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Convergence of the method of rigorous coupled-wave analysis
for the diffraction by two-dimensional periodic surface structures

Andreas Rathsfeld

Abstract

The Scattering Matrix Algorithm is a popular numerical method to simulate the diffraction of
optical waves by periodic surfaces. The computational domain is divided into horizontal slices,
and a domain decomposition method is applied, coupling the solutions in neighbour slices over
the common interface via equating scattering data. A clever recursion is set up to compute an
approximate operator, mapping incoming waves into outgoing ones. Combining this Scattering
Matrix Algorithm with numerical schemes inside the slices, methods like Rigorous Coupled Wave
Analysis and Fourier Modal Method were designed. The key for the analysis is the scattering
problem over the slices. These are scattering problems with a radiation condition generalized
to inhomogeneous cover and substrate materials and were first analyzed in [7]. Now suppose
there exists a slicing s.t. the optical index function in each slice is independent of the direction
perpendicular to the interfaces of the slicing. Then the slicing of the Scattering Matrix Algorithm
should be fixed to this slicing, i.e. a refinement of the slicing is unnecessary. For such a fixed slicing
and for Transverse Electric polarization combined with exact solvers over the subdomains (no full
discretization), it was proved in [7] that the Scattering Matrix Algorithm leads to the exact solution
of the scattering problem. In this paper we discuss the more challenging case of Transverse
Magnetic polarization and look at the convergence of the fully-discretized scheme, i.e., at the
Rigorous Coupled Wave Analysis for a fixed slicing into layers with vertically invariant optical
index.

1 Introduction

We start with the question of what a Scattering Matrix Algorithm (SMA), a Rigorous Coupled-Wave
Analysis (RCWA), and a Fourier Modal Method (FMM) is. These names are used differently by differ-
ent authors. Inspired by [13,15] and by personal taste, we stick to the following naming.

■ SMA is a general iterative solver and RCWA/FMM are special realization of the SMA. To simu-
late scattering problems for the Helmholtz or the Maxwell’s equations over periodic and biperi-
odic surface structures, SMA is probably the most popular algorithm in the engineering commu-
nity. Its first version was described by Moharam and Gaylord [11], and good introductions with
many details can be found e.g. in the books [13,15].

■ Speaking in the language of specialists for Finite-Element Methods (FEM), SMA is a non-
overlapping Domain Decomposition Method (DDM), leading to a recursive algorithm for the
computation of the global solution. The iterative recursion algorithm results from the partition
into the union of subdomains (slices), where each subdomain has a common boundary with at
most two other subdomains. The coupling of the data over the common interface of two sub-
domains is realized not by equating Dirichlet, Neumann, and/or Robin data, but by equating
scattering data, i.e., in- and outgoing parts of the wave.

■ Discretizing the solution over each subdomain (slice), various realizations of the SMA are pos-
sible. Namely:
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A. Rathsfeld 2

a) In principle, one could use FEM and would arrive at a special DDM for the FEM. However,
we have not seen reports on this. Maybe, the reason is that splitting in in- and outgoing
waves is not natural for the FEM, though this splitting relies on Dirichlet-to-Neumann op-
erators (cf. Equ. (5.5)).

b) In the engineering community, the wave solution is discretized by truncated Fourier-series
expansions w.r.t. the horizontal coordinates. The Fourier coefficients are functions of the
vertical coordinate. This way, the numerical solution of the Boundary Value Problem (BVP)
for our Partial Differential Equation (PDE) is reduced to the numerical solution of a sys-
tem of Ordinary Differential Equations (ODE) w.r.t. the vertical coordinate. For the RCWA,
we suppose that the PDE coefficients (wavenumber function) are equal to or, at least,
approximated by coefficients, which, in each subdomain, are independent of the vertical
coordinate. Hence, the matrix coefficients of the ODE are independent of the vertical co-
ordinate, and an explicit formula of the solution based on an Eigenvalue Decomposition
(EVD) can be used. For the FMM, the ODE is solved by a numerical scheme like Finite
Difference Method (FDM), Runge-Kutta Method or Linear Multistep Method.

A huge number of authors contributed to the development and improvement of the RCWA and FMM
and reported on their successful use. Here we only list a few, cf. e.g. [1–3,5,7,9,10,12,16] and see the
comparison to other methods in [8]. A first step of the analysis was provided by Hench, Strakoš [6], by
Civiletti, Lakhtakia, Monk [4], and by [7]. For more comments on these, we refer to Subsect. 8.1. So
far, to our knowledge, there is no full convergence analysis.

Of course, the most interesting version of the RCWA/FMM is that for the scattering by periodic and
biperiodic surface structures modeled by the Three-Dimensional (3D) time-harmonic Maxwell’s equa-
tions. However, to start the analysis, we shall restrict our consideration to the simplest case. The
current paper is concerned with the Two-Dimensional (2D) Helmholtz equation and its version (3.1).

In other words, we consider the 3D time-harmonic Maxwell’s equations for the scattering by a surface
around a flat plane. We suppose the surface is invariant in one of the two directions of the plane and
periodic in the other. For the classical diffraction, the propagation direction of the plane wave incident
to the surface is orthogonal to the surface direction of invariance. Then the incident wave and the
resulting scattered waves are superpositions of a wave of Transverse Electric (TE) polarization and
a wave of Transverse Magnetic (TM) polarization. So we can separately simulate the waves of TE
or TM polarization. For these two polarizations, the time-harmonic Maxwell’s equations reduce to the
2D Helmholtz equation, i.e., to ∆u+k2u=0 for TE and to ∇·k−2∇u+u=0 for TM. The scalar
wave function u is a component of the electric and the magnetic field, respectively. Indeed, it is the
component in the direction of invariance of the surface (cf. [14]). Most of the results will be presented
for the case of TM polarization. For the easier case of TE polarization, we shall give a few hints.

Suppose the surface structure is a finite union of horizontal slices s.t. the wavenumber k is independent
of the vertical point-coordinates over each slice. Then the DDM can be based on a fixed finite number
of subdomains, where each subdomain is such a slice with wavenumber independent of the vertical
direction. In such a case, for the analysis of the method, we suggest two steps. First we consider the
DDM with its SMA iteration on the continuous level, i.e., without the approximation by truncated Fourier
series. As shown for the TE case in [7], the iteration leads to the true solution provided the S-matrices
exists, i.e. if the problems over the subdomains are uniquely solvable (cf. Sect. 5 and Thm. 8.1). These
subproblems are scattering problems but with a radiation condition for special inhomogeneous cover
and substrate materials treated in [7, Thm. 5.7] and in Thm. 4.2 for TE and TM polarization, respec-
tively. Unique solvability over the subdomains means to exclude eigenmodes (trapped modes), which
may occur in exceptional cases. In the case of unique solvability, there exists a solution operator map-
ping the given incoming waves into the unknown outgoing waves. This is called S-matrix. Since the
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Convergence of the RCWA 3

wavenumbers in the subdomain are independent of the vertical direction, the representation formula,
which in its discretized form is the basis for the RCWA, can be used to set up the S-matrix (cf. [7] and
Sect. 6).

The second step is to discretize all the operators appearing in the representation formula of the S-
matrices and in the recursive SMA. The analysis of this is new even for TE polarization. Note that,
roughly speaking, all the operators of the SMA on the continuous level can be expressed as infinite
matrices w.r.t. the eigenfunctions of special ODE systems. The RCWA on the discretized level is noth-
ing else than replacing these infinite matrices by the corresponding finite matrices w.r.t. the discretized
eigenfunctions, i.e., to eigenfunctions of the special ODE systems discretized by a Galerkin method
based on truncated Fourier series. We get the convergence of the RCWA for the truncation index
tending to infinity (cf. Thm. 8.11 and the remarks following it), showing that the operators defined by
the discretized EVDs converge strongly to the operators of the continuous level. For the inverse op-
erators involved in the formulas, we show that the inverse discretized operators converge strongly to
the inverse. So far, we can prove this only for real-valued wavenumber functions k, where, for any x2,
the section x1 7→ k(x1, x2) must be piecewise twice continuously differentiable for the TM case and
piecewise continuous for TE polarization. We believe the convergence probably holds in many more
cases. So there remain many open problems around the assumptions imposed in Sect. 8 (cf. the end
of Sect. 9).

Now consider the case of surface structures, which are not the union of slices with wavefunctions
independent of the vertical direction. For this case of wavefunctions depending on the vertical and
horizontal coordinates, the wavefunction can be replaced by approximate wavefunctions, which are
slice-wise constant in vertical direction. The smaller the maximal width of the slices, the closer is
the approximate wavefunction to the true one. Under special non-trapping conditions, the error of this
approximation was estimated in [4]. If a good wavenumber approximation is fixed, then the above men-
tioned analysis for a fixed slicing applies. However, a general convergence analysis for maximal width
tending to zero and truncation index tending to infinity is still open. The problem of stable convergence
of the SMA iteration with finer and finer slicing reminds on the stability analysis of numerical schemes
for ODEs, especially if the FMM is employed. The update by the coupling over the slice interfaces
reminds on implicit time steps. So there remain many open problems for a complete analysis of the
SMA recursion in the RCWA.

The plane of the paper is as follows. In Sect. 2 we shall introduce the classical BVP for the scattering
by gratings under TM polarization. However, the solution of the scattering problem over the subdo-
mains (slices) requires the notion of a general BVP, where the homogeneous materials of cover and
substrate are replaced by special inhomogeneous materials. To prepare the corresponding general-
ized radiation conditions, we shall discuss an EVD of a one-dimensional ODE derived from the elliptic
PDE in Sect. 3. In Sect. 4 we shall define the generalized radiation condition for the special inho-
mogeneous cover and substrate materials and present a theorem on the unique solvability of wave
scattering by periodic surfaces. For a fixed slicing of the grating structure, we shall derive the SMA in
Sect. 5 on the continuous level, i.e., without any discretization in horizontal direction. Note that there
exist several versions of the SMA, and we present the one which seems to be the best. Namely, we
compute the accumulated S-matrix, using the actual S-matrix of the slice and not the T-matrix. Also,
for slices defined by hj−1<x2≤hj , we do not use the additional splitting into the slice hj−1<x2<hj

and the infinitesimal slice hj−0<x2≤hj+0, which simplifies some of the formulas but requires an
additional accumulation step. The full discretization will follow in Sects. 6 – 7, where we shall give a
formula to compute the solution operator over the slice with vertically constant wavenumber function
and introduce the discretization by truncated Fourier series expansions. In Sect. 8, we shall present
Thm. 8.1 on the SMA over the continuous level and the main result Thm. 8.11 on the convergence of
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A. Rathsfeld 4

the RCWA for fixed slicing and for the truncation index tending to infinity. We shall comment on the
area of application and on the open problems in Sect. 9.

2 Preliminaries

homogeneous cover material for x >b

homogeneous substrate for x <a

...

......

x1

x

Γb

Γa

0

b
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2

y
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2

2

π

ΓlatlatΓ

Figure 1: Geometry settings for homogeneous cover material and substrate.

We define the Two-Dimensional (2D) scattering Problem for TM polarization (cf. e.g. [14]). Here an in-
coming plane wave is scattered by a surface structure in {(x1, y, x2)

⊤∈R3 : a≤x2≤b} (cf. Fig. 1),
which is 2π-periodic in x1 direction and invariant w.r.t. shifts in y-direction. The incident plane wave is
defined as uinc

b (x1, y, x2) :=uinc
b (x1, x2) :=eiα⃗·(x1,x2) with α⃗ = (α,−

√
[k+]2 − α2 )⊤, 0≤α<k+.

Note that |α⃗ |=k+ and k+= ω
√
µ0ε0 n+ is the constant wavenumber for the half space with x2>b,

where ω :=2π/λinc>0 is the frequency of the incoming light of wavelength λinc, where ε0 and
µ0, respectively, are the electric permittivity and the magnetic permeability in vacuum, and where
n+ is the refractive (optical) index of the material. The angle of incidence θinc is connected to α⃗
by α⃗ :=k+(sin θinc,− cos θinc)⊤ and α :=k+ sin θinc. Similarly, there is a constant wavenumber
k−= ω

√
µ0ε0 n− for the half space with x2<a.

The function uinc
b is α-quasiperiodic, i.e. the function e−iαx1uinc

b (x1, x2) is 2π-periodic, and we get
uinc
b (x1 + 2π, x2) = ei2παuinc

b (x1, x2). Consequently, all the waves and their boundary values on
Γc := {(x1, c) : 0≤x1≤2π}, c = a, b are in the 2D Sobolev spaces H1

α(Ω) and 1D Sobolev spaces

H
1/2
α (Γc)=H

1/2
α (0, 2π), respectively, i.e. in spaces of α-quasiperiodic Hs-functions with s=1 and

s=1/2, respectively. We can even admit a general incident field uinc
b (x1, x2) for x2≥b (cf. the sub-

sequent (2.3)) if only the restriction uinc
b |Γb

is α-quasiperiodic. Clearly, we can change the α in the
definition of quasiperiodicity by subtracting an integer, i.e. we can assume w.l.o.g. that 0≤α<1. Be-
sides the wave incoming from above, we even can admit an incoming wave uinc

a (x1, x2) from below,
i.e. from x2≤a. However, we have to assume that the restriction uinc

a |Γa is α-quasiperiodic with the
same α.

In the case of TM polarization we look for the scaled y-component of the magnetic field vector
u(x1, y, x2) :=

√
µ0/ε0Hy(x1, y, x2), which is independent of y. So the harmonic 3D Maxwell equa-

tions turns into the 2D equation for the function u(x1, y, x2)=u(x1, x2). Altogether, the wave u is the
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Convergence of the RCWA 5

solution over the domain Ω:=[0, 2π]×[a, b] satisfying

a) “Helmholtz” equation: ∇· k(x1, x2)
−2∇u(x1, x2)+u(x1, x2)=0, (x1, x2)

⊤∈Ω,

b) α-quasiperiodic lateral boundary condition: u(2π, x2)=ei2παu(0, x2), x2∈ [a, b],

c) Radiation condition over upper boundary Γb and lower boundary Γa incl. given traces

of incident wave functions uinc
b |Γb

∈H
1/2
α (Γb) and uinc

a |Γa ∈H
1/2
α (Γa), respectively.

(2.1)

Note that, for the case of TE polarization, in item a) the classical form ∆u+k2u=0 of the Helmholtz
equation appears, which is equivalent to the equation in a) for constant wavenumbers k. In particular,
this is the case for homogeneous materials in the substrate or the cover material, and we get the
same radiation condition. For this radiation condition, we remark that the general representation of
α-quasiperiodic Helmholtz solutions in the homogeneous cover material is

u(x1, x2)− uinc
b (x1, x2) =

∑
l∈Z

ei(α+ l)x1

{
c+b,le

iβb
l (x2−b) + c−b,le

−iβb
l (x2−b)

}
, x2 ≥ b , (2.2)

βb
l :=

√
[k+]2 − [α + l]2, c±b,l ∈ C.

Here the argument z :=[k+]2−[α+l]2 of the square root is in the half plane {z∈C : ℑmz≥0}. The
square root is defined such that ℜe

√
z≥0 and ℑm

√
z≥0. The radiation condition on Γb requires

coefficients c−b,l=0 for all coefficients of downgoing modes ei(α+ l)x1e−iβb
l (x2−b), i.e.

u(x1, x2)− uinc
b (x1, x2) =

∑
l∈Z

c+b,le
i(α+ l)x1eiβ

b
l (x2−b), x2 ≥ b. (2.3)

Here, for simplicity, we have supposed βb
l ̸=0. For the l with βb

l =0 (i.e. if l=−α±k+ is an integer),
in Equ. (2.2) the term in brackets {c+b,leiβ

b
l (x2−b) + c−b,le

−iβb
l (x2−b)} must be modified. Depending on

the application, it should be replaced by {c+b,l+c−b,l(x2−b)}, by {c+b,l(x2−b)+c−b,l} or by the formula

{c+b,l
(
1 + (x2 − b)

)
+ c−b,l

(
1− (x2 − b)

)
}, respectively. This leads to a corresponding modification

in (2.3). The radiation condition on Γa requires c+a,l=0 for all coefficients of upgoing modes, i.e.

u(x1, x2)−uinc
a (x1, x2) =

∑
l∈Z

c−a,le
i(α+ l)x1e−iβa

l (x2−a), x2≤a , βa
l :=

√
[k−]2−[α+l]2. (2.4)

Again a corresponding modification is needed if βa
l =0.

