture the higher-order estimates.

Repeating the same arguments as in (63), one can easily derive that the same estimates of the types and
for ) replaced by 8;“01, forany k € N, hold, i.e.,

|h2OF 00 (t) |22 + 198O (1) 122 + || hsOF Oree(t) ]| 32 < Cre (76)

and
/€A’“s{!!h§/2af+191,£(8)\|%z + [[hs0f Oree ()17 + 107 Oe(s)]|72 } ds < Ciy (77)
for some A\i, C, € (0, 00). Without loss of generality, we assume that 0 < Mg < A; < Ao <

Next, we aim to show the estimates by shifting the time derivatives to space derivatives, i.e., the Elliptic estimates

of (B8]).
Let
My := 2|0¢hs|? — 4hsOgehs + h > 0. (78)
Then can be written as
2 1 e
hsOibhe — O (hsbhge) + msbhe = 2/ (hsOubh)(0) do. (79)
~1

5.2.1 Estimate of 917555

Lete € (0, 1) be an arbitrarily small constant. Unless stated explicitly, are independent of .

After rearranging the equation, (79) can be written as

— e (h301.¢¢) + 2|hg|61.¢ = (4hshy — h3)61¢ — hsBith e

1

£
+§ /1(hs(9tt91)(a) dO’.

Thanks to the fact that

1
/ hsOuuf dé = 0,
~1

one can write

3 |f h@ttﬁl )d0'| EgO,
hsO+6 do| =
’/1( att‘ 1)(0) 0" { ’ o fé hsattel)( )d0'| 5 > 0 (81)

< hs|| L2 0u0)| 12,

where the last inequality follows by applying Hélder's inequality in the two intervals (—1,0) and (0, 1), and
using the fact that hs(§) ~ (1 + &)(1 = &).

After dividing with h;/z, taking the square of both sides and integrating the resultant, i.e., H 1/2 HLQ, yield,
thanks to (81),

—0¢ (h20¢¢) ) , ,
| 17 > S 10ielle + 1|0brell3o o

+[|he/ 2061132
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The left hand side of can be calculated as below:
—0g(h3ec) + 2|hg

6s(h291 R LARLY; W\Q
/ hs d& - 4” 1/2

LARCN e (h20, ¢¢)
e L0172 + uhl—/ﬁuiz

=4

S122 + [|h3/%6) gee] |2

B |20
+A[| Y 2RO e3> + 4 / h2hifgeO) e A + 4 / h26)ec - O (’Llf) dé
|hi|%0

= 4|
h1/2

SN2, + [|h3 20y eee|| 22 + 4R 2000 eI (83)

-2 / hZhY|0) ee? € + 4 / (2hshhY — (L)) 6101 ¢e A€

4 LARCR
o h1/2

—Q/hgh;’wl,&\?dg—2/(2hsh;h;’ — (hL)%)'|0re] de.

Therefore, and (83) yield

172 + 11320 geel|72 + 4l R 2RO el -

1R300 ceel|3 + |hi 20 ec |32 + |

1/2HL2 015”[/2

+||h;/2att91”L2'

On the other hand, after dividing (80) with hs + &, taking the square of both sides and integrating the resultant,
e. | 7HL2, yield, thanks to (81),

hb 2 < |6 + ||00

+[|he/ 206113

Meanwhile, the left hand side of can be calculated as below:

H—a&(h?@l,&) + 2| A _ 4 \hé\291,5||2 ”@:Ul 56 §£)H2
he + ¢ he +¢ 'E? 2
2 112
_4/3501 sOge) Ml (86)
(hs +¢)?
Io1

To calculate Iy1, applying integration by parts yields

’2915 /hg‘hé|2‘9155’2
I =4 —q [ Dl D
01 /h 6.¢¢ - O < (he T 2)? d¢
2h2h/h/l ( ) > /h2|h,|2|915§‘2
+4 S S 5. Orecthedé =4 | =2
/((h +¢€)? (hs+ £)3 Lechie A& (hs +€)? $

R2RRY (R ,
/(( T2 (hat o) ) 6el”d8 &7

4 /Wwd§+4 / ~2hs| 4 *HY — DRI — hERR
(hs +€)? (hs +€)?
2hs||* + SM[HGPHY  3ERI*
(hs +e)? (hs +2)1
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Local well-posedness and global stability of one-dimensional shallow water equations with surface tension 17

Sending ¢ — 0, thanks to (59), leads to

lim Ip; = 4/‘%‘2’91,65’2015
e—0+

3 h 2h// h 4
+4/( ’h//|2 h/ | ]Sl| s |h82| )‘91,§|2d§

Therefore sending € — 07 in (85) and (86) yields

3 /2 " (h§01 )
[ (1 i 2 0, 2 ag - apnt el + 1 2R g,
To2

S 0uell72 + 10:00ell72 + 1h3/ 201617 .
Further more, Iy2 in can be calculated as
Ioz = ||hstheeell 72 + 4llhi0 el 2 + 4 / hshifgebh ece S
— Wisbreee o + 201iBreele — 2 [ huillorgel de.

Therefore, implies

1/2
s eeell7z + l|6neel 72 < 1/2 =122 + 110:6, hi20u01]2,
which, together with (84), implies
1/2 SRS Or¢ll7 + A2 061 7.

To sum up, thanks to and with k = 1, implies

O¢(t)
(IO + sl + 1257201 )

t Ohe(s)
+/0 eMs <Hhs91,£££(5)ﬂi2 + [|Bree(s)[I72 + | 61/2 ||%2> ds S Ch.

