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Convergence of the method of rigorous coupled-wave analysis
for the diffraction by two-dimensional periodic surface structures

Andreas Rathsfeld

Abstract

The scattering matrix algorithm is a popular numerical method to simulate the diffraction of
optical waves by periodic surfaces. The computational domain is divided into horizontal slices
and, by a domain decomposition method coupling neighbour slices over the common interface
via scattering data, a clever recursion is set up to compute an approximate operator, mapping in-
coming waves into outgoing. Combining this scattering matrix algorithm with numerical schemes
inside the slices, methods like rigorous coupled wave analysis and Fourier modal methods were
designed. The key for the analysis is the scattering problem over the slices. These are scattering
problems with a radiation condition generalized for inhomogeneous cover and substrate mate-
rials and were first analyzed in [7]. In contrast to [7], where the scattering matrix algorithm for
transverse electric polarization was treated without full discretization (no approximation by trun-
cated Fourier series), we discuss the more challenging case of transverse magnetic polarization
and look at the convergence of the fully-discretized scheme, i.e., at the rigorous coupled wave
analysis for a fixed slicing into layers with vertically invariant optical index.

1 Introduction

We start with the question of what a Scattering Matrix Algorithm (SMA), a Rigorous Coupled-Wave
Analysis (RCWA), and a Fourier Modal Method (FMM) is. These names are used differently by differ-
ent authors. Inspired by [13,15] and by personal taste, we stick to the following naming.

� SMA is a general iterative solver and RCWA/FMM are special realization of the SMA. To simu-
late scattering problems for the Helmholtz or the Maxwell’s equations over periodic and biperi-
odic surface structures, SMA is probably the most popular algorithm in the engineering commu-
nity. Its first version was described by Moharam and Gaylord [11], and good introductions with
many details can be found e.g. in the books [13,15].

� Mathematically speaking or in the language of specialists for Finite-Element Methods (FEM),
SMA is a non-overlapping Domain Decomposition Method (DDM), leading to a recursive algo-
rithm for the computation of the global solution. The iterative recursion algorithm results from the
partition into the union of subdomains (slices), where each subdomain has a common boundary
with at most two other subdomains. The coupling of the data over the common interface of two
subdomains is realized not by equating Dirichlet, Neumann, and/or Robin data, but by equating
scattering data, i.e., in- and outgoing parts of the wave.

� Discretizing this, various realizations of the SMA are possible.
a) In principle, one could use FEM and would arrive at a special DDM for the FEM. However,

we have not seen reports on this. Maybe, the reason is that splitting in in- and outgoing
waves is not natural for the FEM, though this splitting relies on Dirichlet-to-Neumann op-
erators (cf. Equ. (5.6)), which could be computed e.g. by an FEM solution of a Dirichlet
problem over a small strip with perfectly matched layer to replace the radiation condition.
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A. Rathsfeld 2

b) In the engineering community, the wave solution is discretized by truncated Fourier-series
expansions w.r.t. the horizontal coordinates. The Fourier coefficients are functions of the
vertical coordinate. This way, the numerical solution of the Boundary Value Problem (BVP)
for our Partial Differential Equation (PDE) is reduced to the numerical solution of a sys-
tem of Ordinary Differential Equations (ODE) w.r.t. the vertical coordinate. For the RCWA,
we suppose that the PDE coefficients (wavenumber function) are equal to or, at least,
approximated by coefficients, which, in each subdomain, are independent of the vertical
coordinate. Hence, the matrix coefficients of the ODE are independent of the vertical co-
ordinate, and an explicit formula of the solution based on an Eigenvalue Decomposition
(EVD) can be used. For the FMM, the ODE is solved by a Finite Difference Method (FDM).

A huge number of authors contributed to the development and improvement of the RCWA and FMM
and reported on their successful use. Here we only mention a few, cf. e.g. [1–3, 5, 7, 9, 10, 12, 16]
and see the comparison to other methods in [8]. A first step of the analysis was provided by Hench,
Strakoš [6], by Civiletti, Lakhtakia, Monk [4], and by [7]. For more comments on these, we refer to the
beginning of Sect. 8. So far, to our knowledge, there is no full convergence analysis.

Of course, the most interesting version of the RCWA/FMM is that for the scattering by periodic and
biperiodic surface structures modeled by the Three-Dimensional (3D) time-harmonic Maxwell’s equa-
tions. However, to start the analysis, we shall restrict our consideration to the simplest case. The
current paper is concerned with the Two-Dimensional (2D) Helmholtz equation.

In other words, we consider the 3D time-harmonic Maxwell’s equations for the scattering by a surface
around a flat plane. We suppose the surface is invariant in one of the two directions of the plane
and periodic into the other. For the classical diffraction, the propagation direction of the plane wave
incident to the surface is orthogonal to the direction of invariance. Then the incident wave and the
resulting scattered waves are superpositions of a wave of Transverse Electric (TE) polarization and
a wave of Transverse Magnetic (TM) polarization. So we can separately simulate the waves of TE or
TM polarization. For these two polarizations, the time-harmonic Maxwell’s equations reduces to the
2D Helmholtz equation, i.e., to ∆u+k2u=0 for TE and to (3.1) for TM. The scalar wave function u
is a component of the electric and the magnetic field, respectively. Indeed, it is the component in the
directions of invariance of the surface (cf. [14]). Most of the results will be presented for the case of
TM polarization. For the easier case of TE polarization, we shall give a few hints.

Suppose the surface structure is a finite union of horizontal slices s.t. the wavenumber k is independent
of the vertical point coordinates over each slice. Then the DDM can be based on a fixed finite number
of subdomains, where each subdomain is such a slice with wavenumber independent of the vertical
direction. In such a case, for the analysis of the method, we suggest two steps. First we consider the
DDM with its SMA iteration on the continuous level, i.e., without the approximation by truncates Fourier
series. As shown for the TE case in [7], the iteration leads to the true solution provided the S-matrices
exists, i.e. if the problems over the subdomains are uniquely solvable (cf. Sect. 5 and Thm. 8.1). These
subproblems are scattering problems but with a radiation condition for special inhomogeneous cover
and substrate materials treated in [7, Thm. 5.7] and in Thm. 4.2 for TE and TM polarization, respec-
tively. Unique solvability over the subdomains means to exclude eigenmodes (trapped modes), which
may occur in exceptional cases. In the case of unique solvability, there exists a solution operator map-
ping the given incoming waves into the unknown outgoing waves. This is called S-matrix. Since the
wavenumbers in the subdomain are independent of the vertical direction, the representation formula,
which in its discretized form is the basis for the RCWA, can be used to set up the S-matrix (cf. Sect. 6).

The second step is to discretize all the operators appearing in the representation formula of the S-
matrices and in the recursive SMA. The analysis of this is new even for TE polarization. Note that,
roughly speaking, all the operators of the SMA on the continuous level can be expressed as infinite
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Convergence of the RCWA 3

matrices w.r.t. the eigenfunctions of special ODE systems. The RCWA on the discretized level is noth-
ing else than replacing these infinite matrices by the corresponding finite matrices w.r.t. the discretized
eigenfunctions, i.e., to eigenfunctions of the special ODE systems discretized by a Galerkin method
based on truncated Fourier series. We get the convergence of the RCWA for the truncation index
tending to infinity (cf. Thm. 8.8 and the remarks following it), showing that the operators defined by the
discretized EVDs converge strongly to the operators of the continuous level and, for the inverse oper-
ators involved in the formulas, by showing that the inverse discretized operators converge strongly to
the inverse. So far, we can prove this only for real-valued wavenumber functions k, where, for any x2,
the section x1 7→ k(x1, x2) must be Hölder continuous and piecewise twice continuous for the TM
case and piecewise continuous and for TE polarization. We believe the convergence probably holds
in much more cases. So there remain many open problems around the assumptions imposed in Sect.
8 (cf. the end of Sect. 8).

For the case of wavefunctions depending on the vertical coordinate, the wavefunction can be replaced
by approximate wavefunctions, which are slice-wise constant in vertical direction. The smaller the
maximal width of the slices, the closer is the approximate wavefunction to the true one. Under special
non-trapping conditions, the error of this approximation was estimated in [4]. If a good wavenumber ap-
proximation is fixed, then the above mentioned analysis for a fixed slicing applies. However, a general
convergence analysis for maximal width tending to zero and truncation index tending to infinity is still
open. The problem of stable convergence of the SMA iteration with finer and finer slicing reminds on
the stability analysis of FDM, especially if the FMM is employed. The update by the coupling over the
slice interfaces reminds on implicit time steps. So there remain many open problems for a complete
analysis of the SMA recursion in the RCWA.

The plane of the paper is as follows. In Sect. 2 we shall introduce the BVP for the scattering by grat-
ings under TM polarization. To prepare the generalization of the radiation condition, in Sect. 3 we
shall discuss an EVD of a one-dimensional ODE derived from the elliptic PDE. We shall present the
asymptotics of eigenvalues and functions together with proofs s.t. similar asymptotics can be derived
for the discretized ODE. In Sect. 4 we shall define the generalized radiation condition for special in-
homogeneous cover and substrate materials and present a theorem on the unique solvability of wave
scattering by periodic surfaces. For a fixed slicing of the grating structure, we shall derive the SMA
in Sect. 5 on the continuous level, i.e., without any discretization in horizontal direction. The full dis-
cretization will follow in Sects. 6 – 7, where we shall give a formula to compute the solution operator
over the slice with vertically constant wavenumber function and introduce the discretization by trun-
cated Fourier series expansions. In Sect. 8, we shall present Thm. 8.1 on the SMA over the continuous
level and the main result Thm. 8.8 on the convergence of the RCWA for the truncation index tending
to infinity. We shall comment on the area of application and on the open problems in Sect. 9.

2 Preliminaries

We define the Two-Dimensional (2D) scattering Problem for TM polarization (cf. e.g. [14]). Here an
incoming plane wave is scattered by a surface structure in {(x1, y, x2)>∈R3 : a≤x2≤b} (cf. Fig.
1), which is periodic in x1 direction and invariant w.r.t. shifts in y-direction. The incident plane wave
is defined as uinc

b (x1, y, x2) :=ei~α·(x1,x2) with ~α = (α,−
√

[k+]2 − α2 )>, 0<α≤k+. Note that
|~α |=k+ and k+ = ω

√
µ0ε0 n+ is the constant wavenumber for the half space with x2>b, where

ω :=2π/λinc>0 is the frequency of the incoming light of wavelength λinc, where ε0 and µ0, respec-
tively, are the electric permittivity and the magnetic permeability in vacuum, and where n+ is the
refractive index of the material. Similarly, there is a constant wavenumber k−= ω

√
µ0ε0 n− for the
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Figure 1: Geometry settings for homogeneous cover material and substrate.

half space with x2<a.

The function uinc is α-quasiperiodic, i.e. the function e−iαx1uinc(x1, x2) is 2π-periodic, and we get
uinc
b (x1 + 2π, x2) = ei2παuinc

b (x1, x2). Consequently, all the waves and their boundary values on
Γc := {(x1, c) : 0≤x1≤2π}, c = a, b are in the 2D Sobolev spacesHs

α(Ω) and 1D Sobolev spaces
H1
α(Γc) = Hs

α(0, 2π), respectively, i.e. in spaces ofα-quasiperiodicHs-functions. We can even admit
a general incident field uinc(x1, x2) for x2 ≥ b (cf. the subsequent (2.3)) if only the restriction uinc|Γb
is α-quasiperiodic. Clearly, we can change the α in the definition of quasiperiodicity by subtracting an
integer, i.e. we can assume w.l.o.g. that 0 ≤ α < 1. Besides the wave incoming from above, we even
can admit an incoming wave uinc

b (x1, x2) from below, i.e. from x2 ≤ a. However, we have to assume
that the restriction uinc

a |Γa is α-quasiperiodic with the same α.

In the case of TM polarization we look for the y-component of the magnetic field u(x1, y, x2), which
is independent of y. So the 3D Helmholtz equations turns into the 2D equation for the function
u(x1, x2)=u(x1, y, , x2). Altogether, the wave u is the solution over the domain Ω:=[0, 2π]×[a, b]
satisfying

a) “Helmholtz” equation: ∇· k(x1, x2)−2∇u(x1, x2)+u(x1, x2)=0, (x1, x2)>∈Ω,

b) α-quasiperiodic lateral boundary condition: u(2π, x2)=ei2παu(0, x2), x2∈ [a, b],

c) Radiation condition over upper boundary Γb and lower boundary Γa incl. given traces

of incident wave functions uinc
b |Γb∈H

1/2
α (Γb) and uinc

a |Γa∈H
1/2
α (Γa), respectively.

(2.1)

Note that, for the case of TE polarization, in item a) the classical form ∆u+k2u=0 of the Helmholtz
equation appears, which is equivalent to the equation in a) for constant wavenumbers k. In particular,
this is the case for homogeneous materials in the substrate or the cover material, and we get the
same radiation condition. For this radiation condition, we remark that the general representation of
α-quasiperiodic Helmholtz solutions in the homogeneous cover material is

u(x1, x2)− uinc
b (x1, x2) =

∑
l∈Z

ei(α+ l)x1
{
c+
b,le

iβbl (x2−b) + c−b,le
−iβbl (x2−b)

}
, x2 ≥ b , (2.2)

βbl :=

√
[k+]2 − [α + l]2, c±b,l ∈ C.
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The radiation condition on Γb requires c−b,l=0 for all coefficients of downgoing modes, i.e.

u(x1, x2)− uinc
b (x1, x2) =

∑
l∈Z

c+
b,le

i(α+ l)x1eiβ
b
l (x2−b), x2 ≥ b. (2.3)

Here, for simplicity, we have supposed βbl 6= 0. For the l with βbl = 0, in Equ. (2.2) the term in brackets
{c+
b,le

iβbl (x2−b)+c−b,le
−iβbl (x2−b)}must be modified. Depending on the application, it should be replaced

by {c+
b,l + c−b,l(x2 − b)}, by {c+

b,l(x2 − b) + c−b,l} or by {c+
b,l

(
1 + (x2 − b)

)
+ c−b,l

(
1 − (x2 − b)

)
},

respectively. This leads to a corresponding modification in (2.3). The radiation condition on Γa requires
c+
a,l=0 for all coefficients of upgoing modes, i.e.

u(x1, x2)−uinc
a (x1, x2) =

∑
l∈Z

c−a,le
i(α+ l)x1e−iβ

a
l (x2−a), x2≤a , βal :=

√
[k−]2−[α+l]2. (2.4)

Again a corresponding modification is needed if βal = 0.

3 Eigenfunctions of ODE for reformulation of Helmholtz equation

For the scattering matrix algorithm, we have to generalize the radiation conditions (2.3) and (2.4)
modeling inhomogeneous cover and substrate materials. In order to prepare this, we need the EVD of
ordinary differential operators appearing in the reformulation of the Helmholtz equation as an ODE with
operator valued coefficient function. The details will be needed also for the corresponding equations
obtained by discretization.