The portion of energy from an incoming plane wave radiated into the direction of the lth propagat-
ing outgoing wave mode is called efficiency. If the incoming field is defined as uinc

a (x1, x2) :=0 and
uinc
b (x1, x2) :=

√
n+e

iαx1e−iβb
0(x2−b), then the efficiency ebl of the lth reflected plane-wave mode and

the efficiency eal of the lth transmitted plane-wave mode are given by

ebl =
β+
l

β+
0

|c+b,l|2

n+

, and eal =
β−
l

β+
0

[k+]2

[k−]2
|c−a,l|2

n+

, (2.5)

respectively.
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A. Rathsfeld 6

3 Eigenfunctions of the ODE for the reformulation of the “Helm-
holtz” equation

3.1 The ODE equivalent to the wave equation

For the scattering matrix algorithm, we have to generalize the radiation conditions (2.3) and (2.4) to
model inhomogeneous cover and substrate materials as well. In order to prepare this, we need the
EVD of ordinary differential operators appearing in the reformulation of the “Helmholtz” equation as an
ODE with operator valued coefficient function. The details will be needed also for the corresponding
equations obtained by discretization.

Suppose the 2π-periodic wavenumber function k is given as k :=ω
√
µ0ε0 n, where the refractive

index function n, possibly depending on x1 and x2, is supposed to satisfy ℜen>0, ℑmn≥0. With
this k the TM wave equation is

∇ · k(x1, x2)
−2∇u(x1, x2) + u(x1, x2) = 0, (x1, x2)

⊤∈R2. (3.1)

For piecewise constant k, this is nothing else than the Helmholtz equation with special transmission
conditions over the curves of discontinuity for k. Now in the cover material and substrate (cf. Fig. 2),
we assume k(x1, x2)=k+(x1) for x2>b and k(x1, x2)=k−(x1) for x2<a. Equ. (3.1), restricted to
cover and substrate, is equivalent to the operator valued ODE w.r.t. the variable x2 of the form

k−2∂2
x2
u = Lu := −∂x1k

−2∂x1u− u, k(x1) := k±(x1). (3.2)

The solution of this equation can be represented by expanding the function w.r.t.x1 in a series of
α-quasiperiodic eigenfunctions of the operator k2L.

We reduce this second-order ODE (3.2) to a first-order ODE. Setting v :=∂x2u and u⃗ :=(u, v)⊤, the
ODE (3.2) is equivalent to ∂x2u⃗=Mu⃗ with

M :=

(
0 I
k2L 0

)
. (3.3)

For this operator in the space of univariate and α-quasiperiodic vector functions depending on x1, the
eigenvalues and eigenfunctions are defined by Mf⃗λ=λf⃗λ for λ∈σM . Clearly, for f⃗λ=(fλ, gλ)

⊤,
we get gλ=λfλ and k2Lfλ=λgλ. Consequently, k2Lfλ=λ2fλ. For the eigenvalues ±λ of M , we
obtain the eigenvector (fλ,±λfλ)

⊤ with fλ satisfying

k2∂x1k
−2∂x1fλ + [k2 + λ2]fλ = 0. (3.4)

3.2 EVD for twice continuously differentiable wavenumber function

As a first case, we discuss the EVD in (3.4) with a k(x1) twice continuously differentiable. We look for
a solution f of (3.4) in the form f=kh with an α-quasiperiodic h.

k2∂x1k
−2∂x1 [kh] + [k2+λ2][kh] = 0,

k∂2
x1
h+

{
[∂2

x1
k]−2k−1[∂x1k]

2+[k2+λ2]k
}
h = 0,

∂2
x1
h+ k̃2h+ λ2h = 0, (3.5)

k̃2 := k2 + k−1[∂2
x1
k]− 2k−2[∂x1k]

2.
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For this f=kh and for positive k, we note that in the derivation of the variational form we have∫
Ω
{∇ · k−2∇uv̄ + uv̄} =

∫
Ω

{
−k−2∇u∇v + uv̄

}
+
∫
Γa
k−2∂x2uv̄ +

∫
Γb
k−2∂x2uv̄,∫ 2π

0
k−2∂x2 [f(x1)e

−λ(x2−c)]|x2=c[f(x1)e−λ(x2−c)]|x2=cdx1 = −
∫ 2π

0
λ|h(x1)|2dx1,

whereas, for the Helmholtz equation in the TE case,∫
Ω
{∆uv̄ + k2uv̄} =

∫
Ω

{
∇u∇v + k2uv̄

}
+
∫
Γa
∂x2uv̄ +

∫
Γb
∂x2uv̄,∫ 2π

0
∂x2 [f(x1)e

−λ(x2−c)][f(x1)e−λ(x2−c)]|x2=cdx1 = −
∫ 2π

0
λ|f(x1)|2dx1.

The underlying Sobolev space of the variational forms is H1
α(Ω) in both cases. Consequently, the

Dirichlet data u|Γa , c = a, b is in the trace space H
1/2
α (Γc) for TE and TM. For TE, the dual spaces

H
−1/2
α (Γb) and H−1/2

α (Γb) are the spaces of the traces of the normal derivatives ∂2u|Γb and −∂2u|Γa ,

respectively. For TM, however, the spaces H−1/2
α (Γb) and H

−1/2
α (Γb) are the spaces of the traces of

the co-normal derivatives k−2∂2u|Γb and −k−2∂2u|Γa , respectively. So we get similar formulas for
the PDE ∇· k−2∇u+u=0 and h as for ∆u+k2u=0 and f . In any case, we can use the results
collected in [7, Lemma 4.5].

Lemma 3.1. The spectrum in the space of α-quasiperiodic functions is discrete, i.e., there holds
σ[∂2

x1
+k̃2I] = {λ2

n : n∈Z}. We even get the asymptotics

λ2
n =(n+α)2−k̃2

avg+O
(

1

|n|κ

)
, k̃2

avg :=
1

2π

∫ 2π

0

k̃2(τ)dτ, κ :=

{
1/2 if α=0, 1/2
1 else

,

λn =n+α−
k̃2
avg

2

1

n
+O

(
1

|n|1+κ

)
, |n| → ∞.

Now we look at the asymptotics of the eigenfunctions and discuss the basis property as well as
the asymptotics of the eigenfunctions. Denoting hn :=hλn . The asymptotics of the eigenfunctions
has been mentioned in [7, Lemma 4.5] and we learn from this paper that, at least for α ̸= 0, 1/2
or for real-valued k, the functions (1+n2)−s/2hn∈Hs

α, n∈Z form a Riesz basis for −2≤s≤2.
Due to the boundedness of the operators of multiplication by k and k−1, we also have a Riesz ba-
sis (1+n2)−s/2fn=(1+n2)−s/2khn∈Hs

α, n∈Z for −2≤s≤2. Additionally, we have a Riesz ba-
sis (1+n2)−s/2k−2fn∈Hs

α, n∈Z for −2≤s≤2. We shall suppose throughout this paper that all
eigenfunctions are of rank one. If rank-greater-than-one eigenfunctions occur, then the subsequent
SMA must be adapted to that case. In the case of an infinite number of such eigenfunctions, the Riesz
property of the basis might be violated. Note, however, that this is not a problem for real-valued k̃,
since all the eigenfunctions of selfadjoint operators have rank one.

Lemma 3.2. For |n|→∞, we have the asymptotics

hn(t) =


eiλnt − 1

λn

eiλnt

2i

∫ t

0
k̃2(τ)dτ +O

(
1

|λn|2

)
if α ̸=0,1

2
and hn(0) ̸=0

eiλnt +O
(

1
|λn|−1/2

)
if α=0,1

2
and hn(0) ̸=0

sin(λnt)− cos(λnt)
2λn

∫ t

0
k̃2(τ)dτ +O

(
1

|λn|2

)
if hn(0)=0

.

3.3 EVD for positive and piecewise twice continuously differentiable wave-
number function

In a second case, suppose that the wave number k(x1) is only piecewise twice continuously differen-
tiable and that k(x1)≥ck>0. Still we get
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Lemma 3.3. The spectrum σk2L of operator k2L is a discrete set of eigenvalues {λ2
n : n∈N}⊂R

with λ2
n→∞, |n|→∞. Each eigenfunction fn corresponding to λ2

n is of rank one. It is piecewise
twice continuously differentiable and continuous, and k−2∂x1fn is continuous as well. Moreover, the
scaled eigenfunctions (1+|λn|2)−s/2fn, n∈N of the differential operator k2L form a Riesz basis in
Hs

α for 0≤s≤1. The functions (1+|λn|2)−s/2k−2fn, n∈N form a Riesz basis in Hs
α for −1≤s≤0.

Proof. Clearly, the eigenfunctions fλ of the unbounded operator k2L : L2(0, 2π) ↪→L2(0, 2π) are
in one-to-one correspondence with the eigenfunctions k−1fλ of the operator L̃ :=kLk, which maps
k−1H1

α into kH−1
α and the domain of definition of which is dom L̃ :=k−1H1

α. This is the operator of
the variational form (h, g) 7→a(h, g) with

a(h, g) :=

∫ 2π

0

{
k−2(x1) ∂x1 [k(x1)h(x1)] ∂x1 [k(x1)g(x1)]− k2(x1)h(x1)g(x1)

}
dx1. (3.6)

In other words, L̃ is selfadjoint and strongly elliptic, and its spectrum is a discrete set of real eigen-
values with the only cluster point ∞. We denote the eigenvalues by λ2

n, n∈N and the corresponding
orthonormal eigenfunctions by hn s.t. the fn :=khn form a Riesz basis of eigenfunctions for operator
k2L in the space L2(0, 2π). For a general function h=

∑
n∈Nξnhn with ξn∈C, we obtain∥∥∥k ∞∑

n=1

ξnhn

∥∥∥2
H1

α

∼ a(h, h) + c ∥h∥2L2 =
∞∑

n,m=1

ξnξm

〈
L̃hn, hm

〉
+ c ∥h∥2L2 ,

∥∥∥ ∞∑
n=1

ξnfn

∥∥∥2
H1

α

∼
∑
n,m

λ2
nξnξm ⟨hn, hm⟩+ c ∥h∥2L2 ∼ c

∑
n

(1 + |λn|2)|ξn|2.

This is the Riesz-basis property of the basis (1+|λn|2)−1/2fn in H1
α. The orthonormality of the hn

yields the Riesz-basis property of the basis fn in L2=H0
α. Interpolation provides us with the Riesz-

basis property of the basis (1+|λn|2)−s/2fn in Hs
α for 0≤s≤1. By ⟨fn1 , k

−2fn2⟩=δn1,n2 and by
duality arguments, we get the Riesz property of (1+|λn|2)−s/2 k−2fn in Hs

α for −1≤s≤0.

Due to k>ck, the operator kLk is selfadjoint and the ranks of the eigenfunctions are automatically
equal to one. On each segment in [0, 2π] where k is twice continuously differentiable, the equation
h′′
n+k̃2hn+λ2

nhn=0 holds (cf. (3.5)). Consequently, the solution is twice continuously differentiable
over the closed interval. On the other hand, the equation k2Lfn = λnfn over the whole quasiperiodic
interval implies that the global derivative of fn is piecewise smooth. No Dirac delta should appear.
Thus fn is continuous and its derivative coincides with the piecewise derivative f ′

n. Similarly, the
derivative of the continuous quasiperiodic [k−2f ′

n] is piecewise smooth. Thus [k−2f ′
n] is continuous

and its derivative coincides with the piecewise derivative ∂x1 [k
−2f ′

n].

3.4 General assumptions for EVD

We just formulate a general assumption, which holds e.g. for the second case considered above and,
if (3.7) is true, also for the first case. In other words, we assume that, for k2L, there is a system of
univariate eigenfunctions fn, n∈N with the corresponding eigenvalues λ2

n such that:

k2Lfn = λ2
nfn and all λ2

n are eigenvalues of rank one. (3.7)

|λn|2→∞ and |ℑmλn|≤C0+C0|ℜe λn| for a fixed positive constant C0. (3.8)

(1+|λn|2)−s/2fn form a Riesz basis in Hs
α for 0≤s≤1 and

(3.9)
(1+|λn|2)−s/2k−2fn form a Riesz basis in Hs

α for −1≤s≤0.
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Convergence of the RCWA 9

Note that, in comparison to the above indices, we have changed the index set Z to N. Fur-
thermore, we order the eigenvalues and eigenfunctions such that |λn|≤|λn+1| for all n∈N. For
the square roots λn of the λ2

n ̸=0, we suppose either that ℜe λn>0 or that ℜe λn=0,ℑmλn<0.
Clearly, the ±λn are eigenvalues of M in (3.3). Depending on the choice of wavenumber function k
as k(x1)=k+(x1)=kb(x1)=k(x1, b+ 0) or as k(x1)=k−(x1)=ka(x1)=k(x1, a− 0), we write
Lb or La for the differential operator L, fb,n or fa,n for the eigenfunction fn, and λb,n or λa,n for the
eigenvalue λn. Moreover, if the wavenumber function k(x1)=k(x1, b± 0) depends on whether the
trace is taken from above or below, we even write Lb±0, fb±0,n, and λb±0,n.

4 Radiation condition and unique solvability of the scattering
problem for special inhomogeneous super- and substrate

...

...

...

...

x1

x

Γa

Γb

0

a

b

2

y

per=2π

ΓlatlatΓ

Figure 2: Geometry settings for inhomogeneous cover material and substrate.

Suppose c=a or c=b. More precisely, c=a−0 or c=b+0. The eigenvalues λ of M in (3.3) are
the square roots ±

√
λ2 of the eigenvalues λ2 in (3.4). For definiteness, we choose the square root

λ =
√
λ2 s.t. either ℜe λ>0 or that ℜe λ=0, ℑmλ≤0, and consider the values ±λ as square root

of λ2. For λ=λc,n ̸=0, we call the 2D wave modes u±
c,n(x1, x2) :=e∓λc,n(x2−c)fc,n(x1) upgoing for

upper index + and downgoing for index −. Clearly, the u+
c,n are solutions of (3.1) for x2>c and the

u−
c,n solutions for x2<c. In the special case λc,n=0, we define these waves by the modified formula

u±
c,n(x1, x2) :=(1∓(x2−c))fc,n(x1). The general representation of the “Helmholtz” solutions in the

inhomogeneous cover material close to Γc is

u(x1, x2) =
∑
n∈N

{
c+c,nu

+
c,n(x1, x2) + c−c,nu

−
c,n(x1, x2)

}
, c±c,n∈C. (4.1)

The expansion (2.2) for k is a special case of (4.1) for c=b, where the eigenvalue λc,n=−iβb
n, n∈Z

corresponds to the eigenfunction fc,n(x1)=ei(α+n)x1 . Of course, the index set Z is still to be changed
into N. So, similarly to the homogeneous radiation conditions (2.3) and (2.4), we define, for the inho-
mogeneous medium:
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Definition 4.1. An α-quasiperiodic solution u of the 2D “Helmholtz” equation ∇·k−2∇u−u=0
over the upper half-space {(x1, x2)

⊤: x2≥b} is said to satisfy the upper radiation condition if u
admits the expansion u(x1, x2)=uinc

b (x1, x2)+
∑

n∈Nc
+
b,nu

+
b+0,n(x1, x2) for a sequence of coeffi-

cients c+b,n∈C. Similarly, an α-quasiperiodic solution u of ∇·k−2∇u−u=0 over the lower half-

space {(x1, x2)
⊤: x2≤a} is said to satisfy the lower radiation condition if it admits the expansion

u(x1, x2)=uinc
a (x1, x2)+

∑
n∈Nc

−
a,nu

−
a−0,n(x1, x2) for a sequence of coefficients c−a,n∈C. The sums

in the expansions converge in H1
loc.

