
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Functional SDE approximation inspired by a deep operator

network architecture

Martin Eigel, Charles Miranda

submitted: December 21, 2023

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: martin.eigel@wias-berlin.de

charles.miranda@wias-berlin.de

No. 3079

Berlin 2023

2020 Mathematics Subject Classification. 65C30, 60H10, 91G60, 60H35, 68T07.

Key words and phrases. SDE, operator network, neural network approximation, Wiener chaos, polynomial approximation,
functional representation.

ME acknowledge partial funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in
the the priority programme SPP 2298 “Theoretical Foundations of Deep Learning”. ME & CM acknowledge funding by
the ANR-DFG project “COFNET: Compositional functions networks - adaptive learning for high-dimensional approximation
and uncertainty quantification”.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Functional SDE approximation inspired by a deep operator
network architecture
Martin Eigel, Charles Miranda

Abstract

We present a novel approach to solve Stochastic Differential Equations (SDEs) with Deep
Neural Networks by a Deep Operator Network (DeepONet) architecture. The notion of Deep-
ONets relies on operator learning in terms of a reduced basis. We make use of a polynomial chaos
expansion (PCE) of stochastic processes and call the corresponding architecture SDEONet. The
PCE has been used extensively in the area of uncertainty quantification with parametric partial
differential equations. This however is not the case with SDE, where classical sampling meth-
ods dominate and functional approaches are seen rarely. A main challenge with truncated PCEs
occurs due to the drastic growth of the number of components with respect to the maximum poly-
nomial degree and the number of basis elements. The proposed SDEONet architecture aims to
alleviate the issue of exponential complexity by learning a sparse truncation of the Wiener chaos
expansion. A complete convergence analysis is presented, making use of recent Neural Net-
work approximation results. Numerical experiments illustrate the promising performance of the
suggested approach in 1D and higher dimensions.

1 Introduction

Stochastic differential equations (SDE) can be seen as a form of generalisation of ordinary differential
equations (ODE) by the introduction of or more stochastic processes into the formulation. The trajec-
tories are hence also stochastic processes and the theoretical analysis requires in particular a notion
of integrating with respect to white noise, which is given by the Ito integral. They are heavily used in
physical models such as molecular dynamics, in financial mathematics and are also very prominent in
recent developments in deep learning, in particular in the highly active field of generative models [41].
A standard way to obtain numerical approximations of the solution is by using the Euler-Maruyama
scheme, an adaptation of the explicit Euler scheme for ODEs. The convergence rate depends directly
on the regularity of the SDE, and hence is quite limited by the typical lack thereof.

In this work, we consider a functional representation of SDEs in terms of polynomial chaos expansions
(PCE), which use tensorisations of polynomials that are orthogonal with respect to a certain probability
measure as a basis. Any stochastic process with finite variance can be written in this way, as stated in
the famous theorem of Cameron and Martin [5, 20]. The PCE has been very popular in the analysis
and numerical treatment of parametric PDEs in the field of Uncertainty Quantification [36, 7, 12]. For
SDEs, despite advantages of functional approximations such as direct access to statistical quantities of
interest, these are an exception [17] and stochastic methods are clearly dominant. A central reason for
this is that functional approximations of irregular processes usually require a fine discretisation and a
large number of expansion terms, i.e. high polynomial degrees, to achieve an adequate accuracy. Due
to the exponential growth of complexity (“curse of dimensionality”), this cannot be handled practically
without modern compression tools. Moreover, the analysis of such elaborate schemes is rather difficult.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 2

Brownian motion Solution of the SDE

Figure 1: Sketch of the SDEONet action working on input G (processed Brownian motion, left), ap-
proximation A and reconstruction R of the SDE solution (right).