Suppose the 2π periodic wavenumber function k is given as k :=ω
√
µ0ε0 n, where the refractive

index n, possibly depending on x1 and x2, is supposed to satisfy <en>0, =mn≥0. With this k
the TM wave equation is

∇ · k−2∇u+ u = 0, in R2. (3.1)

For piecewise constant k, this is nothing else than the Helmholtz equation with special transmission
conditions over the curves of discontinuity for k. Now in the cover material and substrate (cf. Fig. 2),
we assume k(x1, x2) = k+(x1), x2 > b and k(x1, x2) = k−(x1), x2 < a. Equ. (3.1) is equivalent
to the operator valued ODE

k−2∂2
x2
u = Lu := −∂x2k−2∂x2u− u, k(x1) := k±(x1). (3.2)

We reduce this second-order ODE to a first-order ODE. Setting v := ∂x2u and ~w := (u, v)>, the
ODE (3.2) is equivalent to ∂x2~u = M~u with

M :=

(
0 I
k2L 0

)
. (3.3)

For this operator in space of univariate vector functions depending on x1, the eigenvalues and eigen-
functions are defined by M ~fλ = λ~fλ for λ ∈ σM . Clearly, for ~fλ = (fλ, gλ)

>, we get gλ = λfλ and
k2Lfλ = λgλ. Consequently, for the eigenvalues ±λ of M , we obtain the eigenvector (fλ,±λfλ)>
with fλ satisfying

k2∂x1k
−2∂x1fλ + [k2 + λ2]fλ = 0. (3.4)
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As a first case, we discuss the EVD in (3.4) with a k(x1) twice continuously differentiable. We
look for a solution f of (3.4) in the form f = kh.

k2∂x1k
−2∂x1 [kh] + [k2+λ2][kh] = 0,

k∂2
x1
h+

{
[∂2
x1
k]−2k−1[∂x1k]2+[k2+λ2]k

}
h = 0,

∂2
x1
h+ k̃2h+ λ2h = 0, (3.5)

k̃2 := k2 + k−1[∂2
x1
k]− 2k−2[∂x1k]2.

For this f = kh, we note that in the derivation of the variational form we have∫
Ω
{∇ · k−2∇uv̄ + uv̄} =

∫
Ω

{
−k−2∇u∇v + uv̄

}
+
∫

Γa
k−2∂x2uv̄ +

∫
Γb
k−2∂x2uv̄,∫ 2π

0
k−2∂x2 [f(x1)e−λ(x2−c)]|x2=c[f(x1)e−λ(x2−c)]|x2=cdx1 =

∫ 2π

0
λ|h(x1)|2dx1,

whereas, for the Helmholtz equation in the TE case,∫
Ω
{∆uv̄ + k2uv̄} =

∫
Ω

{
∇u∇v + k2uv̄

}
+
∫

Γa
∂x2uv̄ +

∫
Γb
∂x2uv̄,∫ 2π

0
∂x2 [f(x1)e−λ(x2−c)][f(x1)e−λ(x2−c)]|x2=cdx1 =

∫ 2π

0
λ|f(x1)|2dx1.

In other words, we get similar formulas for the PDE ∇· k−2u+u=0 and h as for ∆u+k2u=0 and
f . In any case, we can use the results collected in [7, Lemma 4.5].

Lemma 3.1. The spectrum is discrete, i.e., there holds σ[∂2x1+k̃2I] = {λ2
n : n ∈ Z}. We even get the

asymptotics

λ2
n = (n+α)2−k̃2

avg+O
(

1

|n|κ

)
, k̃2

avg :=
1

2π

∫ 2π

0

k̃2(τ)dτ, κ :=

{
1/2 if α=0, 1/2
1 else

,

λn =
√

(n+α)2−k̃2
avg +O

(
1

|n|1+κ

)
= |n+α|+

k̃2
avg

2

1

|n|
+O

(
1

|n|1+κ

)
, |n| → ∞. (3.6)

Proof. To derive an asymptotics like this, we can argue as follows. The solution of the inhomogeneous
ODE ∂2

x1
h+λ2h=−k̃2h is

u(t) = u(0) cos(λt) +
u′(0)

λ
sin(λt)− 1

λ

∫ t

0

sin
(
λ(t− τ)

)
k̃2(τ)u(τ)dτ,

u′(t) = −u(0)λ cos(λt) + u′(0) sin(λt)−
∫ t

0

cos
(
λ(t− τ)

)
k̃2(τ)u(τ)dτ.

In other words,(
u(t)

u′(t)/λ

)
= Rλt

(
u(0)

u′(0)/λ

)
− 1

λ

∫ t

0

(
sin
(
λ(t−τ)

)
cos
(
λ(t−τ)

))k̃2(τ)u(τ)dτ, (3.7)

Rφ :=

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
.

Using this at t = 2π and the α-quasiperiodicity u(j)(2π) = ei2παu(j)(0), j = 0, 1, we arrive at

[
ei2παI −R2πλ

]( u(0)
u′(0)/λ

)
=−1

λ

∫ 2π

0

(
sin
(
λ(2π−τ)

)
cos
(
λ(2π−τ)

))k̃2(τ)u(τ)dτ.
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Convergence of the RCWA 7

Solving this equation w.r.t. (u(0), u′(0)/λ)> and substituting the result into (3.7), we obtain the equa-
tion (u, u/λ)> = 1

λ
T (u, u/λ)> with

T
(

u(t)
u′(t)/λ

)
:= −Rλt

[
ei2παI −R2πλ

]−1
∫ 2π

0

(
sin
(
λ(2π−τ)

)
cos
(
λ(2π−τ)

))k̃2(τ)u(τ)dτ

−
∫ t

0

(
sin
(
λ(t−τ)

)
cos
(
λ(t−τ)

))k̃2(τ)u(τ)dτ.

We conclude

1 ≤ 1

λ
‖T ‖ ≤ C

1

λ

∣∣det(ei2παI −R2πλ)
−1
∣∣ ,∣∣∣(ei2πα − cos(2πλ)

)2
+ sin(2πλ)2

∣∣∣ ≤ C
1

λ
,∣∣cos

(
π(α+λ)

)
cos
(
π(α−λ)

)∣∣ ≤ 1

4
C

1

λ
. (3.8)

So either cos(π(λ+ α)) = O(|λ|−1/2) or cos(π(λ− α)) = O(|λ|−1/2). Since we have the iden-
tity cos(z)=cos(<e z+i=mz)=cos(<e z) cosh(=mz)−i sin(<e z) sinh(=mz), we get the es-
timate | cos(<e z)|≤| cos(z)|. So either <e λ=n−α+O(|λ|−1/2) or <e λ =n+α+O(|λ|−1/2)
for a suitable integer n. A small cos(<e z) means a sin(<e z) close to one s.t. we get the estimate
| sinh(=mz)| < c| cos(z)|. So in any case =mλ = O(|λ|−1/2). Altogether we get the asymptotics
λ = n± α +O(|n|−1/2). Now assume α 6=0, 1/2. E.g. for λ = n− α +O(|n|−1/2), we get the
first cosine value in (3.8) as cos(π(λ+ α))=cos(O(|n|−1/2)=1−O(|n|−1)>1/2. With this, how-
ever, (3.8) implies cos(π(λ− α)) = O(|λ|−1). In other words, the above arguments lead us to the
improved asymptotics λ = n− α +O(|n|−1). Though this is less than (3.6), such an estimate for
the discretized equation together with the stronger (3.6) is sufficient for our analysis.

Now we look at the asymptotics of the eigenfunctions and discuss the basis property as well as the
asymptotics of the eigenfunctions. Denoting hn := hλn . The asymptotics of the eigenfunctions has
been mentioned in [7, Lemma 4.5] and we learn from this paper that, at least for α 6= 0, 1/2 or for
real-valued k, the functions (1+n2)s/2hn ∈ Hs

α, n ∈ Z form a Riesz basis for−2 ≤ s ≤ 2. Hence,
we also have a Riesz basis (1+n2)s/2fn = (1+n2)s/2khn ∈ Hs

α, n ∈ Z for −2 ≤ s ≤ 2. We
shall suppose throughout this paper that all eigenfunctions are of rank one. If rank-greater-than-one
eigenfunction occur, then the subsequent algorithm must be adapted to that case, and, in the case
of an infinite number of such eigenfunctions, the Riesz property of the basis might be violated. Note,
however, that this is not a problem for real-valued k̃, since the eigenfunctions of selfadjoint operators
all have rank one.

Lemma 3.2. Assume the asymptotics |λn|→∞ for |n|→∞. Then we arrive at

hn(t) ∼ eiλnt − 1

λn

sin(λnt)

1− ei2π[λn+α]

∫ 2π

0

ei2λnτ k̃2(τ)dτ

− 1

λn

∫ t

0

sin(λn[t− τ ])k̃2(τ)eiλnτdτ +O
(

1

|λn|2

)
∼ eiλnt − 1

λn

eiλnt

2i

∫ t

0

k̃2(τ)dτ +O
(

1

|λn|2

)
.

Proof. To derive the asymptotics, we look for h in the representation h(t) = eiλtη(t), where eiλt is
the eigenfunction for constant wavenumber functions k̃. To get an α-quasiperiodic h, the function η
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must be [α−λ]-quasiperiodic. We get

eiλtη′′(t) + 2iλeiλtη′(t) + [iλ]2eiλtη(t) + [k̃2(t) + λ2]eiλtη(t) = 0,

η′′(t) + 2iλη′(t) + k̃2(t)η(t) = 0. (3.9)

From (3.9), we get

[ei2λtη′(t)]′ = ei2λt[η′′(t) + 2iλη′(t)] = −ei2λtk̃2(t)η(t),

ei2λtη′(t) = η′(0)−
∫ t

0

ei2λτ k̃2(τ)η(τ)dτ,

η′(t) = η′(0)e−i2λt −
∫ t

0

e−i2λ[t−τ ]k̃2(τ)η(τ)dτ, (3.10)

η(t) = η(0)− i

2λ

[
1− e−i2λt

]
η′(0)− i

2λ

∫ t

0

[
e−i2λ[t−τ ] − 1

]
k̃2(τ)η(τ)dτ. (3.11)

W.l.o.g. we may set η(0) = 1 or η′(0) = 1/λ. Otherwise we would scale the function η. Set η(0) = 1.
From (3.10) and the [α−λ]-quasiperiodicity we conclude

e−i2π[λ−α]η′(0) = η′(2π) = η′(0)e−i4πλ −
∫ 2π

0

e−i2λ[2π−τ ]k̃2(τ)η(τ)dτ,

η′(0) =
ei4πλ

1− ei2π[λ+α]

∫ 2π

0

e−i2λ[2π−τ ]k̃2(τ)η(τ)dτ.

Using the asymptotics of the eigenvalues λ = λn, n ∈ Z in (3.6)

ei2π[λn+α] − 1 =
[
ei4πα − 1

]
− πiei4παk̃2

avg

1

n
+O

(
1

n1+κ

)
,

1

1− ei2π[λn+α]
=


1

1−ei4πα − πi
ei4πα

[1−ei4πα]2
k̃2

avg
1
n

+O
(

1
|λn|2

)
if α 6= 0, 1/2

λn

πik̃2avg
+O

(
n1/2

)
if α = 0, 1/2

To get a bounded fraction on the left-hand side, we suppose that α 6=0, 1/2. Recalling h(t)=eiλtη(t),
Equ. (3.11) turns into

(I−Tn)hn = hn,0, hn =
∞∑
l=0

hn,l, hn,l = Tnhn,l−1, l ∈ Z+,

hn = hn,0 + Tnhn,0 + T 2
nhn.

Here we have set

hn,0(t) := eiλnt, 0 ≤ t ≤ 2π,

Tnf(t) := eiλnt
i

2λn

[
1− e−i2λnt

] ei4πλn

1− ei2π[λn+α]

∫ 2π

0

e−i2λn[2π−τ ]k̃2(τ)e−iλnτf(τ)dτ

−eiλnt i

2λn

∫ t

0

[
e−i2λn[t−τ ] − 1

]
k̃2(τ)e−iλnτf(τ)dτ

= − 1

λn

sin(λnt)

1−ei2π[λn+α]

∫ 2π

0

eiλnτ k̃2(τ)f(τ)dτ − 1

λn

∫ t

0

sin(λn[t−τ ])k̃2(τ)f(τ)dτ.
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Consequently,

hn(t) ∼ eiλnt − 1

λn

sin(λnt)

1− ei2π[λn+α]

∫ 2π

0

ei2λnτ k̃2(τ)dτ

− 1

λn

∫ t

0

sin(λn[t− τ ])k̃2(τ)eiλnτdτ +O
(

1

|λn|2

)
∼ eiλnt − 1

λn

sin(λnt)

1− ei4πα

∫ 2π

0

ei2λnτ k̃2(τ)dτ − 1

λn

eiλnt

2i

∫ t

0

k̃2(τ)dτ

+
1

λn

e−iλnt

2i

∫ t

0

ei2λnτ k̃2(τ)dτ +O
(

1

|λn|2

)
.

Since k̃2 is continuously differentiable, applying partial integration to the first and third integral on the
right-hand side, we arrive at

hn(t) ∼ eiλnt − 1

λn

eiλnt

2i

∫ t

0

k̃2(τ)dτ +O
(

1

|λn|2

)
.

Now suppose the wave number k(x1) is only piecewise twice continuously differentiable and
k(x1) ≥ ck > 0. Then we get

Lemma 3.3. The spectrum of operator k2L is a discrete set of eigenvalues σk2L={λ2
n : n∈Z+}⊂R

with λ2
n→∞, |n|→∞. The eigenfunction fn corresponding to λn is of rank one. It is piecewise twice

continuously differentiable and continuous, and k−2∂x1fn is continuous as well. Moreover, the scaled
eigenfunctions (1+|λn|2)−s/2fn, n∈Z+ of the differential operator k2L form a Riesz basis inHs

α for
−1≤s≤1.

Proof. Clearly, the eigenfunctions fλ of the unbounded operator k2L : L2(0, 2π) ↪→L2(0, 2π) are
in one-to-one correspondence with the eigenfunctions k−1fλ of the operator L̃ :=kLk, which maps
k−1H1

α into kH1
α and the domain of definition of which is

dom L̃ :=
{
h ∈ k−1H1

α : k−2∂x1kh ∈ H1
α

}
.