Indeed, to see the convergence, we choose b=0 and, simplifying the notation, we set λn=λb,n

and fn :=fb,n. We take a general u(x1, x2)=
∑

n cne
−λnx2fn(x1) with the discrete H

1/2
α norm

∥(cn)n∥ℓ1/2 :=
{∑

n(1+|λn|2)1/2|cn|2
}1/2

<∞, and note that ∥(cn)n∥ℓ1/2≤C∥u∥
H

1/2
α

by the Riesz

property (3.9) for the scaled functions (1+|λn|2)−1/4fn in H
1/2
α . Then we get

∥∂x2u∥2L2 =

∫ 1

0

∫ 2π

0

∣∣∣∣∣∑
n

λncnfn(x1)e
−λnx2

∣∣∣∣∣
2

dx1dx2≤C

∫ 1

0

∑
n

∣∣λncne
−λnx2

∣∣2dx2

≤
∑
n

|λncn|2
∫ 1

0

e−2ℜe λnx2dx2≤C
∑
n

|λn| |cn|2≤C∥(cn)n∥2ℓ1/2 ,
(4.2)

∥∂x1u∥2L2 =

∫ 1

0

∫ 2π

0

∣∣∣∣∣∂x1

∑
n

cnfn(x1)e
−λnx2

∣∣∣∣∣
2

dx1dx2≤C

∫ 1

0

∑
n

(1+|λn|2)
∣∣cne−λnx2

∣∣2dx2

≤
∑
n

(1+|λn|2) |cn|2
∫ 1

0

e−2ℜe λnx2dx2≤C
∑
n

(1+|λn|2)1/2 |cn|2≤C∥(cn)n∥2ℓ1/2 ,

where we have used |ℑmλn|≤C0+Cℜeλn to estimate |λn|/|ℜe λn| by a constant. The corre-
sponding estimate for the L2 norm is similar. Hence the local H1

α norm of u is bounded and the sum
converges in this norm.

Using Def. 4.1, we can generalize the BVP for the scattering of incoming waves uinc
a and uinc

b by the
grating with homogeneous cover material and substrate to the BVP for a grating with inhomogeneous
super- and substrate. We obtain:

Theorem 4.2. Suppose:
i) For c=a−0, b+0 and the corresponding k2L=k2Lc, the assumptions (3.7)-(3.9) are fulfilled.
ii) Any solution of the scattering problem (2.1) with incident waves uinc

a ≡0 and uinc
b ≡0 is zero.

Then, for any given uinc
b |Γb

∈H
1/2
α (Γb) and uinc

a |Γa ∈H
1/2
α (Γa), there is a unique solution u∈H1

α(Ω)
of the scattering problem (2.1) with the radiation conditions of Def. 4.1. In particular, there is a bounded
solution operator (scattering operator or scattering matrix, cf. Fig. 3)

Sab :

(
H

1/2
α (Γa)

H
1/2
α (Γb)

)
∋
(
uinc
a |Γa

uinc
b |Γb

)
=:

(
u+
a

u−
b

)
7→
(
u+
b

u−
a

)
:=

(
[u−uinc

b ]|Γb

[u−uinc
a ]|Γa

)
∈

(
H

1/2
α (Γb)

H
1/2
α (Γa)

)
.

Proof. The argumentation is almost the same as that in the proof of [7, Theorem 5.7]. We define the
Dirichlet-to-Neumann operators DtN

−
a and DtN

+
b for the basis function of the radiation conditions by

ua
n 7→DtN

−
a u

a
n :=−∂x2u

a
n and by ub

n 7→DtN
−
b u

b
n :=∂x2u

b
n, respectively. Then the sesquilinear form

for (2.1) is

a(u, v) :=

∫
Ω

{
−k−2∇u∇v+uv̄

}
+

∫
Γb

k−2
b+0DtN

+
b uv̄+

∫
Γa

k−2
a−0DtN

−
a uv̄, u,v∈H1

α(Ω), (4.3)
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Convergence of the RCWA 11

and the Riesz basis properties imply the boundedness of the second and third term on the right-hand
side. It is sufficient to prove that the operator corresponding to the form a is strongly elliptic, i.e. that
there exist a complex number θ, a positive real ε, and a compact form b with

ℜe [a(u, θu)− b(u, θu)] ≥ ε∥u∥2H1
α(Ω), ∀u∈H1

α(Ω).

By the assumptions on k in Sect. 3, the numbers k−2(x1, x2) are contained in a compact subset of
{z∈C : ℑmz<0 or ℑmz=0,ℜe z>0}. Consequently, there exists a θ∈C s.t. ℜe θk−2≥ε, and
the form defined by the first integral on the right-hand side of (4.3) is strongly elliptic.

For the second integral on the right-hand side of (4.3), the function u can be extended to a solution ue

of (3.1) over [0, 2π]×[b,∞) by the Rayleigh expansion w.r.t. the modes u+
b,n, and we get (cf. (4.2))

ue(x1, x2) =
∑
n

c+b,nu
+
b,n(x1, x2), x2 ≥ b, ∥ue∥H1

α([0,2π]×[b,b+1])∼∥u∥
H

1/2
α (Γb)

≤C∥u∥H1
α(Ω).

Moreover, the mapping u|Γb 7→ue|Γb+1
is compact since this maps by ub,n(·, b) 7→e−λb,nub,n(·, b) with

ℜe λb,n→∞. Indeed, ℜe λb,n→∞ follows from |λb,n|2→∞ and |ℑmλb,n|≤C0+C0|ℜλb,n| (cf.
the general-case assumptions (3.7)-(3.9) at the end of Sect. 3) as well as from ℜe λb,n≥0 (recall the
choice of λ at the beginning of Sect. 4). Now the second integral takes the form∫

Γb

k−2
b+0DtN

+
b uv̄ =

∫
[0,2π]×[b,b+1]

{
−k−2

b+0∇ue∇ve + uev̄e
}
+

∫
Γb+1

k−2
b+0DtN

+
b+1u

ev̄e,

where the second integral on the right-hand side corresponds to a compact sesquilinear form and the
first integral can be treated as the first integral term on the right-hand side of (4.3). The third integral
on the right-hand side of (4.3) can be treated analogously.

For assumption i), we refer to the two cases discussed in Sect. 3. In particular, for real-valued wave-
functions k±=kb+0, ka−0, there is no eigenfunction of rank greater than one and the system of eigen-
functions is even orthonormal in the sense of ⟨k−2fn, fm⟩=δn,m. Suppose k is not a real-valued
function. Then the Riesz-basis property is almost known at least for twice continuously differentiable
k. To our knowledge, there is no example of a rank-greater-one eigenfunction known yet. If such a
function exists, then the system of upgoing and downgoing waves is to be modified and an adaption of
the RCWA is needed. Such an adaption might be difficult since it is not clear, which eigenfunction has
a rank greater one. To prove a general Riesz-basis property seems to be extremely difficult if infinitely
many rank-greater-one eigenvalues exists.

If assumption i) is satisfied, then the variational form can be shown to be strongly elliptic. Surely,
there exist geometries Fig. 2 with trivial solutions of the scattering problem with zero incoming waves,
so called eigenmodes or trapped modes. If wavenumber functions with non-real values are involved
(absorbing materials), then the uniqueness of ii) can be shown. If k is real-valued, then the existence
of eigenmodes is possible but should be an exceptional case.

Remark 4.3. For the solution theory of boundary value problems in Thm. 4.2, the choice of the ra-
diation conditions Def. 4.1 based on the trace functions x1 7→k(x1, b+0) and x1 7→k(x1, a−0) is
natural. However, for the SMA, we shall always consider the scattering matrices based on the trace
functions x1 7→k(x1, b+0) and x1 7→k(x1, a+0). The corresponding solution theory follows from
Thm. 4.2 if the continuity k(x1, a+0)=k(x1, a−0) is supposed.
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-
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+
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-

+

incoming
waves waves

outgoing

Figure 3: Scattering matrix.

5 SMA with no discretization w.r.t.variable x1

5.1 Projections in the space of boundary functions

Now we introduce the SMA on the continuous level. The RCWA will be the discretization of this SMA
and will be considered in Sects. 6–7. The key instrument of the SMA is the S-matrix of Thm. 4.2, which
has a natural 2×2 block structure. To see this clearly we need projections in the space of boundary
functions, i.e. in the space of Dirichlet and Neumann data. For the eigenvalues λb,n and eigenfunctions
fb,n defined with k(x1)=kb(x1) :=k(x1, b+0) as in Sect. 3, we consider upgoing waves u+

b and
downgoing waves u−

b together with their boundary data on Γb:

u±
b (x1, b) =

∑
n∈N

c±b,nfb,n(x1) =
∑

n∈N:λb,n ̸=0

c±b,mfb,n(x1)e
∓λb,n[x2−b]

∣∣
x2=b

+
∑

n∈N:λb,n=0

c±b,mfb,n(x1)
(
1∓ (x2 − b)

)∣∣
x2=b

,

∂x2u
±
b (x1, b) = DtN

±
b

(
u±
b |R3

b

)
(x1) := ∂x2u

±
b (x1, b)

= ∓
∑

n∈N:λb,n ̸=0

λb,nc
±
b,mfb,n(x1) ∓

∑
n∈N:λb,n=0

c±b,mfb,n(x1). (5.1)

Due to the Riesz-basis property, each trace of u±
b ∈H

1/2
α (Γb) has a unique continuation u±

b to the
upper and lower half space, respectively, such that ∇ · k−2

b ∇u±
b +u±

b =0 over the half space and

that k−2DtN
±u±

b =k−2
b ∂x2u

±
b |Γb ∈H

−1/2
α (Γb). In this sense, the Dirichlet traces u±

b of the upgoing
and downgoing waves can be embedded into the H1

α space of wave solutions above and below Γb,
respectively. Switching from the extensions to the boundary traces onΓb, the Dirichlet traces u±

b can be
embedded into the space of boundary data consisting of couples of Dirichlet and modulated Neumann
data (data of co-normal derivatives). We identify

u±
b ↔ (u±

b , k
−2
b ∂x2u

±
b ), kb := k(·, b+ 0),

H1/2
α (Γb) ↔

[
H1/2

α ×H−1/2
α

]
±(Γb) ⊆ H1/2

α (Γb)×H−1/2
α (Γb). (5.2)
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Remark 5.1. Note that the factor k−2
b is new for the TM case. It does not appear for TE polarization.

It is introduced since over the interface Γb the function u and k−2
b ∂x2u are continuous, i.e.,

u(x1, b+ 0) = u(x1, b− 0),

k−2(x1, b+ 0)∂x2u(x1, b+ 0) = k−2(x1, b− 0)∂x2u(x1, b− 0), 0 ≤ x1 ≤ 2π.

These equalities hold in the trace spaces H1/2
α (Γb) and H

−1/2
α (Γb), respectively.

Lemma 5.2. If the Assumptions (3.7)-(3.9) hold for k=kb, then the space for Dirichlet and modulated
Neumann data (data of co-normal derivatives) is the direct sum

H1/2
α (Γb)×H−1/2

α (Γb) =
[
H1/2

α ×H−1/2
α

]
+
(Γb) ⊕

[
H1/2

α ×H−1/2
α

]
−(Γb),

and the projections P±
b of H1/2

α (Γb)×H
−1/2
α (Γb) onto [H

1/2
α ×H

−1/2
α ]±(Γb) parallel to the space

[H
1/2
α ×H

−1/2
α ]∓(Γb) are bounded. In particular, we get imP±

b =[H
1/2
α ×H

−1/2
α ]±(Γb).

Proof. From (5.1) we see DtN
−
b =−DtN

+
b : H

1/2
α (Γb)→k2

bH
−1/2
α (Γb). Then the representation(

uD, k
−2
b uN

)
=

(
u+, k−2

b DtN
+
b u

+
)
+
(
u−,−k−2

b DtN
+
b u

−)
leads us to

P±
b

(
uD, k

−2
b uN

)
=

(
1

2
uD ± 1

2
[DtN

+
b ]

−1uN , ±1

2
k−2
b DtN

+
b uD +

1

2
k−2
b uN

)
(5.3)

with [DtN
+
b ]

−1=[k−2
b DtN

+
b ]

−1k−2
b I : k2

bH
−1/2
α (Γb)→H

1/2
α (Γb). Using (5.1) and the Riesz prop-

erty (3.9) of the fb,n, n∈N, we get the boundedness of the k−2
b DtN

+ and its inverse. The last
formula proves the continuity of the projections.

Note that in the TE case (cf. [7, Lemma 6.1]), the k−2
b factors disappear in (5.3).

Analogously to the projections P±
b in H

1/2
α ×H

−1/2
α over Γb based on the eigenfunctions fb,n for

k2
bLb with kb(x1)=k(x1, b+ 0), we have the projections P±

a in H
1/2
α ×H

−1/2
α over Γa based on

ka(x1)=k(x1, a+ 0). In the following we will need a formula (cf. the subsequent (5.4) and (5.5)) for
the projections P±

b onto upgoing and downgoing waves over Γb applied to upgoing and downgoing
waves u±

a ∈ imP±
a over Γa. From (5.3) and P±

a (u, v)=(u±
a ,±k−2

a DtN
+
a u

±
a ), we get the formula

P±
b

(
u+
a + u−

a , k
−2
a DtN

+
a u

+
a − k−2

a DtN
+
a u

−
a

)
= (5.4)(

1

2
[u+

a + u−
a ]±

1

2
[DtN

+
b ]

−1k
2
b

k2
a

[DtN
+
a u

+
a −DtN

+
a u

−
a ] ,

±1

2
k−2
b DtN

+
b [u

+
a + u−

a ] +
1

2
k−2
a [DtN

+
a u

+
a −DtN

+
a u

−
a ]

)
.

By the identification (5.2), the restricted projections P±
b : imP+

a → imP±
b and P±

b : imP−
a → imP±

b

can be identified by the operators P±+
a,b : H

1/2
α (Γa)→H

1/2
α (Γb) and P±−

a,b : H
1/2
α (Γa)→H

1/2
α (Γb),

respectively, where

P±+
a,b [u

+
a ]=

1

2

[
u+
a ±[DtN

+
b ]

−1k
2
b

k2
a

DtN
+
a u

+
a

]
, P±−

a,b [u
−
a ]=

1

2

[
u−
a ∓[DtN

+
b ]

−1k
2
b

k2
a

DtN
+
a u

−
a

]
. (5.5)

In this sense, we arrive at bounded operators P±,−
a,b : H

1/2
α →H

1/2
α and P±,+

a,b : H
1/2
α →H

1/2
α . Though

P±
b in (5.4) is a projection, the identified operators P±+

a,b and P±−
a,b on the right-hand sides of (5.5) are

not. The formulas of (5.5) have been derived knowing that the functions u±
a are the Dirichlet traces

of outgoing and downgoing waves, respectively. Note that, for the TE case, (5.5) holds with the factor
k2
b/k

2
a deleted.
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5.2 Structure of the S-matrix

In the S-matrix (cf. Fig. 3) the functions u±
a are to be identified with the corresponding pair of trace func-

tions (u±
a ,±k−2

a DtN
+
a u

±
a ) and u±

b with (u±
b ,±k−2

b DtN
+
b u

±
b ). Thus the S-matrix maps trace space

[H
1/2
α ×H

−1/2
α ]+(Γa)⊕[H

1/2
α ×H

−1/2
α ]−(Γb) into [H

1/2
α ×H

−1/2
α ]+(Γb)⊕[H

1/2
α ×H

−1/2
α ]−(Γa). So

the S-matrix consists of the blocks Sab
++ :=P+

b Sab|imP+
a

, Sab
+− :=P+

b Sab|imP−
b

, Sab
−+ :=P−

a Sab|imP+
a

,

and Sab
−− :=P−

a Sab|imP−
b

, which we identify by their corresponding operators Sab
++, Sab

+−, Sab
−+, and

Sab
−− in H

1/2
α (cf. (5.2)). Its action corresponds to a system of two linear equations.

Sab =

(
Sab
++ Sab

+−
Sab
−+ Sab

−−

)
,

u+
b = Sab

++u
+
a + Sab

+−u
−
b ,

u−
a = Sab

−+u
+
a + Sab

−−u
−
b .

Note that the four blocks of Sab, identified as operators acting in the spaces H1/2
α (Γa) and H

1/2
α (Γb),

are continuous by the mapping property of the variational operator of Thm. 4.2.

a

b

a

c c

Γ

Γ

c

b

Γa

Figure 4: Step from two slices to their union.