Repeating the same argument with ) replaced by 9;0,, one can conclude that

0ib ¢ (1)
& (InddeecO1F + 1ol + |0

! s 8t01 (S)
+ [ (1ol + ol + 1275 ) s < o
S

In particular, this implies that
1001 (O < 1101 (t)]|72 < Cae™,

and therefore the flow map is invertible. Moreover, the linearized system is asymptotically stable.
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5.2.2 Estimate of 0) ¢¢¢¢

From (58]), one can write
h0esee + Ahshybheee = —(h3)"Ohge + Oc[(200¢hs|* — 4hsOsehs)bh ¢]
1
+(h3016)e + e (hsbrer) — 5/1:0ub)
= (—6hshl + h2)0r¢cc + (—4hshl" + 2hshy) 61 ¢

1
+hsbh ger + h;&l,gt — Ehsattel.

Therefore, after dividing with he/? and taking the L-norm of the resultant, one has that

h20geece + 4hshlh eee

172 S 1h2200eell72 + | ha/201¢]|%

Oh.¢t
B2

IR 20 gee 2 + 5551172 + 15206117

Meanwhile, the left hand side of can be calculated as below:

h20) ecce + 4hshl0h gee
e 2

172 = 13?0 eece |72 + 16]|hd/*hibh ecell7
+8 / h2hiOeeer cece A€ = (130 ecee |72 + 16]1h8*h 0 ece 72
[ (20 161cce € = 12201 cee
+/(8hs(hg)2 — ARZRY) O geel? AE 2 ||h3201 geee| T2 + |03 2O geel|7 -

Therefore, thanks to (76), (77), (93), and (94), and imply
A 2 1/2 2
2 (|h 01 gcee (8)I172 + 11261 gee (8)1172)

(99)
+ / 2 (|h2/20) gece ()72 + 1/ *Oreee(5)]172) ds < Ca

6 Nonlinear elliptic estimates

In this section, we demonstrate the nonlinear elliptic estimates for the solution to (53), i.e., shifting the temporal
derivative to the spatial derivation. Let

vt = 30 {120 0, + 1 teel + ok0el . (100
k=0,1,2
We will show that
ENL2 = |32 0ceee|F 2 + 1hY/ 2 0ceell3 -
oro (101)
k 2 k 2 t V€12
"’k;l{”hsat 9£§EHL2 + |0 el 72 + ‘h;/QHLQ}7

i.e, the (weighted) estimates of O¢eee, Oif¢ee, and Ogee, can be bounded in terms of Ent, 1 provided that Ent, 2
is small.
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We first rewrite the equation (53), by separating the linear and nonlinear parts. Notice that

1 07 1 20 +3
— =1—-60:+—— and —— =1—-204+ 62, 102
1+ 0 et 150 (1+ 02 ET 402 (102)
N—— N——
::91(95) :192(95)
where, for small &g,
91(0¢), 92(0¢) = @<9,§>- (103)
With these notations, can be written as
a0 — 2[(42 + 2L — Ah,R)6], + 2420 o — 2 (b
(104)

+[N1], = 2[hs(—26¢ + g2(6¢))bet] . = 0,
where
Ny = hZga(0e) — Ahsbe [ + (hsbe)e]
—2hs(1 — 20 + g2(0¢)){ e (hsOe)e + (1 — b + g1(0¢)) [hsg1 (0 ) e
+91(06)[hs(1 — 0c)]e }
~2haga(0c) [1, — B0¢ — (habe)e] + [WL0¢ + (hebe)e]” (105)
+{2h — 200 — 2(hsbe )¢ + Og(hsbe)e + (1 — O + 91(0¢)) (hsg1(0e) )¢
+91(0¢) [hs(1 = 0¢)]e } x {0e(hse)e + (1 — Og + g1(0¢)) [hs g1 (0¢)]e
+91(0¢) [hs(1 — O¢)]e }
or, by denoting f; = fi(y) € C*(-1/2,1/2),i=1,2,--- ,6,

N1 = hZ{ f1(0¢)07 + f2(0¢)0cOcce + f3(0¢)0eebee }

: 2 2 p 2 (106)
+hshg f4(0¢)0c0ce + (he)” f5(0)0 + hshy fo(0e )0 .
To simplify the presentation, hereafter we use
f=fly) e C*(-1/2,1/2) and F = F(y) >0€ C*0,0) (107)

to denote the smooth functions of the argument, which is different from line to line.

6.1 Embedding inequalities

We summarize the weighted-LP embedding inequalities used in this section. These inequalities are conse-
quences of Hardy’s inequalities (Lemma([{) and the Sobolev embedding inequalities.

Lemma 3. The following inequalities hold:

10l zoe S 10eellze S 1hsbecellnz + [[hsOeel| L2,
[0ctll Lo S M10cetll e S lhsOeeetll e + [[hsOcetll 2,
”&

Oct
I 2 S IIille S 10geellz2 S 1hsbegeell L2 + 1ROt L2,
S

108
[hsOeell Lo S NhsOecelln2 + [10ell L2, (108)

[hsOcetllLoe S Nhsbecetll L2 + [|Ocetll 2,
112/ 20ce | Lo S 110 Ocgell 12 + g/ *Ocell o2
S 1A 2 Oceel| 2 + 110eel| 2
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Proof. This is a direct consequence of applying the Sobolev embedding inequalities and Hardy’s inequalities.