This is the operator of the variational form (h, g) 7→ a(h, g) with

a(h, g) :=

∫ 2π

0

{
k−2(x1) ∂x1 [k(x1)h(x1)] ∂x1 [k(x1)g(x1)]− k2(x1)h(x1)g(x1)

}
dx1. (3.12)

In other words, L̃ is selfadjoint and strongly elliptic, and its spectrum is a discrete set of real eigenval-
ues with the only cluster point∞. We denote the eigenvalues by λ2

n, n ∈ Z+ and the corresponding
orthonormal eigenfunctions by hn s.t. the fn := khn form a Riesz basis of eigenfunctions for operator
k2L in the space L2(0, 2π). For a general function h =

∑
n∈Z+

ξnhn with ξn ∈ C, we obtain∥∥∥∥∥k
∞∑
n=1

ξnhn

∥∥∥∥∥
2

H1
α

∼ a(h, h) + c ‖h‖2
L2 =

∞∑
n,m=1

ξnξm

〈
L̃hn, hm

〉
+ c ‖h‖2

L2 ,∥∥∥∥∥
∞∑
n=1

ξnfn

∥∥∥∥∥
2

H1
α

∼
∑
n,m

λ2
nξnξm 〈hn, hm〉+ c ‖h‖2

L2 ∼ c
∑
n

(1 + |λn|2)|ξn|2.
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This is the Riesz basis property of the basis (1 + |λn|−2)1/2fn in H1
α. The orthonormality of the hn

yields the Riesz basis property of the basis fn in L2 = H0
α. Interpolation provides us with the Riesz

basis property of the basis (1 + |λn|−2)s/2fn in Hs
α for 0 ≤ s ≤ 1. By duality arguments for the

orthonormal basis, we get the Riesz property in Hs
α for −1 ≤ s ≤ 1.

Due to k>ck, the operator kLk is selfadjoint and the ranks of the eigenfunctions are automatically
equal to one. On each segment in [0, 2π] where k is twice continuously differentiable, the equation
h′′n+k̃2hn+λ2

nhn=0 holds (cf. (3.5)). Consequently, the solution is twice continuously differentiable
over the closed interval. On the other hand, the equation k2Lfn = λnfn over the whole quasiperiodic
interval implies that the global derivative of fn is piecewise smooth. No Dirac delta should appear.
Thus fn is continuous and its derivative coincides with the piecewise derivative f ′n. Similarly, the
derivative of the continuous quasiperiodic [k−2f ′n] is piecewise smooth. Thus [k−2f ′n] is continuous
and its derivative coincides with the piecewise derivative ∂x1 [k

−2f ′n].

General case: In agreement with the last two cases, we suppose that there is a system of uni-
variate eigenfunctions fn, n ∈ Z+ of rank one with the corresponding eigenvalues λn such that
k2Lfn = λ2

nfn, such that |=mλn| ≤ C|<e λn| for a fixed positive constant C , and such that the
(1 + |λn|2)−s/2fn form a Riesz basis in Hs

α for −1 ≤ s ≤ 1. Note that we change the index set
from Z to Z+ such that |λn| ≤ |λn+1| for all n ∈ Z+. Here, for the squareroots λn of the λ2

n 6= 0,
we suppose that either <e λn>0 or <e λn=0,=mλn<0. Note that ±λn are eigenvalues of M in
(3.3). Depending on the choice of wavenumber function k as k(x1) = k+(x1) = k(x1, b+ 0) or as
k(x1) = k−(x1) = k(x1, a− 0), we write La or Lb for the differential operator L, fa,n or fb,n for the
eigenfunction fn, and λa,n or λb,n for the eigenvalue λn.

4 Radiation condition and unique solvability of scattering prob-
lem for special inhomogeneous super- and substrate

...

...

...

...

x1

x

Γa

Γb

0

a

b

2

y

per=2π

ΓlatlatΓ

Figure 2: Geometry settings for inhomogeneous cover material and substrate.

Suppose c = a or c = b. The eigenvalues λ of M in (3.3) are the square roots ±
√
λ2 for the

eigenvalues λ2 of (3.4). For definiteness, we choose the square root λ =
√
λ2 s.t. either <e λ>0
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Convergence of the RCWA 11

or that <e λ=0, =mλ≤0, and consider both values ±λ. For λ = λc,n 6= 0, we call the 2D wave
modes u±c,n(x1, x2) :=e∓λc,n(x2−c)fc,n(x1) upgoing for upper index + and downgoing for index −.
In the case λc,n = 0, we define these waves by u±c,n(x1, x2) :=

(
1±(x2−c)

)
fc,n(x1). The general

representation of the Helmholtz solutions in the inhomogeneous cover material close to Γc is

u(x1, x2) =
∑
n∈Z+

{
c+
c,nu

+
c,n(x1, x2) + c−c,nu

−
c,n(x1, x2)

}
, c±c,n∈C. (4.1)

The expansion (2.2) for constant k is a special case of this, where the eigenvalue λc,n = −iβbn, n ∈ Z
corresponds to the eigenfunction fc,n(x1) = ei(α+n)x1 . Of course the index set Z is to be changed
into Z+. So, similarly to the homogeneous radiation conditions (2.3) and (2.4), we define, for the
inhomogeneous medium,

Definition 4.1. An α-quasiperiodic solution u of the 2D Helmholtz equation∇ · k−2∇u− u = 0 over
the upper half-space Ω+

b (over the lower half-space Ω+
a ) is said to satisfy the upper (lower) radiation

condition if u admits the expansion u(x1, x2) = uinc
b (x1, x2) +

∑
n∈Z+

c+
b,nu

+
b,n(x1, x2) for a se-

quence of coefficients c+
b,n ∈ C (the expansion u(x1, x2) = uinc

a (x1, x2) +
∑

n∈Z+
c−a,nu

−
a,n(x1, x2)

for a sequence of coefficients c−a,n ∈ C). The sums converge in H1
loc.

Indeed, to see the convergence, we choose b = 0 and, simplifying the notation, we set λn=λb,n
and fn :=fb,n. We take a general u(x1, x2) =

∑
n cne

−λnx2fn(x1) with the discrete H1/2
α norm

‖(cn)n‖α :=
∑

n(1 + |λn|2)1/2|cn|2 <∞, and note that ‖(cn)n‖α ≤ C‖u‖
H

1/2
α

by the Riesz prop-

erty for the scaled functions (1 + |λn|2)1/4fn in H1/2
α . Then we get

‖∂x2u‖2
L2 =

∫ 1

0

∫ 2π

0

∣∣∣∣∣∑
n

λncnfn(x1, x2)e−λnx2

∣∣∣∣∣
2

dx1dx2≤C
∫ 1

0

∑
n

∣∣λncne−λnx2∣∣2dx2

≤
∑
n

|λncn|2
∫ 1

0

e−2<e λnx2dx2≤C
∑
n

|λn| |cn|2≤C‖(cn)n‖α,

‖∂x1u‖2
L2 =

∫ 1

0

∫ 2π

0

∣∣∣∣∣∂x1∑
n

cnfn(x1, x2)e−λnx2

∣∣∣∣∣
2

dx1dx2≤C
∫ 1

0

∑
n

(1+|λn|2)
∣∣cne−λnx2∣∣2dx2

≤
∑
n

(1+|λn|2) |cn|2
∫ 1

0

e−2<e λnx2dx2≤C
∑
n

(1+|λn|2)1/2 |cn|2≤C‖(cn)n‖α,

where we have used |=mλn| ≤ C<eλn to estimate |λn|/|<e λn| by a constant. The corresponding
estimate for the L2 norm is similar. Hence the local H1

α norm of u is bounded and the sum converges
in this norm.

Using Def. 4.1, we can generalize the BVP for the scattering of incoming waves ua and ub by the
grating with homogeneous cover material and substrate to that for a grating with inhomogeneous
super- and substrate. From the proof of [7, Theorem 5.7], we obtain:

Theorem 4.2. Suppose:
i) For c = a, b, the systems of eigenfunctions (1+|λc,n|2)−s/2fc,n of (3.4) forms a Riesz basis

in Hs
α for −1 ≤ s ≤ 1. The eigenvalues λc,n obey the estimate |=mλc,n| ≤ C|<e λc,n| for

a fixed positive constant C . There are no generalized eigenfunctions fc,n of rank greater than
one.

ii) Any solution of the scattering problem with incident waves uinc
a ≡0≡uinc

b is zero.

DOI 10.20347/WIAS.PREPRINT.3081 Berlin 2023



A. Rathsfeld 12

Γ

Γ

S

u

u

u

b

u

a

ab

b

-
b

+
a

a
-

+

incoming
waves waves

outgoing

Figure 3: Scattering matrix.

Then, for any given uinc
b |Γb∈H

1/2
α (Γb) and uinc

a |Γa∈H
1/2
α (Γa), there is a unique solution u∈H1

α(Ω)
of the scattering problem (2.1) with the radiation conditions of Def. 4.1. In particular, there is a bounded
solution operator (scattering operator or scattering matrix) Sab mapping:(

H
1/2
α (Γa)

H
1/2
α (Γb)

)
3
(
uinc
a |Γa
uinc
b |Γb

)
=:

(
u+
a

u−b

)
7→
(
u+
b

u−a

)
:=

(
[u−uinc

b ]|Γb
[u−uinc

a ]|Γa

)
∈

(
H

1/2
α (Γb)

H
1/2
α (Γa)

)
.

For assumption i), we refer to the two cases discussed in Sect. 3. In particular, there is no eigenfunction
of rank greater than one for real-valued k± and the system of eigenfunctions is even orthonormal in
the sense of 〈k−2fn, fm〉=δn,m. Suppose k is not a real-valued function. To our knowledge, there is
no example of a rank-greater-one eigenfunction known yet. If such a function exists, then the system
of upgoing and downgoing waves is to be modified and an adaption of the scattering matrix algorithm
is needed. Such an adaption might be difficult if it is not clear which eigenfunction has the rank greater
one. To prove a general Riesz basis property seems to be extremely difficult if infinitely many rank-
greater-one eigenvalues exists.

If assumption i) is satisfied, then the variational form can be shown to be strongly elliptic. Surely,
there exist trivial solutions of the scattering problem with no incoming wave, so called eigenmodes or
trapped modes. If wavenumber functions with non-real values are involved (absorbing materials), then
the uniqueness of ii) can be shown. If k is real-valued, then the existence of eigenmodes seems to be
an exceptional case.

5 SMA with no discretization w.r.t.variable x1

Now we introduce the SMA on the continuous level. The RCWA will be the discretization of this SMA
and will be considered in Sects. 6–7. The key instrument of the SMA is the S-matrix of Thm. 4.2, which
has a natural 2×2 block structure. To see this clearly we need projections in the space of boundary
values, i.e. in the space of Dirichlet and Neumann data.
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Convergence of the RCWA 13

u±b (x1, b) =
∑
n∈Z+

c±b,nfb,n(x1) =
∑

n∈Z+:λb,n 6=0

c±b,mfb,n(x1)e±λc,n[x2−b]
∣∣∣∣
x2=b

+
∑

n∈Z+:λb,n=0

c±b,mfb,n(x1)
(

1± (x2 − b)
) ∣∣∣∣

x2=b

,

∂x2u
±
b (x1, b) = DtN

±
b

(
u±b |R3

b

)
(x1) :=

∑
n∈Z+:λb,n

∂x2u
+
b,n(x1, b)

= ±
∑

n∈Z+:λb,n 6=0

λc,nc
±
b,mfb,n(x1) ±

∑
n∈Z+:λb,n=0

c±b,mfb,n(x1). (5.1)

Due to the Riesz basis property, each trace of u±b ∈H
1/2
α (Γb) has a unique continuation to the upper

and lower half space s.t. the trace is a function ∂x2u
±∈H−1/2

α (Γb). In this sense, the Dirichlet traces
u± of the upgoing and downgoing waves can be embedded into the H1

α space of wave solutions
above and below Γb, respectively. It can be embedded into the space of boundary data consisting of
couples of Dirichlet and Neumann data. We identify

u±b ↔ (u±b , k
−2
b ∂x2u

±
b ), kb := k(·, b+ 0),

H1/2
α (Γb) ↔

[
H1/2
α ×H−1/2

α

]
±(Γb) ⊆ H1/2

α (Γb)×H−1/2
α (Γb). (5.2)

Remark 5.1. Note that the factor k−2
b is new for the TM case. It does not appear for TE polarization.

It is introduced since over the interface Γb the function u and k−2∂x2u are continuous, i.e.,

u(x1, b+ 0) = u(x1, b− 0),

k−2(x1, b+ 0)∂x2u(x1, b+ 0) = k−2(x1, b− 0)∂x2u(x1, b− 0), 0 ≤ x1 ≤ 2π.

These equalities hold in the trace spaces. In other words, we correctly have (5.2) with

H1/2
α (Γb) ↔ H1/2

α (Γb)× k−2
b H−1/2

α (Γb),

which makes it difficult to set k−2(x1, b+0)∂x2u(x1, b+0) equal to k−2(x1, b−0)∂x2u(x1, b−0).

However, if the multiplication operator k−2
b I is bounded in the Sobolev space H−1/2

α (Γb), then we

have H−1/2
α (Γb)=k−2

b H
−1/2
α (Γb) and the same trace space from above and below. In particular this

is true for a Hölder continuous function k−2
b . We shall use (5.2) mainly if k−2

b I is bounded.

Lemma 5.2. If Assumption i) of Thm. 4.2 holds and if k−2
b I is a bounded operator in H−1/2

α , then the
space of Dirichlet and Neumann data is the direct sum

H1/2
α (Γb)×H−1/2

α (Γb) =
[
H1/2
α ×H−1/2

α

]
+

(Γb) ⊕
[
H1/2
α ×H−1/2

α

]
−(Γb),

and the projections P±b of the space H1/2
α (Γb) × H−1/2

α (Γb) onto
[
H

1/2
α ×H−1/2

α

]
±

(Γb) parallel to[
H

1/2
α ×H−1/2

α

]
∓

(Γb) are bounded. In particular, we get imP±b =
[
H

1/2
α ×H−1/2

α

]
±

(Γb).

Proof. From (5.1) we see DtN
−
b =−DtN

+
b . Then the representation(

uD, k
−2
b uN

)
=

(
u+, k−2

b DtN
+
b u

+
)

+
(
u−,−k−2

b DtN
+
b u
−)
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leads us to

P±b
(
uD, k

−2
b uN

)
=

(
1

2
uD ±

1

2
[DtN

+
b ]−1uN , ±

1

2
k−2
b DtN

+
b uD +

1

2
k−2
b uN

)
. (5.3)

Using (5.1) and the Riesz property of the fb,n, n∈Z+, we get the boundedness of the Dirichlet-to-
Neumann mappings and the last formula proves the continuity of the projections.

Note that in the TE case (cf. [7, Lemma 6.1]), the assumption on the boundedness of k−2
b I in H−1/2

α

is redundant.