5.3 SMA for two adjacent slices

We start the derivation of the algorithm with the case of a grating consisting of two adjacent slices (cf.
Fig. 4)). Suppose the S-matrices Sab and Sbc of the slices between Γa and Γb and between Γb and Γc,
respectively, are known (cf. Sect. 6). How does the matrix Sac between Γa and Γc looks like? In other
words, we know

u+
c = Sbc

++u
+
b + Sbc

+−u
−
c (5.6)

u−
b = Sbc

−+u
+
b + Sbc

−−u
−
c (5.7)

u+
b = Sab

++u
+
a + Sab

+−u
−
b (5.8)

u−
a = Sab

−+u
+
a + Sab

−−u
−
b , (5.9)

and we look for

u+
c = Sac

++u
+
a + Sac

+−u
−
c , u−

a = Sac
−+u

+
a + Sac

−−u
−
c . (5.10)

We set the traces u±
b =u±

b (·, b+ 0) of the functions u±
b (·, ·) in the slice between Γb and Γc (cf. (5.6)

and (5.7)) to the corresponding upper output and input functions ub
± of the S-matrix for the slice

DOI 10.20347/WIAS.PREPRINT.3081 Berlin, December 22, 2023/rev. June 25, 2025



Convergence of the RCWA 15

between Γa and Γb (cf. (5.8) and (5.9)). Both traces are in the trace space H
1/2
α (Γb+0). Automatically,

we set the H
−1/2
α (Γb+0) traces of the co-normal derivatives k−2

b+0∂x2u
±
b =k−2(·, b+ 0)DtN

±
b+0u

±
b

of the upgoing and downgoing function from the slice between Γb and Γc to those of the functions
between Γa and Γb. Then we eliminate these unknown functions from the linear system (5.6)–(5.9).
Defining D :=(I−Sbc

−+S
ab
+−), we arrive at the linear system (5.10) with the operator coefficients

Sac =

(
Sac
++ Sac

+−
Sac
−+ Sac

−−

)
=

(
Sbc
++

[
I+Sab

+−D
−1Sbc

−+

]
Sab
++ Sbc

+−+Sbc
++S

ab
+−D

−1Sbc
−−

Sab
−++Sab

−−D
−1Sbc

−+S
ab
++ Sab

−−D
−1Sbc

−−

)
. (5.11)

Lemma 5.3. Suppose the BVP (2.1) for the three gratings between Γa and Γb, between Γa and Γc,
and between Γb and Γc are uniquely solvable s.t. the S-matrices Sab, Sac, and Sbc exist. Furthermore,
suppose the wavenumber function k(x1, x2) is independent of x2 in the slices between Γa and Γb and
between Γb and Γc. Finally, suppose ka(x1) :=k(x1, a) and kc(x1) :=k(x1, c) are piecewise twice
continuously differentiable w.r.t. x1. Then the operator D :=(I−Sbc

−+S
ab
+−) is invertible and Formula

(5.11) is correct.

Proof. First we observe that Sbc
−+ is compact. Indeed, if the scattering problem is uniquely solvable

for the grating between Γb and Γc, then, for a small ε>0, the scattering problem is uniquely solvable
for the grating between Γb+ε and Γc. Between Γb and Γb+ε we get kb=kb+ε and the correspond-
ing scattering matrix is diagonal, i.e. Sb,b+ε

±∓ =0 and Sb,b+ε
±± is diagonal w.r.t. the eigenmodes of the

radiation condition. Due to diagonal entries e−ελb,n decaying for n→∞, the Sb,b+ε
±± are compact. For-

mula (5.11) for a=b, b=b+ε, c=c holds with D=I and provides us with Sbc
−+=Sb,b+ε

−− Sb+ε,c
−+ Sb,b+ε

++ ,
which is compact as well.

Now, due to the definition D and due to the compactness of Sbc
−+, the operator D is a Fredholm

operator of index zero. It remains to prove that the codimension of imD ⊆ H
1/2
α (Γc) is zero, i.e. that

the image space of D is dense.

For incoming waves u+
a =0 and u−

c , there exists a solution u in the grating between Γa and Γc. Taking
the restrictions to Γa, Γb, and Γc and their projections to the up- and downgoing waves, we get the
waves u+

a , u±
b , and u−

c . The Eqns. (5.7) and (5.8) lead to the system

−Sbc
−+u

+
b + u−

b = Sbc
−−u

−
c ,

u+
b − Sab

+−u
−
b = Sab

++u
+
a = 0.

Multiplying the last equation by Sbc
−+ and adding the result to the first, we arrive at Du−

b = Sbc
−−u

−
c .

From the subsequent Eqns. (6.8) and (6.9), we observe that the image space of D is dense.

Remark 5.4. For general slices with x2-dependent wavenumber function, we conjecture that the prod-
uct operator Sbc

−+S
ab
+− is compact as well. Then a violation of the invertibility of D seems to be an

exceptional case. If D is not invertible, then a general solver can be applied to (5.7)-(5.8) in order to
express u±

b w.r.t. the functions u+
a and u−

c . Substituting these expressions into (5.6) and (5.9), we get
an alternative formula for Sac.

5.4 SMA for all slices

Next we consider the general case and split the rectangular domain of Fig. 2 into n smaller slices (cf.
Fig. 5). We denote the S-matrices of the slices between Γhj−1

and Γhj
by Sj and the Dirichlet boundary
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Γ

Γ

Γ

Γ

Γ

0

1

2

n

n-1

Γ

n-2

...

h

h

h

h

h

h

x
3

n

n-1

n-2

2

1

0
=a

=b

Figure 5: Step from many small slices to their union.

values on the slice boundaries Γhj
:=Γhj+0 by u±

j . Furthermore, we introduce the accumulated S-
matrix Sj over the union over all slices between Γh0 and Γhj

. In other words, we have

u±
j :=u±

hj
↔P±

hj+0

(
u|Γhj+0

, k−2
hj+0∂x2u|Γhj+0

)
, Sj :=Shj−1hj , Sj :=Sh0hj , j=1, · · · , n .

Suppose, we can compute the S-matrices Sj, j=1, · · · , n, which requires a solver for the BVP (2.1)
between Γhj−1

and Γhj
(cf. the subsequent Sect. 6). With this we get the

Scattering matrix algorithm. (5.12)

i) Compute, recursively, the accumulated S-matrix Sn:

i)- i) Initialization:
Set j=1 and compute Sj=S1 (cf. Sect. 6).

i)-ii) Iteration for j running from 2 to n:
Compute Sj (cf. Sect. 6).
Apply the two-step formula (5.11) with Sab=Sj−1, Sbc=Sj , and Sac=Sj

to compute Sj from Sj−1 and Sj .

ii) Given the incoming wave modes u+
0 and u−

n , compute the reflected and
transmitted waves u+

n =Sn
++u

+
0 +Sn

+−u
−
n and u−

0 =Sn
−+u

+
0 +Sn

−−u
−
n .

Compute the Rayleigh coefficients c+b,n of u+
n and c−a,nof u−

0 .
Compute the squared moduli |c+b,n|2 and |c−a,n|2 and, by simple scaling (cf. (2.5)),
the efficiencies (intensities) of the reflected and transmitted wave modes.
Compute the arguments of the complex numbers c+b,n/|c

+
b,n| and c−a,n/|c−a,n|

to get the phase shifts of the modes.

Remark 5.5. Note that, in applications, the radiation condition of Def. 4.1 over Γh0 and Γhn might be
the classical one of (2.3) and (2.4). However, splitting the whole domain of the grating into smaller
slices, the wave-number function on some of the vertical slice boundaries Γhj

will not be constant,
and we rely on the Def. 4.1. This condition is valid at least on an infinitesimal small neighbourhood of
the slice boundary. Though the developers of the RCWA never thought about a radiation condition for
x2>hj or x2<hj , they use this condition to determine the S-matrices for the RCWA.
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Remark 5.6. The above defined scattering matrix algorithm updates the four blocks Sj
++, Sj

+−, Sj
−+,

and Sj
−− in each step. A reduced algorithm is possible if u−

n ≡0. Then it is sufficient to update two
blocks of the S-matrix and two vectors.

Remark 5.7. If we are interested in the solution over the slices, then we can go backwards. Using
the two-step equations (5.8) and (5.7) for the two slices Sn−1 and Sn, we compute u±

n−1. Using (5.8)
and (5.7) for the two slices Sn−2 and Sn−1, we compute u±

n−2. Using (5.8) and (5.7) for the two slices
Sn−3 and Sn−2, we compute u±

n−3. Going recursively up to 1, we get u±
1 from (5.8) and (5.7) for the

two slices S1 and S2. Finally, over each slice between Γhj−1
and Γhj

, we apply the solver for (2.1),
which has been used for the computation of the S-matrix Sj (cf. Sect. 6). Knowing the boundary data
u+
j−1 and u−

j , the solver provides us with the values of the wave solution between Γhj−1
and Γhj

.

6 Solution of the scattering problem over a slice and computa-
tion of the S-matrix

6.1 Auxiliary operators for the representation of the S-matrix

Clearly, the scattering problem over the slice is equivalent to a variational formulation (cf. the cor-
responding sesquilinear form in (4.3)), which can be solved numerically by FEM combined with a
discretization of the nonlocal boundary operators DtN

+
c , c=a, b. Then the combination of the itera-

tion of the scattering matrix algorithm in Sect. 5 with FEM is nothing else than a DDM for the FEM. In
engineering applications, however, the following different approach is used (cf. the subsequent (6.7)
and (6.8)), which reduces the scattering problem to the solution of a problem for an operator valued
ODE (cf. the subsequent (6.1) and (6.2)).

To prepare the formulas of the S-matrix based on the ODEs (cf. the subsequent (6.7),(6.9), and (6.11)),
we need a few definitions. Recall the identification in (5.2) and the splitting of the boundary data in
Lemma 5.2. Analogously to the projections P±

b in H1/2×H−1/2 over Γb based on the eigenfunc-
tions fb,n for the differential operator k2L with k(x1)=k(x1, b+0), we define the projections P±

b−0

in H1/2×H−1/2 over Γb based on the eigenfunctions fb−0,n for k2L with k(x1)=k(x1, b−0). We
introduce the transition operators T±

ab

T+
ab : imP+

a → H1/2(Γb−0)×H−1/2(Γb−0),

T−
ba : imP−

b−0 → H1/2(Γa)×H−1/2(Γa).

The operator T+
ab maps (u+

a , v
+
a :=k−2

a DtNau
+
a )

⊤ (cf. (5.1)) to the vector (u(·, b−0), v(·, b−0))⊤,
where (u, v)⊤ is the solution of the initial value problem (cf. (3.1)-(3.4))

a) ∂x2

(
u(x1, x2)
v(x1, x2)

)
=

(
0 k2I
L 0

)(
u(x1, x2)
v(x1, x2)

)
,

b)

(
u(x1, a)
v(x1, a)

)
=

(
u+
a (x1)

v+a (x1)

)
, 0 ≤ x1 ≤ 2π,

(6.1)

Note that the operator valued first order ODE system in a) is the order reduction of the operator valued
second order ODE ∂x2k

−2∂x2u=Lu equivalent to the “Helmholtz” equation (cf. (3.1) and (3.2)). We

identify [P±
b−0T

+
ab] (cf. (5.3)) with the bounded operator PT±+

ab :H
1/2
α (Γa)→H

1/2
α (Γb−0) mapping u+

a

to the wave functions u±
b s.t. u±

b ↔P±
b−0

(
u(·, b−0),v(·, b−0)

)
.
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Similarly, the transition operator T−
ba maps (u−

b−0, v
−
b−0 :=−k−2

b−0DtNb−0u
−
b−0)

⊤ to the boundary-
value couple (u(·, a+0), v(·, a+0))⊤, where (u, v)⊤ is the solution of the problem

a) ∂x2

(
u(x1, x2)
v(x1, x2)

)
=

(
0 k2I
L 0

)(
u(x1, x2)
v(x1, x2)

)
,

b)

(
u(x1, b)
v(x1, b)

)
=

(
u−
b−0(x1)

v−b−0(x1)

)
, 0 ≤ x1 ≤ 2π.

(6.2)

Using this, we identify [P±
a+0T

−
ba] with the bounded operator PT±−

ba :H
1/2
α (Γb−0)→H

1/2
α (Γa) mapping

u−
b−0 to u±

a+0 s.t. u±
a+0↔P±

a+0

(
u(·, a+0), v(·, a+0)

)
.

Note that, for the case of x2-invariant wavenumber k(x1, x2)=k(x1) in the slice [0, 2π]×[a, b), we
get P±

b−0=P±
a :=P±

a+0. The transition operators PT++
ab and PT−−

ba are given by (cf. (4.1))

PT++
ab [u+

a,n(·, a)] = u+
a,n(·, b), PT−−

ba [u−
a,n(·, b)] = u−

a,n(·, a), (6.3)

and PT−+
ab =0=PT+−

ba . W.r.t. the basis fa,n, n∈N, both transition operators PT++
ab and PT−−

ba

have the same diagonal matrix (e−λa,n[b−a]δm,n)m,n∈N and are bounded.

6.2 Representation of the S-matrix

Next we derive the formula for the S-matrix. The boundary value functions v+a and v−a =0 over the
straight line Γa lead to a solution of the scattering problem with the Γb boundary value functions
v+b ↔P+

b T+
abv

+
a and v−b ↔P−

b T+
abv

+
a over Γb. Clearly, using the identification (5.2) and the opera-

tors P±+
b−0,b and P±−

b−0,b of (5.5), the operators P+
b T+

ab and P−
b T+

ab are identified by the operators

PPT++
ab :=[P++

b−0,bPT
++
ab +P+−

b−0,bPT
−+
ab ] and PPT−+

ab :=[P−+
b−0,bPT

++
ab +P−−

b−0,bPT
−+
ab ], respec-

tively. In other words, we get v+b =PPT++
ab v+a as well as v−b =PPT−+

ab v+a over Γb. We arrive at

Sab :

(
v+a

PPT−+
ab v+a

)
7→
(
PPT++

ab v+a
0

)
. (6.4)

On the other hand, take a downgoing v−b−0 over Γb. Then the boundary values v+b ↔ P+
b v−b−0 and

v−b ↔P−
b v−b−0 over Γb lead us to the other boundary values v+a ↔P+

a T−
bav

−
b−0 and v−a ↔P−

a T−
bav

−
b−0

over Γa. Recall that the operators P+
a T−

ba and P−
a T−

ba are identified by PT+−
ba and PT−−

ba , respectively.
So we get v+a =PT+−

ba v+b−0 as well as v−a =PT−−
ba v+b−0 over Γ and arrive at

Sab :

(
PT+−

ba v−b−0

P−−
b−0,bv

−
b−0

)
7→
(
P+−

b−0,bv
−
b−0

PT−−
ba v−b−0

)
. (6.5)

For the functions u+
a =v+a +PT+−

ba v−b−0 and u−
b =PPT−+

ab v+a +P−−
b−0,bv

−
b−0, Eqns. (6.4) and (6.5)

yield (
u+
a

u−
b

)
=

(
I|imP+

a
PT+−

ba

PPT−+
ab P−−

b−0,b

)(
v+a
v−b−0

)
,

(6.6)

Sab

(
u+
a

u−
b

)
=

(
PPT++

ab P+−
b−0,b

0 PT−−
ba

)(
v+a
v−b−0

)
.
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Assuming that the determinant operator D−
ab :={P−−

b−0,b−PPT−+
ab PT+−

ba }: H1/2
α (Γb−0)→H

1/2
α (Γb)

of the first matrix in (6.6) is invertible, we arrive at

Sab =

(
PPT++

ab P+−
b−0,b

0 PT−−
ba

)(
I|imP+

a
+PT+−

ba [D−
ab]

−1PPT−+
ab −PT+−

ba [D−
ab]

−1

−[D−
ab]

−1PPT−+
ab [D−

ab]
−1

)
(6.7)

=

(
PPT++

ab −
[
P+−

b−0,b−PPT++
ab PT+−

ba

]
[D−

ab]
−1PPT−+

ab

[
P+−

b−0,b−PPT++
ab PT+−

ba

]
[D−

ab]
−1

−PT−−
ba [D−

ab]
−1PPT−+

ab PT−−
ba [D−

ab]
−1

)
.

Note that, for the case of x2-invariant wavenumber k(x1, x2)=k(x1, a) in the slice [0, 2π]×[a, b),

the formula (6.7) simplifies to Sab : H
1/2
α (Γa)×H

1/2
α (Γb) → H

1/2
α (Γb)×H

1/2
α (Γa) with

Sab =

({
P++

b−0,b−P+−
b−0,b[D

−
ab]

−1P−+
b−0,b

}
PT++

ab P+−
b−0,b[D

−
ab]

−1

−PT−−
ba [D−

ab]
−1P−+

b−0,bPT
++
ab PT−−

ba [D−
ab]

−1

)
, (6.8)

where D−
ab=P−−

ab : H
1/2
α (Γa)→H

1/2
α (Γb) (cf. (5.5)).