Our developed approach relies on a deep neural network (NN) architecture called Deep Operator
Network (DeepONet) [26], which aims at learning (approximations of the actions of) operators in infi-
nite dimensional function spaces. DeepONets feature a specific structure consisting of a trunk and a
branch network that enable the complete theoretical analysis of these NN representations [24]. While
DeepONets and related approaches such as Fourier Neural Operators have been used in the con-
text of (partial) differential equations [15, 23], an application to SDEs has not been presented to our
knowledge. We use the notion of reduced basis exploration provided by a DeepONet with the PCE of
an SDE as analysed in [18], leading to a compressed functional SDE representation where the evo-
lution of the coefficients follows the trajectories of an appropriate ODE. The principle of the devised
architecture is sketched in Figure 1. There, a Brownian motion W is encoded by E with respect to an
assumed basis in time, leading to input G of approximation A and reconstruction R. The result of the
network operation is the solution X of the SDE.

As our model problem, we consider the continuous stochastic process (Xt)t∈[0,T] that satisfies the
SDE,

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, with X0 = x0, (1.1)

where (Wt)t∈[0,T] is a Brownian motion defined on a filtered probability space (Ω,F , (Ft)t∈[0,T],P).

Our main achievements are:

■ Development of a DeepONet inspired architecture for the functional (Wiener chaos) represen-
tation of SDE solutions.

■ Convergence and complexity analysis of this architecture in terms of the discretisation parame-
ters. To achieve this, recent results on NN approximations of polynomials and Hölder continuous
functions are used [37, 32, 34].

We present our main result Theorem 4.1 qualitatitely for the devised SDEONet architecture in the
following.

Theorem 1.1 (Main result). Let p,m = 2k ∈ N, G be a SDE solution operator given by Definition 3.8

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 3

and ε ∈
(
0,
[

4
e2T

]1/3)
. Then, there exists a SDEONet N p,m given by Definition 3.10 that satisfies

Ê ≲

(
1

(p+ 1)!
+ 2−k

)1/2

+ ε

√√√√ p∑
j=1

E[Ψ̃j

2
]

+
√
ε

(
1− 1

(p+ 1)!

T c(K,T)2(p+1)

2(p+ 1) + 1
(1 + c(K,T))p+1

)1/2

,

with c(K,T) a constant that depends only onK , linked to the regularity of the drift µ and the diffusion
σ, and T . The SDEONet is composed of an approximator A that satisfies

size(A) ≤ C1p max
j∈{1,...,p}

|k∗j |3 log(1 + |k∗j |)|k∗j |20 log(pε−1),

depth(A) ≤ C1 max
j∈{1,...,p}

|k∗j | log(1 + |k∗j |)2|k∗j |0 log(1 + |k∗j |0) log(pε−1),

with a positive constant C1 > 0 independent of p,m, ε and of a trunk net τ that satisfies

depth(τ) ≤ (2 + ⌈log2(n+ 1)⌉)(12 + n) and size(τ) ≤ C2p

(
ε√
T

)− 1
n+1

,

with a constant C2 > 0 that depends only on the regularity of the xj .

With this work, we aim to provide a new perspective on SDE (functional) solution representations
with NNs that can be fully analysed mathematically. It should be noted that there have been different
attempts to represent and analyse SDE solutions with NNs. For instance, in [2] the Kolmogorov back-
ward SDE was learned with an SDE to show complexity bounds of an equivalent PDEs. In particular,
an Euler discretization scheme (where layers correspond to the steps of the time discretisation) and an
architecture based on the Picard iteration were presented. Inspired by this work, an ResNet-based ar-
chitecture for the Langevin SDE was presented in [11], the results of which can be used for interacting
particle transport in the context of Bayesian inverse problems [14, 10].

An alternative compression technique can be identified in low-rank tensor formats [16, 29]. In partic-
ular, the hierarchical formats such as the well-known tensor trains (TT) [33] can reduce exponential
complexity to a polynomial one if low-rank approximability is satisfied. In [1] it was demonstrated that a
TT based Longstaff-Schwarz algorithm competes with (and even surpasses) equivalent NN construc-
tions [3].