Analogously to the projections P±b in H1/2 ×H−1/2 over Γb based on the eigenfunctions fb,n for
k2L with k(x1) = k(x1, b+ 0) we have the projections P±a in H1/2×H−1/2 over Γa based on
k(x1) = k(x1, a+ 0). From (5.3) and P±a (u, v)=(u±a ,±k−2

a DtN
+
a u
±
a ), we get the formula

P±b
(
u+
a + u−a , k

−2
a DtN

+
a u

+
a − k−2

a DtN
+
a u
−
a

)
= (5.4)(

1

2
[u+
a + u−a ]± 1

2
[DtN

+
b ]−1k

2
b

k2
a

[DtN
+
a u

+
a −DtN

+
a u
−
a ] ,

±1

2
k−2
b DtN

+
b [u+

a + u−a ] +
1

2
k−2
a [DtN

+
a u

+
a −DtN

+
a u
−
a ]

)
, (5.5)

which, by the identification (5.2), can be written as P±b : H
1/2
α →H

1/2
α and

P±b [u+
a ]=

1

2

[
u+
a ±[DtN

+
b ]−1k

2
b

k2
a

DtN
+
a u

+
a

]
, P±b [u−a ]=

1

2

[
u−a ∓[DtN

+
b ]−1k

2
b

k2
a

DtN
+
a u
−
a

]
. (5.6)

In this sense, we arrive at imP±b =H
1/2
α and P±b : H

1/2
α →H

1/2
α provided that k−2

a I and k−2
b I are

bounded operators in H−1/2
α . Whereas P± in (5.4) is a projection, the identified operators for P± on

the right-hand sides of (5.6) are not. The validity of (5.6) depends on the knowledge that the functions
u±a are the Dirichlet traces of outgoing and downgoing waves, respectively. Note that, for the TE case,
(5.6) holds with the factor k2

b/k
2
a deleted.

So the S-matrix (cf. Fig. 3) acting in the boundary-value space H1/2
α ×H−1/2

α consists of the four
blocks Sab++ :=P+

b S
ab|imP+

a
, Sab+− :=P+

b S
ab|imP−

b
, Sab−+ :=P−a S

ab|imP+
a

, and Sab−− :=P−a S
ab|imP−

b
,

which we identify by their corresponding operators in H1/2
α (cf. (5.2)). Its action corresponds to a

system of two linear equations.

Sab =

(
Sab++ Sab+−
Sab−+ Sab−−

)
,

u+
b = Sab++u

+
a + Sab+−u

−
b ,

u−a = Sab−+u
+
a + Sab−−u

−
b .

Note that the four blocks of Sab identified as operators acting in the spaces imP±a =H
1/2
α (Γa) and

imP±b =H
1/2
α (Γb) are continuous by the mapping property of the variational operator of Thm. 4.2.

We start the derivation of the algorithm with the case of a grating consisting of two adjacent slices (cf.
(4)). Suppose the S-matrices Sab and Sbc of the slices between Γa and Γb and between Γb and Γc,
respectively, are known (cf. Sect. 6). How does the matrix Sac between Γa and Γc looks like? In other
words, we know

u+
c = Sbc++u

+
b + Sbc+−u

−
c (5.7)

u−b = Sbc−+u
+
b + Sbc−−u

−
c (5.8)

u+
b = Sab++u

+
a + Sab+−u

−
b (5.9)

u−a = Sab−+u
+
a + Sab−−u

−
b , (5.10)
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Figure 4: Step from two slices to their union.

and we look for

u+
c = Sac++u

+
a + Sac+−u

−
c , u−a = Sac−+u

+
a + Sac−−u

−
c . (5.11)

We set the traces ub±=ub±(·, b) of the functions ub±(·, ·) in the slice between Γb and Γc to the corre-
sponding upper output and input functions ub± of the S-matrix for the slice between Γb and Γc. Both

traces are in the trace spaceH1/2
α ×k−2

b+0H
−1/2
α . Then we eliminate these unknown functions from the

linear system (5.7)–(5.10). DefiningD :=(I−Sbc−+S
ab
+−), we arrive at the linear system (5.11) with the

operator coefficients

Sac =

(
Sac++ Sac+−
Sac−+ Sac−−

)
=

(
Sbc++

[
I+Sab+−D

−1Sbc−+

]
Sab++ Sbc+−+Sbc++S

ab
+−D

−1Sbc−−
Sab−++Sab−−D

−1Sbc−+S
ab
++ Sab−−D

−1Sbc−−

)
.(5.12)

Lemma 5.3. Suppose the BVP (2.1) for the three gratings between Γa and Γb, between Γa and Γc,
and between Γb and Γc are uniquely solvable s.t. the S-matrices Sab, Sac, and Sbc exist. Furthermore,
suppose kb(x1) :=k(x1, b) and kc(x1) :=k(x1, c) are piecewise twice continuously differentiable
w.r.t. x1. Then the operator D :=(I−Sbc−+S

ab
+−) is invertible.

Proof. Due to the definition D and due to the compactness of Sbc−+ (cf. the subsequent (6.7) and use
the compactness of T ab+ following from (6.8)), the operator D is a Fredholm operator of index zero. It
remains to prove that codimension of imD ⊆ imP− is zero, i.e. that the image space of D is dense.

For incoming waves u+
a =0 and u−c , there exists a solution u in the grating between Γa and Γc. Taking

the restrictions to Γa, Γb, and Γc and their projections to the up- and downgoing waves, we get the
waves u−a , u±b , and u+

c . The Eqns. (5.8) and (5.9) lead to the system

−Sbc−+u
+
b + u−b = Sbc−−u

−
c ,

u+
b − S

ab
+−u

−
b = Sab++u

+
a = 0.

Multiplying the last equation by Sbc−+ and adding the result to the first, we arrive at Du−b = Sbc−−u
−
c .

From the subsequent Eqns. (6.7) and (6.8), we observe that the image space of D is dense.

Now consider the general case and split the rectangular domain of Fig. 2 into n smaller slices (cf.
Fig. 5). We denote the S-matrices of the slices by Sj and the Dirichlet boundary values on the slice
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Figure 5: Step from many small slices to their union.

boundaries by u±j . Furthermore, we introduce the accumulated S-matrix Sj over the union over all
slices below the (j+1)th slice. I.e., we have

u±j := u±hj , Sj := Shj−1hj , Sj := Sh0hj , j = 1, · · · , n .

Suppose, for each small slice between Γhj−1
and Γhj , we can compute the S-matrix Sj , which requires

a solver for the BVP (2.1) (cf. Sect. 6). With this we get the

Scattering matrix algorithm.

i) Compute recursively the accumulated S-matrix Sn:

i)- i) Initialization:
Set j=1 and compute Sj =S1 (cf. Sect. 6).

i)-ii) Iteration for j running from 2 to n:
Compute Sj (cf. Sect. 6).
Apply the two-step formula (5.12) with Sab=Sj−1, Sbc=Sj , and Sac=Sj
to compute Sj from Sj−1 and Sj .

(5.13)

ii) Given the incoming wave modes u+
0 and u−n , compute the reflected and

transmitted waves u+
n =Sn++u

+
0 +Sn+−u−n and u−0 =Sn−+u

+
0 +Sn−−u−n and

their Rayleigh coefficients c+
b,n and c−a,n, respectively.

Compute the scaled squared moduli |c+
b,n|2 and |c−a,n|2 to obtain the efficiencies (intensities)

of the reflected and transmitted wave modes.
Compute the arguments of the complex numbers c+

b,n/|c
+
b,n| and c−a,n/|c−a,n|

to get the phase shifts of the modes.

Remark 5.4. Note that, in applications, the radiation condition of Def. (4.1) over Γh0 and Γhn might
be the classical one of (2.3) and (2.4). However, splitting the whole domain of the grating into smaller
slices, the wave-number function on some of the vertical slice boundaries Γhj will not be constant and
we rely on the Def. (4.1). This condition is valid at least on an infinitesimal small neighbourhood of the
slice boundary. Though the developers of the RCWA never thought about a radiation condition for all
x2>hj or all x2<hj , they use this condition in the S-matrices of the RCWA.

Remark 5.5. The above defined scattering matrix algorithm updates the four blocks Sj++, Sj+−, Sj−+,
and Sj−− in each step. A reduced algorithm is possible if u−n ≡0. Then it is sufficient to update two
blocks of the S-matrix and two vectors.
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Remark 5.6. If we are interested in the solution over the slices, then we can go backwards. Using the
two-step equations (5.9) and (5.8) for the two slices Sn−1 and Sn, we compute u+

n−1 and u−n−1. Using
(5.9) and (5.8) for the two slices Sn−2 and Sn−1, we compute u±n−2. Using (5.9) and (5.8) for the two
slices Sn−3 and Sn−2, we compute u±n−3. Going recursively up to 1, we get u±1 from (5.9) and (5.8)
for the two slices S1 and S2. Finally, over each slice between Γhj−1

and Γhj , we apply the solver for
(2.1), which has been used for the computation of the S-matrix Sj (cf. Sect. 6). Knowing the boundary
data u±j−1, the solver provides us with the values of the wave solution between Γhj−1

and Γhj .

6 Solution of the scattering problem over a slice and computa-
tion of the S-matrix

Clearly, the scattering problem over the slice is equivalent to a variational formulation, which can be
solved numerically by FEM. Then the combination of the iteration of the scattering matrix algorithm in
Sect. 5 with FEM is nothing else than a DDM for the FEM. In engineering applications, however, the
following different approach is used (cf. (6.6) and (6.7)), which reduces the computation to the solution
of the equivalent operator valued ODE.

To prepare the formula of the S-matrix, we need a few definitions. Recall the identification in (5.2) and
the splitting of the boundary data in Lemma 5.2. Analogously to the projections P±b in H1/2×H−1/2

over Γb based on the eigenfunctions fb,n for the differential operator k2L with k(x1)=k(x1, b+0),
we define the projections P±b−0 in H1/2×H−1/2 over Γb based on the eigenfunctions fb−0,n for k2L
with k(x1)=k(x1, b−0). We introduce the transition operators T+

ab and T−ba

T+
ab : imP+

a → imP+
b−0 ⊂ H1/2(Γb)×H−1/2(Γb),

T−ba : imP−b−0 → imP+
a ⊂ H1/2(Γa)×H−1/2(Γa).

The operator T+
ab maps u+

a ↔ (u+
a , k

−2
a v+

a :=k−2
a DtNau

+
a ) to

(
u(·, b0), k−2

b−0∂x2u(·, b−0)
)
, where

u is the solution of the initial value problem

a) ∂2
x2
u(x1, x2) = k2[Lu](x1, x2), 0 ≤ x1 ≤ 2π, a ≤ x2 ≤ b,

b) u(x1, a) = u+
a (x1), 0 ≤ x1 ≤ 2π,

c) ∂x2u(x1, a) = v+
a (x1), 0 ≤ x1 ≤ 2π,

(6.1)

of the operator valued ODE ∂2
x2
u = k2Lu equivalent to the Helmholtz equation (cf. (3.2)). Similarly,

T−ba maps u−b−0 ↔ (u−b−0, k
−2
b−0v

−
b−0 :=−k−2

b−0DtNb−0u
−
b−0) to

(
u(·, a), k−2

a ∂x2u(·, a)
)
, where u is

the solution of the problem

a) ∂2
x2
u(x1, x2) = k2[Lu](x1, x2), 0 ≤ x1 ≤ 2π, a ≤ x2 ≤ b,

b) u(x1, b) = u−b−0(x1), 0 ≤ x1 ≤ 2π,
c) ∂x2u(x1, b) = v+

b−0(x1), 0 ≤ x1 ≤ 2π.
(6.2)

Note that, for the case of x2 invariant wavenumber k(x1, x2) = k(x1) in the slice [0, 2π]× [a, b), we
get P±b−0 = P±a , and the transition operators T+

ab and T−ba are given by (cf. (4.1))

T+
ab[u

+
a,n(·, a)] = u+

a,n(·, b−0) ∈ imP+
a ,

T−ba[u
−
a,n(·, b)] = u−a,n(·, a) ∈ imP−a .

W.r.t. the basis fa,n, n ∈ Z+, both transition operators T+
ab and T−ba have the same diagonal matrix

(e−λa,n[b−a]δm,n)m,n∈Z+ and are bounded.
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Next we derive the formula for the S-matrix. The boundary values v+
a ∈ imP+

a over Γa and v−b =0 on
the curve Γb lead to a wave solution with boundary values P+

b T
+
abv

+
a ∈ imP+

b and P−b T
+
abv

+
a ∈ imP−b .

Sab :

(
v+
a

P−b T
+
abv

+
a

)
7→
(
P+
b T

+
abv

+
a

0

)
. (6.3)

Take v−b−0∈ imP−b−0. Then the boundary values P+
b v
−
b−0∈ imP+

b and P−b v
−
b−0∈ imP−b on the curve

Γb as well as P+
a T

−
bav
−
b−0∈ imP−a and P−a T

−
bav
−
b−0∈ imP−a on Γa lead to

Sab :

(
P+
a T

−
bav
−
b−0

P−b v
−
b−0

)
7→
(

P+
b v
−
b−0

P−a T
−
bav
−
b−0

)
. (6.4)

For the functions u+
a =v+

a +P+
a T

−
bav
−
b−0 and u−b =P−b T

+
abv

+
a +P−b v

−
b−0, Equations (6.3) and (6.4)

yield (
u+
a

u−b

)
=

(
I|imP+

a
P+
a T

−
ba

P−b T
+
ab P−b |imP−

b−0

)(
v+
a

v−b−0

)
,

(6.5)

Sab
(
u+
a

u−b

)
=

(
P+
b T

+
ab P+

b |imP−
b−0

0 P−a T
−
ba

)(
v+
a

v−b−0

)
.

Assuming that the determinant operator D−ab :={P−b |imP−
b−0
−P−b T

+
abP

+
a T

−
ba}: imP−b−0→ imP−b of

the first matrix in (6.5) is invertible, we arrive at

Sab =

(
P+
b T

+
ab P+

b |imP−
b−0

0 P−a T
−
ba

)(
I|imP+

a
+P+

a T
−
ba[D

−
ab]
−1P−b T

+
ab −P+

a T
−
ba[D

−
ab]
−1

−[D−ab]
−1P−b T

+
ab [D−ab]

−1

)
(6.6)

=

({
P+
b −P

+
b

[
P−b−0−T

+
abP

+
a T

−
ba

]
[D−ab]

−1P−b

}
T+
ab

[
P+
b −P

+
b T

+
abP

+
a T

−
ba

]
[D−ab]

−1

−P−a T−ba[D
−
ab]
−1P−b T

+
ab P−a T

−
ba[D

−
ab]
−1

)
.