O
Lemma 4. The following inequalities hold:
b 0 < ||n2/%0 hl/%g 0 109
1=l + 1l s S 1R Oceeell L2 + 1hs’“Oeell 12 + l10gel 22, (109)
hs
1122 0cstlpa < N hsBeeell 2 + |1Oceell 2. (110)
Proof. Recall that 0§|5:_171 = 0. Thanks to Hardy’s inequalities and the Sobolev inequalities one has that
O¢ 14 < 4 4 4
15 zs S 1Peellza S Nhsbecellza + [1hsbeellLs
{@4) with k=0,p=4 (111)
SR P0cee | 7o lInd*Ocee |72 + 1hsBec|F o | hsOcell7 2
3/2 2 2 2 2 \2
S (I1h3Oegcell> + 1h3*Beeell72 + 10ec | 72)
which proves (109).
To prove ({T10), applying Hardy’s inequalities and the Sobolev inequalities yields
103 0citl| 4 S N1PsBertl T 0erell T2 S (1hsBecutll T2 + 10etl|2) Bere 72 (112)
This finishes the proof of (T10). O
6.2 Estimates of 0¢¢¢
Similar to (96), one can write, from (104), that
h20ccee + AhshlOcee = (—6hshl + h2)0ce + (—4hsh + 2hshl)0¢
1 1 (113)
+hsbect + hifer — 5hs0ub — 5[N] + [ho(=20¢ + 92(0¢)) 0z
Then applying the same arguments as in (97)—(98) yields
h26 + 4hshl0 9
152 OeeeellE +1ms/Beee 122 | == === 12
S
Oct
S 1 20cel72 + 10 20el 72 + 17y *Oeel| 72 + HWH%Q + (11326417 11
S

(V1) Ot
HIZ 57 e + F(10el) 1061|5517

+F (|10 | 1) 10 1 20 1152 Oece |72 + F (110 | 1) 10t o< 1 /O |72

(N1)e

12

To calculate || |2,, from (06), one can calculate

(N1)e = h3{f(0)0¢0ee + f(0e)0ebecee + f(0)OccOcee + f(Oc)0eebecbec}

+hsh{{ f(0c)0F + f(0c)0cOcce + f(0¢)OccOcc} (115)
+((R)? 4 hsh!){ f(8)0cbec} + ((hL)* + hshl)' f(6e)6z.
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Therefore one has that

(N1)
| hl/; 172 < F(10ellzoe)Q 106|700 1h3/20ce |7 2 + 110¢ |17 00 |13 2 Occee |7 2

1 sBegl|Zoc [1hs *Oeec |72 + 1hsbeelToe 12/ *Oec | T + 16g]Foe 11207

0
01700 1Y 2Oceel|72 + |h2 *Oge || 74 + |!f!!i4!!h§/29££!!i4
S

QCTRPCTA

Consequently, one can conclude from (114)—(116) that

Oct
112/ 20ggec e+ 13 0cel2 S N0eel + el + -1

+6xL1 + F(6nL2)6Rm 0,
thanks to (108) and (109).

6.3 Estimates of (¢ and 0,

Integrating from £ = —1 to € yields
2hs010¢ — 20¢(h20c¢) + 2(2|hL|* — 4hshl + h2)0

3
= / (hsf)ttH)(a) do + Nl — 2]15(—205 + 92(95))9515
-1

Then, similar to (80), (178) can be written as

1 r¢
~0c(h20ce) + 2L PO = (4hah — W) — b + / (he0u0) (o) do
—1

1
+§N1 — hs(—295 + 92(65))0@-

Repeating the same arguments as in (82)—(92) leads to

9
S {Imottislts + Iotocclte + 15575 s } < 6
k=0,1

OtNl

+F(8NL2)8RLa + H HL2 +l== ||L2

It suffices to calculate \

H » follows similarly.
From (106), direct calculatlon yields
0Nt = h{ f(0c)0c0ct + f (0c)0eibece + f (9c)0cbecer + [ (0¢)eabecOee
+(0¢)0ce et }
+hshy f(0)0ei0¢e + hshif (0¢)0¢bcer + (IRLI* + hshl) f (0¢)0¢er.
Therefore one has that
3tN1
1=z < F(||95||L°°){||95||%o<>Hhsest\li2 + (10t [ hsBecel|7 2
+H95HLolos9§£5t||L2 + 10eel| Zoc 1 hsOse | T 10ec 72 + NI AsOee | Foc 1Ot 72

0
et Z< 10¢ 172 + 106 1< 10ee 172 + H;II%AI@&II%}-
S
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Consequently, one can conclude from (120)—(122) that

9
> {|h Obeceliz + 108 clla + I 7z ||L2} < Exwa
k=0,1 (123)

F(ExL2) &R 2-

In summary, from (117) and (123), we have shown that

énr2 S ENL,1 + F(‘E’;NL,Q)&%L,Q- (124)

7 Nonlinear a priori estimates and asymptotic stability

7.1 Energy estimates

We start with rewrite as

%%9+{afiP+XffZ) (fig4+ h[<1)>]2

o2
4
1 (125)
—2hs(1+05)t}5—{ < 1+‘9§ 4)5}55

with 95‘527171 = 0.

Similar to (102), one has
1

—— =1-—kf 0 ;=1,2,3,4 126
(1+(9£)k §+gk( 5)7 ¢ y &y 9y E, ( )

where, for small 6,
gr(0e) = O(67). (127)

Then one can separate (125) into the linear and nonlinear parts, by writing

hsOud — 2{(hZ + 2(h))? — 4hsh)0¢ + hbei } o + 2(h0ee)ee

(128)
+(M1)e + (Mz2)ge = 0,
where
My :=hZga(0¢) + [(hy)* — 2hshy]ga(0e)
9. 9 9 (129)
+ 1 1s1(=20¢ + 92(0¢))el” + 2hs (91 (6¢))s,
h2
My = = 2-(94(0) e, (130)
or using
My =B2{ (003 + T (0)0cbce + F(0c)03e) + [(h)” — 2hahl] (002 s
+ hs f (0¢)0c Ot
Moy :hgf(eg)ggegg. (132)
Now we are ready to establish the estimates of &xt,.1. In particular, let
8 =y [ mlokt 6 g+ [ b - anal -+ w2)ofod? ag
(133)

