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Functional SDE approximation inspired by a deep operator

network architecture
Martin Eigel, Charles Miranda

Abstract

We present a novel approach to solve Stochastic Differential Equations (SDEs) with Deep
Neural Networks by a Deep Operator Network (DeepONet) architecture. The notion of Deep-
ONets relies on operator learning in terms of a reduced basis. We make use of a polynomial chaos
expansion (PCE) of stochastic processes and call the corresponding architecture SDEONet. The
PCE has been used extensively in the area of uncertainty quantification with parametric partial
differential equations. This however is not the case with SDE, where classical sampling meth-
ods dominate and functional approaches are seen rarely. A main challenge with truncated PCEs
occurs due to the drastic growth of the number of components with respect to the maximum poly-
nomial degree and the number of basis elements. The proposed SDEONet architecture aims to
alleviate the issue of exponential complexity by learning a sparse truncation of the Wiener chaos
expansion. A complete convergence analysis is presented, making use of recent Neural Net-
work approximation results. Numerical experiments illustrate the promising performance of the
suggested approach in 1D and higher dimensions.

1 Introduction

Stochastic differential equations (SDE) can be seen as a form of generalisation of ordinary differential
equations (ODE) by the introduction of or more stochastic processes into the formulation. The trajec-
tories are hence also stochastic processes and the theoretical analysis requires in particular a notion
of integrating with respect to white noise, which is given by the Ito integral. They are heavily used in
physical models such as molecular dynamics, in financial mathematics and are also very prominent in
recent developments in deep learning, in particular in the highly active field of generative models [41].
A standard way to obtain numerical approximations of the solution is by using the Euler-Maruyama
scheme, an adaptation of the explicit Euler scheme for ODEs. The convergence rate depends directly
on the regularity of the SDE, and hence is quite limited by the typical lack thereof.

In this work, we consider a functional representation of SDEs in terms of polynomial chaos expansions
(PCE), which use tensorisations of polynomials that are orthogonal with respect to a certain probability
measure as a basis. Any stochastic process with finite variance can be written in this way, as stated in
the famous theorem of Cameron and Martin [5, 20]. The PCE has been very popular in the analysis
and numerical treatment of parametric PDEs in the field of Uncertainty Quantification [36, 7, 12]. For
SDEs, despite advantages of functional approximations such as direct access to statistical quantities of
interest, these are an exception [17] and stochastic methods are clearly dominant. A central reason for
this is that functional approximations of irregular processes usually require a fine discretisation and a
large number of expansion terms, i.e. high polynomial degrees, to achieve an adequate accuracy. Due
to the exponential growth of complexity (“curse of dimensionality”), this cannot be handled practically
without modern compression tools. Moreover, the analysis of such elaborate schemes is rather difficult.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



M. Eigel, C. Miranda 2

= : : : : - i

Lon
0.0+
095 F
£ ~109\ AoR
—0.5F 1 “HE
' —>G= ... .
085
—0.23
-1.0F 3 0.80 F
m
. | . | | | RP 075 F . | . | H
0.0 0.2 0.4 0.6 0.8 L0 0.0 0.2 04 0.6 0.8 Lo
Time (t) Time (t)
W = Brownian motion X = Solution of the SDE

Figure 1: Sketch of the SDEONet action working on input GG (processed Brownian motion, left), ap-
proximation A and reconstruction R of the SDE solution (right).

Our developed approach relies on a deep neural network (NN) architecture called Deep Operator
Network (DeepONet) [26], which aims at learning (approximations of the actions of) operators in infi-
nite dimensional function spaces. DeepONets feature a specific structure consisting of a trunk and a
branch network that enable the complete theoretical analysis of these NN representations [24]. While
DeepONets and related approaches such as Fourier Neural Operators have been used in the con-
text of (partial) differential equations [15, 23], an application to SDEs has not been presented to our
knowledge. We use the notion of reduced basis exploration provided by a DeepONet with the PCE of
an SDE as analysed in [18], leading to a compressed functional SDE representation where the evo-
lution of the coefficients follows the trajectories of an appropriate ODE. The principle of the devised
architecture is sketched in Figure 1. There, a Brownian motion I} is encoded by £ with respect to an
assumed basis in time, leading to input GG of approximation A and reconstruction R. The result of the
network operation is the solution X of the SDE.

As our model problem, we consider the continuous stochastic process (Xt)te[o,ﬂ that satisfies the
SDE,

dX; = N(ta Xt) dt + O’(t,Xt) dVVt, with Xy = xo, (1.1)

where (W})sc[0,7 is @ Brownian motion defined on a filtered probability space (€2, F, (F;)scjo,1], P).

Our main achievements are:

B Development of a DeepONet inspired architecture for the functional (Wiener chaos) represen-
tation of SDE solutions.

B Convergence and complexity analysis of this architecture in terms of the discretisation parame-
ters. To achieve this, recent results on NN approximations of polynomials and Hélder continuous
functions are used [37, 32, 34].

We present our main result Theorem 4.1 qualitatitely for the devised SDEONet architecture in the
following.

Theorem 1.1 (Main result). Letp, m = 2¥ € N, G be a SDE solution operator given by Definition 3.8
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ande € (0, Ed 1/3). Then, there exists a SDEONet N'P"™ given by Definition 3.10 that satisfies

E§<—+2) +e E[W; ]
(p+1)! =

1 Te(K,T)*P+D
p+ 1) 2(p+1)+1

+\£(1—< (1+C(K7T))p“>l/2>

with ¢(K, T') a constant that depends only on K, linked to the regularity of the drift ;1 and the diffusion
o, andT’. The SDEONet is composed of an approximator A that satisfies

size(A) < Cip max } k517 log (1 + |k])| k715 log(pe ™),

JE€{1,....p

depth(A) < C; max |kj[log(1+ |/<:;-‘D2|k;-‘|olog(1 + [k7]o) log(pe™1),

j€{17"'7p}

with a positive constant C; > 0 independent of p, m, € and of a trunk net 7 that satisfies

I

depth(r) < (2+ [logy(n+1)])(12+n)  and  size(r) < Cop (ﬁ)

with a constant Cy > 0 that depends only on the regularity of the x ;.

With this work, we aim to provide a new perspective on SDE (functional) solution representations
with NNs that can be fully analysed mathematically. It should be noted that there have been different
attempts to represent and analyse SDE solutions with NNs. For instance, in [2] the Kolmogorov back-
ward SDE was learned with an SDE to show complexity bounds of an equivalent PDEs. In particular,
an Euler discretization scheme (where layers correspond to the steps of the time discretisation) and an
architecture based on the Picard iteration were presented. Inspired by this work, an ResNet-based ar-
chitecture for the Langevin SDE was presented in [11], the results of which can be used for interacting
particle transport in the context of Bayesian inverse problems [14, 10].