Note that, for the case of x2 invariant wavenumber k(x1, x2) = k(x1) in the slice [0, 2π]× [a, b), the
formula (6.6) simplifies to Sab : imP+

a × imP−b → imP+
b × imP−a with

Sab =

(
P+
b T

+
ab−P

+
b [D−ab]

−1P−b T
+
ab P+

b [D−ab]
−1

−T−ba[D
−
ab]
−1P−b T

+
ab T−ba[D

−
ab]
−1

)
, (6.7)

where D−ab=P−b : imP−a → imP−b .

Lemma 6.1. Consider a grating in the domain [0, 2π]×[a, b] with a wavenumber function k s.t.
k(x1, x2)=ka(x1) for a≤x2<b and in the substrate x2≤a and s.t. k(x1, x2) = kb(x1) in the cover
material b≤x2. Suppose ka and kb are piecewise twice continuously differentiable w.r.t. x1. Further-
more suppose the BVP (2.1) over this grating is uniquely solvable (cf. Thm. 4.2), i.e., there exists the
bounded S-matrix Sab. Then the operator D−ab=P−b : imP−a → imP−b is invertible.

Proof. If v+
a = 0 and P−b v

−
b−0 = 0 and if u+

a and u−b are defined by (6.5), then, due to P+
a T

−
ba = 0,

we get u+
a = 0 and u−b = 0 s.t. Sab(u+

a , u
−
b )> = (0, 0)>. In particular, P−a T

−
bav
−
b−0 = T−bav

−
b−0 = 0

s.t. v−b−0 = 0. In other words, the null space of the operator P−b : imP−a → imP−b P
−
a ⊆ imP−b is

trivial and the right inverse maps [P−b |imP−
a

]−1: imP−b P
−
a → imP−a .

It remains to show that the image of D−ab coincides with the space imP−b . Consider the scattering
problem (2.1) with the incoming functions u+

a = 0 from below and an arbitrary u−b ∈ imP−b from
above. Then there exists a unique wave solution u ∈ H1

α([0, 2π]×[a, b]) and a unique solution pair
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u+
b ∈ imP+

b ⊂ H1/2(Γb) and u−a ∈ imP−a ⊂ H1/2(Γa). Clearly, we have u±b−0 = P±b−0(u+
b + u−b )

s.t. we get [T+
ab]
−1P+

b−0(u+
b + u−b ) = u+

a = 0 and T−baP
−
b−0(u+

b + u−b ) = u−a , where P±b−0 = P±a . In
other words, we have P+

b−0(u+
b + u−b ) = 0 and P−b−0(u+

b + u−b ) = [T−ba]
−1u−a . This implies the inclu-

sion (u+
b + u−b ) ∈ imP−b−0 and u+

b + u−b = u−b−0 = [T−ab]
−1u−a . For the boundary data of the wave

solution u = u+
b + u−b = u−b−0 ∈ imP−b−0 ⊂ H

1/2
α , this gives P−b u

−
b−0 = u−b ∈ imD−ab, and the ar-

bitrary u−b ∈ imP−b is in the image of D−ab.

We conjecture that, generally, the operator D−ab is a Fredholm operator of index zero (invertible oper-
ator plus compact operator). Unfortunately, in contrast to the case of TE polarization (cf. [7, proof of
Lemma 6.2]), we cannot prove this fact for TM. For small widths b−a and for an invertible BVP (2.1),
the above proof might be helpful to derive the invertible of a general D−ab.

The matrix Sab of Sab w.r.t. the four bases, namely with fa,n, n∈Z+ in imP+
a , with the same basis

in imP−a , with the basis fb,n, n∈Z+ in imP+
b , and with the same basis in imP−b is

Sab=

((
Θab

++−Θab
+−[Θab

−−]−1Θab
−+

)
T ab Θab

+−[Θab
−−]−1

−T abΘab
−+T

ab T ab[Θab
−−]−1

)
, T ab=

(
e−(b−a)λa,nδn,m

)
n,m∈Z+

. (6.8)

Here Θab with its four blocks Θab
+± and Θab

−± is the matrix of the basis transform inH1/2
α ×H−1/2

α from
the bases (fa,n,±k−2

a λa,nfa,n), n∈Z+ to the bases (fb,n,±k−2
b λa,nfb,n), n∈Z+.

Finally, we shall present a formula for the S-matrix alternative to (6.6), which is frequently used and
yields, in most cases, almost the same results. Only for large truncation indices N (cf. the subse-
quent (7.1)) and for deep gratings (i.e. for big widths b−a), there appear exponentials with large real
arguments leading to overflow problems in the numerical computation. This alternative formula has
no essential advantages in comparison with (6.6) but contains unbounded operators, which make the
analysis difficult. Problems of (6.6) with the invertibility of D−ab correspond to problems of the subse-
quent (6.10) with the invertibility of E−ab. So we mention only the formula. We even restrict ourselves
to the case of gratings with a wavenumber function independent of x2 for a ≤ x2 < b (compare the
special case (6.7) of (6.6)).

Define the operator Tab mapping H1/2
α (Γa)×H−1/2

α (Γa) to H1/2
α (Γb)×H−1/2

α (Γb) by (6.1) but with
general initial values (ua, va) instead of (u+

a , v
+
a ). Then(

u+
b

u−b

)
=

(
[P+
b Tab|imP+

a
] [P+

b Tab|imP−
a

]
[P−b Tab|imP+

a
] [P−b Tab|imP−

a
]

)(
u+
a

u−a

)
. (6.9)

Supposing the existence of the inverse of E−ab := [P−b Tab|imP−
a

] and writing this vector equation as
a system of two equations and solving the latter w.r.t. the unknowns u+

b and u−a , we get the vector
equation (u+

b , u
−
a )>= Sab(u+

a , u
−
b )> with

Sab =

(
[P+
b Tab|imP+

a
]−[P+

b Tab|imP−
a

][E−ab]
−1[P−b Tab|imP+

a
] [P+

b Tab|imP−
a

][E−ab]
−1

−[E−ab]
−1[P−b Tab|imP+

a
] [E−ab]

−1

)
. (6.10)

If this formula is used for the SMA of (5.13), then it should be used at most in the initialization step
i)-i) to compute S1. For the updates of the Sj in i)-ii), a different two-step formula should be used,
which computes Sj from Sj−1 and from the T-matrix Thj−1,hj directly. Indeed, this new formula can be
derived similarly to (5.12), replacing (5.7)–(5.8) by (6.9).

DOI 10.20347/WIAS.PREPRINT.3081 Berlin 2023



A. Rathsfeld 20

7 Discretization used by RCWA and FMM

Whereas in the FEM discretization of the SMA the domain of each slice is split into triangular sub-
domains and the functions are approximated by low order polynomial functions over each triangle,
the classical SMA, i.e. the RCWA or the FMM, are based on approximation by truncated Fourier series
w.r.t. variable x1. Of course, the Fourier coefficients depend on x2. In other words, the α-quasiperiodic
function is expanded as the sum (cf. (2.2))

u(x1, x2) =
∑
l∈Z

ûl(x2)ei(α+l)x1 .

Then a truncation index N>0 is fixed and an approximate function

uN(x1, x2) =
N∑

l=−N

ûN,l(x2)ei(α+l)x1 ≈ PNu(x1, x2) :=
N∑

l=−N

ûl(x2)ei(α+l)x1 (7.1)

is sought. Setting v :=k−2∂x2u and ~u :=(u, v)>, the PDE ∇· k−2∇u+ u = 0 is equivalent (com-
pare Equ. (3.1) for the case of x2-independent wavefunction) to the ODE ∂x2~u = Mx2~u with operator
valued coefficients (compare (3.3) and (3.2)),

Mx2 :=

(
0 k2I
L 0

)
, Lu := −∂x1k−2∂x1u− u,

which is approximated by the projected equation ∂x2~uN = Mx2,N~uN including the operator valued
matrix coefficient Mx2,N defined as

Mx2,N :=

(
0 [PNk−2I|imPN ]

−1

[PNL|imPN ] 0

)
, (7.2)

[PNL|imPN ]uN = −∂x1
[
PNk−2I|imPN

]
∂x1uN − uN .

Note that the matrix of [PNk−2(·, x2)I|imPN ] w.r.t. the basis functions x1 7→ei(α+l)x1 with the in-
dices −N≤ l≤N is a Toeplitz matrix and that of [PN∂x1|imPN ] = ∂x1|imPN is the diagonal matrix(
δl,ki(α + l)

)N
l,k=−N .

Remark 7.1. For a piecewise smooth multiplicator function g, the use of [PNg−1I|imPN ]−1 instead
of [PNgI|imPN ] improves the approximation (cf. [10]) if gu is smoother than u. In (7.2) the inverse
Galerkin approximation appears naturally from the reduction of the second-order differential equation
∂x2 [PNk−2I|imPN ]∂x2uN = −∂x1 [PNk−2I|imPN ]∂x1uN − uN to a system of two first-order equa-
tions.

Starting from (7.2), we define the algorithms and formulas from Sects. 3-6 on a discrete level. The pro-
jections PN onto the truncated Fourier series are bounded in H±1/2

α with a norm uniformly bounded
w.r.t.N . The corresponding operator on the spaces of Dirichlet and Neumann data over Γc with
c = a, b will be denoted by PcN,N := PcN ⊗ PcN ∈ L([H

1/2
α (Γc)×H−1/2

α (Γc)]). So the discrete ver-
sion of the space of Dirichlet and Neumann data is imPcN,N . Due to the assumptions <e k > 0 and
=mk ≥ 0, there is a ζ ∈ C s.t. <e [ζk−2

c ] ≥ ε > 0 s.t. the operator of multiplication by [ζk−2
c ] is

positive definite. Consequently, for bounded multiplication operators k−2
c I∈L(H

−1/2
α ), the Galerkin

method applies, the operators PNk−2
c I|imPN are invertible, and the [PNk−2

c I|imPN ]−1 are bounded
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uniformly w.r.t. N . We obtain discrete eigenvalues λc,n,N and eigenfunctions fc,n,N replacing Mc by
Mc,N s.t. (cf.(3.4))

[PcNk−2
c I|imPcN ]−1∂ [PcNk−2

c I|imPcN ]∂ fc,n,N +
[
[PcNk−2

c I|imPcN ]−1 + λ2
c,n,NI

]
fc,n,N = 0, (7.3)

where σMc,N
={±λc,n,N : n=1, · · · , 2N+1} and fc,n,N ∈ imPcN⊂H1

α(Γc). Note that in the case
of TE polarization, we get ∆u+k2u=0 in part a) of (2.1) and, instead of (7.3), we have the simpler
discretized eigenvalue equation

∂2fc,n,N +
[
[PcNk2

cI|imPcN ]fc,n,N + λ2
c,n,NI

]
fc,n,N = 0. (7.4)

Similarly to (5.1), we get

DtN
±
c,N

{
2N+1∑
n=1

ξnfc,n,N

}
= ±

2N+1∑
n= 1

λc,n,N 6= 0

ξnλc,n,Nfc,n,N ±
2N+1∑
n= 1

λc,n,N = 0

ξnfc,n,N , ξn ∈ C (7.5)

and, similarly to Equ. (5.2), we can identify the Dirichlet data u±c,N =
∑2N+1

n=1 ξnfc,n,N for upgoing and
downgoing waves, respectively, with couples of discrete Dirichlet and Neumann data s.t.

u±c,N ↔ (u±c,N , [P
c
Nk
−2
c |imPcN ]∂x2u

±
c,N), kc := k(·, c+ 0),

H1/2
α (Γc) ⊃ imPcN ↔ [imPcN ]±(Γc) ⊆ imPcN,N ⊂ H1/2

α (Γc)×H−1/2
α (Γc). (7.6)

Like in Lemma 5.2 the full space imPcN,N is the direct sum of these two subspaces, and we de-
note the projection onto the upgoing waves parallel to the downgoing waves by P+

c,N and I−P+
c,N

by P−c,N . So the space of Dirichlet data imPcN of upgoing and downgoing waves is identified with
imP+

c,N⊂ PcN,N and imP−c,N⊂ PcN,N , respectively. Replacing the Helmholtz equation by the dis-
cretized operator valued ODE and using the just mentioned discretized splitting into upgoing and
downgoing waves, we can consider the discretized BVP (2.1) over the full grating and over each slice
of Sect. 5. We get a discretized solution operator (scattering matrix) SabN mapping imP+

a,N⊗ imP−b,N
into imP+

b,N⊗ imP−a,N

SabN =

(
Sab++,N Sab+−,N
Sab−+,N Sab−−,N

)
,

Sab++,N =
{
P+
b,N−P

+
b,N

[
P−b−0,N−T

+
ab,NP

+
a,NT

−
ba,N

]
[D−ab,N ]−1P−b,N

}
T+
ab,N ,

Sab+−,N =
[
P+
b,N−P

+
b,NT

+
ab,NP

+
a,NT

−
ba,N

]
[D−ab,N ]−1, (7.7)

Sab−+,N = −P−a,NT
−
ba,N [D−ab,N ]−1P−b,NT

+
ab,N ,

Sab−−,N = P−a,NT
−
ba,N [D−ab,N ]−1.

Here the transition operators T+
ab,N and T−ba,N are the solution operators of the discretized ODE

∂x2 [Px2N k
−2I| imPx2N ]∂x2uN =Lx2,NuN , Lx2,NuN :=−∂x1 [Px2N k

−2I| imPx2N ]∂x1uN−uN (7.8)

corresponding to the initial value problems (6.1) and (6.2), respectively. The discretized operator
D−ab,N : imP−b−0,N → imP−b,N for the operator D−ab used in the S-matrix formula (6.6) is defined as
D−ab,N :={P−b,N |imP−

b−0,N
−P−b,NT

+
ab,NP

+
a,NT

−
ba,N}. Note that the projections P±c,N can be computed by

(7.5) and by (cf. (5.6))

P±b,N [u+
a,N ] =

1

2

[
u+
a,N±[DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1[PNk−2
a I
∣∣
imPN

]
DtN

+
a,Nu

+
a,N

]
,
(7.9)

P±b,N [u−a,N ] =
1

2

[
u−a,N∓[DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1[PNk−2
a I
∣∣
imPN

]
DtN

+
a,Nu

−
a,N

]
.
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We shall discuss the computation of the discretization T+
ab,N and T−ba,N next. If this is done, then

(7.7) enables us to compute SabN . Approximating Sj = Shj−1hj by discretized SjN = S
hj−1hj
N and the

incoming waves u−n and u+
0 by their truncations PNu−n and PNu+

0 , we can perform the SMA (5.13)
on the discrete level.

Finally, we have to fix how to compute the transition matrices T+
ab,N and T−ba,N . We can use any

integration algorithm for initial problems of ordinary differential operators (cf. the discussion of this
point e.g. in [13,15], where the resulting scattering matrix algorithm is called FMM). Unfortunately, fast
explicit methods are often not stable, and the integration error blows up for large widths hj−hj−1 of
the slice. To overcome this problem, the widths hj−hj−1 are reduced by increasing the number of
slices, and with thin slices a stable algorithm is achieved. Of course, the computing time increases
with an increasing number of slices.