The structure of the paper is as follows: Preliminaries on the considered SDEs and their approxima-
tion in terms of Wiener chaos expansions are reviewed in Section 2. We recall a central convergence
result and the correspondence of expansion coefficients with ODE trajectories. Section 3 is concerned
with the introduction of NN and in particular DON. Moreover, our new SDEONet architecture is de-
scribed. The convergence analysis of this architecture is carried out in Section 4, combining results
from Wiener chaos and NN approximation of polynomials and functions with Hölder regularity. The
practical performance of SDEONets is illustrated in Section 5 on the basis of benchmark problems in
one and more dimensions. The paper ends with a summary of the achieved results and an outlook
into future work.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 4

2 SDEs and Wiener chaos

In this section, we review polynomial chaos representations of stochastic processes in terms of Her-
mite polynomials, as presented in [19]. We introduce the specific setting we use for the construction
of the SDEONet architecture in Section 3. First, we recall the SDE setting and requirements for well-
posedness and regularity of the solution.

2.1 Definitions and notation

Given a probability space (Ω,F ,P) and a Rd-valued Brownian motion W , we consider

■ {(Ft); t ∈ [0, T]}, the filtration generated by the Brownian motion W ,

■ Lp(F) := Lp(Ω,F ,P), p ∈ N∗, the space of all F -measurable random variables (r.v.) X :
Ω → Rd satisfying ∥X∥pp := E[∥X∥pℓp] <∞,

■ Cp,q(U × V,W), p, q ∈ N ∪ {∞}, the space of functions f : U × V → W that are p
continuously differentiable in the first component and q continuously differentiable in the second
component,

■ Cβ(K) := {f ∈ Cn(K) : ∥f∥Cβ ≤ ∞}, with K ⊂ Rd is compact and β = (n, ξ) ∈
N× (0, 1], the space of β-Hölder continuous functions, where

∥f∥Cβ := max

{
max
|α|≤n

∥∂αf∥∞,max
|α|=n

Lipξ(∂
αf)

}
and Lipξ(f) := sup

x ̸=y∈K

|f(x)− f(y)|
|x− y|ξ .

To ensure the uniqueness of the solution of (1.1), we henceforth require the following assumptions to
be satisfied.

Assumption 2.1. Let T > 0 and let

µ : [0, T]× Rd → Rd, σ : [0, T]× Rd → Rd×m

be F -measurable functions satisfying

1 linear growth

∥µ(t, x)∥2 + ∥σ(t, x)∥Fro ≤ K(1 + ∥x∥2), ∀x ∈ Rd, t ∈ [0, T] (2.1)

for some constant K > 0,

2 uniform Lipschitz continuity with a Lipschitz constant, K ≥ 0

∥µ(t, x)−µ(t, y)∥2+∥σ(t, x)−σ(t, y)∥Fro ≤ K∥x−y∥2, ∀x, y ∈ Rd, t ∈ [0, T]. (2.2)

Let x0 be a random variable that is independent of F with finite second-moment E[∥x0∥22] ≤ ∞.

Under these assumptions, [31, Theorem 5.2.1] asserts that the SDE (1.1) has a unique t-continuous
solution Xt.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 5

Definition 2.2 (Multiple stochastic integrals [28, 30]). Let f ∈ L2([0, T]n) be a symmetric function.
The n-multiple stochastic integral In(f) is defined as the stochastic integral over the cone C := {0 <
t1 < t2 < · · · < tn ≤ T}, i.e.,

In(f) :=

∫ T

0

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn) dWt1 . . . dWtn

It satisfies the following properties

■ In is linear,

■ In(f) = In(f̃), where f̃ is the symmetrization of f , which is

f̃(t1, . . . , tn) :=
1

n!