Lemma 6.1. Consider a grating in the domain [0, 2π]×[a, b] with a wavenumber function k s.t.
k(x1, x2)=ka(x1) for a≤x2<b. In the substrate suppose k(x1, x2)=ka(x1) for x2≤a and in
the cover material k(x1, x2) = kb(x1) for b≤x2. Furthermore suppose that ka and kb are piecewise
twice continuously differentiable w.r.t. x1. Finally suppose the BVP (2.1) over this grating is uniquely
solvable (cf. Thm. 4.2), i.e., that there exists the bounded S-matrix Sab. Then the operator D−

ab=P−−
ab

is invertible and formula (6.8) holds true.

Proof. By the piecewise differentiability of ka and kb and by (5.5), we get PPT±,+
b−0,bv

+
a ∈H

1/2
α (Γb),

P±,−
b−0,bv

−
b−0∈H

1/2
α (Γb), and the boundedness of the linear operator P−−

ab .

If v+a =0 and P−−
ab v−b−0=0 and if u+

a and u−
b are defined by the first equation of (6.6), then, due to

PT+−
ba =0, we get u+

a =0 and u−
b =0 s.t. the left-hand side of the second equation of (6.6) satis-

fies Sab(u+
a , u

−
b )

⊤=(0, 0)⊤. In particular, PT−−
ba v−b−0=0, and by (6.3) we obtain v−b−0=0. In other

words, the null space of the operator P−−
ab : H

1/2
α (Γa)→H

1/2
α (Γb) is trivial.

Now we shall show that the image of D−
ab coincides with the space H

1/2
α (Γb). Consider the scattering

problem (2.1) with the incoming functions u+
a =0 from below and an arbitrary u−

b ∈H
1/2
α (Γb) from

above. Then, for the scattering problem, there exists a unique wave solution u∈H1
α([0, 2π]×[a, b])

and a unique solution pair u+
b ∈H

1/2
α (Γb) and u−

a ∈H
1/2
α (Γa). Clearly, u±

b−0=P±+
b,b−0u

+
b +P±−

b,b−0u
−
b

s.t. we get u+
b−0=PT++

ab u+
a =0 and u+

b +u−
b =u+

b−0+u−
b−0=u−

b−0. Hence, we arrive at the formula

u−
b =P−−

b−0,bu
−
b−0. In other words, all functions u−

b ∈H
1/2
α (Γb) are in the image of P−−

b−0,b. Moreover,

u−
b−0=u−

b +u+
b leads to the inverse [D−

ab]
−1=I+Sab

+−.

The matrix Sab
m of Sab w.r.t. the four bases, namely with fa,n∈H

1/2
α (Γa), n∈N in the sense that

fa,n↔(fa,n, k
−2
a λa,nfa,n), with fa,n∈H

1/2
α (Γa), n∈N s.t. fa,n↔(fa,n,−k−2

a λa,nfa,n), with the ba-

sis fb,n∈H
1/2
α (Γb), n∈N such that fb,n↔(fb,n, k

−2
b λb,nfb,n), and with fb,n∈H

1/2
α (Γb), n∈N s.t.

fb,n↔(fb,n,−k−2
b λb,nfb,n) is

Sab
m=

((
Θab

++−Θab
+−[Θ

ab
−−]

−1Θab
−+

)
Tab Θab

+−[Θ
ab
−−]

−1

−Tab[Θab
−−]

−1Θab
−+T

ab Tab[Θab
−−]

−1

)
, Tab=

(
e−(b−a)λa,nδn,m

)
n,m∈N. (6.9)

Here Θab with its four blocks Θab
+± and Θab

−± is the matrix of the basis transform in H
1/2
α ×H

−1/2
α from

basis (fa,n, (−1)lk−2
a λa,nfa,n), n∈N, l=0, 1 to basis (fb,n, (−1)lk−2

b λa,nfb,n), n∈N, l=0, 1.
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6.3 Alternative representation of the S-matrix

Finally, we shall present a formula for the S-matrix alternative to (6.7), which contains unbounded
transition operators. Together with a truncation of the infinite series, this formula is frequently used
and yields, in most cases, almost the same computational results. Only for large truncation indices N
(cf. the subsequent (7.1)) and for deep gratings (i.e. for big widths b−a), there appear exponentials
with large real arguments leading to overflow problems in the numerical computation. This alternative
formula has no essential advantages in comparison with (6.7). However, the unbounded operators
make the analysis of the RCWA difficult. So we mention only the formula. For simplicity, we even
restrict ourselves to the case of gratings with a wavenumber function independent of x2 for a≤x2<b
(compare the special case (6.8) of (6.7)).

Define the transition operator Tab by (6.1) but with general initial values (ua, va) instead of (u+
a , v

+
a ).

Then the T-matrix Tab is defined by(
u+
b

u−
b

)
= Tab

(
u+
a

u−
a

)
:=

(
[P+

b Tab|imP+
a
] [P+

b Tab|imP−
a
]

[P−
b Tab|imP+

a
] [P−

b Tab|imP−
a
]

)(
u+
a

u−
a

)
. (6.10)

Supposing the existence of the inverse of E−
ab := [P−

b Tab|imP−
a
], writing the vector equation (6.10)

as a system of two equations, and solving the latter w.r.t. the unknowns u+
b and u−

a , we get the vector
equation (u+

b , u
−
a )

⊤= Sab(u+
a , u

−
b )

⊤ with

Sab =

(
[P+

b Tab|imP+
a
]−[P+

b Tab|imP−
a
][E−

ab]
−1[P−

b Tab|imP+
a
] [P+

b Tab|imP−
a
][E−

ab]
−1

−[E−
ab]

−1[P−
b Tab|imP+

a
] [E−

ab]
−1

)
. (6.11)

If this formula is used for the SMA of (5.12), then it should be used at most in the initialization step
i)-i) to compute S1. For the updates of the Sj in i)-ii), a different two-step formula should be used,
which computes Sj from Sj−1 and from the T-matrix Thj−1,hj

directly. Indeed, this new formula can be
derived similarly to (5.11), replacing (5.6)–(5.7) by (6.10).

7 Discretization used by RCWA and FMM

7.1 Discretization by truncated Fourier series

Whereas in the FEM discretization of the SMA the domain of each slice is split into triangular sub-
domains and the functions are approximated by low order polynomial functions over each triangle,
the classical SMA, i.e. the RCWA or the FMM, are based on approximation by truncated Fourier series
w.r.t. variable x1. Of course, the Fourier coefficients depend on x2. In other words, the α-quasiperiodic
function u is expanded as the sum (cf. (2.2))

u(x1, x2) =
∑
l∈Z

ûl(x2)e
i(α+l)x1 .

Then a truncation index N>0 is fixed and an approximate function

uN(x1, x2) =
N∑

l=−N

ûN,l(x2)e
i(α+l)x1 ≈ PNu(x1, x2) :=

N∑
l=−N

ûl(x2)e
i(α+l)x1 (7.1)
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is sought. Here we use the finite-section operator PN acting on univariate functions depending on x1

and use the same symbol PN for the operator PN⊗I on functions depending on (x1, x2)
⊤, which

truncate the Fourier series w.r.t.x1 only (cf. (7.1)). Setting v :=k−2∂x2u and u⃗ :=(u, v)⊤, the partial
differential equation ∇· k−2∇u+u=0 is equivalent (compare (3.1) for the case of x2-independent
wavefunction) to the ODE ∂x2u⃗=Mx2u⃗ with operator valued coefficients (cf. (6.1) and (6.2)),

Mx2 :=

(
0 k2(·, x2)I
Lx2 0

)
, Lx2u := −∂x1k

−2(·, x2)∂x1u− u,

which is approximated by the projected equation ∂x2u⃗N =Mx2,N u⃗N including the operator valued
matrix coefficient Mx2,N defined as

Mx2,N :=

(
0 [PNk

−2(·, x2)I|imPN
]
−1

Lx2,N 0

)
, (7.2)

Lx2,NuN := [PNLx2|imPN
]uN = −∂x1

[
PNk

−2(·, x2)I|imPN

]
∂x1uN − uN .

Note that the matrix of [PNk
−2(·, x2)I|imPN

] w.r.t. the basis functions x1 7→ei(α+l)x1 , −N≤ l≤N
is a truncated Toeplitz matrix and that of operator [PN∂x1 |imPN

] = ∂x1|imPN
is the diagonal matrix(

δl,ki(α + l)
)N
l,k=−N

.

Remark 7.1. For a piecewise smooth multiplicator function g, the use of [PNg
−1I|imPN

]−1u instead
of [PNgI|imPN

]u improves the approximation (cf. [10]) if gu is smoother than u. Additionally, in (7.2)
the inverse matrix of the Galerkin approximation appears naturally from the reduction of the second-
order differential equation ∂x2 [PNk

−2I|imPN
]∂x2uN =−∂x1 [PNk

−2I|imPN
]∂x1uN−uN to a sys-

tem of two first-order equations.

Starting from (7.2), we define the eigenfunction, the algorithms, and formulas from Sects. 3-6 on a dis-
crete level: The projections PN onto the truncated Fourier series are bounded in H

±1/2
α with a norm

uniformly bounded w.r.t. the index N . The corresponding operator on the spaces of Dirichlet and Neu-
mann data over Γc with c=a, b will be denoted by Pc

N,N :=Pc
N⊗Pc

N ∈L([H1/2
α (Γc)×H

−1/2
α (Γc)]).

So the discrete version of the space of Dirichlet and Neumann data is imPc
N,N . Due to the as-

sumptions ℜe k>0 and ℑmk≥0, there is a ζ∈C s.t. ℜe [ζk−2
c ]≥ε>0 s.t. the real part of the

operator of multiplication by [ζk−2
c ] is positive definite. Hence, to the bounded multiplication operators

k−2
c I∈L(Hs

α), s∈R, the Galerkin method applies, the operators PNk
−2
c I|imPN

are invertible, and
the [PNk

−2
c I|imPN

]−1 are bounded uniformly w.r.t. the index N . If kc is piecewise twice continuously
differentiable, then kcI∈L(Hs

α) for |s|<1/2. If, additionally, it is continuous, then kcI∈L(Hs
α) for

|s|<3/2. We obtain discrete eigenvalues λc,n,N and eigenfunctions fc,n,N replacing Mc by Mc,N s.t.
(cf.(3.4))

[PNk
−2
c I|imPN

]−1Lc,Nfc,n,N+λ2
c,n,Nfc,n,N =0, Lc,NuN :=∂ [PNk

−2
c I|imPN

]∂ uN+uN . (7.3)

where σMc,N
={±λc,n,N : n=1, · · · , 2N+1} and fc,n,N ∈ imPc

N ⊂H1
α(Γc). Note that in the case

of TE polarization, we get ∆u+k2u=0 in part a) of (2.1) and, instead of (7.3), we have the simpler
discretized eigenvalue equation

∂2fc,n,N +
[
[PNk

2
cI|imPN

]fc,n,N + λ2
c,n,NI

]
fc,n,N = 0. (7.4)

To approximate (5.1), we set

DtN
±
c,N

{ 2N+1∑
n=1

ξnfc,n,N

}
= ±

2N+1∑
n=1

|λc,n,N |>εEVD

ξnλc,n,Nfc,n,N ±
2N+1∑
n=1

|λc,n,N |≤εEVD

ξnfc,n,N , ξn ∈ C, (7.5)
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where εEVD>0 is chosen sufficiently small. In fact this threshold number is to be chosen such that
the eigenvalues λc,n,N approximating the values λc,n=0 are caught by the condition |λc,n,N |≤εEVD.
Similarly to Equ. (5.2), we can identify the Dirichlet data u±

c,N =
∑2N+1

n=1 ξnfc,n,N for upgoing and
downgoing waves, respectively, with couples of discrete Dirichlet and Neumann data s.t.

u±
c,N ↔ (u±

c,N , [P
c
Nk

−2
c |imPc

N
]DtN

±
c,Nu

±
c,N), kc := k(·, c+ 0),

H1/2
α (Γc) ⊃ imPc

N ↔
[
imPc

N,N

]
±(Γc) ⊆ imPc

N,N ⊂ H1/2
α (Γc)×H−1/2

α (Γc). (7.6)

Like in Lemma 5.2 the full space imPc
N,N is the direct sum of the two subspaces [imPc

N,N ]±, and
we denote the projection imPc

N,N → [imPc
N,N ]+ onto the upgoing waves parallel to the downgoing

waves by P+
c,N . We set P−

c,N :=I−P+
c,N , which projects imPc

N,N → [imPc
N,N ]−. So the space of

Dirichlet data imPc
N of upgoing waves is identified with the space imP+

c,N ⊂ imPc
N,N . The space of

Dirichlet data imPc
N of downgoing waves is identified with imP−

c,N ⊂ imPc
N,N . Analogously to (5.5),

we set

P±+
ab,N [u

+
a,N ] =

1

2

[
u+
a,N±[DtN

+
b,N ]

−1
[
PNk

−2
b |imPN

]−1PNk
−2
a |imPN

DtN
+
a,Nu

+
a,N

]
,

(7.7)
P±−

ab,N [u
−
a,N ] =

1

2

[
u−
a,N∓[DtN

+
b,N ]

−1
[
PNk

−2
b |imPN

]−1PNk
−2
a |imPN

DtN
+
a,Nu

−
a,N

]
.

Now, replacing the “Helmholtz” equation ∇· k−2∇u+u=0 by the discretized operator valued ODE
∂x2 [PNk

−2I|imPN
]∂x2uN =−∂x1 [PNk

−2I|imPN
]∂x1uN−uN and using the just mentioned discret-

ized splitting into upgoing and downgoing waves, we can consider the discretized version of the BVP
(2.1) over the full grating and over each slice of Sect. 5. We get a discretized solution operator (scat-
tering matrix) Sab

N mapping imP+
a,N⊗ imP−

b,N into imP+
b,N⊗ imP−

a,N s.t.

Sab
N =

(
Sab
++,N Sab

+−,N

Sab
−+,N Sab

−−,N

)
,

with the entries Sab
++,N :=P+

b Sab
N |imP+

a
, Sab

+−,N :=P+
b Sab

N |imP−
b

, Sab
−+,N :=P−

a Sab
N |imP+

a
as well as

Sab
−−,N :=P−

a Sab
N |imP−

b
. This Sab

N is identified by the operator Sab
N mapping imPa

N⊗ imPb
N into

imPb
N⊗ imPa

N (compare (6.7)).

Sab
N =

(
Sab
++,N Sab

+−,N

Sab
−+,N Sab

−−,N

)
, (7.8)

Sab
++,N := PPT++

ab,N−
[
P+−

b−0,b,N−PPT++
ab,NPT

+−
ba,N

]
[D−

ab,N ]
−1PPT−+

ab,N ,

Sab
+−,N :=

[
P+−

b−0,b,N−PPT++
ab,NPT

+−
ba,N

]
[D−

ab,N ]
−1,

Sab
−+,N := −PT−−

ba,N [D
−
ab,N ]

−1PPT−+
ab,N ,

Sab
−−,N := PT−−

ba,N [D
−
ab,N ]

−1.