An alternative method is the classical approach of the RCWA (cf. [11]). Firstly, we suppose that the
wavenumber in the slice is independent of x2, i.e. k(x1, x2) = k(x1, a). Then P+

b−0,N = P+
a,N and

the eigenfunction decomposition can be applied. E.g. for T+
ab, we use the identification (7.6) of u+

a,N

with (u+
a,N , [PNk−2

a I|imPN ]DtN
+
a,Nu

+
a,N) and arrive at

T+
ab,N

{
2N+1∑
n=1

ξnfa,n,N

}
=

2N+1∑
n= 1

λa,n,N 6= 0

[
eiλa,n,N (b−a)ξn

]
fa,n,N +

2N+1∑
n= 1

λa,n,N = 0

[(
1+(b−a)

)
ξn
]
fa,n,N ,

for any ξn ∈ C. Note that this formula reveals the importance of the decomposition of the waves
into upgoing and downgoing ones. For an improper decomposition, there would appear coefficients
[e−λa,n,N (b−a)ξn] blowing up with larger width b−a and with n→∞.

Secondly, if the wavenumber k of the slice is dependent on x2, then we split the slice into the union of
very thin subslices and approximate k over each subslice by a wavenumber function independent on
x2. For example consider an echelle grating like in Fig. 6, where two layers cover the lower boundary
Γa and a triangle is set upon the upper layer, surrounded by the turquoise lines and consisting of the
same material as the upper layer. Then the corresponding wavenumber function can be approximated
by the staircase geometry indicated by the additional blue layers. Replacing the slice by the union
of subslices, we have an approximate geometry, for which the case of x2-independent wavenumbers
applies. Of course the price for this solution is an extra numerical error due to the approximation of the
wavenumber and an increased computing time due to the increased number of slices.

Altogether, the parameters of discretization are the following.

� The first parameter is the truncation parameter N in (7.1).

� To get the Galerkin operators in (7.2), the Fourier coefficients of the reciprocal squared wave-
number function k−2 must be computed. In general, this requires a quadrature of the integrals
for the Fourier coefficients. So the second discretization parameters are those of quadrature.

� The third parameter is the stepsize of the slicing h :=minj=1,··· ,n [hj−hj−1] (cf. Fig. 5).

� If the FMM is applied, then the matrices T+
ab,N and T−ba,N are computed by a numerical integra-

tion of initial value problems for an ODE, i.e., by a FDM. So the last discretization parameter is
the stepsize of such a FDM.
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Figure 6: Staircase example for subslices to approximate an x2-depending wavenumber function.

8 Analysis of convergence

Before we start, we have to comment on the analysis in [4]. In this paper it is used that the RCWA is
equivalent to a discretized variational equation for the standard variational equation with the wavenum-
ber function replaced by an approximation, which is piecewise constant w.r.t.x2, and with a trial space

span
{
x1 7→ei(l+α)x1 : l=−N, · · · , N

}
⊗H1(a, b),

i.e., the space of truncated Fourier series with x2-dependent coefficients. At the first glance, the paper
seems to be disappointing since this equivalence assumes (tacit assumption in the proof of [4, Thm. 7])

� For the S-matrix computation, the integration of the ODE is exact:
This is acceptable if the RCWA with (6.6) is used. This might be not acceptable for the FMM.

� On the common boundary between consecutive slices, the boundary data for the upgoing and
downgoing are identified, i.e. all the operations in the iteration steps are exact:
Hence, the error propagation in the iteration is neglected in this first step of analysis. Such a
propagation analysis would be of interest for the stepsize of the slicing tending to zero, which is
not treated in the current paper either.

� All matrices, for which the inverse is required in the algorithm, are supposed to be invertible:
In particular, this requires the invertibility of the D−ab for the computation of the scattering matri-
ces via (6.6) and that of D for the iteration step in (5.12).

However, these assumptions mean that some errors are neglected, but others are treated by a hard
and deep analysis. So an estimate for the approximation error independent of the algorithmic imple-
mentation is provided and, therewith, a lower estimate for the convergence with maxj |hj−hj−1| → 0
and with N →∞. Moreover, the general RCWA is based on an EVD. For this, the asymptotic analy-
sis of the convergence of eigenvalues and eigenfunctions is extremely difficult. Observing empirically
computation errors of the EVD less than a small threshold, it is natural to neglect the algorithmic errors
due to EVD. Finally, note that in [4, Equ. (56)] there appears a monotonicity condition on the electric
permittivity, called non-trapping conditions. Though this is only a sufficient condition, it is a clever as-
sumption to exclude trapped eigenmodes, i.e. to guarantee condition ii) of Thm. 4.2 for all possible
slices. Without this, the validity of ii) remains open unless an absorbing material is involved.
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In the current paper, the grating is supposed to be the union of a fixed finite number of slices with
wavenumber function independent of x2 inside each slice. For the RCWA no finer slicing is needed,
and it remains to analyze the convergence for N→∞. We start with N=∞, i.e., we consider the
SMA iteration on a continuous level with no truncation of the Fourier series. From the derivation of
(6.7) and of the iteration (cf. Sect. 5), from Thm. 4.2, and from the Lemmata 5.3 and 6.1, we conclude
(compare [7, Thm. 6.3] for the TE polarization)

Theorem 8.1. Suppose the slicing is fixed s.t., for j=1, · · · , n, the wavenumber functions k(x1, x2)
are independent of x2 in hj−1≤x2<hj . Further, for j=1, · · · , n suppose the multiplication opera-

tors k−2
hj
I∈L(H

−1/2
α ) and the S-matrices Shj−1hj and Sh0hj are bounded operators (cf. Thm. 4.2).

Choose any pair (u+
a , u

−
b ) with u+

a ∈ imP+
a =H

1/2
α (Γa) and u−b ∈ imP−b =H

1/2
α (Γb). Then the it-

erative SMA method (5.13), where the S-matrices are computed by (6.7) and the transition operators
by exact integration of the initial value problems (6.1) and (6.2) (e.g. by (6.8)), yields the outgoing
waves u+

b ∈ imP+
b =H

1/2
α (Γb) and u−a ∈ imP−a =H

1/2
α (Γa), i.e. the true solutions for the scattering

problem (2.1).

Again we note that no boundedness of any multiplication operator k−2
c I in the spaceH−1/2

α is needed
for the case of TE polarization.

Next we fix the slicing and look at the RCWA discretization with finite truncation index N tending
to infinity. The first question is, how to deal with the EVD. From to general theory of approximate
eigenvalue computation of operators by computing the eigenvalues of approximate operators (cf. e.g.
[17]), it seems natural to require the following property of the EVD algorithm applied in the SMA:

Assumption on approximation of EVD:

For operator k2L : L2 ↪→L2 and for the approximate operators

AN := [PNk−2I|imPN ]−1PNL|imPN ∈L
(
imPN

)
suppose

ANPN→k2L ∈ L(H1
α[0, 2π], H−1

α [0, 2π]). For the eigenfunctions (8.1)

with k2Lfn=λnfn, n∈Z+ and ANfn,N =λn,Nfn,N , n=1, · · · , 2N+1

suppose that, for any ε>0 and n1∈Z+, there is an N0 =N0(ε, n1), s.t.

|λn−λN,n|≤ε and ‖fn−fn,N‖H1/2
α
≤ε, 1≤n ≤min{n1, 2N+1}

for any N with N0 ≤ N.

Tacitly, we assume that all these eigenfunctions are of rank one.

To prepare the proof on the convergence of the discretized RCWA, we recall a well-known result
on the approximation of eigenvalues (cf. e.g. [17, Sect. 4.2]) and present two lemmata on the stable
convergence of the Dirichlet-to-Neumann maps. Consider operators E,F ∈ L(H,H∗) in the Hilbert
spaces H and its dual H∗. We suppose H⊆L2⊆H∗ s.t. the duality between H and H∗ is an
extension of the L2 scalarproduct. Suppose there are orthogonal projections PN ∈ L(L2) strongly
converging to the identity for N →∞ s.t. the PN converge strongly in H and H∗ as well. Con-
sider approximate operatorsEN , FN ∈ L(imPN , imP∗N) s.t. the strong convergencesENPN → E
and FNPN → F hold. Eigenfunctions fN , f and eigenvalues λN , λ are defined by the equations
[EN+FN−λNIN ]fN = 0 and [E+F−λI]f = 0, respectively. Finally, recall that the converge
ENPN → E is called stable if there is an N0 ∈ Z+ s.t. supN≥N0

‖E−1
N PN‖L(H∗,H) <∞. If E is

invertible, thenENPN → E is stable if and only ifE−1
N PN → E−1. The convergence FNPN → F is

called compact if, for any bounded sequence xN ∈ H , the closure of the set {FNPNxN : N ∈ Z+} is
compact. Equivalently, the convergence is compact if, for any bounded sequence xN ∈ H, N ∈ Z+,
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for any subsequence xN , N ∈ N′ ⊂ Z+, and for any small positive number ε, there is a subsequence
xN , N ∈ N′′ ⊂ N′ and an x ∈ H s.t. ‖FNPNxN − x‖ ≤ ε holds for N ∈ N′′.

Theorem 8.2. Suppose:

i) There is a domain Λ⊂C s.t., for each λ∈Λ, the operator [E+F−λI] is a Fredholm operator
of index zero.

ii) There is a λ#∈Λ s.t. the operator [E+F−λ#I] ∈ L(H,H∗) is invertible.

iii) The convergence [EN−λIN ]→ [E−λI] is stable for any λ∈Λ. The convergence FN → F
is compact.

Then there holds:

a) For a sequence λN of eigenvalues for [EN+FN−λNIN ]fN = 0 with a limit λN→λ, the limit
λ is an eigenvalue for [E+F−λI]f = 0.

b) For any eigenvalue λ for [E+F−λI]f = 0, there exists eigenvalues λNk and eigenfunctions
fNk with [ENk+FNk−λNkINk ]fNk =0 s.t., for k→∞, we get λNk→λ and fNk→f in H ,
where f is an eigenfunction with [E+F−λI]f=0.

If the Conditions i),ii), and iii) hold for the domain Λ replaced by Λ={0}, then the convergence
[En+Fn]PN→ [E+F ] is stable.

Now fix an x2-coordinate c and denote by kc the restriction kc(x1) :=k(x1, c) of the wavenumber
function k(x1, x2). Recall the definition (7.3) for the eigenvalues λc,n,N and eigenfunctions fc,n,N .
To simplify the formulas, we assume λc,n,N 6=0 s.t. we get the Dirichlet-to-Neumann maps and their
inverses by (cf. (7.5))

[DtN
+
c ]±1

( ∑
n∈Z+

ξnfc,n

)
=

∑
n∈Z+

√
λc,n

±1
ξnfc,n,

[DtN
+
c,N ]±1

( 2N+1∑
n=1

ξnfc,n,N

)
=

2N+1∑
n=1

√
λc,n,N

±1
ξnfc,n,N , ξn∈C. (8.2)

Note thatDtN
−
c,N = −DtN

+
c,N andDtN

−
c = −DtN

+
c . So we only have to consider the Dirichlet-to-

Neumann operators with plus sign. We shall say that the basis fc,n,N , n=1, · · · , 2N+1 satisfies the
Riesz property in Hs

α uniformly if there is a constant C≥1 independent of N s.t., for all ξn∈C,

1

C

√√√√2N+1∑
n=1

(1+|λc,n,N |2)s|ξn|2 ≤

∥∥∥∥∥
2N+1∑
n=1

ξnfc,n,N

∥∥∥∥∥
Hs
α(Γc)

≤ C

√√√√2N+1∑
n=1

(1+|λc,n,N |2)s|ξn|2.

Lemma 8.3. Assume one of the two conditions on kc (cf. the assumptions on k in Sect. 3):

a1) The function kc is twice continuously differentiable and, for each x1∈ [0, 2π], there hold the
relations <e kc(x1)>0 and =mkc(x1)≥0. The basis fc,n,N , n=1, · · · , 2N+1 satisfies the
Riesz property in L2 =H0

α uniformly.

a2) The function kc is piecewise twice continuously differentiable and there exists a positive con-
stant ck s.t. kc≥ck.

Then, for −1≤s≤1, the system of eigenfunctions fc,n,N , n=1, · · · , 2N+1 forms a uniform Riesz

basis in imPN⊂Hs
α. The strong convergences [DtN

+
c,N ]±1PN→ [DtN

+
c ]±1∈L(H

±1/2
α ,H

∓1/2
α )

hold. Hence, the convergence [DtN
+
c,N ]PN→ [DtN

+
c ] is stable.
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Proof. At first, we consider the case of Assumption a2). Similarly to the Riesz property of the basis
fc,n, n ∈ Z+, we get the uniform Riesz property inHs

α for the bases fc,n,N , n = 1, · · · , 2N + 1 and
the Sobolev index s∈ [−1, 1]. Indeed, for any g̃N ∈ imPN , the selfadjointness of PN and (7.3) leads
us to 〈

∂x1PNk−2I|imPN∂x1fc,n,N + fc,n,N , g̃N
〉

= −λ2
c,n,N

〈
PNk−2I|imPNfc,n,N , g̃N

〉
,〈

∂x1k
−2∂x1fc,n,N + fc,n,N , g̃N

〉
= −λ2

c,n,N

〈
k−2fc,n,N , g̃N

〉
.

Setting hc,n,N := k−1fc,n,N ∈ im [k−1PN ] and gN := k−1g̃N ∈ im [k−1PN ], we arrive at〈
k∂x1k

−2∂x1khc,n,N + k2hc,n,N , gN
〉

= −λ2
c,n,N 〈hc,n,N , gN〉 . (8.3)

Consequently, the eigenfunctions hc,n,N of a selfadjoint operator are orthogonal. Thus we get the
uniform Riesz property of the fc,n,N in L2. For hN :=

∑
n ξnhc,n,N , we get (cf. (3.12))

a(hN , hN) = −
∑
n,m

ξnξ̄m
〈
[k∂x1k

−2∂x1kI + k2I]hc,n,N , hc,m,N
〉

=
∑
n,m

ξnξ̄mλ
2
c,n,N 〈hc,n,N , hc,m,N〉 =

∑
n

λ2
c,n,N |ξn|2.

Now follow the arguments in the proof of Lemma 3.3: Using the L2 Riesz property and the last es-
timate, we get the uniform Riesz property in H1

α. By interpolation and duality arguments we get the
uniform Riesz property in Hs

α for −1≤s≤1.