An alternative compression technique can be identified in low-rank tensor formats [16, 29]. In partic-
ular, the hierarchical formats such as the well-known tensor trains (TT) [33] can reduce exponential
complexity to a polynomial one if low-rank approximability is satisfied. In [1] it was demonstrated that a
TT based Longstaff-Schwarz algorithm competes with (and even surpasses) equivalent NN construc-
tions [3].

The structure of the paper is as follows: Preliminaries on the considered SDEs and their approxima-
tion in terms of Wiener chaos expansions are reviewed in Section 2. We recall a central convergence
result and the correspondence of expansion coefficients with ODE trajectories. Section 3 is concerned
with the introduction of NN and in particular DON. Moreover, our new SDEONet architecture is de-
scribed. The convergence analysis of this architecture is carried out in Section 4, combining results
from Wiener chaos and NN approximation of polynomials and functions with Hélder regularity. The
practical performance of SDEONets is illustrated in Section 5 on the basis of benchmark problems in
one and more dimensions. The paper ends with a summary of the achieved results and an outlook
into future work.
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2 SDEs and Wiener chaos

In this section, we review polynomial chaos representations of stochastic processes in terms of Her-
mite polynomials, as presented in [19]. We introduce the specific setting we use for the construction
of the SDEONet architecture in Section 3. First, we recall the SDE setting and requirements for well-
posedness and regularity of the solution.

2.1 Definitions and notation

Given a probability space (€2, F,P) and a R%-valued Brownian motion 1/, we consider

B {(F);t € [0,T]}, the filtration generated by the Brownian motion W/,

B [P(F) = LP(Q,F,P),p € N*, the space of all F-measurable random variables (r.v.) X :
Q — R? satisfying || X |2 := E[|X7,] < oo,

B CPIU x V,W),p,q € NU {oo}, the space of functions f : U x V — W that are p
continuously differentiable in the first component and g continuously differentiable in the second
component,

B OYK) :={f € OK) : ||fllcs < oo}, with K C R?is compact and 3 = (n,&) €
N x (0, 1], the space of -Hélder continuous functions, where

£l i—max{mggHa“flloo,rggLipg(aaf)} and Lip,(f) == sup 1f(z) = fy)l

al la etyek T — Y[

To ensure the uniqueness of the solution of (1.1), we henceforth require the following assumptions to
be satisfied.

Assumption 2.1. LetT' > 0 and let
P[0, T) xR =R 6:[0,T] x RT — R>™
be F-measurable functions satisfying
1 linear growth
et 2)]l + lo(t ) [lro < K (L4 ||z[l2), Vo € RYt € [0,T] (2.1)

for some constant K > 0,

2 uniform Lipschitz continuity with a Lipschitz constant, K > 0

lu(t, o) = p(t, y)llz+llo(t, 2) = ot y)llre < Kllz—yll2, Yo,y € RYE€[0,T]. (22)
Let zy be a random variable that is independent of F with finite second-moment E|[||zo|3] < oo.

Under these assumptions, [31, Theorem 5.2.1] asserts that the SDE (1.1) has a unique t-continuous
solution X;.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



SDEONet 5

Definition 2.2 (Multiple stochastic integrals [28, 30]). Let f € L*([0,T]") be a symmetric function.
The n-multiple stochastic integral I,,( f') is defined as the stochastic integral over the cone C := {0 <
th <te<---<t,<T}ie,

T tn to
:/ / / Fltr, . t) AW, .. AW,
0 0 0

It satisfies the following properties

W [, is linear,

B 1,(f) = L,(f), where f is the symmetrization of f, which is

Flti. o ty) 'Zf oo tam)s

oESy

W E[L,(f)In(g)] = 6mnl(f, 9)r2(0.11m)

2.2 Wiener chaos expansion of SDEs

In this section we recall the notion of the Wiener chaos expansion and convergence results required
later. For more information, we refer to [30, 20].

Normalised Hermite polynomials are defined through the identities

Hy(x) :=1 (2.3)

moe Do (2) 5 (D)) wz e

The n-th Wiener chaos H,, is the closed linear subspace of L*(€2, F,[P) generated by the family
of random variables {Hn <f0T hs dWS> R 2o = 1}. The vector spaces H,,n > 0, are
orthogonal, giving rise to the Wiener chaos expansion [30, Theorem 1.1.1]

L*(Q, F,P) = @H (2.5)

Therefore, any random variable Y € L?((2, F,P) admits an orthogonal decomposition

—yO+ZZkaH (/ )dW) (2.6)

k=1 |n|=k i=1

where n = (n;);>1 is a sequence of positive integers determining the polynomial degree,
> o1 1, and (e;);>1 is an orthonormal basis of L*([0,77]). The coefficients are given by projection,

Yo = E[Y]a

e[ T ([ o)

We now consider the one-dimensional continuous stochastic process, (Xt)te[oa"] satisfying (1.1). Us-
ing (2.6) and Malliavin calculus, [19] derived the following propagator system.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



M. Eigel, C. Miranda 6

Theorem 2.3 (Propagator system [19, Theorem 2]). Given Assumption 2.1, let (X)sc(o,1] satisfy (1.1)
and assume that (X;); € L*([0,T] x Q). Then, X; exhibits the chaos expansion

=:G;
o0 g T
X, = Z Z zo(t) | | Ha, </ ei(s) dWs) (2.7)
k>0 |a|=k i=1 0 .
and the coefficients x,(t) satisfy the system of ordinary differential equations
dx, >
T (t) = p(t, Xi)a + Z Vagei(t)o(t, Xe)a- (), (2.8)
j=1
[L'a(O) = 104:07507 (2.9)

where [(t, X;)a (resp. o(t, X;).) denotes the a-coefficients of the Wiener chaos expansion as-
sociated with the random variable 1(t, X;) (resp. o(t, X;)), and o™ (j) = (a1,...,05-1,0; —
1, Oéj+1, . )

In order to approximate the process (X );, one considers the truncation,

p

XPk = X_: Z. Z4(t) ﬁ H,, (/OT ei(s) dWs> : (2.10)

which uses orthogonal projections W, only with respect to the first k£ basis elements <€i>1gigk and

only up to the p-th order Wiener chaos. In [18], the authors derive an upper bound on the L?-error
P,k 2

E[(X7 — X0,

Theorem 2.4 (L?-error of the Wiener chaos truncation). Given Assumption 2.1 and let (X)iejor]
satisfy (1.1). Moreover, assume that j1,0 € C1°°([0, T] x R) such that

aﬁ-‘rmﬂ aﬁ-‘rmu af—l—mo. aZ—l—mO.
(1) = oY) |+ | (6 T) — e
ottox™ ottox ottox ottox

<t,y>\ <Klz—yl, K>0.

fort € [0,T), z,y € R, any ¢ € {0,1}, andm > 0. Then it holds that

E[(XP* — X,)% < C(1 + 2?) (ﬁ + ) (Eg(t)2 +/O E}(7) dr)) ;o (211)

l=k+1

where C' = C(t, K) is a positive constant and the function E,(t) is defined by
t
Ey(t) == / es(s) ds. (2.12)
0

In the following, we use the Haar basis {eg, egn-1,; : 1 < j < 2"71 n > 1} defined by

1ozt
GO(t) = [(j]T( )7
on—1
ean-14(t) =\ = (1[T%,ng—;1] - 1[T2g;1,T22%]> :

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023
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For this basis, the integrals GG; in (2.7) can be computed explicitly, which is used in our analysis. In
fact,

T
1
eo(t) AW, = —— Wi,
/0v 0() t \/T T

T o251
eon—1,:(t)dW, = ((WM—WM>—<W2J—WM)>
/0 2 +j<> t \/T TS T5 T3 T=5%

The first basis functions are plotted in Figure 2.