+/MFW%F%+q/mW@P&+q/m&H&&mm
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Dr, :zz/hsmf“egy? dé — ¢ /hs\af“ay? dé + 2c1/h§yafegg|2 d¢
(134)
+ 20, /(2|h;12 — 4hshl + h2)|0F 6 |* de.
Then similar to and
Dr, 2 |hs20F 1 0e1 72 + |heOFOcell72 + 10F Ol 72 135
> > 1p1/29k+1g 12 k 2 kg (12 (135)
Z &2 Hhs at 9||L2 + Hhsat 9§£HL2 + ||8t 9§||L27

and therefore

Y &S Y & (136)

k=0,1,2 k=0,1,2

We calculate the estimate of 8. The estimates of &y and &; follow with similar arguments.
After applying 8,? to (T18) and repeating the same arguments as in (62)—(69), one can conclude

d

&52 + Dy = /(Ml)ttefttt d§ — /(Mz)tt9§gttt d¢
(137)

+e1 /(Ml)tt9§tt d§ — ¢ /(M2)tt9§§tt d¢.

Therefore, it suffices to estimate the right-hand side of (137).

Estimates of f(Ml)ttgéttt d¢ and f(Ml)ttegtt d¢
Applying Holder’s inequality yields

’/(Ml)ttggttt dé| + ’/(Ml)ttagtt d¢|

< (My)u

(138)

22 (W2 0euie 12 + W2/ %0ets| 2).-

From (131), one can calculate

(M1)se = h{f (0)0eb¢tt + [ (06)0Z, + f(0)0cOects + f(0e)Oerbecr
+ [ (0¢)0cuubee + f(0e)02,0¢c + f(0¢)0ecOeeus + f(0e)0ze,
+ f(0c)0¢i0ceeet + f (0c)0eusbFc + f(0c)0F,0% (139)
+ hs{f(9£)9§0£ttt + f(ag)egtegtt + f(9g)9§’t}
+ [(h8)? = 2hsh1{ f (0¢)0cOct: + f(06)07,}-

Therefore, one can calculate

(M)
=575 2 S FUI0l=){ 106 e 1132 + Bt 113/ .

H10el| oo 1112 *Ocerel| 2 + 116zt Lo 13 0geil| L2 + ||he *Oee | oo | hsBere | 2
+0et |7 1112/ *Oce | 2 + 17 Ocel| o< | PsBeere | 2 + hsBeetlloe || B > Oceel 2
|0t oo || BsBee | oo |02 2Ocerll 2 + 72 Oce | T e 1/ 2Oca| 2 (140)
+10et | 7o 25O | oo | 72 el .2
16 | oo 178 *Oetael| 2 + 11t oo 12 *Oeaell 2 + 11Ot Foo [1od Ol .2

96 1/2 95t
2 pall k20wl pa + 10gell oo | =75 1 2 p-
he ¢ ¢ e
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Therefore, (138)—(140) implies
!/(M1)tt9gttt d¢| + ’/(Ml)tteftt d¢|
(141)
SP(6niy+6nL2) Y, D
k=0,1,2
thanks to (T08)—(T10). Hereafter P is a function of the argument such that
P =P(y) >0e C®0,00) and P(0)=0. (142)
Estimates of [ (M2)0¢er A€ and [(Ma)y0cere A€
From and (132), one can calculate
h2
(M) = —35911(95)955&
h2 (143)
— 5 194(0c)0e0ect + 9 (0c)euce + 91’ (06)05 Ve } -
=:M3
Therefore,
d 1
/ (Mz)ugers A€ = 365+ / he{794(0)0ei0en} S + / (M3)10gers dE, (144)
where 1
85 = —4/h§92(‘9£)’9£§tt|2d€— /MSQEEtt d¢. (145)
Direct calculation yields
&5 S F (10l oo ){110c || oo || PsBeert | 7.2
1Ot l| oo [|hsOcetl L2 | hsOeetel| L2 + [|Oeetl L2 | PsOee || oo (| AsOeete | 2 (146)
6t ]|7 00 |hsOee || L2 | PsOeert | 2} S P(Enra + ENL,2)ENL1-
On the other hand, one has that
(Ms) = h2{f(6¢)0ciOeiOcet + f(Oc)Octebeer + f(Oe)OctBeere
+f(0¢)0¢t0ctt0ce + f(O¢)0ctstOce + f(Og)0ctOctOctOe (147)
+f(0¢)0ctOcteOce }-
Therefore, )
I/h3{4gi(95)95t9§gtt}d§+ /(Ms)t9££tt d¢|
S F(l10ell o)1 Oeell o< | sBeeel 72
A F (|10l o) {[10et |7 | PsBeet | 2 + 110¢se | 2 1 hsBee || £ 149
+10et | oo 10te | 2 | s | oo + 1ha/*Oeuel| 21 h2 O | Lo
+[10eel|F o0 [1PsOge Nl 12 + |0t l| oo 10e | 12 1hsOeell oo} X hsOeerel 12
SP(xLa+6xn2) >, D
k=0,1,2
Following similar arguments implies that
!/(MQ)tt9ggtt d¢| < P(Enr,1 + énw2) Z Dy,. (149)

k=0,1,2
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Summary

Collecting (137), (141), (144)—(149) leads to

d
a(@Q + 55) + Dy < P(gNL,l + éNL,Q) Z Dy.. (150)
k=0,1,2

Repeating the same arguments for &y and &1, one can conclude that

d
L > &k +8s)+ (1—P(éxLa+EnLa)) D D <0. (151)
k=0,1,2 k=0,1,2

7.2 Continuity argument and proof of Theorem 2|

Now we are at the right place to demonstrate the continuity arguments, which lead to the global stability and
asymptotic stability theory. We first start with the a priori assumption; that is, for some € € (0, 1), such that for
VT € (0,00),

sup {énr,1(t) + énL2(t)} <e. (152)
0<t<T

Then, for € small enough, (124) and (151), together with (135), (136), and (146), imply that