Obviously, the uniform Riesz property of the fc,n,N in H±1/2
α implies the uniform boundedness of the

operators [DtN
+
c,N ]±. It remains to prove the strong convergence on a dense subset. We shall prove

the convergence on the set of basis functions {fc,m : m∈Z+}. Fix anm and the corresponding fc,m.
Due to the orthonormality of the functions k−1fc,n,N =:hc,n,N and due to the Riesz property

PNfc,m =
2N+1∑
n=1

ξn,Nfc,n,N , ξn,N :=
〈
k−1PNfc,m, hc,n,N

〉
=
〈
k−2PNfc,m, k−2fc,n,N

〉
,

1 ∼ ‖fc,m‖2
Hs
α
∼

2N+1∑
n=1

(1 + |λc,n,N |2)s|ξn,N |2.

Consequently, for a fixed n0 independent of N , we get, for the coefficients ξn,N of PNfm,

PNfm =
2N+1∑
n=1

ξn,Nfc,n,N ,

[D+
c,N ]±1

(
2N+1∑
n=1

ξn,Nfc,n,N

)
=

2N+1∑
n=1

λ±1
c,n,Nξn,Nfc,n,N , (8.4)

∥∥[D+
c,N ]±1PNfc,m − λ±1

c,mfc,m
∥∥2

H
∓1/2
α

∼

∥∥∥∥∥
n0∑
n=1

λ±1
c,n,Nξn,Nfc,n,N − λ

±1
c,mfc,m

∥∥∥∥∥
2

H
∓1/2
α

+
2N+1∑
n=n0+1

(1+|λc,n,N |2)±1/2 |ξn,N |2 . (8.5)

Here the squared Sobolev norm on the right-hand side tends to zero, since we have λc,n,N→λc,n and
fc,n,N→fc,n, which implies ξn,N→〈k−2fc,m, fc,n〉=〈hc,m, hc,n〉=δn,m. Note that the convergence
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of eigenvalues and eigenfunctions follows by applying Thm. 8.2. For this, E + F is the operator of
the variational form in (3.12) mapping H = k−1H1

α into H∗ = kH−1
α . Since the variational form is

strongly elliptic, we have a splitting into the sum of an invertible operator E plus a compact operator
F . Choosing PN to be the L2 orthogonal projection onto the space im k−1PN , the approximate
operators are the Galerkin approximations (cf. (8.3)). The assumption in (8.1) guarantees that the
error of the EVD algorithm does not disturb the convergence of the eigenvalues and eigenfunctions.

The sum on the right-hand side of (8.5) can be estimated as

2N+1∑
n=n0+1

(1+|λc,n,N |2)±1/2 |ξn,N |2 ≤
2N+1∑
n=n0+1

(1+|λc,n,N |2) |ξn,N |2 sup
n0<n≤2N+1

(1+|λc,n,N |2)−1

≤ sup
n0<n≤2N+1

(1+|λc,n,N |2)−1‖fc,m‖2
H1
α
, (8.6)

which is small if n0 is fixed such that the supremum is small. We have to show that the supremum is
less than any prescribed ε > 0 provided n0 is large enough. Indeed, suppose the contrary. W.l.o.g.
we assume an ordering of the eigenvalues |λc,n,N | ≤ |λc,n+1,N | and |λc,n| ≤ |λc,n+1| for n = 1, · · · .
Suppose there is a C > 0 s.t. |λc,nN ,N | ≤ C for an nN ≤ 2N+1 with nN →∞. Due to the conver-
gence λc,n →∞, there is an ñ such that λc,ñ > C+1. However, from Thm. 8.2 we get a sequence
Nk such that λc,n,Nk → λc,n, k → ∞ for all n ≤ ñ. For nNk ≥ ñ, this leads to the contradiction
|λc,ñ,Nk | ≤ |λc,nNk ,Nk | ≤ C < C+1 ≤ λc,ñ.

Now consider Assumption a1). The proof is similar to that for a2). We only mention how to get the
uniform Riesz estimate and how to derive the convergence of the eigenvalues and eigensolutions. For
the latter, we observe that the main part of the differential operator for the EVD and its discretization
admit the following splitting

k2∂x1k
−2∂x1f = ∂2

x1
f−2k2k−3k′∂x1f, f ∈ H1/2

α ,

[PNk−2I|imPN ]−1∂x1 [PNk−2I|imPN ]∂x1fN

= [PNk−2I|imPN ]−1PN∂x1k−2∂x1fN

= [PNk−2I|imPN ]−1PNk−2I|imPN∂2
x1
fN

−2[PNk−2I|imPN ]−1PNk−3k′∂x1fN

= ∂2
x1
fN−2[PNk−2I|imPN ]−1[PNk−3k′I|imPN ]∂x1fN ,

fN ∈ imPN .

The compact convergence of 2[PNk−2I|imPN ]−1[PNk−3k′|imPN ]∂x1PN to the compact operator

2k2k−3k′∂x1 ∈ L(H
1/2
α , H

−1/2
α ) enables the application of Thm. 8.2, and the convergence of the

eigenvalues and eigenfunctions follows.

For the Riesz property, we derive from the eigenvalue equation (7.3) that

[PNk−2I|imPN ]−1
[
∂x1 [PNk−2I|imPN ]∂x1−IN

]
fc,n,N (8.7)

= −2[PNk−2I|imPN ]−1fc,n,N−λc,n,Nfc,n,N

The theory on the approximate solution to variational equations provides us with the N -uniform esti-
mates ∥∥[PNk−2I|imPN ]±1

∥∥
L(H0

α,H
0
α)
≤ C,∥∥∥[∂x1 [PNk−2I|imPN ]∂x1−IN

]±1
∥∥∥
L(H±1

α ,H∓1
α )

≤ C.
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Again this theory together with the differentiability of kc as well as the approximation and the inverse
property of the spaces imPN , yields∥∥[PNk−2I|imPN ]±1

∥∥
L(H2

α,H
2
α)
≤ C,∥∥[∂x1 [PNk−2I|imPN ]∂x1−IN

]∥∥
L(H2

α,H
0
α)
≤ C,∥∥∥[∂x1 [PNk−2I|imPN ]∂x1−IN

]−1
∥∥∥
L(H0

α,H
2
α)
≤ C.

We consider a general function fN =
∑

n ξnfc,n,m∈ imPN and arrive at

‖fN‖H2
α
∼
∥∥[PNk−2I|imPN ]−1

[
∂x1 [PNk−2I|imPN ]∂x1−IN

]
fN
∥∥
L2

∼
∥∥[[PNk−2I|imPN ]−1∂x1 [PNk−2I|imPN ]∂x1+[PNk−2I|imPN ]−1

]
fN
∥∥
L2

+O(‖fN‖L2)

∼

∥∥∥∥∥
2N+1∑
n=1

ξn
[
[PNk−2I|imPN ]−1∂x1 [PNk−2I|imPN ]∂x1+[PNk−2I|imPN ]−1

]
fc,n,N

∥∥∥∥∥
L2

+O(‖fN‖L2) .

Using (8.7) and the uniform Riesz basis property in L2, we continue

‖fN‖H2
α
∼

∥∥∥∥∥
2N+1∑
n=1

λ2
c,n,Nξnfc,n,N

∥∥∥∥∥
L2

+O(‖fN‖L2) ∼

√√√√2N+1∑
n=0

(1 + |λc,n,N |2)2|ξn|2,

which is the uniform Riesz property in H2
α. By interpolation and duality arguments, we get the uniform

Riesz property in Hs
α for −2≤s≤2.

In accordance with the last proof, the approximations [DtN
+
c,N ]±1 (cf. (8.4)) of the Dirichlet-to-Neu-

mann mapping and their inverses converge if the Riesz estimate on the discrete level is uniform and if
the discretized eigenvalues and eigenfunctions converge to those of the continuous level in the sense
of Thm. 8.2.

Remark 8.4. For the case of the TE polarization (cf. (7.4)), the assertion of Lemma 8.3 holds for any
piecewise twice continuously differentiable kc with <e kc>ε>0 and =mkc≥0 over [0, 2π].

Remark 8.5. If we have a uniform asymptotics of the form λc,n,N =n±α+ca/n+O(1/n2), then it
is not hard to prove the norm convergence ‖D+

c±0,N−PND
+
c±0|imPN‖→0 for N→∞.

Unfortunately, we need more. We need to have a stable convergence of the sum of two Dirichlet-to-
Neumann operators D+

c±0,N defined with different restrictions k(x1)=k(x1, c± 0) of the wavenum-
ber function. We guess that this is true. On the continuous level, both operators are strongly elliptic
in the same manner s.t. also the sum is strongly elliptic, and together with a trivial null space for the
sum operator the invertibility of the sum follows. In this spirit, if we could split the operators on the dis-
cretization level into strongly elliptic operators plus a compactly converging remainders, then we would
obtain stable convergence for the sum. Unfortunately, we could not show this. We can only prove

Lemma 8.6. Suppose the real-valued wavenumber function kc±0 are Hölder continuous and piece-
wise twice continuously differentiable and that there is a positive constant ck>0 s.t. kc±0≥ck. If
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the sum operator [k−2
c+0DtN

+
c+0+k−2

c−0DtN
+
c−0] ∈ L(H

1/2
α , H

−1/2
α ) is invertible, then the approxi-

mate operators {[PNk−2
c+0I|imPN ]DtNc+0,N + [PNk−2

c+0I|imPN ]DtNc−0,N} are invertible forN suf-
ficiently large. The sequence {[PNk−2

c+0I|imPN ]DtNc+0,N+[PNk−2
c+0I|imPN ]DtNc−0,N}−1PN con-

verges strongly to the operator [k−2
c+0DtN

+
c+0+k−2

c−0DtN
+
c−0]−1. In other words, the convergence of

the approximate operators {[PNk−2
c+0I|imPN ]DtNc+0,N+[PNk−2

c+0I|imPN ]DtNc−0,N}PN to the op-
erator [k−2

c+0DtN
+
c+0+k−2

c−0DtN
+
c−0] is stable.

Proof. The eigenvalue equation (7.3) implies that the functions [PNk−2
c I|imPN ]1/2fc,n,N are the or-

thogonal eigenvalues of the selfadjoint operator

[PNk−2
c I|imPN ]−1/2∂[PNk−2

c I|imPN ]∂[PNk−2
c I|imPN ]−1/2 + [PNk−2

c I|imPN ]−1.

Consequently, the functions fc,n,N form an orthogonal basis in imPN w.r.t. the weighted L2 scalar
product 〈k−2

c ·, ·〉 = 〈[PNk−2
c I|imPN ]·, ·〉. So we arrive at (cf. (8.4))〈

[PNk−2
c I|imPN ]DtN

+
c,N

2N+1∑
n=1

ξnfc,n,N ,
2N+1∑
n=1

ξnfc,n,N

〉
=

2N+1∑
n

λc,n,N |ξn|2.

For a fixed ε>0, there are n1, N1∈Z+ s.t. λc,n,N≥ε for n≤n1 and all N≥N1. Thus the operator
[PNk−2

c I|imPN ]DtN
+
c,N splits into an operator of rank less or equal to n1 and an operator with positive

definite real part greater or equal to constant times εI . The first operators corresponding to the n≤n1

converge compactly to an operator of rank less or equal to n1, and the second operators converge
to an operator with positive definite real part greater or equal to constant times εI . Since all these
second operators have an inverse of norm less than constant times ε−1, the second convergence is
stable. Summing c=c+0, c−0 and applying Thm. 8.2, we get the assertion.

Remark 8.7. If the operatorD−c−0,c+0 :=P−c+0|imP−
c−0

: H
1/2
α = imP−c−0→ imP−c+0 = H

1/2
α is invert-

ible (cf. Lemma 6.1), then the operator [k−2
c+0D

+
c+0+k−2

c−0D
+
c−0] is invertible. Indeed, by (5.6) we have

D−c−0,c+0 =
1

2

[
I+[DtN

+
c+0]−1k

2
c+0

k2
c−0

DtN
+
c−0

]
=

1

2
[DtN

+
c+0]−1k2

c+0

[
k−2
c+0D

+
c+0+k−2

c−0D
+
c−0

]
.

Now we consider the RCWA. Recall that this is the SMA of (5.13) applied with the operators
Shj−1hj replaced by S

hj−1hj
N , which are computed by (7.7). For the ingredients of (7.7), we solve

the EVD (7.3) for TM polarization resp. (7.4) for TE polarization to get the eigenvalues λhj ,n,N and
the corresponding eigenfunctions fhj ,n,N ∈ imPN . We get the operators T+

hj−1hj ,N
and T−hjhj−1,N

by their matrix (ei(hj−hj−1)λhj−1,n,N δn,m)2N+1
n,m=1 w.r.t. the basis fhj−1,n,N , n=1, · · · , 2N+1. We get

the Dirichlet-to-Neumann maps by (7.5), the projections P±hj ,N by (7.9) (cf. the subsequent (8.8)),

and the D−hj−1hj ,N
by the subsequent (8.9). Finally (cf. item ii) of (5.13)), the reflected and transmit-

ted waves are obtained by applying Sh0hnN to the approximate boundary data of the incident waves
u+
h0,N

:=Ph0N u
+
h0

and u−hn,N :=PhnN u−hn , respectively.

Theorem 8.8. For the SMA (5.13) discretized as the RCWA defined in Sect. 7, suppose
i) The slicing is fixed s.t., for j=1, · · · , n, the wavenumber functions k(x1, x2) are independent

of x2 in hj−1≤x2<hj .
ii) For the x2-coordinates c=hj, j=0, · · · , n, the scaled eigenfunctions (1+|λc,n,N |2)sfc,n,N of

[PcNk−2I|imPN ]−1Lc,N (cf. (7.8)), and the scaled eigenfunctions (1+|λc,n|2)sfc,n of k2Lc (cf.
(3.2)) form Riesz bases in the spacesHs

α for−1/2≤s≤1/2 withN -independent constants in
the corresponding norm estimates (cf. Lemma 8.3). The numerically computed eigenfunctions
fc,n,N and eigenvalues λc,n,N satisfy (8.1).
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iii) The discretized operators [DtNc,N ]±1PN (cf. (7.5)), defined for sufficiently large N , converge
strongly to [DtNc]

±1 (cf. (5.1)) for c=hj, j=0, · · · , n (cf. Lemma 8.3).

iv) For c=hj, j=1, · · · , n, all the sums [k−2
c+0DtNc+0+k−2

c−0DtNc−0] are invertible (cf. Lemma
5.3), and the {[PNk−2

c+0I|imPN ]DtNc+0,N + [PNk−2
c+0I|imPN ]DtNc−0,N}−1PN , exist for suf-

ficiently large N and converge strongly to [k−2
c+0DtNc+0+k−2

c−0DtNc−0]−1 (cf. Lemma 8.6).
v) For j=1, · · · , n, all the S-matrices Shj−1hj and Sh0hj are bounded operators (cf. Thm. 4.2).