1.56

—1.56

t

Figure 2: First Haar basis functions for n < 2.

3 Deep operator networks

In this section, we formally introduce neural networks and review results on deep operator networks [24].
These form the foundation of our architecture for SDEs that is presented in Section 3.3.

3.1 Neural Networks

A general neural network definition is as follows.

Definition 3.1 (Neural network and o-realisation). Letd, s, L € N\ {0}. A neural network ® with
input dimension d, output dimension s and L layers is a sequence of matrix-vector tuples,

o = ((Wl, bl); ) (WL’bL))’

where W* € R™*™-1 and b’ € R™, withng = d, n;, = s andnq,...,n;,_1 € N.

We denote by Nd, L,s the space of neural network ® with input dimension d, output dimension s and
L layers, and also Ny, := ;o Nars K C RYand o : R — R is an arbitrary activation
function, the associated realisation of ® with activation function o over K is defined as the map
R,® : K — R? such that

R,®(zx) = Apoco A, 10 ---000 A (z),

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023
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where Ay(z) = W* - x + b’ is an affine transformation.

We also introduce the following nomenclature for a neural network ® € N, d,s

L
depth(®) := L,  size(®) := [|®[lo := > (ne—1 + L)ny.

(=1

g

Figure 3: Left: Two neural networks. Right: Parallelisation with shared inputs of both networks ac-
cording to Proposition 3.2.

The parallelisation of neural networks is a common operation that we use in the subsequent analysis.

Proposition 3.2 (Parallelisation [34, Definition 2.7]). Let ®! = (W}, b1),...,(W},b})) € Nyr.q
and ®* = (W7,b7),...,(WE, b)) € Nars, be two neural networks with d-dimensional input.
Then P(®', ®?) = ((Ay,b1), ..., (AL, by)), where

N Al - bl . Al 0 - b}
A = 1)7 b;:(l), A::<£ ), b::(f) for1 <{ <L
! (A% ! v? ¢ 0 A? ¢ b7

is a neural network with d-dimensional input and L layers, called the parallelisation of ®' and ®2.
Moreover, P(®!, ®?) satisfies

size(P(®', ®?)) = size(®') +size(®?) and R,P(®', ®%) = (R,®', R,D?).

We recall approximation results for continuously differentiable and Hélder continuous functions that
are used in the later analysis. The neural network complexity required for approximating multivariate
Hermite polynomials up to a certain accuracy has been examined in [37].

Theorem 3.3 (Deep RelLU neural networks approximation of multivariate Hermite polynomials [37,
Theorem 3.7]). Let A C {a € N* : |a| < oo} befinite. Forevery e € (0, ¢ ") there exists a neural
network ®, such that .

I})}eai( HHa - He,aHLi(RISUPP(A)\) < g,

where H., = R,®. : RIswPMl — RIA supp(A) := {j € supp(a) : a € A} and p is
the multivariate Gaussian measure. Moreover, there exists a positive constant C' (independent of
m(A) = maxaep |a, d(A) := max,en |@|o and of ) such that

size(®.) < C|A|m(A)?log(1 + m(A))d(A)?log(e ™),
depth(®.) < Cm(A)log(1 +m(A))?d(A)log(1 + d(A))log(s ™).
Remark 3.4. The result above gives complexity results for approximating multivariate Hermite polyno-

mials using Deep ReLU neural networks. Instead, if we use the Rectified Power Unit (RePU) activation
function defined by RePU? : x +— max(z, 0)?, with p > 2, then there exists a Deep Neural network

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



SDEONet 9

with this activation function which represents exactly a multivariate polynomial. From [32, Proposi-
tion 2.14] we have that there exists a Deep RePU Neural network ¢ which represents exactly any
polynomial p € IP,, and such that

size(¢) < C|A],
depth(¢) < C'log(|A|),

with a constant C' > 0 depending only on the power p.

Theorem 3.5 (Approximation of 5-Hdélder continuous function [34, Theorem 3.1]). Letd € N, B,p >
0and 5 = (n,&) € N x (0, 1]. Then, there exists a constant c = c(d,n, &, B) > 0 such that for any
function f € CP([—1/2,1/2]¢) with || f||cs < B andanye € (0,1/2) there is a neural network ®!
such that

HRU(CD;QC) - f”LP([—1/2,1/2]d) <g,
|Ro (@)oo < [B],

and

depth(®f) < (2 + [logy(n + €)]) (11 b 5) |

size(®)) < ce T,

3.2 Operator Neural Networks

The basis for our NN construction are recent results on operator networks. Operators are mappings
between infinite dimensional function spaces. Prominent examples are the solution operators for ODEs
and PDEs, which map function space inputs to the solution of the differential equation in another func-
tion space [40, 26, 25, 23]. Typical inputs are parameters describing coefficients or initial and bound-
ary data, as in particular is common in Uncertainty Quantification. The differential equation setting
also provides a mathematical framework for statistical inverse problems, where the object of interest
is the inverse operator that maps some observables to the underlying model data that is to be in-
ferred [39, 13]. In recent years, machine learning-based operator approximation has attracted growing
interest due to the possibly high cost of classical operator approximation techniques, particularly those
related to high-dimensional parametric and nonlinear PDEs [27, 9]. Opposite to simulation methods,
operator learning infers operators from solution data and a well-known approach is given by the Deep-
ONet architecture [26]. DeepONet can query any coordinate in the (parameter) domain to obtain the
value of the output function. However, for training and testing, the input function must be evaluated at
a set of predetermined locations (often called “snapshots” in reduced basis methods), which requires
a fixed observation grid for all observations.

Remark 3.6. For illustration, consider the 1D dynamical system defined on domain [0, 1] by

L) = flule), pla),2). ul0) =0.

The operator G that maps the perturbation ¢ to the solution u satisfies

(G6)(x) = / " 1(66) (9, 6ly), ) d.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023
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In the linear case f(u(x), ¢(x),x) = ¢(x), the considered operator to be learned is the antiderivative
operator

X g Y
Encoder 3 3 Reconstructor
Eurrui= (u(zy),...,ulxy)) R B >0 Bilu)T
e e

Approximator

Azue (Bu(u), ..., Bp(u))

Figure 4: Structure of the deep operator network.