> E+8=01 > &, Ennaz < 026xL1, (153)
k=0,1,2 k=0,1,2
and q
(D Gt &) +os( ) & +E) <0 (154)
k=0,1,2 k=0,1,2

for some constants 01, 02, 93 € (0, 00), and therefore

sup e™'( D &) +E5() < (Y 6k(0) + &(0)) =: &. (155)
0st<T k=0,1,2 k=0,1,2
Here & is the total initial energy, i.e.,
1
¢ = Z {/hsyaf“emF de¢ + /(2\hg|2 — dhghl + h2)|0F Oi ¢ | dE

2
k=0,1,2

+/hs\2mfem,&2 d§+c1/hs|8t’“9m7§|2 dé¢ (156)
+01 / hsOF 164, - OF 0, dg} + &5(0).

where 5(0) = &s|¢=0 is the error term due to the nonlinearity, defined in (145). Here 0, and 0;6;, are the
initial data for equation (561°). The higher-order derivatives in time are defined inductively using the equation.

On the other hand, estimates (136), (153), and (155) imply

sup €™ {Enr,1 + Enr2} < 04€0, (157)
0<t<T

for some constant 94 € (0, 00). Therefore, for small enough initial data

g
Cp < —, 158
0 < %0, (158)
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estimate (157) implies

sup ™ {&nr1 + Enr 2} <
0<t<T

, (159)

| ™

and consequently, this closes the a priori assumption (152).

With the above a priori estimates with initial data satisfying (158), one can apply standard Galerkin’s method to
construct a local-in-time solution. Furthermore, one can apply the standard continuity argument and conclude
the proof of theorem 2]

8 Local well-posedness for general initial data

8.1 Lagrangian formulation and main theory: Local well-posedness

The goal of this section is to investigate the local-in-time well-posedness theory of system with general initial
data; that is, with initial data not close to the equilibrium given by (0). Indeed, we only assume hy satisfies some
regularity and convexity condition, see (164), below. To formulate the shallow water equations in the Lagrangian
coordinates with reference to the initial height profile, define = = (&, t) by

n(&:t) 3
/ h(z,t)dz = / ho(z)dz. (160)
a(t) -1

Then repeating the derivation from to (51), one can write down the shallow water equations in the (&, ¢)-
coordinates as follows:

h
he,t) = 77»5(()5(62) o(E,t) = (&, ), (t61a)
2
hoatu+8§<<h0> > —2h()a€<a£<a5 <h0>>) :28$<h0u£), (161b)
U3 Mg \Mg \ g \ "¢ Te ¢
8577|§:,171 =1, 8§u’§:,1,1 = 0. (161c)

Here we have abused the notation and used u = u(&,t) = u(n(,t),t) to denote the velocity in both the
Lagrangian and the Euclidean coordinates. Moreover, to be consistent with our estimates, inspired by [9], we
rewrite the surface tension term as follows

Oc (O (O Oc (¢ [ h2 ) 2
) (D) ()
Nle \7e \ e \"l¢ Ne \ e \ "¢ Ne \ "¢

2h3nee 5hinge |Ochol* — 2h002ho
:8&( O5 >+8£< 6 >+8§< 4 >
U3 Mg Mg

Therefore, (161b) can be written as

h2  |hh|2 — 2hoh!  BhEn2 2h2
ho@tu—i-{g—i-‘ ol — 2ol | 0655} +{°;755}
Ml Me e e Mg Jee

h
—20; <0u£> -0
Te Mg

Notice that (161b)) is consistent with (125). Notice that, since hg is no longer the equilibrium profile, compared
to (104), the linear part of (161b) has an extra term, i.e.,

(161b’)

(hg + |ho|* — 2hohy) = 2ho (Y — hy') # 0. (162)
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Fortunately, this term is ©O(hg) near the boundary, and therefore the weighted estimates involving negative

power of hg in section (i.e., a weight of hgl or hal/z) are bounded. Therefore one can expect the elliptic
estimates of to be similar to those of as in section[g] For the energy estimate, instead of using the
smallness of perturbation, one should use the smallness of time to control the nonlinearities. In particular, we
prove the following local well-posedness result:

Theorem 3 (Local Well-posedness). Suppose the initial data (ug, ho) satisfies

up € H*(I), deug € Hy(I), (163)

ho € HY(I), d¢cho <0, Chd(£) < ho < Cad(§) VE €1, (164)

for some positive constants C1 and Cs, where d(§) = d(§, 0I) is the distant function from £ to the initial
boundary. ®(t) defined in (167) below is a energy functional, suppose ®(0) < oo. Then there exist a small
time T > 0 such that system admits a unique strong solution (n,w) in I x [0, T}, with

e € CL([0,T7); LA(I)), nee, hodn € C([0,T*); LA(I)),
hy/?otn € Lo([0,T*]; (1)), w,ue, by *us € C([0,T*]; LA(I)), (165)
uge, uge, hy! “uge, hodfu € L([0,T*); LA(I)),

and

sup @(t) < C, (166)
0<t<T*

For the completeness of this paper, we will sketch the local-in-time estimates, which lead to the local-in-time
well-posedness theory, in the following.