Choose any pair (u+
h0
, u−hn) of incoming waves with u+

h0
∈H1/2

α (Γh0) and u−hn∈H
1/2
α (Γhn). Then

there is a threshold N0 s.t., for any N>N0, the iterative SMA method (5.13) can be applied on the
discrete level without any problem of inverting a noninvertible matrix. The resulting discrete solutions
u+
hn,N

and u−h0,N tend to the true solutions of the scattering problem, i.e., ‖u+
hn,N
−u+

hn
‖
H

1/2
α (Γhn )

→0

and ‖u−h0,N−u
−
h0
‖
H

1/2
α (Γh0 )

→0.

Proof. The plan of proof is as follows. The strong and stable convergence [DtN
±
c,N ]±1→ [DtN

±
c ]±1

will imply the strong convergence P±c,N→P±c . Furthermore, we shall show the strong and stable con-
vergences T+

ab,N→T+
ab, T

−
ba,N→T−ba, and D−ab,N→D−ab. Consequently, we shall obtain the strong

convergence SabN →Sab. For the two-step computation (5.12), define DN :=I−Sbc−+,NS
ab
+−,N . We

shall get DN→D and the strong and stable convergence D−1
N →D−1. Hence, we shall obtain the

strong convergence SacN →Sac for the matrices computed by the two-step algorithm. Applying these
arguments in the finitely many steps of Algorithm (5.13), we get the strong convergence of the corre-
sponding operators SnN→Sn, and the RCWA is shown to be convergent.

So look at the projections P±b,N applied to functions in the images of P±a,N for the case k(·, b) 6≡k(·, a).
The splitting uN =u+

b,N+u−b,N =u+
a,N+u−a,N means (cf. (5.2))(

u+
b,N , DtN

+
b,Nu

+
b,N

)
+
(
u−b,N , DtN

−
b,Nu

−
b,N

)
=
(
u+
a,N , DtN

+
a,Nu

+
a,N

)
+
(
u−a,N , DtN

−
a,Nu

−
b,N

)
.

Using DtN
−
c,N =−DtN

+
c,N , we easily conclude (compare the continuous version (5.6))

u±b,N =
1

2

[
u+
a,N+u−a,N

]
±1

2
[DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1[PNk−2
a I
∣∣
imPN

]
DtN

+
a,N

[
u+
a,N−u

−
a,N

]
,

(8.8)
P±b,NuN =

1

2

[
P+
a,NuN+P−a,NuN

]
±1

2
[DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1[PNk−2
a I
∣∣
imPN

]
DtN

+
a,N

[
P+
a,NuN−P

−
a,NuN

]
,

where, assuming λc,n,N 6=0, c=a, b for simplicity of presentation, we have (8.4). In view of (8.8),
for the convergence of the projections P±c,N , c=a,b to P±c , we only need the strong convergences
[DtN

±
c,N ]→ [DtN

±
c ] and [DtN

±
c,N ]−1→ [DtN

±
c ]−1. This however follows from Lemma 8.3. For the

current theorem, the stable convergence is one of the assumptions.

The uniform Riesz property of the bases fc,n,N , n = 1, · · · , 2N + 1 with c=a, b implies the uniform
boundedness of the T+

ab,N . For a strong convergence, we need the convergence on a dense subset in

H
1/2
α . We show the convergence on the eigenfunctions. We split the operators by splitting the matrices

with respect to the bases of eigenfunctions fc,n,N and fc,n. Fixing an appropriate n0 and setting

T+
ab,N,n0

:=
(
dnδn,me

−λa,n,N [b−a]
)2N+1

m,n=1
, dn :=

{
1 if n ≤ n0

0 else
,

T+
ab,n0

:=
(
dnδn,me

−λa,n[b−a]
)
m,n∈Z+

,
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we get T+
ab,N =T+

ab,N,n0
+[T+

ab,N−T
+
ab,N,n0

] and T+
ab=T+

ab,n0
+[T+

ab−T
+
ab,n0

]. Now, for any prescribed
ε>0 there is an n0 s.t. the estimate ‖[T+

ab,N−T
+
ab,N,n0

]PNfa,m−[T+
ab−T

+
ab,n0

]fa,m‖H1/2
α
≤ε holds

for sufficiently large n0 (cf. the arguments in (8.6)). By the same arguments, we even get the norm
estimate ‖[T+

ab,N−T
+
ab,N,n0

]PN−[T+
ab−T

+
ab,n0

]‖L(H
1/2
α )
≤ε. If fa,m=

∑2N+1
n=1 ξn,Nfa,n,N , then

T+
ab,N,n0

PNfa,m−T+
ab,n0

fa,m =

n0∑
n=1

[
e−λa,n,N [b−a]ξn,N−e−λa,m[b−a]ξn,N

]
fa,n,N ,

∥∥T+
ab,N,n0

PNfa,m−T+
ab,n0

fa,m
∥∥2

H
1/2
α
∼

n0∑
n=1

(1+|λa,n,N |2)
∣∣e−λa,n,N [b−a]−e−λa,m[b−a]

∣∣2 |ξn,N |2.
Similarly, from the convergence of the Dirichlet-to-Neumann mappings, we conclude

∥∥DtN
+
a,N,n0

PNfa,m−DtN
+
a,n0

fa,m
∥∥2

H
1/2
α
∼

n0∑
n=1

(1+|λa,n,N |2)−1 |λa,n,N−λa,m|2 |ξn,N |2→0.

For fixed n0, the last two formulas imply T+
ab,N,n0

PNfa,m−T+
ab,n0

fa,m→0, and the strong conver-
gence T+

ab,NPN→T+
ab is proved. Moreover, using the above splitting, we even get that the conver-

gence T+
ab,NPN→T+

ab is compact. Indeed, we take xN ∈H1/2
α , N ∈Z+ uniformly bounded, take

any subsequence xN , N ∈N′⊂Z+, and take any ε>0. Then, for a suitable fixed n0, we obtain
the estimates ‖T+

ab,N−T
+
ab,N,n0

‖ ≤ ε and ‖T+
ab−T

+
ab,n0
‖ ≤ ε. Expanding the truncated Fourier se-

ries into the eigenfunction basis as PNxN =
∑2N+1

n=1 ξN,nfc,n,N , we can choose an infinite subset
N′′⊂N′ s.t. the ξN,n is close to a limit ξn∈C, i.e., |ξN,n−ξn|<ε forN ∈N′′. Using fc,n,N→fc,n and
λc,n,N→λc,n and setting x :=

∑n0

n=1 ξnfc,n, we arrive at ‖T+
ab,N,n0

PNxN−T+
ab,n0

x‖
H

1/2
α
≤ Cε for

sufficiently large N . In other words, for N ∈N′′ sufficiently large ‖T+
ab,NPNxN − T

+
abx‖H1/2

α
≤ Cε,

and the convergence T+
ab,NPaNxN → T+

ab is really compact. Similarly, it can be shown that the strong
convergence T−ba,NPaNxN → T−ba is compact.

Next we have to show that the strong convergence D−ab,NPN→D−ab is stable, i.e., we have to prove
[D−ab,N ]−1PN→ [D−ab]

−1. Choosing the sign ± as − in (8.8) and setting u+
a,N =0, we get

D−ab,N =
1

2

{
IN + [DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1[PNk−2
a I
∣∣
imPN

]
DtN

+
a,N

}
(8.9)

=
1

2
[DtN

+
b,N ]−1

[
PNk−2

b I
∣∣
imPN

]−1
{[
PNk−2

b I
∣∣
imPN

]
DtN

+
b,N+

[
PNk−2

a I
∣∣
imPN

]
DtN

+
a,N

}
.

The convergence of the approximate operators [PNk−2
c I
∣∣
imPN

] to the strongly elliptic multiplication

operator k−2
c I is stable in Hs

α for −1/2≤s≤1/2. By the Assumptions iii) and iv) of the current
theorem we conclude that D−ab,NPN converges strongly to D−ab and that this convergence is stable.
Unfortunately, with Assumption iv) we rely on the poor result of Lemma 8.6. Nevertheless, putting the
strong and stable convergences together, we get the strong convergence SabN PN,N→Sab.

For the two-step computation in (5.12), we define DN :=I−Sbc−+,NS
ab
+−,N . Clearly, we get the strong

convergenceDNPN→D. However, we need a stable convergence since the operatorDN is inverted
in the recursion step. We need D−1

N PN→D−1. Fortunately, the block Sbc−+ is compact since T+
ab

and T−ba compact, which follows by the Riesz property, by the representation as a diagonal matrix
(e−λa,n[b−a]δm,n)m,n∈Z+ (recall Sect. 6), and by the decay of the diagonal entries. Based on this fact,
we have shown the compact convergence T−cb,NPbNxN → T−cb . Since Sbc−+ is equal to T−cb multiplied

by a bounded operator, we get the compact convergence Sbc−+,NS
ab
+−,NPN→Sbc−+S

ab
+−. Thm. 8.2
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implies the stable convergence DNPN→D. We finally obtain that SacN PN,N converge strongly to
Sac for N→∞.

Altogether, we have shown the strong convergence SacN PN,N→Sac for the matrices computed by the
two-step algorithm if we know the strong convergences SabN PN,N→Sab and SbcNPN,N→Sbc and if
the convergence T−cb,NPbNxN → T−cb is compact. Applying these arguments to finitely many steps of
Algorithm (5.13), we get the strong convergence of the corresponding operators SnNPN,N→Sn. In
other words, the RCWA is shown to be convergent.

Remark 8.9. Assumption v) of the theorem is natural. If the problem over a complex domain is reduced
to the solution of problems in subdomains, then the solution of the subdomain should exist and should
be unique. Trapped modes in subdomains must be excluded. Assumption i) is natural as well. There
is no reason to subdivide any domain with wavenumber function independent of x2 since this means
more work with no improvement. The Riesz basis property in Assumption ii) is of technical nature.
The second part of ii), the condition of (8.1), is designed to avoid that an inaccurate EVD computation
spoils the convergence.

Remark 8.10. The assumptions iii) and iv) are technical, and in many cases (cf. the additional as-
sumptions in the cited Lemmata) it is unclear how to check these practically. So in many cases it
cannot be excluded that these assumptions are violated. It may happen, that the algorithm breaks
down due to a required inversion of an ill-behaved matrix block. Or the RCWA might not be convergent
for N→∞. However, in the special case of TM polarization with Hölder continuous and piecewise
twice continuously differentiable wavenumber functions khj≥ε>0, the technical assumptions iii) and
iv) are fulfilled. Similarly, in the special case of TE polarization with piecewise continuous wavenumber
function khj≥ε>0, the technical assumptions iii) and iv) are fulfilled.

Remark 8.11. If in the TM case the functions khj are only piecewise smooth, then the splitting into
upgoing and downgoing wave is not continuous, and a stable convergence of the RCWA seems not
to be possible. Usually, this means that the convergence is not possible for all natural input values but
for special inputs like plane-wave incidence it might be converging. However, there will be a loss in the
convergence rate in comparison to the rate of approximation by the trial space.

9 Concluding remarks: Open problems, Area of application

Mathematically, there remain many interesting open problems.

� For the discretization with fixed slicing, i.e., for fixed h0, h1, · · · , hn:
a) Is there any situation s.t. an eigenfunction of rank greater one occurs? If yes, then a mod-

ification of the code is required. This is difficult to check since the rank does not depend
continuously on the geometry and optical indices.

b) Is there any situation s.t. the Riesz basis property is not satisfied or is not uniform? If yes,
then other discretized norms than that of a weighted `2 norm may appear. An extension
of the theoretical background might be necessary.

c) How does the EVD looks like for more general k and the TM polarization. Is there still
some kind of error analysis for the complete system of eigenvalues and eigenfunctions?

d) What about the rates of convergence? In simple cases, this might not be too difficult.
e) What about function x1 7→ k(x1, x2) with jump discontinuities? This leads to different

trace spaces k−2(·, c±0)H
−1/2
α . Should the coupling over the Γhj and, therewith, the

SMA be modified?
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� For the discretized SMA with wavenumber function depending on x2 and with n→∞ s.t. the
width of slices max{hj−hj−1 : j=1, · · · , n} tends to zero:

a) For a single slice, can the formula for the S-matrix Shj−1hj with x2-dependent k and with
hj−hj−1 be approximated by an S-matrix with frozen x2-independent k s.t. the results
proven for the independent case take over to the dependent case?

b) How to analyze the recursion algorithm for n→∞? This reminds of the stability problems
for FDM of ODE-systems. Inside the slice the method of the FMM might be explicit. Over
the boundary of two slices it is implicit.

The area of applications for the general SMA are scattering problems over deep surface struc-
tures, i.e., gratings with period per∼λinc and with hn−h0≥O(per). In particular, suppose the grat-
ing is the union of many slices but all these layers are shifted versions of two or three standard layers.
In this case, the scattering matrices of the two or three standard slices are computed once and can
be reused many times. Gratings similar to photonic crystals (cf. e.g. [2]) are of this structure. The SMA
discretized as RCWA is efficient for gratings with a few slices of big size hj−hj−1 ≥O(per), each
with x2-independent optical index. No additional slicing is needed for these. Furthermore, if the wave
solution u is smooth w.r.t. the horizontal x1-coordinate, then a small truncation index N is sufficient,
and the discretized iteration (5.13) is fast. For an application of the FMM, no independence of the verti-
cal x2-coordinate is needed. However, the wave solution should have a certain degree of smoothness
w.r.t. this vertical coordinate s.t. the FDM performs well. For non-smoothness w.r.t. x2, an adaptive
choice of the slicing stepsize and FDM stepsize would be helpful.

We conclude with a remark on the comparison of RCWA/FMM and FEM. Clearly, engineers and
physicist prefer the RCWA/FMM, for it is based on eigenmode expansion, i.e., on physical intuition.
Though a comparison of a code for RCWA/FMM and one for the FEM is possible, a comparison of
the general methods is difficult. In general, the FEM is a basic discretization scheme and, therefore,
should be compared to a Galerkin approximation based on truncated Fourier expansions. Here it is
clear that, due to elaborated standard techniques, FEM is more suitable to approximate singularities.
Surely, this requires adaptive FEM grids and error estimators. Corresponding adaptions on the side
of the RCWA might be possible, but require to develop new codes. On the other hand, for special
situations (cf. [2]), a smooth solution can be approximated very effectively by truncated Fourier series.

Looking at its nature, the RCWA should rather be compared to FEM combined with domain decom-
position. In this sense, Assumption v) in Thm. 8.8 is common for both methods. If this is fulfilled, then
FEM is guaranteed to converge for our elliptic PDE. For the RCWA/FMM, there still might occur prob-
lems with rank-two eigenfunctions, with ill conditioned systems of eigenfunction, and with the inversion
of ill-behaved operators. Note that these are open problems, and is not clear whether such problems
really occur. Besides, at least for real-valued k, numerical experiments and the successful applications
over many years prove the RCWA/FMM to be reliable numerical schemes.
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