Here the operator ingredients are defined as follows: The discretized transitions T+
ab,N and T−

ba,N are
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the solution operators of the initial value problems for the discretized ODE

a) ∂x2

(
uN(x1, x2)
vN(x1, x2)

)
= Mx2,N

(
uN(x1, x2)
vN(x1, x2)

)
,

b)

(
uN(x1, a)
vN(x1, a)

)
=

(
u+
a,N(x1)

v+a,N(x1)

)
, 0 ≤ x1 ≤ 2π,

and

a) ∂x2

(
uN(x1, x2)
vN(x1, x2)

)
= Mx2,N

(
uN(x1, x2)
vN(x1, x2)

)
,

b)

(
uN(x1, b)
vN(x1, b)

)
=

(
u−
b−0,N(x1)

v−b−0,N(x1)

)
, 0 ≤ x1 ≤ 2π,

corresponding to the initial value problems (6.1) and (6.2), respectively. We identify [P±
b−0,NT

+
ab,N ]

with the bounded transition operator PT±+
ab,N: imPa

N → imPb−0
N mapping the truncated Fourier se-

ries u+
a,N to u±

b,N with u±
b,N ↔P±

b−0,N

(
uN(·, b−0),vN(·, b−0)

)
. Similarly, we identify [P±

a,NT
+
ba,N ]

with the bounded transition operator PT±+
ba,N: imPb−0

N → imPa
N mapping the truncated Fourier series

u+
b−0,N to u±

a,N with u±
a,N ↔P±

a,N

(
uN(·, a+0),vN(·, a+0)

)
. Further, the operators P±

b,NT
+
ab,N are

identified by the operators PPT±+
ab,N :=[P±+

b−0,b,NPT
++
ab,N+P±−

b−0,b,NPT
−+
ab,N ]. Finally, the discretiza-

tion of operator D−
ab is defined as D−

ab,N :={P−−
b−0,b,N −PPT−+

ab,NPT
+−
ba,N} : imPb−0

N → imPb
N . In

particular, for x2-independent wavenumbers k(x1, x2)=k(x1, a), 0≤x1<2π, the representation
(7.8) turns into (compare (6.8))

Sab
N =

({
P++

b−0,b,N−P+−
b−0,b,N [D

−
ab,N ]

−1P−+
b−0,b,N

}
PT++

ab,N P+−
b−0,b,N [D

−
ab,N ]

−1

−PT−−
ba,N [D

−
ab,N ]

−1P−+
b−0,b,NPT

++
ab,N PT−−

ba,N [D
−
ab,N ]

−1

)
, (7.9)

D−
ab,N = P−−

b−0,b,N : imPb−0
N → imPb

N .

We shall discuss the computation of the discretization PT++
ab,N and PT−−

ba,N in Subsect. 7.2. If this
is done, then Equation (7.8) enables us to compute Sab

N . Approximating Sj=Shj−1hj by the dis-

cretized Sj
N =S

hj−1hj

N and the incoming waves u−
n and u+

0 by their truncations u−
n,N :=Phn

N u−
n and

u+
0,N :=Ph0

N u+
0 , we can perform the SMA (5.12) on the discrete level.

7.2 Discretization of the ODE over the slices

To get a first method to compute the transition matrices T+
ab,N and T−

ba,N , we can use any integration
algorithm for initial problems of ordinary differential operators (cf. the discussion of this point e.g. in
[13, 15], where the resulting scattering matrix algorithm is called FMM). Unfortunately, the numerical
methods are not stable, and the integration error blows up for large widths hj−hj−1 of the slice.
To overcome this problem (analysis still open), the widths hj−hj−1 are reduced by increasing the
number of slices n, and with thin slices a stable algorithm is achieved. Of course, the computing time
increases with increasing n.

An alternative method is the classical approach of the RCWA (cf. [11]). Firstly, we suppose that the
wavenumber in the slice is independent of x2, i.e. k(x1, x2) = k(x1, a). Then P+

b−0,N = P+
a,N and

the eigenfunction decomposition can be applied to the ODE solution as well. E.g. for PT++
ab,N , we use
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the identification (7.6) of u+
a,N with (u+

a,N , [PNk
−2
a I|imPN

]DtN
+
a,Nu

+
a,N) and arrive at

PT++
ab,N

{ 2N+1∑
n=1

ξnfa,n,N
}
=

2N+1∑
n=1

λa,n,N ̸=0

[
e−λa,n,N (b−a)ξn

]
fa,n,N +

2N+1∑
n=1

λa,n,N =0

[(
1+(b−a)

)
ξn
]
fa,n,N ,

for any ξn∈C. A similar formula holds for PT−−
ba,N . Note that these formulas reveal the importance

of the decomposition of the waves into upgoing and downgoing ones. For improper decompositions,
there would appear coefficients [eλa,n,N (b−a)ξn] blowing up with larger width b−a and n→∞.

Secondly, if the wavenumber k of the slice is dependent on x2, then we split the slice into the union of
very thin subslices and approximate k over each subslice by a wavenumber function independent on
x2. For example consider an echelle grating like in Fig. 6, where two layers cover the lower boundary
Γa and a triangle is set upon the upper layer, surrounded by the turquoise lines and consisting of the
same material as the lower layer. Then the corresponding wavenumber function can be approximated
by the staircase geometry indicated by the additional blue layers. Replacing the slice by the union
of subslices, we have an approximate geometry, for which the case of x2-independent wavenumbers
applies. Of course the price for this solution is an extra numerical error due to the approximation of the
wavenumber and an increased computing time due to the increased number of slices.

0 2π

Γb

Γa
...

x
1

x

......

2

Figure 6: Staircase example for subslices to approximate an x2-depending wavenumber function.

Altogether, the parameters of RCWA discretization are the following:

■ The first parameter is the truncation parameter N in (7.1).

■ To get the Galerkin operators in (7.2), the Fourier coefficients of the reciprocal squared wave-
number function k−2 must be computed. In general, this requires a quadrature of the integrals
for the Fourier coefficients. So the next discretization parameters are those of quadrature.

■ The third parameter is the stepsize of the slicing h :=minj=1,··· ,n [hj−hj−1] (cf. Fig. 5).

■ If the FMM is applied, then the matrices T+
ab,N and T−

ba,N are computed by a numerical integra-
tion of initial value problems for an ODE. So the last discretization parameter is the stepsize of
such an algorithm.
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8 Analysis of convergence

8.1 Results of Civiletti, Lakhtakia, and Monk [4]

Before we start, we have to comment on the analysis in [4]. In this paper it is used that the RCWA is
equivalent to a discretized variational equation for the standard variational equation with the wavenum-
ber function replaced by an approximation, which is piecewise constant w.r.t.x2, and with a trial space

span
{
x1 7→ei(l+α)x1 : l=−N, · · · , N

}
⊗H1(a, b),

i.e., the space of truncated Fourier series with x2-dependent coefficients. At the first glance, the paper
seems to be disappointing since this equivalence assumes (tacit assumption in the proof of [4, Thm. 7])

■ For the S-matrix computation, the integration of the ODE is exact:
This is acceptable if the RCWA with (6.7) is used. This might be not acceptable for the FMM.

■ On the common boundary between consecutive slices, the boundary data for the upgoing plus
downgoing are identified, i.e. all the operations in the iteration steps are exact:
Hence, the error propagation in the iteration is neglected in this first step of analysis. Such a
propagation analysis would be of interest for the stepsize of the slicing tending to zero, which is
not treated in the current paper either.

■ All matrices, for which the inverse is required in the algorithm, are supposed to be invertible:
In particular, this requires the invertibility of the D−

ab for the computation of the scattering matri-
ces via (6.7) and that of D for the iteration step in (5.11).

However, these assumptions mean that some errors are neglected, but others are treated by a hard
and deep analysis. So an estimate for the approximation error independent of the algorithmic imple-
mentation is provided and, therewith, a lower estimate for the convergence with maxj |hj−hj−1| → 0
and with N→∞. Moreover, the general RCWA is based on an EVD. For this, the asymptotic analysis
of the convergence of eigenvalues and eigenfunctions is extremely difficult. Observing empirical com-
putation errors of the EVD less than a small threshold, it is natural to neglect the algorithmic errors
due to EVD. Finally, note that in [4, Equ. (56)] there appears a monotonicity condition on the elec-
tric permittivity, called non-trapping conditions. Though this is only a sufficient condition, it is a clever
assumption to exclude trapped eigenmodes, i.e. to guarantee condition ii) of Thm. 4.2 for all possible
slices. Without this, the validity of ii) remains open unless an absorbing material is involved.

8.2 Convergence of the SMA on the continuous level

A first step of the RCWA is to approximate the wavenumber function by an approximate one, for which
there is a slicing s.t. the wavenumber function is x2-independent over each slice. To find such a slicing,
the arguments used in [4] maybe helpful.

In the current paper, the grating is supposed to be the union of a fixed finite number of slices with
wavenumber function independent of x2 inside each slice. For the RCWA no finer slicing is needed,
and it remains to analyze the convergence for N→∞. We start with N=∞, i.e., we consider the
SMA iteration on a continuous level with no truncation of the Fourier series. From the derivation of
(6.8) and of the iteration (cf. Sect. 5), from Thm. 4.2, and from the Lemmata 5.3 and 6.1, we conclude

Theorem 8.1. Suppose the slicing is fixed s.t., for j=1, · · · , n,

■ The wavenumber function k(x1, x2) in the slice hj−1≤x2<hj is independent of x2 and satis-
fies ℜe k>0 as well as ℑmk≥0.
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■ For the wavenumber function k and with k=k(·, hj−1) and k=k(·, hj), we assume that k is
piecewise twice continuously differentiable and that the EVD of the operators k2L with L de-
fined in (3.2) satisfy the assumptions (3.7)–(3.9).

■ The S-matrices Shj−1hj and Sh0hj are bounded operators.

Choose any pair of incoming wave functions (u+
a , u

−
b )∈H

1/2
α (Γa)×H

1/2
α (Γb). Consider the iterative

SMA method (5.12), where the S-matrices are defined by (6.9). Then the resulting pair of outgoing
waves (u+

b , u
−
a )∈H

1/2
α (Γb)×H

1/2
α (Γa) are the true solutions of the scattering problem (2.1).

Remark 8.2. For the conditions (3.7)–(3.9), see the two cases discussed in Sect. 3, and, for the exis-
tence of bounded S-matrices Shj−1hj and Sh0hj , see Thm. 4.2. The analogous result for the case of
TE polarization holds true (cf. [7, Thm. 6.3]).

To prepare the proof on the convergence of the discretized RCWA (cf. Thm. 8.11), we recall a well-
known result on the approximation of general eigenvalues (cf. e.g. [17, Sect. 4.2]) in Subsect. 8.3. We
discuss two assumptions on the EVD of Sect. 3 in Subsect. 8.4. Moreover, we derive two lemmata
on the stable convergence of the Dirichlet-to-Neumann maps in Subsect. 8.5. Finally, we present the
convergence result in Subsect. 8.6.

8.3 Notation and results on abstract discrete convergence

First we recall some definitions and facts on discrete approximation from [17, Chapts. 1-2,4]. Consider
an operator A∈L(E,F ) between the Hilbert spaces E and F . Suppose, for integers N>0, there
are finite dimensional approximate spaces EN and FN connected to the spaces E and F by linear
injection operators operators pN : E→EN and qN : F→FN s.t. ∥pNe∥EN

→∥e∥E, ∀e∈E and
∥qNf∥EN

→∥f∥E, ∀f ∈F . For instance, ifPN is a projection inE strongly converging to the identity,
then we can choose EN :=imPN , ∥PNe∥EN

:=∥PNe∥E , and pNe :=PNe. For the general setting
of approximate spaces EN , we say that the sequence {eN} with eN ∈EN converges discretely to
e∈E if ∥eN−pNe∥EN

→0. We write eN →e.

Any sequence {eN , N ∈N} with eN ∈EN is called compact if, for any infinite subset N′⊂N, there
exists an infinite subset N′′⊂N′ and an e∈E such that the sequence {eN , N ∈N′′} converges to e.
Equivalently, the sequence {eN , N ∈N} is compact if, for any ε>0 and any infinite N′⊂N, there is
an infinite subset N′′⊂N′ and an e∈E such that ∥eN − pNe∥≤ε for N ∈N′′.

For approximate spaces EN and FN and an operator A∈L(E,F ), we consider approximate opera-
tors AN ∈L(EN , FN). We say that the sequence {AN , N ∈N} converges discretely to A if, for any
eN →e, we have ANeN →Ae. In this case, we write AN →A. Note that {AN , N ∈N} converges
discretely to A if and only if supN∈N ∥AN∥<∞ and if, for any e′ in a dense subset E ′ of E, there
holds ANpNe

′→Ae′. Furthermore, we recall that the discrete converge AN →A is called stable
if, additionally to the discrete convergence, there is an N0∈N s.t. supN≥N0

∥A−1
N ∥L(FN ,EN )<∞.

If A is invertible, then AN →A is stable if and only if A−1
N →A−1. The convergence AN →A is

called compact if, for any bounded sequence {eN , N ∈N}, eN ∈EN , the closure of the sequence
{ANeN , N ∈N}, N ∈N is compact.

With all these definition we have ( [17, Chapt. 4])

Theorem 8.3. Suppose we have two operators A,B∈L(E,F ) with corresponding approximate op-
erators AN , BN ∈L(EN , FN) such that A+B is invertible, that the convergence AN →A is stable,
and that BN →B is compact. Then the convergence AN+BN →A+B is stable.
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Theorem 8.4. Suppose we have three operators A,B,C∈L(E,F ) with approximate operators
AN , BN , CN ∈L(EN , FN) and with

i) There is a domain Λ⊂C s.t., for each λ∈Λ, the operator [A+B−λC] is a Fredholm operator
of index zero.

ii) There is a complex number λ#∈Λ s.t. the operator [A+B−λ#C]∈L(E,F ) is invertible.
iii) The convergence AN → A is stable. The convergences BN →B and CN →C are compact.

Then there holds:
a) For a sequence λN of eigenvalues s.t. [AN+BN−λNCN ]eN = 0 with λN →λ, the limit λ is

an eigenvalue s.t. [A+B−λC]e = 0 with an eigenfunction e∈E.
b) For any eigenvalue λ and eigenfunction e s.t. [A+B−λC]e = 0, there exist eigenvalues

λNk
and eigenfunctions eNk

s.t. [ANk
+BNk

−λNk
CNk

]eNk
=0 with λNk

→λ and eNk
→e

for k→∞.

8.4 Assumptions on the EVD

Next we fix the slicing and look at the RCWA discretization with finite truncation index N tending
to infinity. The first question is, how to deal with the EVD. From to general theory of approximate
eigenvalue computation of operators by computing the eigenvalues of approximate operators (cf. Thm.
8.4), it seems natural to require the following property of the EVD algorithm applied to the SMA:

ASSUMPTION ON THE APPROXIMATION OF THE EVD:

For the operator A :=k2L : H1
α[0, 2π]→k2H−1

α [0, 2π] and the approximate operators

AN :=[PNk
−2I|imPN

]−1PNL|imPN
∈L
(
imPN , imPN

)
consider the EVDs with

Afn=λnfn, n∈N and ANfn,N =λn,Nfn,N , n=1, · · · , 2N+1. (8.1)

Suppose that, for any ε>0 and n1∈N, there is a threshold N0=N0(ε, n1), s.t.

|λn−λN,n|≤ε and ∥fn−fn,N∥H1
α
≤ε, 1≤n≤min{n1, 2N+1} for any N with N0≤N.

Lemma 8.5. Assume the wavenumber function x1 7→k(x1) :=k(x1, x2) is piecewise twice continu-
ously differentiable with ℜe k>0 and ℑmk≥0. Suppose the EVD for the continuous level satisfies
the conditions (3.7)–(3.9). Then Assumption (8.1) is fulfilled.

Proof. The operators A : H1
α→k2H−1

α are approximated by the AN : H1
α,N →K2

NH
−1
α,N , where the

finite dimensional Hs
α,N is the trigonometric function space [imPN ] endowed with the norm of

Hs
α[0, 2π] and where KN :=[PNk

−2I|imPN
]−1/2. Note that the value [PNk

−2I|imPN
]−1/2 of the

reciprocal square root function at the operator [PNk
−2I|imPN

] can be defined by the Cauchy inte-
gral over a curve Γ surrounding the compact L2 spectrum of operator [PNk

−2I|imPN
] contained

in {⟨PNk
−2I|imPN

uN , uN⟩ : ∥uN∥L2 =1}, i.e. the integration curve Γ can be chosen in the set
{ζ∈C : ℑmζ<0 or ℜe ζ >0}. We define the discrete convergence of functions uN ∈H±1

α,N to a
function u∈H±1

α writing uN →u if and only if ∥uN−PNu∥H±1
α

→0. Similarly, we define the discrete
convergence K2

NH
−1
α,N ∋ [K2

NuN ]→ [k2u]∈k2H−1
α by the formula qN :=K2

NPNk
−2 and by∥∥[K2

NuN ]− qN [k
2u]
∥∥
K2

NH−1
α,N

= ∥uN − PNu∥H−1
α,N

→ 0.