We henceforth assume that D C R? and U C R" are compact domains (e.g. with Lipschitz bound-
ary). The architecture of a deep operator network is depicted in Figure 4, where the operator G is to be
represented approximately. For this, the encoder £ results in a finite dimensional input representation
that is mapped via the approximator A to the finite dimensional out. Eventually, this is transferred to
the image of G by the reconstruction R. The following definition makes this rigorous.

Definition 3.7 (Deep operator network (DeepONet) [24, Definitions 2.1 & 2.4]). Assume separable
Banach spaces X,Y with continuous embeddings  : X — L*(D) andt : Y — L*(U). Let
p € Po(X) be a Borel probability measure on X with finite second moments such that there exists
A C X with u(A) = 1 and A consists of continuous functions. Moreover, letG : X — Y be a
Borel measurable mapping such thatG € Li. For the construction of the DeepONet architecture (see
Figure 4), three operators are used:

B Encoder: Given a set of sensor points {x;}7., C X, define the linear mapping

[ (D) —R™
£: { u — (u(zy), ..., u(Ty))

as the encoder mapping.

B Approximator: Given sensor points {a:j };”:1 the approximator is a deep neural network A €

Nonp-

B Given the encoder and approximator, we define the branch net

(3.2)

J C(D) — R
B{ u — RyAo0&(u)

It represents the coefficients in the basis expansion.

B Denote a trunk net by T € N,,,, as a deep neural network representation of basis functions
based on the encoder data.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



SDEONet 11

B Reconstructor. The T-induced reconstructor is given by

7. { RF — C(U) (3.3)

{antezy = Doy an(RoT)r

A DeepONet N approximates the nonlinear operator G. It is a mapping N : C'(D) — L*(U) of the
formN = Ro R, Ao &, whereE : (X, | -||x) = (R™, |- ||2) denotes the encoder given by (3.1),
Ry A (R™ || - [l2) — (RP, || - ||;z) denotes the approximation network, and R : (R?, || - ||2) —
(L*(U), || - llr2v)) denotes the reconstruction of the form (3.3), induced by the trunk net T.

In [24], the authors study the approximation of G by . For the analysis, they consider the following
error, measured in LZ, where (i is associated with X,

B = |G — N1z
= /X / 1G(u)(y) — N () (3) dy da(u).

3.3 SDEONet architecture

We now describe the construction of the SDEONet architecture, which is inspired by the DeepONet
presented above and combined with the chaos representation of Section 2.2. For this, recall the poly-
nomial chaos expansion (2.7) for a stochastic process written as

Xi(w) = Z Z To(t)Va(w), (3.9)

k>0 |o|=k

where w € 2. One can hence define a nonlinear operator G such that X, (w) = G({W(w) }scjo,r1}) (1),
i.e., it maps the Brownian motion 1V to the continuous stochastic process (Xt>te[0,T] satisfying (1.1).
One can intuitively approximate such an operator G with a DeepONet .

Definition 3.8 (SDE solution operator). A (nonlinear) operator G : L*([0,T] x Q) — L*([0,T] x Q)
is said to be a if G(W) is a continuous stochastic process satisfying (1.1), where W = (W )sc(0,17 is
a Brownian motion. Given Assumption 2.1, it is the strong solution of the SDE with respect to WV .

Example 3.9 (Operator G of linear SDE). Consider the following linear SDE

where a,b and h are bounded functions on [0, T'|. Then, forw € Q2 andt € [0, T, we have

Gw)(t) = exp ( /0 () ds) <X0+ /0 Cexp (— /0 a(r) dr) b(s) ds
+ /0 exp (- /0 a(r) dr) h(s) dWS(w)) |

The ingredients of the SDEONet architecture are defined next.

Definition 3.10 (SDEONet). Let W = (W}).c(0.1] be a Brownian motion and p, m = 2% € N poly-
nomial chaos discretisation parameters. We construct the SDEONet (see Figure 5) as a composition
of the following operators:

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



M. Eigel, C. Miranda 12

L2([0,T] x Q) g L2([0,T] x Q)
Encoder 3 3 Reconstructor
EWir G :=(Gy,...,Gp) | R U — Y P 5,
L2 R)™ <o > LX(Q,R)P

Approximator
AIGl—)(\I/l,...,\I/p)

Figure 5: SDEONet components mapping a Brownian motion to the respective trajectory. Note that |44
(Brownian motion), G; (integrals of (e;);) and W, (basis approximation) are random variables defined
on 2. The coefficients ; are functions of time t.
B Encoder: The mapping
grm L2([0,T) x Q) — L*(Q,R)™ (3.6)

maps the Brownian motion W to (G;)™", with

T
G = / e.(1) IV,
0

fori =2""144,1<j<2"landl <n<k.

B Approximator: Given the values {G; ?:Ol, we denote an approximator A € /\/'m,p as a deep
neural network such that its o-realisation Ry A = (W;)F_, : L*(Q)™ — L*(Q2, R)” approxi-
mates the chaos polynomials \Ilk;.

B Branch net. Given the encoder and approximator, the branch net is defined as 3 := A o £.

B Trunk net: We denote atrunk net 77 € N p as a deep neural network such that its o -realisation
R,7P = (z;)5_; : [0,T] — R approximates the coefficient functions xy in Theorem 2.3.

B Reconstructor. The T-induced reconstructor is given by

RE .

T

2 o (3.7)

LAHQRY —s L2([0,T] x Q)
{ ()i V— 220, 437

the mapping that approximates (X" ’ )eclo,T]-

A SDEONet N'™P approximates the nonlinear operator G in Definition 3.8. It is defined as mapping
N™P [2([0,T] x Q) — L*([0,T] x Q) of the form N™P = R,» 0 Ao E.

4 Convergence analysis

In this section, a complete error analysis is carried out for the SDEONet architecture described in
the last section. Similar to the analysis of DeepONets in [24], the overall error is split into several
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SDEONet 13

components that are examined successively, namely truncation, approximation, and reconstruction
errors. We state our main convergence result as a combination of the subsequent estimates in the
following Theorem 4.1.

Let G : L2([0,T] x Q) — L*([0,T] x ) be a SDE solution operator according to Definition 3.8
and NP be a SDEONet as of Definition 3.10 with m, p € N. We consider the error measured in the
L3([0,T] x £2)-norm defined by

1/2

£ = ([ EI60n® - N0 ar)

T _ 1/2
= (/ E[| X, — X% dt)
0

Theorem 4.1 (Neural network approximation of a strong solution of a SDE). Letp,m = 2 € N,
G be a SDE solution operator given by Definition 3.8 and ¢ € (0, [%} Y 3). Then, there exists a
SDEONet N'P'™ given by Definition 3.10 that satisfies

< i, ((1 ) (/OT Cs(t, K) ((q+11)! + QT%“)) dt))m

g+ 1! 2(g+1)+1

(g,0)edp

2(g+1) q+1 1/2
+VE min ((1+x3) <C4(K,T)—( L T(GT) (1+$) ))

with C5(t, K) defined in Theorem 2.4, C4(K,T) := fT eBe” At and C5 = C5(K,T) are the

0
constants in Lemma 4.9.