The energy functional for the solution to (161b’) is defined as

B(t) = (u,n, t Zuh” HL2+ZHhoakagn £)22
k=0
2
+ 3 1hodF den(-, )12 + Z 1(10ehol? — 2h002ho) 20k den(-, )2 (167)
k=0 k=0

1
3/2
+ 3 1hodF82n(-, )12 + [1hg *0¢n(-, £)|2..
k=0

Notice that @ is the analogy of En1,,1 + E1,2 defined in (T00) and (T0T). Then similar to Lemmas 8|and[4} one
has the following embedding inequalities:

Lemma 5. The following inequalities hold:

u
e oo + ||h1 Sl + 1 ||L2 < llueellze S llhod2ullr2 + [[houeel| 2
0
< o(1)'?,
168
lugell 2 S Ihouedlre + 1hodus| 2 < (6)2, (168)

1/2
e *uerll o S Nhoueedlzz + lued| 2 S (1),
lhougellr S [1hodRull 2 + [lugell 2 S ®(t)/2,
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similarly,
Imeellze S lhomeellnz + hodEnll 2 ®(4)"2,
ke *08nll 2 < g *02nll 2 + |0y >0 12 < ()2,
ho *neellzoe < hg/* 020l 12 + Ineell e S @ (1), (169)
Ineelle < 1052 08nll e + lIneell 2 < (6)Y/2,
hodEnll o S 0y *0¢nll e + g/ *02nll 2 < @)Y/,

Moreover,

Lemma 6. Ifn(&,t) and & satisfy (160) , then it holds that

Ineell z2 + 1hodEnll 2 < t sup o(t)/2. (170)

<s<t
Proof. It follows from ({60) that (&, 0) = &, thus

nee(€,0) = 9¢n(€,0) = 0. (171)

Direct calculation together with Minkowski’s inequality yields

t
[mee (-, 8) |l 2 S/ luge (-, 8)l| p2ds <t sup D(s)'/2, (172)
0 0<s<t
t
1hod2n (-, )| 2 s/ Ihodu(-, 5)||rods < t sup ®(s)'/2. (173)
0 0<s<t
O

8.2 A priori estimate

The main aim of this section is to derive the key a priori bound, i.e., there exists 7" € (0, co) such that

sup ®(t) < 2M, (174)
0<t<T

where M := P(®(0)) for some polynomial P, to be determined later.

8.2.1 The a priori assumption

Assume that there exists a suitably small 7" € (0, 1), to be determined, such that

sup ®(t) < M, (175)
0<t<T

for some M € (0, 00). It follows from that
t
met) =¢+ [ ue9)ds, (€0 € 1 x.7)), (176
0
which leads to, for ¢ € (0,T"), thanks to (T68), that

, (177)

N | —

t
ne(6,1) = 1] < / e, )|l peds < CLMY2T <
0
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provided that 1" is small enough. Therefore, without loss of generality, we assume that

SSHEN S5, (€0 e x0T, 178

for the remaining part of this section.

To simplify the notation, we use P = P(-) to represent a generic polynomial, which will be determined in the
end.

8.2.2 Temporal derivative estimates

Basic energy estimate. Thanks to the boundary condition (T67c), taking the L2-inner product of (T61b) with u
yields

d 1 h2 15) h() 2 _ 2h082h0 h2772
= {h0u2+0+(’ eho — ) °5§f}d€
de J |2 N 3ng 0

hou? hal?
+2/025d£:—/85(“'85 o )df,
Mg g

uld¢hol?
= [ 96U )t 5 ol + bl + 1

where

(180)
SP(t)+1
Therefore, integrating (179) from 0 to t, together with (178) and (180), yields

1/2
I/ ull3z + hone 132 + [[(19chol* — 2h002ho) nel32 + llhomee 132

S P(0) + t( sup D(s) + 1), (181)
0<s<t

forany t € [0, 7.
Estimate of 07u. After applying 97 to (T61D), taking the L2-inner product of the resultant with 02 yields
d 1 9 2 ho“gt 2(\8§h0|2 — 2h08§2h0)u§t h%]@?ut\Q
d ng e e
h 82 2
+2 / o i e " e
ng
B /{ Shougth 0(|85h0‘2 — 2h082h0)u§tu5 B 5h%]8§ut\2u5
= 6 6
g g g
6hguzdfue  20(|hp|* — 2hohg)ugdfue
- - :
ng g
hgnge e 12hougugdfue 12hgudOPug
5 | O ued§ — 3 + 1
g g g
20h2ugeue  10h3needpue  60RgNecu? 9
SO O ] af%} dg:;Z/Iidg.
Te Mg Te :

(182)

—I—56tt (

Thanks to (T78), with the help of (T68), (169) and Young's inequality, one can calculate that, for any ¢ € (0, 1)
and C; ~ %