∑
σ∈Sn

f(tσ(1), . . . , tσ(n)),

■ E[In(f)Im(g)] = δmn n!⟨f̃ , g̃⟩L2([0,T]n).

2.2 Wiener chaos expansion of SDEs

In this section we recall the notion of the Wiener chaos expansion and convergence results required
later. For more information, we refer to [30, 20].

Normalised Hermite polynomials are defined through the identities

H0(x) := 1 (2.3)

Hn(x) :=
(−1)n√
n!

exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, n ≥ 1. (2.4)

The n-th Wiener chaos Hn is the closed linear subspace of L2(Ω,F ,P) generated by the family

of random variables
{
Hn

(∫ T

0
hs dWs

)
: ∥h∥L2([0,T]) = 1

}
. The vector spaces Hn, n ≥ 0, are

orthogonal, giving rise to the Wiener chaos expansion [30, Theorem 1.1.1]

L2(Ω,F ,P) =
∞⊕
n=0

Hn. (2.5)

Therefore, any random variable Y ∈ L2(Ω,F ,P) admits an orthogonal decomposition

Y = y0 +
∞∑
k=1

∑
|n|=k

ynk

∞∏
i=1

Hni

(∫ T

0

ei(s) dWs

)
, (2.6)

where n = (ni)i≥1 is a sequence of positive integers determining the polynomial degree, |n| =∑
i≥1 ni, and (ei)i≥1 is an orthonormal basis of L2([0, T]). The coefficients are given by projection,

y0 = E[Y],

ynk = E

[
Y

∞∏
i=1

Hni

(∫ T

0

ei(s) dWs

)]
.

We now consider the one-dimensional continuous stochastic process, (Xt)t∈[0,T] satisfying (1.1). Us-
ing (2.6) and Malliavin calculus, [19] derived the following propagator system.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 6

Theorem 2.3 (Propagator system [19, Theorem 2]). Given Assumption 2.1, let (Xt)t∈[0,T] satisfy (1.1)
and assume that (Xt)t ∈ L2([0, T]× Ω). Then, Xt exhibits the chaos expansion

Xt =
∑
k≥0

∑
|α|=k

xα(t)
∞∏
i=1

Hαi

=:Gi︷ ︸︸ ︷(∫ T

0

ei(s) dWs

)
︸ ︷︷ ︸

=:Ψα

(2.7)

and the coefficients xα(t) satisfy the system of ordinary differential equations

dxα
dt

(t) = µ(t,Xt)α +
∞∑
j=1

√
αjej(t)σ(t,Xt)α−(j), (2.8)

xα(0) = 1α=0x0, (2.9)

where µ(t,Xt)α (resp. σ(t,Xt)α) denotes the α-coefficients of the Wiener chaos expansion as-
sociated with the random variable µ(t,Xt) (resp. σ(t,Xt)), and α−(j) = (α1, . . . , αj−1, αj −
1, αj+1, . . .).

In order to approximate the process (Xt)t, one considers the truncation,

Xp,k
t :=

p∑
j=0

∑
|α|=j

xα(t)
k∏

i=1

Hαi

(∫ T

0

ei(s) dWs

)
, (2.10)

which uses orthogonal projections Ψα only with respect to the first k basis elements (ei)1≤i≤k and
only up to the p-th order Wiener chaos. In [18], the authors derive an upper bound on the L2-error
E[(Xp,k

t −Xt)
2].