The SDEONet is composed of an approximator A that satisfies

size(A) < Cip 'GI{I%aX } |k:;f|3log(1 + |k:j|)|k:;‘|3 log(pe™1),
] 7"'7p

depth(A) < C1  max ) K7 [ log(1 + [k7[)*[k7 o log(1 + [k} o) log(pe ™),

]6{177]3

with a positive constant C; > 0 independent of p, m, € and of a trunk net 7 that satisfies

depth(7) < (24 [logy(n + 1)])(12 + n),
size(1) < Csyp (ﬁ) ,

with a constant Cy > 0 that depends only on the regularity of the x ;.

Proof. By Lemma 4.3, the result comes from the combination of Lemma 4.4, Lemma 4.9 and Lemma 4.12.
O
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4.1 Auxiliary results

To prepare the convergence analysis in the following sections, we first introduce a decomposition of
the error. This requires the finite multi-index set

k
Tk = {a eNF: |af = Zai < p} (4.2)

i=1

and the best p-terms given by

T
k*:= argmin / E[|X; — Z T, (8) W, (W))?] dt. (4.3)
0 J

k=(k1,....kp)€ZP

Additionally, we define the following set of tuples

J, = {(m,n) €N (m;”) §p}.

The truncation error with respect to the basis (¢;); in L?([0,T']) can be bounded by the next resul.

Proposition 4.2. Letn € N. Then, for allt € [0, T],

272 27—2 25—2 27—1
G (t-THD) THE <i<T

Byoij(t) =22 (T2 —t) TEL<t<TZ - (4.4)
0 else

and
t
Z Z (Eﬂ Lt / By y (1) df) <2T(14+1)27" (4.5)
f=n+1 j=1 0

with E defined as in (2.12).

Proof. The first expression (4.4) follows from the definition of eyn-1 ;. Concerning the second ex-
pression (4.5), first, note that maxycjo 7] 3.1, (t) = 727" and that Eyn-1;(t) # 0 only for

t € [T32,T2L]. Then,

Z Z( 20— 1+] / EQZ 1+J( )dT) S Z (T2_(€+1)+tT2—(€+1))

{=n+1 j=1 l=n+1
= 2T (1 +1)27"

since it is a geometric series. O

Lemma 4.3 (Decomposition of the error). Let p, m € N, G be a SDE solution operator according to
Definition 3.8 and N'*"™ a SDEONet. Then, the error E (4.1) can be decomposed as

E S E Trunc + EApprox + ERecona (4-6)
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1/2
) ) (4.7a)

T p
Erryne = /0 B[ Xy — > wpe ()W) dt
=1
T p ] P 1/2
EApprox = / EH Z l’k; (t)\I/k; — Z l’k; (t)f\lf\;|2] dt) s (4.7b)
0 j=1 j=1
T P p 1/2
EHecon = /0 EH Z xk;‘ (t){lj\; - Z @(t)\I]NJP] dt) . (4.7C)
j=1 j=1

Proof. Note that for any continuous process (Yt)te[o 7] One has

1Y 2200 = / / Yi(w)? dPy, (w) dt,

which is a norm e.g. by using Minkowski’s inequality. Applying the triangle inequality then gives the
result. O

with

4.2 Truncation error

We first estimate the truncation error, which results from only using a finite number of basis elements
and terms in the Wiener chaos expansion.

Lemma 4.4 (Upper bound of truncation error). Given Assumption 2.1 and let i, o satisfy the assump-
tions of Theorem 2.4. Then, the truncation error (4.7a) satisfies

) T 1 2T (1 + 1) 12
. 2
Erine < mnrlzler}]p ((1 + ) (/0 C(t, K) ((m F + " ) dt)) , (4.8)

with C(t, K') defined in Theorem 2.4.

Proof. Letm,n € N. Let k = |log,(n)|. Applying Theorem 2.4 leads to

E[(X, — X;"™)?] < C(t, K)(1 + x7) —t i Z ( /Ot EZ,(7) d7'>

l=k+1 j=1

Integrating from £ = 0 to 7" yields

T T
/ E[|X, — X" ] dt g/ C(t,K)(1+ )
0 0

X i Z( /O t E2,(7) dr) dt.

l=k+1 j=1

Then, using Proposition 4.2, we have

/OTC(t,K)(1+x§) +1 + i Z( ot /OtEjg(T)dT) dt

{=k+1 j=1
<(1+z3) /OTO(t,K) ((mil)! + 2T(2+ t)) dt.
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The results follows by definition of k*. O

The above lemma shows that the truncation error decays factorially fast in the number of polynomial
chaos terms and linearly in the number of basis elements.

4.3 Approximation error

The second term in (4.6) is the approximation error that comes from the approximation of the polyno-
mial chaos. This term is more involved and requires the use of Malliavin calculus, as introduced above.
The approach is to explicitly introduce the L? error of the polynomial chaos and show that a neural
network can indeed approximate the Hermite polynomials.

For the purposes of upper bounding the approximation error, we recall the following results.

Theorem 4.5 ([21, Theorem 2.9, page 289]). Suppose that Assumption 2.1 is fulfilled. Then, there
exists a continuous, adapted process X which is a strong solution of (1.1) relative to W, with initial
condition xo. Moreover, this process is square-integrable: for every T' > 0, there exists a constant
C := C(K,T) such that

E[||X:]3] < C(1 +E[[|zoll3]) exp(Ct)
for0 <t <T.
Proposition 4.6 ([18, Proposition 4.1]). Under conditions of Theorem 2.4, we obtain the estimate
E[(D},....,X0)’] < C"(1+ ) exp(Cnt),
where C' is the same as in Theorem 4.5.

Theorem 4.7 ([38]). Let ' € L?*((2). Suppose that F is infinitely Malliavin derivable and that for every
k > 0, the k-th Malliavin derivative D* F’ of F is square-integrable. Then the symmetric functions f,
in the chaos decomposition

F= Z In(fn)
n=0
can be computed by
]' n
fo=—E[D"F]
n!

These results enable to bound the coefficient functions.