Then AN converges discretely to A in the sense that, for any uN →u, there holds ANuN →Au.
Indeed: The discrete convergence K2

N =[PNk
−2I|imPN

]−1→k2I follows by the definition of the
discrete convergence in K2

NH
−1
α,N , and the discrete convergence LN |imPN

→L is a simple conse-
quence of the strong convergence LN |imPN

PN →L. Altogether, the operator product AN =K2
NLN

converges discretely to the product A=k2L.
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Now our Lemma follows from Thm. 8.4 if we can prove that the convergence AN →A is stable, i.e. if
the norms ∥A−1

N ∥L(K2
NH−1

α ,H1
α)

are uniformly bounded for sufficiently large N . Since a shift of AN and
A by a constant multiple of the identity does not change the nature of the EVD, we only have to show
the uniform boundedness of the inverses of the operators Lc,N :=KN{PN [∂x1k

−2∂x1−cI]|imPN
}

for a fixed positive constant c. However, similarly to the variational-form estimates in (3.6), we get the
uniform boundedness of the inverse of KNLc,NKN : K−1

N H1
α→KNH

−1
α from the assumptions on

function k. By definition, the operators KN : KNH
−1
α →K2

NH
−1
α and K−1

N : H1
α→KNH

1
α and their

inverses are uniformly bounded. Consequently, the inverse operators of K2
NLc,N : H1

α→K2
NH

−1
α are

uniformly bounded w.r.t.N .

Similarly to Assumptions (3.7) and (3.9), we need the corresponding condition on the discrete level.

ASSUMPTION ON THE RIESZ PROPERTY OF THE DISCRETIZED EVD:

For operator AN := [PNk
−2I|imPN

]−1PNL|imPN
∈L
(
imPN

)
and the EVD

ANfn,N =λn,Nfn,N , n=1, · · · , 2N+1, we suppose that all eigenvectors are of rank one

and that, for a constant C>0 independent of N , there hold the uniform Riesz estimates (8.2)

1

C

∥∥∥ 2N+1∑
n=1

cn,Nfn,N

∥∥∥2
Hs

α,N

≤
2N+1∑
n=1

(1 + |λn,N |2)s|cn,N |2 ≤ C
∥∥∥ 2N+1∑

n=1

cn,Nfn,N

∥∥∥2
Hs

α,N

,

1

C

∥∥∥ 2N+1∑
n=1

cn,NK
−2
N fn,N

∥∥∥2
Ht

α,N

≤
2N+1∑
n=1

(1 + |λn,N |2)t|cn,N |2 ≤ C
∥∥∥ 2N+1∑

n=1

cn,NK
−2
N fn,N

∥∥∥2
Ht

α,N

for all coefficients cn,N ∈C and for the Sobolev indices 0≤s≤1 and −1≤ t≤0.

Lemma 8.6. Suppose the wavenumber function x1 7→k(x1) :=k(x1, x2) is piecewise twice continu-
ously differentiable and that, for a fixed positive ε, there holds k≥ε. Then Assumption (8.2) is fulfilled.

Proof. The arguments of Lemma 3.3 apply with the operator of multiplication by k replaced by the
discretized operator KN :=[PNk

−2|imPN
]−1/2. This leads to orthogonal basis functions KNfn,N

and to the uniform Riesz estimates.

Remark 8.7. For the case of the TE polarization (cf. (7.4)), Lemma 8.6 holds as well.

8.5 Assumptions on the convergence of the discretized DtN operators

Now fix an x2-coordinate c and denote by kc the restriction kc(x1) :=k(x1, c) of the wavenumber
function k(x1, x2). Recall the definition (7.3) for the eigenvalues λc,n,N and eigenfunctions fc,n,N . To
simplify the formulas, we assume |λc,n,N |>εEVD s.t. we get the Dirichlet-to-Neumann maps and their
inverses by (cf. (7.5))

[DtN
+
c ]

±1

(∑
n∈N

ξnfc,n

)
:=

∑
n∈N

[λc,n]
±1ξnfc,n,

[DtN
+
c,N ]

±1

( 2N+1∑
n=1

ξnfc,n,N

)
:=

2N+1∑
n=1

[λc,n,N ]
±1ξnfc,n,N , ξn∈C.

Note that DtN
−
c = −DtN

+
c and DtN

−
c,N = −DtN

+
c,N . So, for the convergence analysis, we only

have to consider the Dirichlet-to-Neumann operators with plus sign. Due to the Riesz property (3.9)
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and Assumption (8.2), we get the uniformly bounded operators k−2DtN
+∈L(H1/2

α , H
−1/2
α ) and

K−2
N DtN

+
c,N ∈L(H1/2

α,N , H
−1/2
α,N ).

Lemma 8.8. Suppose the wave number kc is twice continuously differentiable and, for the EVD with
k=kc, Assumptions (8.1) and (8.2) are satisfied. Then the operators DtN

+
c,N ∈L(H1/2

α,N, K
2
c,NH

−1/2
α,N )

and their inverse operators [DtN
+
c,N ]

−1∈L(K2
c,NH

−1/2
α,N ,H

1/2
α,N) discretely converge to the opera-

tors DtN
+
c ∈L(H1/2

α , k2
cH

−1/2
α ) and [DtN

+
c ]

−1∈L(k2
cH

−1/2
α ,H

1/2
α ), respectively. These discrete

convergences are stable. Finally, the approximate operators K−2
c,NDtN

+
c,NPN converge strongly to

k−2
c DtN

+
c ∈L(H1/2

α ,H
−1/2
α ) and the [DtN

+
c,N ]

−1K2
c,NPN to [DtN

+
c ]

−1k2
cI∈L(H−1/2

α ,H
1/2
α ).

Proof. Since the operators [DtN
+
c,N ]

±1 are uniformly bounded by the Riesz properties and since the

K±2
c,N are uniformly bounded by the definition of the norm in the discrete spaces, it remains to prove

the discrete convergence of the DtN
+
c,N and the strong convergence of the K−2

c,NDtN
+
c,NPN over a

dense subset.

For the DtN
+
c,N , we shall prove the convergence on the set of basis functions {fc,m : m∈N}. Fix an

m and the corresponding fc,m. Due to the Riesz property for 0≤s≤1 and −1≤ t≤0, we get

PNfc,m =
2N+1∑
n=1

ξn,Nfc,n,N , K−2
c,NPNfc,m =

2N+1∑
n=1

ξn,NK
−2
c,Nfc,n,N ,

1 ∼ ∥fc,m∥2Hs
α
∼

2N+1∑
n=1

(1 + |λc,n,N |2)s|ξn,N |2,

1 ∼ ∥fc,m∥2k−2
c Ht

α
∼

2N+1∑
n=1

(1 + |λc,n,N |2)t|ξn,N |2,

DtN
+
c,N

(
2N+1∑
n=1

ξn,Nfc,n,N

)
=

2N+1∑
n=1

λc,n,Nξn,Nfc,n,N . (8.3)

Consequently, for a fixed n0>m independent of N , we get∥∥DtN
+
c,NPNfc,m − λc,mPNfc,m

∥∥2
K2

c,NH
−1/2
α,N

∼
∥∥∥ n0∑

n=1

(λc,n,N − λc,m)ξn,NK
−2
c,Nfc,n,N

∥∥∥2
H

−1/2
α,N

+O
( 2N+1∑

n=n0+1

(1+|λc,n,N |2)1/2 |ξn,N |2
)
. (8.4)

Thus, for the discrete convergence at the fc,m, we have to show that the right-hand side tends to zero.
The convergence of the projection PN together with Assumption (8.1) leads to

∥PNfc,m − fc,m,N∥2H1
α,N

∼
2N+1∑
n=1

(1+|λc,n,N |2) |ξn,N − δn,m|2 → 0. (8.5)

So the first term on the right-hand side of (8.4), the squared Sobolev norm tends to zero since we
have λc,n,N →λc,n and (8.5). The second term on the right-hand side of (8.4) can be estimated as

2N+1∑
n=n0+1

(1+|λc,n,N |2)1/2 |ξn,N |2 ≤
2N+1∑

n=n0+1

(1+|λc,n,N |2) |ξn,N |2 sup
n0<n≤2N+1

(1+|λc,n,N |2)−1/2

≤ sup
n0<n≤2N+1

(1+|λc,n,N |2)−1/2∥fc,m∥2H1
α
, (8.6)
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which is small if n0 is fixed such that the supremum is small. We have to show that the supremum
is less than any prescribed ε>0 provided n0 is large enough. Indeed, suppose the contrary. As-
suming the ordering of the eigenvalues |λc,n,N |≤|λc,n+1,N | and |λc,n|≤|λc,n+1| for n=1, · · · , we
suppose there is a C>0 s.t. |λc,nN ,N |≤C for an nN ≤2N+1 with nN →∞. Due to the con-
vergence λc,n→∞, there is an ñ such that λc,ñ>C+1. However, from Thm. 8.4 we get a se-
quence Nk such that λc,n,Nk

→λc,n, k→∞ for all n≤ ñ. For nNk
≥ ñ, this leads to the contradiction

|λc,ñ,Nk
|≤|λc,nNk

,Nk
| ≤ C < C+1 ≤ λc,ñ.

To see the strong convergence K−2
c,NDtN

+
c,NPN →k−2

c DtN
+
c , we shall prove the convergence on

the same dense set of functions. We get∥∥K−2
c,NDtN

+
c,NPNfc,m − k−2

c DtN
+
c fc,m

∥∥
H

−1/2
α

=
∥∥K−2

c,NDtN
+
c,NPNfc,m − λc,mk

−2
c fc,m

∥∥
H

−1/2
α

≤
∥∥DtN

+
c,NPNfc,m − λc,mPNfc,m

∥∥
K2

c,NH
−1/2
α

+ λc,m

∥∥K−2
c,NPNfc,m − k−2

c fc,m
∥∥
H

−1/2
α

,

where the zero convergence of the first term has been shown above. For the second term, we conclude∥∥K−2
c,NPNfc,m − k−2

c fc,m
∥∥
H

−1/2
α

≤ C
∥∥PNk

−2
c PNfc,m − k−2

c fc,m
∥∥
L2 .

So the strong convergence PN →I∈L(L2) and the boundedness of the multiplication operator
k−2
c I∈L(L2) implies the convergence ∥K−2

c,NDtN
+
c,NPNfc,m−k−2

c DtN
+
c fc,m∥H−1/2

α
→0.

Unfortunately, we need more. We need to have a stable convergence of the sum of the two operators
K−2

c±0,NDtN
+
c±0,N defined with the different restrictions kc±0(x1) :=k(x1, c±0) of the wavenumber

function:

ASSUMPTION ON THE STRONG CONVERGENCE OF THE SUM OF DTN’S:

For the restricted wavenumber functions kc±0(x1) :=k(x1, c±0), consider the approxi-

mate operators ΣN :=
{
[PNk

−2
c+0I|imPN

]DtNc+0,N+[PNk
−2
c−0I|imPN

]DtNc−0,N

}
with

ΣNPN converging to Σ:=
{
k−2
c+0DtNc+0+k−2

c−0DtNc−0

}
∈L(H1/2

α ,H−1/2
α ). (8.7)

Then we suppose that Σ is invertible and that the convergence ΣNPN →Σ is stable, i.e.

we suppose there is an Nd>0 s.t. ΣN is invertible for N>Nd and the operator norms

∥[ΣN ]
−1PN∥L(H−1/2

α ,H
1/2
α )

, N >Nd are uniformly bounded.

We guess that this is true. On the continuous level, the operators k−2
c±0DtNc±0 are strongly elliptic

in the same manner s.t. also the sum Σ is strongly elliptic, and together with a trivial null space for
Σ the invertibility of Σ follows. In this spirit, if we could split the operators on the discretization level
into strongly elliptic operators plus a compactly converging remainder, then we would obtain stable
convergence for the sum. Unfortunately, we could not show this. We can only prove

Lemma 8.9. Suppose that operatorΣ is invertible, that the real-valued wavenumber functions kc±0 are
piecewise twice continuously differentiable, and that there is a positive constant ck>0 s.t. kc±0≥ck.
Then Assumption (8.7) is fulfilled.

Proof. The eigenvalue equation (7.3) implies that the functions [PNk
−2
c I|imPN

]1/2fc,n,N are the or-
thogonal eigenvalues of the selfadjoint operator

[PNk
−2
c I|imPN

]−1/2∂[PNk
−2
c I|imPN

]∂[PNk
−2
c I|imPN

]−1/2 + [PNk
−2
c I|imPN

]−1.
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Consequently, the functions fc,n,N form an orthogonal basis in imPN w.r.t. the weighted L2 scalar
product ⟨k−2

c ·, ·⟩ = ⟨[PNk
−2
c I|imPN

]·, ·⟩. So we arrive at (cf. (8.3))〈
[PNk

−2
c I|imPN

]DtN
+
c,N

2N+1∑
n=1

ξnfc,n,N ,

2N+1∑
n=1

ξnfc,n,N

〉
=

2N+1∑
n=1

λc,n,N |ξn|2.

For a fixed ε>0, there are n1, N1∈N s.t. λc,n,N ≥ε for n≤n1 and all N≥N1. Thus the operator
[PNk

−2
c I|imPN

]DtN
+
c,N splits into an operator of rank less or equal to n1 and an operator with positive

definite real part greater or equal to constant times εI . The first operators corresponding to the n≤n1

converge compactly to an operator of rank less or equal to n1, and the second operators converge
to an operator with positive definite real part greater or equal to constant times εI . Since all these
second operators have an inverse of norm less than constant times ε−1, the second convergence is
stable. Summing up over c=c+0, c−0 and applying Thm. 8.3, we get the assertion.

Remark 8.10. If the operator D−
c−0,c+0 :=P−

c+0 : H
1/2
α (Γc−0)→H

1/2
α (Γc+0) is invertible (cf. Lemma

6.1), then the operator [k−2
c+0DtN

+
c+0+k−2

c−0DtN
+
c−0] is invertible. Indeed, by (5.5) we have

D−
c−0,c+0 =

1

2

[
I+[DtN

+
c+0]

−1k
2
c+0

k2
c−0

DtN
+
c−0

]
=

1

2
[DtN

+
c+0]

−1k2
c+0

[
k−2
c+0DtN

+
c+0+k−2

c−0DtN
+
c−0

]
,

where [DtN
+
c+0]

−1k2
c+0 is the inverse of the invertible k−2

c+0DtN
+
c+0 (cf. the Riesz properties (3.9) of

our general assumption and (5.1)).

8.6 Convergence of the RCWA for N→∞

Now we consider the RCWA for wavenumbers k constant w.r.t.x2 over the slices. Recall that this is
the SMA of (5.12) applied with the operators Shj−1hj replaced by S

hj−1hj

N , which are computed by
(7.8). For the ingredients of (7.8), we solve the EVD (7.3) for TM polarization resp. (7.4) for TE polar-
ization to get the eigenvalues λhj ,n,N and the corresponding eigenfunctions fhj ,n,N ∈ imPN . We get
PT+−

hj−1hj ,N
=0=PT−+

hj−1hj ,N
and the operators PT++

hj−1hj ,N
and PT−−

hjhj−1,N
by their common ma-

trix (ei(hj−hj−1)λhj−1,n,N δn,m)
2N+1
n,m=1 w.r.t. the basis fhj−1,n,N , n=1, · · · , 2N+1 (compare the argu-

ments following (6.3)). We get the Dirichlet-to-Neumann maps by (7.5), the two projections P±+
hj−1hj ,N

and P±−
hj−1hj ,N

by (7.7) (cf. the subsequent (8.8)), and the D−
hj−1hj ,N

by the subsequent (8.9). Finally

(cf. item ii) of (5.12)), the reflected and transmitted waves are obtained by applying Sh0hn
N to the ap-

proximate boundary data of the incident waves u+
h0,N

:=Ph0
N u+

h0
and u−

hn,N
:=Phn

N u−
hn

, respectively.

Theorem 8.11. For the SMA (5.12) discretized as the RCWA defined in Sect. 7, suppose

i) The slicing is fixed s.t., for j=1, · · · , n, the wavenumber functions k(x1, x2) are independent
of x2 in hj−1≤x2<hj with ℜe k>0 and ℑmk≥0.

ii) For k=kc±0 with the x2-coordinates c=hj, j=0, · · · , n, we assume that the k are piecewise
twice continuously differentiable. Furthermore, the assume that the Assumptions (3.7)–(3.9),
(8.1), (8.2), and (8.7) are satisfied with these k (cf. Lemmas 8.5-8.6 and 8.8-8.9).

iii) For j=1, · · · , n, all the S-matrices Shj−1hj and Sh0hj are bounded operators (cf. Thm. 4.2).