Theorem 2.4 (L2-error of the Wiener chaos truncation). Given Assumption 2.1 and let (Xt)t∈[0,T]

satisfy (1.1). Moreover, assume that µ, σ ∈ C1,∞([0, T]× R) such that∣∣∣∣ ∂ℓ+mµ

∂tℓ∂xm
(t, x)− ∂ℓ+mµ

∂tℓ∂xm
(t, y)

∣∣∣∣+ ∣∣∣∣ ∂ℓ+mσ

∂tℓ∂xm
(t, x)− ∂ℓ+mσ

∂tℓ∂xm
(t, y)

∣∣∣∣ ≤ K|x− y|, K > 0,

for t ∈ [0, T], x, y ∈ R, any ℓ ∈ {0, 1}, and m ≥ 0. Then it holds that

E[(Xp,k
t −Xt)

2] ≤ C(1 + x20)

(
1

(p+ 1)!
+

∞∑
ℓ=k+1

(
Eℓ(t)

2 +

∫ t

0

E2
ℓ (τ) dτ

))
, (2.11)

where C = C(t,K) is a positive constant and the function Eℓ(t) is defined by

Eℓ(t) :=

∫ t

0

eℓ(s) ds. (2.12)

In the following, we use the Haar basis {e0, e2n−1+j : 1 ≤ j ≤ 2n−1, n ≥ 1} defined by

e0(t) :=
1[0,T](t)√

T
,

e2n−1+j(t) :=

√
2n−1

T

(
1[T 2j−2

2n
,T 2j−1

2n] − 1[T 2j−1
2n

,T 2j
2n]

)
.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 7

For this basis, the integrals Gi in (2.7) can be computed explicitly, which is used in our analysis. In
fact, ∫ T

0

e0(t) dWt =
1√
T
WT ,∫ T

0

e2n−1+j(t) dWt =
2

n−1
2√
T

((
WT 2j−1

2n
−WT 2j−2

2n

)
−
(
WT 2j

2n
−WT 2j−1

2n

))
.

The first basis functions are plotted in Figure 2.

0 T
−1.56

0

1.56

t

e(
t)

e0(t)

e20+1(t)

e21+1(t)

e21+2(t)

Figure 2: First Haar basis functions for n ≤ 2.

3 Deep operator networks

In this section, we formally introduce neural networks and review results on deep operator networks [24].
These form the foundation of our architecture for SDEs that is presented in Section 3.3.

3.1 Neural Networks

A general neural network definition is as follows.

Definition 3.1 (Neural network and σ-realisation). Let d, s, L ∈ N \ {0}. A neural network Φ with
input dimension d, output dimension s and L layers is a sequence of matrix-vector tuples,

Φ = ((W 1, b1), . . . , (WL, bL)),

where W ℓ ∈ Rnℓ×nℓ−1 and bℓ ∈ Rnℓ , with n0 = d, nL = s and n1, . . . , nL−1 ∈ N.

We denote by Nd,L,s the space of neural network Φ with input dimension d, output dimension s and
L layers, and also Nd,s :=

⋃
L≥1Nd,L,s. If K ⊂ Rd and σ : R → R is an arbitrary activation

function, the associated realisation of Φ with activation function σ over K is defined as the map
RσΦ : K → Rs such that

RσΦ(x) = AL ◦ σ ◦ AL−1 ◦ · · · ◦ σ ◦ A1(x),

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 8

where Aℓ(x) = W ℓ · x+ bℓ is an affine transformation.

We also introduce the following nomenclature for a neural network Φ ∈ Nd,s,

depth(Φ) := L, size(Φ) := ∥Φ∥0 :=
L∑

ℓ=1

(nℓ−1 + 1)nℓ.

Figure 3: Left: Two neural networks. Right: Parallelisation with shared inputs of both networks ac-
cording to Proposition 3.2.

The parallelisation of neural networks is a common operation that we use in the subsequent analysis.