3
> [ 1€ < Clluelu(t) < CP(@(), (183)
=1
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/ Iy dg <el|hY/20Pue |2 + Cllug i luel?
= 0 YUz ellWgllLoe U1 1,2
(184)
1/2
< el *0Fucl |2, + C-P(2 (1)),
1/2 U
[ 15 e <ellng 0 uellts + Cluel 1555 12
ho (185)
< el hg*Oue|2s + C-P(2(1)),
1/2
/16 de < |1}/ 20Pug 12
1/2
+ Ce(1+ [luglfoe + [[hougel[§oe + 15 neelfo) (186)
X (|Imeell7 + 11PodFul 7> + llueellZ> + llued72)
1/2
< ellhy*ueel|22 + C-P(2(t)).
1/2
[ 15 6 < el GRuels + Celuel el - .
1/2
< ey *Fucl |2 + C-P(2 (1)),
1/2
[ 1 a6 < el GFuels + Celuel el
(188)
1/2
< el *Fucl|2 + C-P(2 (1)),
/ Iy de < llhy/*0Puc| 2.
1/2
+ Ce(1+ [Juglfoe + lhouge|[§oe + 10y *neel§oe)
x (|hodZullys + Inecll3> + hod2nl32 + [ hodEn] 14 (189)
1/2
+ g Pueel|ba + Nugel|2e + [1hod2url2e + [lugel22)
1/2
< e||hyPuei|3 + C-P(D(1)).
Thanks to (183)—(189), after choosing £ small enough, integrating in ¢ yields that, for any ¢ € [0, T,
1/2
1he207ul22 + [ houedl|2e + || (1h]? — 2hohi) " ugt|| 22 + |hodFuq|2
< ®(0) + tP( sup ¥(s)). (190)
0<s<t
Estimate of J;u. Since
t
(e, ) =Oyu(e,0) + [ GPu(E.s)ds, (191)
0
it then follows from Cauchy’s inequality and Fubini’s theorem that, for any t € [0, 7)),
1/2 ! 1/2
1B “uell7 S <I>(0)+t/ 1hg! “use(s)[|72ds < ®(0) 4+ tP( sup (s)). (192)
0 0<s<t
Similar arguments also imply that, for any ¢ € [0, T,
Ihougl 32 + [ (RG> — 2hohg) ug3 2 + [[hodEull? 2
< ®(0) + tP( sup (s)). (193)
0<s<t
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Summary of temporal derivative estimates. Combing (181), (190), (192), and (193) leads to

2
Z he 28 u(-, )22 + > IhodFo2n(-, )]|2

k=0
hodkd (|BL 12 — 2hoh!) /2080 2 (194)
+ZHOt en (- ||L2+Z||| ol 0hg) /0 Oen (-, 1) |72
k=0
< ®(0) + tP( sup q)(s)),
0<s<t
for any t € [0, T|. Moreover, Hardy’s inequality also gives
76172 + lugll 2 + lugdll7 S 2(0) +¢P( sup @(s)). (195)
0<s<t
8.2.3 Elliptic estimates
We now turn to the elliptic estimates. First, notice that, integrating from —1 to 1 yields
/ hodu A€ + ()L, =0, (196)
and therefore .
/ hodZudé = 0, (197)
-1
thanks to (164) and (167c).
Estimate of 8§’u. After applying O; to (T67D’), one has
hoﬁfu — 285 (h%uwg?)) — 4(95((‘h/0|2 — 2h0h8)u§n£—5)
~20¢ (hougeng *) + 40¢ (hougng°) (198)

+20F (hjugeng °) —100F (hgneeueng ©)+100¢ (hgugeneen; °)
300 (hgnéguene ') = 0.

Integrating (198) from y = —1 to £ and multiplying the resulting equation by UHeF 202w yields, after a complex but
straightforward calculation, that

L = 2h§|0ul? + 4hodehoueeOgu — A(|0cho|* — 2ho0Z ho)uediu
— —Ugagu /j hoOu(y)dy + thuwg@gu—l—Zhgufmg@gu — 4h0u§n§8§’u (199)
+1Oh%8§’uu§§n5§ngl — 3Oh(2)8§’u77§€u57752+1082u85 (hgngg)ug]gl = R.
Since hg is concave after integration by parts one gets
/L(g,t) dé =2||hodZul? +/2h08€h085(u§§)d§
+ / 4(|0cho|? — 2ho0Z ho)ugedé — / 4hoOE hoOg (ug)dé
=2|[hodull7> + 2| Ochoueel|7
- / 10ho8g houged€ + / e (hoDZ ho)ugdg
>2||hodZul|7 + 2l|0¢houce | 1»

_ / 10002 houZeds — C|l ol e 132

(200)
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and
ollZallugl|Z2 < ®(0) +tP( sup ®(6)!/2), (201)
0<s<t
due to (195).
Next, to estimate [ R(&,t) d&, thanks to (i78), (168), (169), (T70), and (767D), we have
s [ 2 2 < 5 1/292 112
ko “nz | hoOuly)dyllzz Slinellze l[hg" 07 ullz
-1 (202)
<P(2(0)) +tP( sup ®(t)'/?),
0<s<t
1houenz +uen? |72 SllhouglZallnel 7o + llugel|Z2llnel| 5o
SP(®(0) +tP( sup B(1)?), (203)
0<s<t
lugng || Ze Slimellzoe luelZellueZoe < lugllZellueel 2
<l 32 (houeell e + odul 12) 204)
<ellhodgul| 72 + P(2(0)) +tP( sup &(t)"/?),
0<s<t
where we have used the simple fact that
) 3
(€)= 2 [ wel)ucelu)dy 5 gl el (208
due to boundary condition (T67c).
- —2
[hougeneeng * + hongeueng 2|I72 Sliho(uee + nee) [ Foo [1meel| 72
,StP( sup <I>(t)1/2), (206)
0<s<t
1hg " Oe (hinee ) ueng 'll72 S (L + [lholl72 ) luell7oe (Imeel72 + 1hoEn]l72)
< tP( sup <I>(t)1/2). (207)
0<s<t
Then choosing ¢ small enough, it follows from (207)-(204), (206), (207) and Young’s inequality that
/R d¢ < [[hodFull?2 + P(®(0)) +tP( sup @(t)"?). (208)
0<s<t
Therefore (208) together with (200) and (207) yields
1hodZull7> < P(®(0)) +tP( sup &(t)'/?), (209)
0<s<t
which together with and Hardy’s inequality gives
lugel72 S lhougell7z + [hodEull72 S P(®(0)) +tP(0iugt‘1’(t)l/2), (210)
8>
and due to and one gets
Ihg el 72 < lueellz> < P(®(0)) + tP( sup @(t)"2). (211)

0<s<t
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Estimate of 8?77. Following the estimates in section after multiplying (T61b’) with h(;l/Qng and rearranging
the resultant, one has that

3/2 1/2 1/2 2 1/2
2(hy *neeee + 4hg'* hyneee) = 2 (=ho!*hon + he*h'ne) —hg*um?