Lemma 4.8. Let Assumption 2.1 be satisfied, and let ., o satisfy the assumptions of Theorem 2.4.
Consider the Wiener chaos expansion (2.6) of X;

Xi=> ) wa(t)Va.

n=0 |a|:n

Then, form € N, we have

£ 5 o 1 (s -

|
(=0 |a|=¢ (m + 1)!

wheret € [0, T] and C = C(K,T) is a constant that depends only onT" and the regularity of ji and
ag.
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Proof. Note that - -
X =YY Vo= L(&(t"1))
n=0 |a|=n n=0
with t" = (tl, S ,tn). Since X, is infinitely Malliavin derivative, by Theorem 4.7 the symmetric
kernel functions are given by &, (-;¢) : t" — LE[D} , X,], with n-th order Malliavin derivative of

X, denoted by D" X;. I, is the multiple stochastic integral of order n introduced in Definition 2.2. It
follows that

D walt) =D E[(L(&(t55 1))
(=0 |a)=¢ (=0
= ZW&(t‘; t), &t 1)) r20.170)
=0
m Ok
=3 [ B0
=0
m (€);t
< (1+x2) ZC%C“/ dt’
=0
_ 2 - (OtGCt)E
£=0
with C' = C(K, T) and f ) dtf = fo . f(-)dt, ... dt,. The inequality is derived by
using Proposition 4.6 and Theorem 4.5. Now, note that Ze:o Ct%m)l < Gt _ % using

the Taylor-Lagrange formula. With this, we obtain
Ctect m+1
ZZZEQ (1+$0)(Ct60t—ﬁ . O
(=0 |a|=¢ m ’

We can now bound the approximation error.

Lemma 4.9 (Upper bound of approximation error). Let Assumption 2.1 be satisfied and let i1, o satisfy
the assumptions of Theorem 2.4. Then, the approximation error (4.7b) satisfies
< min E

(m,n)eJp Z |\I]k* - \I] |

< (1+ :B(Q)) (A(K, T) - 1 T(CT)2(m+1) (1 N L>m+1> |

E2

Approx

(m+1!12(m+1)+1 cT
with constants A(K,T) := fOT e dt and C' = C(K, T).

Proof. By the Cauchy-Schwarz inequality, it follows,

p
Zl’k; (t)\I/k* Zl’k*
j=1

2
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Taking the expectation and integrating with respect to ¢ leads to

T p p 2 T p
0 j=1 j=1 0 \j=1

The next step is to find an upper bound of fOT ( D Tge (t)2> dt. By Lemma 4.8 with (m,n) € J,

we have c )
t Cte t)m—f—
E E < Cte® _ (— .
Ta(t)” < 1+x0)< (m+1)! )

=0 |a|=¢

p

> W — 7,2

=1

Integrating with respect to ¢ results in

T m T o T eCt m—+1
/0 DD walt)?dt < (1+a3) (/0 ecte dt—/o %dt

m+1 T
A(K,T)—; (m“) / (ot)2<m+1>—fdt>
0

( (m+1'
1 &K fm+1\ T(CT)2m+n-
(A(K,T)—mz< 4 )2(m+1)—k:+1>
) ot (CT) (m+1)—¢
(A(K’T)_m;_;( ¢ )2(m+1)+1>
(A(K,T)— 1 T(CT)Xm+D (1+L>m+1>.

(m+1!12(m+1)+1 cT

By definition of £* it thus follows for all (m, n) € J, that

T & ) ) 1 CT)2m+1) 1\
/O (;mk;(t) ) dt < (14 zp) (A(K,T)— (m+1)!2((m+)1>+1 <1+ CT) ) :

Combining the above results, we obtain

Z\‘I’k — VP’

2(m+1) 1 m+1
x min (14 z2) (A(K, T)— L T(T) (1 + ﬁ> ) :

E approx —

(m,n)eJp (m+1!12(m+1)+1

O

The approximation of the W; by neural networks according to Theorem 3.3 yields the following result.

Corollary 4.10 (Deep RelLU neural networks approximation of polynomials chaos). Letp € N. For
anye € (0,e7!/p) there exists a neural network ®. such that

p
E|) |W - (Racbs)j!Q] <e
=1
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with complexity given by
size(®.) < Cp r{riax } k517 log (1 + ||| k713 log(pe ™),
]e PRy 4

depth(®.) < C' max }|kj*| log(1 + ]k;\)2]kj\olog(1 + [k7]o) log(pe™1).

je{1,...p
Proof. Recallthat k* := argmin,_, j \ezv fOT]EHXt—Zj y, (£)Wr, (W) dt. Letj € {0,...,p}.
By Theorem 3.3 (take A = {k]}) there exists a neural network ®. ; such that

<€
2®") =

[Wk: — Ry ®e |

Moreover, there exists a positive constant C' (independent of \k;

K

0, € and of p) such that

L]

size(®. ;) < Clk: [P log(1 + [k ) ;2 log (p"),
depth(@..,) < C[k;|log(1 + [:])* kLo log(1 + ko) log(pe ).

,

The result follows by parallelisation as in Proposition 3.2. O

4.4 Reconstruction error

For the following results, we consider the common activation function © = ReL.U. The last error term
in (4.6) is the approximation of the deterministic coefficient functions in the Wiener chaos expansion.
We show that they can be approximated by neural networks due to the regularity of the corresponding
ODE trajectories and Theorem 3.5.

Corollary 4.11 (Approximation of ODEs). Let f : [to,t;] x R™ — R™ € C* and Lipschitz with
respect to the second variable, k € N, p > 0, and xo € R™. Consider the Cauchy problem with
X [to,tl] — R™,

dX

5 () = f(t.X(1), X(to) = zo. (4.9)
The ODE (4.9) has a unique solution X : [to,t;] — R™ € C**! and for any e € (0, (m(t; —
t0))/? /2) there exists a neural network ®X € N, ,,, such that

1R (D) = Xl Lo(ro) < €.
1R (23]l < K,

where K = K (to,t1, X) is a constant, and

depth(®X) < (2 + [logy(k + 1)) (12 + k),

1
) X e k1
SIZG((I)‘E ) S mc (m) .

Proof. Case m = 1.

Under the assumptions on f, the problem (4.9) has a unique solution X : [to, 1] — R by the Cauchy-
Lipschitz (Picard-Lindelsf) theorem. By induction on k it can be shown that X € C**1. Note that the
solution X is (k, 1)-Hélder continuous. Let

O E1/2,1/2] — [to, t]
T'{ z — (z+3)(t —to) + to
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which is a diffeomorphism, and define Y = X o T : [—-1/2,1/2] — R which is (k, 1)-Hélder
continuous on [—1/2,1/2]. Let B := maxXae{o,... k} H %Hm. Applying Theorem 3.5, there exists a
constant ¢ = ¢(k, B) > 0 and a neural network ®} such that

depth(®Y) < (2+ [logy(k + 1)) (12 + k),

oy 3 R
Slze(®€ ) S C (m) .

Moreover,

Y
18o(®e) =Ylliar2a/2 < G577
IRs (7)o < [B].

Now, note that

1 [ } )
1R (@) = Yl 010,12 = m/t (Ro (@) (T () = V(T ()" da,
0
1 _
=5C tOIIRa(q’f) o T™ = X o 0.0

If we write &Y = ((W1,b%),... (WL b)) then

1 t 1
X = (( wi bt — ( 0 4 —) W, (W2 %), ..., (W bh)
tl _to tl —to 2

satisfies R,®Y oT~! = R,®X and size(P)) = size(P). Using the previous equation, we deduce

R (@) = X 1o(to)) < €

Case m > 1.