Proposition 3.2 (Parallelisation [34, Definition 2.7]). Let Φ1 = ((W 1
1 , b

1
1), . . . , (W

1
L, b

1
L)) ∈ Nd,L,s1

and Φ2 = ((W 2
1 , b

2
1), . . . , (W

2
L, b

2
L)) ∈ Nd,L,s2 be two neural networks with d-dimensional input.

Then P (Φ1,Φ2) = ((Ã1, b̃1), . . . , (ÃL, b̃L)), where

Ã1 :=

(
A1

1

A2
1

)
, b̃1 :=

(
b11
b21

)
, Ãℓ :=

(
A1

ℓ 0
0 A2

ℓ

)
, b̃ℓ :=

(
b1ℓ
b2ℓ

)
for 1 < ℓ ≤ L

is a neural network with d-dimensional input and L layers, called the parallelisation of Φ1 and Φ2.
Moreover, P (Φ1,Φ2) satisfies

size(P (Φ1,Φ2)) = size(Φ1) + size(Φ2) and RσP (Φ
1,Φ2) = (RσΦ

1, RσΦ
2).

We recall approximation results for continuously differentiable and Hölder continuous functions that
are used in the later analysis. The neural network complexity required for approximating multivariate
Hermite polynomials up to a certain accuracy has been examined in [37].

Theorem 3.3 (Deep ReLU neural networks approximation of multivariate Hermite polynomials [37,
Theorem 3.7]). Let Λ ⊂ {α ∈ N∞ : |α| <∞} be finite. For every ε ∈ (0, e−1) there exists a neural
network Φε such that

max
α∈Λ

∥Hα − H̃ε,α∥L2
µ(R| supp(Λ)|) ≤ ε,

where Hε,α = RσΦε : R| supp(Λ)| → R|Λ|, supp(Λ) := {j ∈ supp(α) : α ∈ Λ} and µ is
the multivariate Gaussian measure. Moreover, there exists a positive constant C (independent of
m(Λ) := maxα∈Λ |α|, d(Λ) := maxα∈Λ |α|0 and of ε) such that

size(Φε) ≤ C|Λ|m(Λ)3 log(1 +m(Λ))d(Λ)2 log(ε−1),

depth(Φε) ≤ Cm(Λ) log(1 +m(Λ))2d(Λ) log(1 + d(Λ)) log(ε−1).

Remark 3.4. The result above gives complexity results for approximating multivariate Hermite polyno-
mials using Deep ReLU neural networks. Instead, if we use the Rectified Power Unit (RePU) activation
function defined by RePUp : x 7→ max(x, 0)p, with p ≥ 2, then there exists a Deep Neural network

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 9

with this activation function which represents exactly a multivariate polynomial. From [32, Proposi-
tion 2.14] we have that there exists a Deep RePU Neural network ϕ which represents exactly any
polynomial p ∈ PΛ, and such that

size(ϕ) ≤ C|Λ|,
depth(ϕ) ≤ C log(|Λ|),

with a constant C > 0 depending only on the power p.

Theorem 3.5 (Approximation of β-Hölder continuous function [34, Theorem 3.1]). Let d ∈ N, B, p >
0 and β = (n, ξ) ∈ N× (0, 1]. Then, there exists a constant c = c(d, n, ξ, B) > 0 such that for any
function f ∈ Cβ([−1/2, 1/2]d) with ∥f∥Cβ ≤ B and any ε ∈ (0, 1/2) there is a neural network Φf

ε

such that

∥Rσ(Φ
f
ε)− f∥Lp([−1/2,1/2]d) < ε,

∥Rσ(Φ
f
ε)∥∞ ≤ ⌈B⌉,

and

depth(Φf
ε) ≤ (2 + ⌈log2(n+ ξ)⌉)

(
11 +

n+ ξ

d

)
,

size(Φf
ε) ≤ cε−

d
n+ξ .