Choose any pair (u+
h0
, u−

hn
) of incoming waves with u+

h0
∈H

1/2
α (Γh0) and u−

hn
∈H

1/2
α (Γhn). Then

there is a threshold N0 s.t., for any N>N0, the iterative SMA method (5.12) can be applied on the
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discrete level without any problem of inverting a noninvertible matrix. The resulting discrete solutions
u+
hn,N

and u−
h0,N

tend to the true solutions of the scattering problem, i.e., ∥u+
hn,N

−u+
hn
∥
H

1/2
α (Γhn )

→0

and ∥u−
h0,N

−u−
h0
∥
H

1/2
α (Γh0 )

→0.

Proof. The plan of proof is as follows. The strong and stable convergences of K−2
c,N [DtN

±
c,N ]PN

to k−2
c [DtN

±
c ] and of [DtN

±
c,N ]

−1K2
c,NPN to [DtN

±
c ]

−1k2
c will imply the two strong convergences

P±+
ab,NPN →P±+

ab and P±−
ab,NPN →P±−

ab . Further, we shall show the strong and compact conver-

gence PT+
ab,NPN →PT+

ab and the strong and stable convergence D−
ab,NPN →D−

ab. Consequently,

we shall obtain the strong convergence Sab
NPN,N →Sab (cf. (6.8) and (7.9)). For the two-step computa-

tion (5.11), define the determinant operator DN :=I−Sbc
−+,NS

ab
+−,N . We shall get the strong and sta-

ble convergence D−1
N PN →D−1. Hence, we shall obtain the strong convergence Sac

NPN,N →Sac for
the matrices computed by the two-step algorithm. Applying these arguments in the finitely many steps
of Algorithm (5.12), we get the strong convergence of the corresponding operators Sn

NPN,N →Sn,
and the RCWA is shown to be convergent.

So look at the projections P±+
b−0,b,N and P±−

b−0,b,N for the case k(·, b) ̸≡k(·, a)≡k(·, b−0). The func-
tion splitting uN =u+

b,N+u−
b,N =u+

a,N+u−
a,N means (cf. (5.2))(

u+
b,N ,

[
PNk

−2
b I
∣∣
imPN

]
DtN

+
b,Nu

+
b,N

)
+
(
u−
b,N ,

[
PNk

−2
b I
∣∣
imPN

]
DtN

−
b,Nu

−
b,N

)
=

(
u+
a,N ,

[
PNk

−2
a I
∣∣
imPN

]
DtN

+
a,Nu

+
a,N

)
+
(
u−
a,N ,

[
PNk

−2
a I
∣∣
imPN

]
DtN

−
a,Nu

−
b,N

)
.

Using DtN
−
c,N =−DtN

+
c,N , we easily conclude (compare the continuous version (5.5))

u±
b,N =

1

2

[
u+
a,N+u−

a,N

]
(8.8)

±1

2
[DtN

+
b,N ]

−1
[
PNk

−2
b I
∣∣
imPN

]−1[PNk
−2
a I
∣∣
imPN

]
DtN

+
a,N

[
u+
a,N−u−

a,N

]
,

where, assuming |λc,n,N |>εEVD, c=a, b for simplicity of presentation, we have (8.3). In other words,
for the convergence of the projections P±+

ab,N to P±+
ab, , we only need the two strong convergences

K−2
c,N [DtN

±
c,N ]PN →k−2

c [DtN
±
c ] and [DtN

±
c,N ]

−1K2
c,NPN → [DtN

±
c ]

−1k2
c . These, however, follow

from Lemma 8.8.

The uniform Riesz property of the bases fc,n,N , n=1, · · · , 2N+1 with c=a, b implies the uni-

form boundedness of the discretized operator PT++
ab,N ∈L(imPa

N , imPb−0
N )=L(H1/2

α,N ,H
1/2
α,N) and

of PT++
ab,NPa

N ∈L(H1/2
α ,H

1/2
α ). For a strong convergence, we need the convergence on a dense

subset in H
1/2
α . We show the convergence on the eigenfunctions. We split the operators by splitting

the matrices with respect to the bases of eigenfunctions fc,n,N and fc,n. Fixing an appropriate n0 and
setting

PT++
ab,N,n0

:=
(
dnδn,me

−λa,n,N [b−a]
)2N+1

m,n=1
, dn :=

{
1 if n ≤ n0

0 else
,

PT++
ab,n0

:=
(
dnδn,me

−λa,n[b−a]
)
m,n∈N ,

we get PT++
ab,N =PT++

ab,N,n0
+[PT++

ab,N−PT++
ab,N,n0

] and PT++
ab =PT++

ab,n0
+[PT++

ab −PT++
ab,n0

]. So,
for ε>0, there is an n0 s.t.∥[PT++

ab,N−PT++
ab,N,n0

]PNfa,m−[PT++
ab −PT++

ab,n0
]fa,m∥H1/2

α
≤ε holds

for sufficiently large n0 (cf. the arguments in (8.6)). By the same arguments, we even get the norm
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estimate ∥[PT++
ab,N−PT++

ab,N,n0
]PN−[PT++

ab −PT++
ab,n0

]∥L(H1/2
α )

≤ε. If the expansion of fa,m w.r.t.

the basis fa,n,N , n=1, · · · , 2N+1 is fa,m=
∑2N+1

n=1 ξn,Nfa,n,N , then

PT++
ab,N,n0

PNfa,m−PT++
ab,n0

fa,m =

n0∑
n=1

[
e−λa,n,N [b−a]ξn,N−e−λa,m[b−a]ξn,N

]
fa,n,N ,∥∥PT++

ab,N,n0
PNfa,m−PT++

ab,n0
fa,m

∥∥2
H

1/2
α

∼
n0∑
n=1

(1+|λa,n,N |2)1/2
∣∣e−λa,n,N [b−a]−e−λa,m[b−a]

∣∣2 |ξn,N |2.
Similarly, from the convergence of the Dirichlet-to-Neumann mappings, we conclude

n0∑
n=1

(1+|λa,n,N |2)−1/2 |λa,n,N−λa,m|2 |ξn,N |2

∼
∥∥K−2

a,NDtN
+
a,N,n0

PNfa,m−k−2
a DtN

+
a,n0

fa,m
∥∥2
H

−1/2
α

→0.

For fixed n0, the last two formulas imply PT++
ab,N,n0

PNfa,m−PT++
ab,n0

fa,m→0, and the strong con-
vergence PT++

ab,NPN →PT++
ab is proved.

Moreover, using the above splitting, we even get that the convergence PT++
ab,NPN →PT++

ab is com-

pact. Indeed, we take a sequence xN ∈H
1/2
α , N ∈N uniformly bounded, take any subsequence

xN , N ∈N′⊂N, and take any ε>0. Then, for a suitable fixed n0, we obtain the two estimates
∥PT++

ab,N−PT++
ab,N,n0

∥ ≤ ε and ∥PT++
ab −PT++

ab,n0
∥ ≤ ε. Expanding the truncated Fourier series

into the eigenfunction basis as PNxN =
∑2N+1

n=1 ξN,nfc,n,N , we can choose an infinite subset N′′⊂N′

s.t. the ξN,n is close to a limit ξn ∈ C, i.e., |ξN,n−ξn|<ε for N ∈N′′. Using fc,n,N →fc,n and
λc,n,N →λc,n and setting x :=

∑n0

n=1 ξnfc,n, we arrive at ∥PT++
ab,N,n0

PNxN−PT++
ab,n0

x∥
H

1/2
α

≤Cε

for sufficiently large N . In other words, for numbers N ∈N′′ sufficiently large, we get the estimate
∥PT++

ab,NPNxN−PT++
ab x∥

H
1/2
α

≤Cε, showing that the convergence PT++
ab,NPa

NxN →PT++
ab is

compact indeed. Similarly, it can be shown that the strong convergence PT−−
ba,NPa

NxN → PT−−
ba

is compact.

Next we have to show that the strong convergence D−
ab,NPN →D−

ab is stable, i.e., we have to prove
[D−

ab,N ]
−1PN → [D−

ab]
−1. Choosing the sign ± as − in (8.8) and setting u+

a,N =0, we get

D−
ab,N =

1

2

{
IN + [DtN

+
b,N ]

−1
[
PNk

−2
b I
∣∣
imPN

]−1[PNk
−2
a I
∣∣
imPN

]
DtN

+
a,N

}
(8.9)

=
1

2
[DtN

+
b,N ]

−1
[
PNk

−2
b I
∣∣
imPN

]−1
{[

PNk
−2
b I
∣∣
imPN

]
DtN

+
b,N+

[
PNk

−2
a I
∣∣
imPN

]
DtN

+
a,N

}
.

The strong and stable convergence of the first factor 1
2
[DtN

+
b,N ]

−1[PNk
−2
b I
∣∣
imPN

]−1 on the last
right-hand side follows from Lemma 8.8. The same for the second factor in brackets follows from
Assumption (8.7) mentioned in Condition ii) of the current Theorem. So D−

ab,NPN converges strongly
to D−

ab and this convergence is stable. Unfortunately, with Assumption ii) we rely on the poor result of
Lemma 8.9. Nevertheless, putting the strong and stable convergences together (cf. (6.8) and (7.9)),
we get the strong convergence Sab

NPN,N →Sab.

For the two-step computation in (5.11), we defineDN :=IN−Sbc
−+,NS

ab
+−,N . Clearly, we get the strong

convergence DNPN →D. However, we need a stable convergence since the operator DN is inverted
in the recursion step. We need D−1

N PN →D−1. Fortunately, the block Sbc
−+ is compact since PT++

ab

DOI 10.20347/WIAS.PREPRINT.3081 Berlin, December 22, 2023/rev. June 25, 2025



A. Rathsfeld 34

and PT−−
ba are compact (cf. (6.8)), which follows by the Riesz property, by the representation as a di-

agonal matrix (e−λa,n[b−a]δm,n)m,n∈N (recall the end of Sect. 6), and by the decay of the diagonal en-
tries. Based on this fact, above we have shown the compact convergence PT−−

cb,NPb
NxN → PT−−

cb .
Since Sbc

−+ is equal to PT−−
cb multiplied by a bounded operator, we get the compact convergence

Sbc
−+,NS

ab
+−,NPN →Sbc

−+S
ab
+−. Consequently, the first assertion of Thm. 8.3 implies that the conver-

gence DNPN →D is stable. We finally obtain that the Sac
NPN,N converge strongly to Sac for N→∞.

Altogether, we have shown the strong convergence Sac
NPN,N →Sac for the matrices computed by the

two-step algorithm if we know the strong convergences Sab
NPN,N →Sab and Sbc

NPN,N →Sbc and if
the convergence PT−−

cb,NPb
NxN → PT−−

cb is compact. Applying these arguments to the finitely many
steps of Algorithm (5.12), we get the strong convergence Sn

NPN,N →Sn. In other words, the RCWA
is shown to be convergent.

Remark 8.12. Assumption iii) of the theorem is natural. If the problem over a complex domain is re-
duced to the solution of problems in subdomains, then the solution of the subdomain should exist and
should be unique. Trapped modes in subdomains must be excluded.
If the surface structure of the grating admits a slicing like in i), then there is no reason to subdivide
any domain with wavenumber function independent of x2 since this means more work with no im-
provement. The Riesz-basis property (8.2) in Assumption ii) is of technical nature. Condition (8.1) of ii)
should hold also for the numerical EVD and is designed to avoid that an inaccurate EVD computation
spoils the convergence.

Remark 8.13. Assumption (8.1) of ii) is technical, and in many cases (suppose the additional assump-
tions in Lemma 8.5 are not satisfied) it is unclear how to check this practically. So in many cases it
cannot be excluded that Assumption (8.1) of ii) is violated. It may happen, that the algorithm breaks
down due to a required inversion of an ill-behaved matrix block. Or the RCWA might not be conver-
gent for N→∞. At least, in the special case of TM polarization with piecewise twice continuously
differentiable wavenumber functions khj

≥ε>0, all technical assumptions of Thm. 8.11 are fulfilled.

Remark 8.14. Thm. 8.11, which is shown in the TM case, holds for the TE case as well. The proof is
similar but simpler.

9 Concluding remarks: Open problems, Area of application

Mathematically, there remain many interesting open problems.

■ For the discretization with fixed slicing and with wavenumber function independent of x2 over
each slice, i.e., for fixed h0, h1, · · · , hn:

a) Is there any situation s.t. an eigenfunction of rank greater one occurs? If yes, then a mod-
ification of the code is required. This case is difficult to check since the rank does not
depend continuously on the geometry and optical indices.

b) Is there any situation s.t. the Riesz-basis property is not satisfied or is not uniform w.r.t. the
truncation of the Fourier series? If yes, then discretized norms other than the weighted ℓ2

norm may appear. An extension of the theoretical background might be necessary.

c) How does the EVD looks like for more general k and the TM polarization. Is there still
some kind of error analysis for the complete system of eigenvalues and eigenfunctions?

d) What about the rates of convergence? In simple cases, this might not be too difficult.
■ For the discretized SMA with wavenumber function depending on x2 and with n→∞ s.t. the

width of slicing max{hj−hj−1 : j=1, · · · , n} tends to zero:
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a) For a single slice, can the formula for the S-matrix Shj−1hj with x2-dependent k and with
width hj−hj−1 be approximated by an S-matrix with frozen x2-independent k s.t. the re-
sults proven for the independent case take over to the dependent case?

b) How to analyze the recursion algorithm for n→∞? This reminds of the stability problems
for numerical methods of ODE systems. Inside the slice the method of the FMM might be
explicit. Over the boundary of two slices an implicit step is used.

The area of applications for the general SMA are scattering problems over deep surface structures,
i.e., gratings with period per in the size of λinc and with hn−h0≥O(per). In particular, suppose the
grating is the union of many slices but all these layers are shifted versions of two or three standard
layers. In this case, the scattering matrices of the two or three standard slices are computed once and
can be reused many times. Gratings similar to photonic crystals (cf. e.g. [2]) are of this structure. The
SMA discretized as RCWA is efficient for gratings with a few slices of big size hj−hj−1 ≥O(per),
each with x2-independent optical index. No additional slicing is needed for these. Furthermore, if
the wave solution u is smooth w.r.t. the horizontal x1-coordinate, then a small truncation index N is
sufficient, and the discretized iteration (5.12) is fast. For an application of the FMM, no independence
of the vertical x2-coordinate is needed. However, the wave solution should have a certain degree
of smoothness w.r.t. this vertical coordinate s.t. the numerical ODE algorithm performs well. For non-
smoothness w.r.t. x2, an adaptive choice of the slicing stepsize and of the stepsize for the numerical
ODE algorithm would be helpful.

We conclude with a remark on the comparison of RCWA/FMM and FEM. Clearly, engineers and
physicist prefer the RCWA/FMM, for it is based on eigenmode expansion, i.e., on physical intuition.
Though a comparison of a code for RCWA/FMM and one for the FEM is possible, an abstract and
general comparison of the methods is difficult. Recall that the RCWA/FMM is an SMA, i.e. a global
domain-decomposition algorithm combined with a local basic discretization scheme in each slice, us-
ing truncated Fourier expansions combined with an EVD/numer. ODE integration. Similarly, a sophis-
ticated FEM is a global solver like an iterative multigrid method with preconditioner and/or a domain-
decomposition algorithm and/or an adaptive scheme with local error estimates. Locally, the FEM is a
simple basic discretization scheme, which should be compared to the Galerkin approximation of the
RCWA/FMM based on truncated Fourier expansions combined by EVD/numer. ODE integration. Here
it is clear that, due to elaborated standard techniques, FEM is more suitable to approximate singular-
ities. Surely, this requires adaptive FEM grids and error estimators. Corresponding adaptions on the
side of the RCWA might be possible, but require to develop new codes. On the other hand, for special
situations (cf. [2]), a smooth solution can be approximated very efficiently by truncated Fourier series.

The SMA part of the RCWA/FMM should be compared to the global parts of the FEM, i.e. to domain
decomposition, preconditioning, and iterative solvers. Looking at its nature, the RCWA should rather
be compared to FEM combined with domain decomposition. In this sense, Assumption iii) in Thm. 8.11
is common for both methods. If this is fulfilled, then FEM is guaranteed to converge for our elliptic PDE.
For the RCWA/FMM, there still might occur problems with rank-two eigenfunctions, with ill conditioned
systems of eigenfunction, and with the inversion of ill-behaved operators. Note that these are open
problems, and it is not clear whether such problems really occur. Besides, at least for real-valued k,
numerical experiments and the successful applications over many years prove the RCWA/FMM to be
reliable numerical schemes. Often they provide fast and acceptably good approximate solutions with
small n and N .
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