Let (<I>Xk) ' , be m neural networks that approximate X, with accuracy 1/,, in the LP norm. Con-

sider ®X = P((®X*)™ ) as a parallelisation according to Proposition 3.2 with size(®2X ) = Y 7" | size(®X*)
and R, <I>X (Ry®Xk)m_ . Then,

||RU(I)X X”Lp(to t1]) Z ||R0q)§k X’fHLP( [to,t1])
j=1

< —6 ?
=m (ml/p>

eP.

O

Lemma 4.12. With Assumption 2.1 and n-times continuously differentiable (i, o, e; with respect to
their variables, for any £ € (0,+/pT /2) there exists a neural network ®. € N, such that

p
Z @k — ZillZaqomy <€
j=1
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The reconstruction error can be bounded like
P
Hecon — Z ]E
7j=1

depth(®.) < (2 + [logy(n + 1)])(12 + n),

1

ﬁm@h)ﬁpc(i%)_Md.

and

Proof. By the Cauchy-Schwarz inequality one has

P
W — Z z; (t)¥
j=1

2

(B0 (59)

Taking the expectation and integrating with respect to ¢ leads to

T
| E
0

Recall that 1, 0, e; are n-times continuously differentiable with respect to their variables. By Corol-
lary 4.11 for any € € (0, /pT /2) there exists a neural network ®. € N ,, such that

p . P . 2
PRGN IED G2
j=1 j=1

p B p —~92
dt < (Z [ —%‘HQLZ([O,T])) <ZE[‘I’J ]) :
Jj=1

i=1

depth(®.) < (2 + [logy(n + 1)])(12 + n),

1
n+1

size(®.) < pe (%)

Moreover,

p
> lzws = T3l 220y < €% -
j=1

4.5 D-dimensional SDE

Let H = L*([0,T];RY) = L*([0,7]) ® R% Let B := (B}, ..., B{);ej0.1) be a d-dimensional
Brownian motion defined on (€2, F, (F;)ico,r), P), where (F3); is its natural filtration and F :=
o(W(h): h € H).Then,

d T
:Z/ R (t) dWE

k=1

is an isonormal Gaussian process for H.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



M. Eigel, C. Miranda 22

Let (gblj)j |.i>0 be an orthonormal basis of L*([0,T]; R?). For instance, ¢;; = v; ® e;, where

;)i>0 is a orthonormal basis of L2([0,7]) and (e;)¢_, is the canonical basis of R%. Then, any
2 ] 7=1

random variable F' € L?(§2, F,P) admits the following Wiener chaos expansion

F Zz.fa HHZ ¢zg

k=0 |a|=k j=1i=1
acT? ~ ~~

@

Consider the following d-dimensional Itd process
dXt = ,LL(t, Xt) dt + U(t, Xt) . dBt,

which in integral form reads

t t
X; = Xo —|—/ w(s, Xs) ds +/ o(s,Xs) - dBs.
0 0

The Wiener chaos expansion for each component Xg of X is given by

%) d oo
-3 3% s (T o))
k=0 |a|=k j=11i=1
acZ?
Following the proof of Theorem 2.3, it is possible to show that the x7,(¢) satisfy a system of ordinary
differential equation.

Suppose that we want to approximate each component th with p coefficients. Then, the analysis
for the approximation of the coefficients x{)é(t) Lemma 4.12 does not change qualitatively since by
Proposition 3.2 the size is only multiplied by d. Since we have d times more Hermite polynomials the
polynomial chaos W, by Corollary 4.10 the size of the network again is multiplied by d.

5 Numerical experiments

This section illustrates that our SDEONet architecture is able to approximate the stochastic process
(X¢): at any time ¢ in numerical computations with a reasonable number of parameters. To enforce
the learning of the initial condition X, a second term is added to the loss, which then becomes

1 (<& " S
:§<Z||Xn R NG (W't ||2+§:||X0— RoNj ”’<W7o>||§). (5.1)
=1

To assess the performance of our model, we use different metrics. These are computed at each time

step on the time grid to check if our model is able to approximate the stochastic process at any time
: S . Xi—X

t. The first two are the absolute L? error || X; — X;|| ;2 and the relative L? error w
“I'L

approximated by a Monte-Carlo estimation

N 1/2
1 i
e~ (R 0F)
=1

. They are
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where (F;)Y, are realisations of F'.

Another reasonable metric to consider is the Wasserstein 2-distance defined by

yEl(p,v)

W= min [ o=yl (o).
R

where I1(, v) := {y € P(R? x R?) : (mo)sy = p, (m1)yy = v} is the transport plan and mo and
7, are the two projections of R¢ x R? onto its factors. When d = 1, it is possible to approximate it by
considering the empirical measures i, = % S Ox,, vn = = 31" | dy, and then to compute

1 n
Wa(pn, vn)* = ~ D 1 Xe = Yo ls,
i=1
where X(1) < X(g) < -+ < X(y). For higher dimensions d > 1, the computation of W5 is quite

elaborate. There are methods to approximate it, e.g. by the well-known Sinkhorn algorithm [8, 6].

Definition 5.1 (Entropy regularised optimal transport cost [6]). Let 11, v be two probability measures
on R? with finite second-moment. Then, the entropy regularised optimal transport cost is defined as

Ti(p,v) = min By [IX = Y[Z] +20H (v, p @ v),

where I (p,v) := {y € PR*x R?) : [~(z,-)dz =, [~(-,y) dy = u} is the set of transport
plans between p and v, A > 0 is the regularisation parameter, and H (v, p®v) is the relative entropy
(or Kullback-Leibler divergence) of v with respect to 1 & v defined by

H(v,p®v) = /Rded log (%) dy(z, y).

Note that Ty(u, v) = Wi(u,v) and that the choice T (fin, 7, ) is not optimal since it introduces a
large bias. The Sinkhorn divergence defined by

531, v) 2= T, v) — 3 (T 1) + Ty(v. )

is an estimator of Wh(1, )%

5.1 1D processes

In the next experiments the model is defined by m = 32, p = 64, 2 hidden layers of 256 neurons
each. The model is learned on a dataset of 20,000 samples of X; with ¢t ~ U(0,T") during 30 epochs
with a learning rate of 3 - 10~ with the Adam optimizer [22] and a batch size of 64.

5.1.1 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a crucial stochastic process in the area of mathematical physics
and stochastic calculus. It is a continuous-time stochastic process that finds extensive application in
emulating a diverse range of phenomena across multiple fields such as physics, finance, biology, and
engineering. This process is useful for modelling mean-reversing behaviour, where a variable tends to
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Time (t)

Figure 6: Trajectories of the true process X; and the approximation f(t (OU).

return to its mean over time. This makes it a valuable tool for understanding and modelling stable and
self-correcting processes. It is defined by

dXt = —Q(Xt — ,U/) dt + Uth7

where 6 > 0, u and 0 > 0 are parameters. Using Itd’s formula, it is possible to get an explicit
expression of X; given X by

o
V20

al figures have For the numerical experiments, we chose = 1, y = 1.2, and 0 = 1.3.

to be as readable
as fig 6 -> larger

onts, ickerlines | EXamining the trajectories depicted in Figure 6, we observe that the approximation X} exhibits a
notable smoother behaviour compared to the true stochastic process X;. This behaviour is likely due
to a small dimension of polynomial chaos. Moreover, we can discern the impact of the additional term
incorporated into the loss function. This supplementary term plays a crucial role in aiding the model
to effectively learning the initial state, represented by X, which is confirmed by Figure 7a. Figure 7b
also shows that the model is able to learn the stochastic process at each time step ¢ very accurately
since the random variables X; and X’t are close in distribution.