=J;

1/2

3/2 1/2 —1/2
+2hy! Menee — 120y * hijnee + 2hg néuge + 2hg / 071E g

3/2 1/24, 2 5 /19 212
h ho' “hgn 10m2 / h (212)
+20-9 lneelieee + 20 0 "07leg £< 077££>£77§§

e e he/* \ g

2
3/2( "M 1/2
_5’7§h0/ (,;35)& — 4hy/ Mg ngeue.
3

Repeating calculation similar to (98), since h is concave, the L?-norm of the left hand side of (212) satisfies

3/2 1/2 3/2
/>0t + ahg/*dchodin| 3 2 | *Ofnl3a, (213)

~

and thanks to (178), (168), (169), (170), (193), (210) and (211) we have that the right hand side of (212) can be

estimated as follows:

171122 < Mholl3allnl22 < P(2(0)) +tP(0s§ggt<1><s>1/2), (214)
he P22 S Ihe*ul22 S P(®(0)) +HP(sup (s)'7%), (215)
11y *neen? 22 < llholl3ellne |2 < P(2(0)) P (sup @(s)'7), (216)
1ho > 02 homecl|2> < llhollmeell < tP( sup (s)'/%), (217)
he *ugeni 22 < holl s luge 122 < P(®(0)) P (s @)%, (218)

—~1/2 —
lhg /2 Behouen?]|2s Sllholls |l tuell32

5P(<I>(O)) + tP( sup @(3)1/2), (219)
0<s<t
1/2
1he *neeneeeng 22 < lhg*neell 3 hod2n 132 < tP( S<ugt<1>( s)1/?), (220)
S
1/2 _
”ho/ 3§ho77§gng N2. < IIho 77££||L°°H77§§HL2 N tP(Oiugt‘P(S)l/Z), (221)
S8
—1/2 3/2 _
g *nZneede (h3neens )12 + |1y *nEe (neng ©) 12
1/2
S *neel3oe + 1hg*neell ) (Inee 132 + I1hodZn]2) (222)
§tP( sup @(8)1/2),
0<s<t
n/2 2112 <||p 2
1ho" “ueneeng 72 Sliholl g lluel Lo lImee |72
§P(<I>(O)) + tP( sup @(3)1/2), (223)
0<s<t
Then it follows from (212) and (213)-(223) that
3/2
1he*0dn)122 < P(@(0)) +tP( sup @(s)1/?). (224)

0<s<t
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8.2.4 Summary: The local-in-time a priori estimates

Now combing (170), (194), (209) and (224) together, we finally arrive at

d(t) < P(®(0)) + CtP( sup (s)/?), (225)
0<s<t

for any t € [0,7], where C'is a positive constant only depends on ||hg|| 73, and P is a generic polynomial
satisfying all the estimates above. Thus for sufficiently small T" > 0,

sup ®(t) < 2P(2(0)). (226)

0<t<T

8.3 Proof of theorem

With the above a priori estimates and initial condition (T63), (164), suppose the initial functional energy ®(0) <
00, one can apply standard Galerkin's method to construct a strong solution (), u) satisfying (165) and (166),
see [38] for further details.

8.4 Uniqueness

Let (u,n) and (v, () be two solutions to the system on [0, 7] with initial data (hg, ug) satisfying the same
estimate. Their corresponding relationships are:

(.O)(Et) =€ + /0 (1w, 0)(€, 5) ds. @27)

Let
w=u—v, x=1—C. (228)

Then (w, x) satisfies

h3(ne + h h +
hoathrag(W) 23§< o 0”6(7762 2(&)X£>
Mg Se Ur e
2h 2hZCee Pr (e,
:—a§<a§< OXe€ 4 05¢€ E(Zf Cs)Xg>>
e e
P Bh(nee + Cee)xee . Sh§CEPo(ne, Ce)xe
—0 5 + e
U3 MeGe
(ne + Ce)(nZ + Cg)X,s)
U ’

(229)

-0 (10¢tol - 210020

with initial data
(w, x)(&,0) = (0,0), (230)
and boundary condition
(we, xe) (=1, 1) = (we, xe)(1,¢) = (0,0), (231)
where polynomial

Py(ng, Ce) = ng + nCe + a2 + e + ¢

and

Po(ne, Ce) = (0 + GG)(m + meCe + G2).
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Define
Do(w, X, ) = [[Vhow(-, t)[|72 + [hoxe (. t) |72 + [lhoxee ()17

(232)
2 27 \1/2 2

1(19ehol* — 2002 h0)*xe (-, 172
Multiplying (229) both sides by w, integrating the resulting equation on (—1,1) x [0, 77, using x; = w after
integration by parts we finally find that

sup Po(w, x,s) < Ct sup Po(w,x,s)+ Ct sup /hoxg(s) d¢
0<s<t 0<s<t 0<s<t.JQ

< Ct sup (I)O(w7X7 S)a
0<s<t

(233)

for all t € [0, T, where we have used Hardy’s inequality and C depends on ®(u, 7, t) and ®(v, (,t). Finally
w = 0 thus x = 0 follows from (T64) and the fact (u, v)(§,t) € C([—1,1] x [0,T]).
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