X, = Xoe " 4 p(1 —e7%) + Wi _o—20t.

5.1.2 Geometric Brownian motion

The Geometric Brownian motion (GBM) is a widely used stochastic process in finance, mathematical
modelling, and statistical physics. In particular, this process is crucial for understanding and describing
the pricing of financial assets and to model stock prices. GBM represents an extension of the classic
Brownian movement, which incorporates exponential growth and is characterised by its capacity to
capture the innate uncertainty and volatility linked with genuine financial markets.

The Geometric Brownian motion is defined by
dXt == MXt dt + UXt th,

where 1 and o > 0 are parameters. Using It6’s formula, it is possible to obtain an explicit expression

of X; given X, namely
2
X = Xgexp ((u — %) t+0Wt) .
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Figure 7: L? loss and Wasserstein 2-distance over time for the Ornstein-Uhlenbeck process, computed
over 2,000 samples and averaged over 100 independent realisations. The error bars correspond to 30.

Figure 8: Trajectories of the true process X; and the approximation )~(t (GBM).

For the numerical experiments, we chose ;1 = 1.0 and o = 0.3.

The plot in Figure 8 shows a similar behaviour as for the Ornstein-Uhlenbeck process above. However,
we see that the approximation is slightly worse due to the nature of the Geometric Brownian motion.
In practice, we also notice that for large o it becomes more difficult to learn the stochastic process.

Figure 9a shows that with this choice of parameters © and o the model is able to learn the stochastic
process with a small L? and relative L? error. Moreover, Figure 9b illustrates that the random variables
X; and )Z't are close in distribution at each time step ¢. This can be considered a more appropriate
metric to assess the accuracy of the learned operator model.

5.2 Multi-dimensional
For the multidimensional experiment, we consider the Langevin process with the potential of the multi-

variate Normal distribution. Consider a particle subject to the force induced by a potential V' € C*(R?)
(defined by —V'V'), a friction and a random white noise. Let X; be the position of the particle at time

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023



M. Eigel, C. Miranda 26

A - WX %)
107!
% e I LR A FINETE o
o SRR e £
~ [Xell 2] =
2 <
3x1072 P
R 102
2x107*
0.0 0.2 04 0.6 0.8 1.0
Time (t)
(a) L? loss (blue) and relative L? loss (red) over time 0.0 0.2 04 0.6 05 10
. . . . Time
for the approximation of the Geometric Brownian Mo- e (0
tion. (b) WQ(Xt, Xt)

Figure 9: L? loss and Wasserstein 2-distance over time for the Geometric Brownian motion computed
over 2,000 samples and averaged over 100 independent realisations. The error bars correspond to
30.

t, k the Boltzmann constant and 1" the temperature. Then, Newton’s equation of motion leads to

d%X; dX; dB;
= — X, — VET —

where \ is friction coefficient and (B;):>¢ is a standard Brownian motion. This is a second-order

stochastic differential equation with initial conditions X, and dgit (0), which can be written as

dX, =V, dt,
AV, = —(VV(X,) + AmV,) dt + VT dB,.

If we assume that the friction coefficient \ is large and the particle moves slowly enough that the
acceleration term can be neglected, then the stochastic differential equation can be simplified to

dX, = —VV(X,)dt + vV2dB,,

which is commonly called a Langevin process. Now, considering a large ensemble of particles that
evolve independently under this motion, it is necessary to establish if the distribution of particles con-
verges to a defined limit as ¢ — oo. This question requires some assumptions regarding the potential
V', which should prevent the particles from escaping infinitely. Typically, it is assumed that V' is m-
strongly convex and that the initial distribution has a finite second moment. With these assumptions,
it can be shown that there exists a stationary distribution [35]. When writing the Fokker-Planck equa-
tion of this stochastic differential equation, we have that the probability density p(-, t) of X evolves
according to

dp

ot
where div is the divergence operator defined by div(f) := Z;.l:l 0; f. From this equation, we imme-
diately see that

(x,t) = div(VV(x)p(z,t) + Vup(x,t)),

_ _exp(=V)
T Tew(=1)
is stationary. It can also be shown that the convergence is exponentially fast.
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Consider the multivariate normal distribution with mean i, covariance matrix 32 and probability density
function

1
(0 i= (2) 2 (S oxp (o= )" o - ).
The associated potential V' := — log v is given by

V(z) = gln(27r) + % In(det X2) + %(m —)'S N — p).

Therefore, the respective Langevin process can be written as

dXt = —Eil(Xt — ILL) dt + \/EdBt

For the numerical experiment, we have chosen d = 5, % = [ and ;1 = 2((—1)%)?;5. The neural
network has the same architecture as in the one dimensional case, except that we now consider 64
coefficients for each component of the approximation X;.
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Figure 10: L? loss and Wasserstein 2-distance over time for the Langevin process, computed over
2,000 samples and averaged over 10 independent realisations. The error bars correspond to 3.

The error plots in Figure 10 show that the model is still able to approximate the stochastic process
X; in higher dimensions, even though the task is structurally more complicated. We expect that an
extended training effort would lead to an even better operator model.

6 Conclusion

In this work, we have developed a new NN architecture called SDEONet to approximate the solution
of a SDE (1.1) using the notion of DeepONet [26] and a polynomial chaos expansion (2.6). Classical
methods using polynomial chaos expansion for solving SDE [18] struggle to handle the (”;m) coef-
ficients, which increase very quickly when the number of basis elements m or the maximal degree
p is increased. It hence is inevitable to devise an appropriate truncation and compression, that still
allows for accurate results in practice. The method we have developed is a new strategy to learn a
sparse Wiener chaos expansion of the solution of the SDE. The analysis shows that the size of the
required neural networks is quite small due to the regularity of the coefficients and the use of Hermite
polynomials.
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The experiments have shown promising results with small relative L? and W, errors. However, the
stability of the model should be improved when the process has a large variance, like with Geometric
Brownian motion. Concerning the multidimensional case, as discussed in Section 4.5, the experiment
in Section 5.2 also suggests that our model is able to accurately approximate the solution of a multidi-
mensional SDE without suffering from the “curse of dimensionality”.

The presented work motivates the extension to a more complex class of equation, e.g. backward
stochastic differential equations (BSDE). These equations are more challenging to solve, especially in
high dimensions. Some recent works already have considered Wiener chaos expansions for solving
BSDE [4].
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