3.2 Operator Neural Networks

The basis for our NN construction are recent results on operator networks. Operators are mappings
between infinite dimensional function spaces. Prominent examples are the solution operators for ODEs
and PDEs, which map function space inputs to the solution of the differential equation in another func-
tion space [40, 26, 25, 23]. Typical inputs are parameters describing coefficients or initial and bound-
ary data, as in particular is common in Uncertainty Quantification. The differential equation setting
also provides a mathematical framework for statistical inverse problems, where the object of interest
is the inverse operator that maps some observables to the underlying model data that is to be in-
ferred [39, 13]. In recent years, machine learning-based operator approximation has attracted growing
interest due to the possibly high cost of classical operator approximation techniques, particularly those
related to high-dimensional parametric and nonlinear PDEs [27, 9]. Opposite to simulation methods,
operator learning infers operators from solution data and a well-known approach is given by the Deep-
ONet architecture [26]. DeepONet can query any coordinate in the (parameter) domain to obtain the
value of the output function. However, for training and testing, the input function must be evaluated at
a set of predetermined locations (often called “snapshots” in reduced basis methods), which requires
a fixed observation grid for all observations.

Remark 3.6. For illustration, consider the 1D dynamical system defined on domain [0, 1] by

du

dx
(x) = f(u(x), ϕ(x), x), u(0) = 0.

The operator G that maps the perturbation ϕ to the solution u satisfies

(Gϕ)(x) =
∫ x

0

f((Gϕ)(y), ϕ(y), y) dy.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 10

In the linear case f(u(x), ϕ(x), x) = ϕ(x), the considered operator to be learned is the antiderivative
operator

G : ϕ 7→
(
u : x 7→

∫ x

0

ϕ(y) dy

)
.

X Y

Rm Rp

Encoder
E : u 7→ u := (u(x1), . . . , u(xm))

G

Approximator
A : u 7→ (β1(u), . . . , βp(u))

Reconstructor
R : β 7→∑p

i=1 βi(u)τi

Figure 4: Structure of the deep operator network.

We henceforth assume that D ⊂ Rd and U ⊂ Rn are compact domains (e.g. with Lipschitz bound-
ary). The architecture of a deep operator network is depicted in Figure 4, where the operator G is to be
represented approximately. For this, the encoder E results in a finite dimensional input representation
that is mapped via the approximator A to the finite dimensional out. Eventually, this is transferred to
the image of G by the reconstruction R. The following definition makes this rigorous.

Definition 3.7 (Deep operator network (DeepONet) [24, Definitions 2.1 & 2.4]). Assume separable
Banach spaces X, Y with continuous embeddings ι : X ↪→ L2(D) and ῑ : Y ↪→ L2(U). Let
µ ∈ P2(X) be a Borel probability measure on X with finite second moments such that there exists
A ⊂ X with µ(A) = 1 and A consists of continuous functions. Moreover, let G : X → Y be a
Borel measurable mapping such that G ∈ L2

µ. For the construction of the DeepONet architecture (see
Figure 4), three operators are used:

■ Encoder: Given a set of sensor points {xj}mj=1 ⊂ X , define the linear mapping

E :

{
C(D) −→ Rm

u 7−→ (u(x1), . . . , u(xm))
(3.1)

as the encoder mapping.

■ Approximator: Given sensor points {xj}mj=1, the approximator is a deep neural network A ∈
Nm,p.

■ Given the encoder and approximator, we define the branch net

β :

{
C(D) −→ Rp

u 7−→ RσA ◦ E(u) . (3.2)

It represents the coefficients in the basis expansion.

■ Denote a trunk net by τ ∈ Nn,p as a deep neural network representation of basis functions
based on the encoder data.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 11

■ Reconstructor. The τ -induced reconstructor is given by

R :

{
Rp −→ C(U)

{αk}pk=1 7−→∑p
k=1 αk(Rστ)k

. (3.3)

A DeepONet N approximates the nonlinear operator G. It is a mapping N : C(D) → L2(U) of the
form N = R◦RσA◦E , where E : (X, ∥ · ∥X) → (Rm, ∥ · ∥ℓ2) denotes the encoder given by (3.1),
RσA : (Rm, ∥ · ∥ℓ2) → (Rp, ∥ · ∥ℓ2) denotes the approximation network, and R : (Rp, ∥ · ∥ℓ2) →
(L2(U), ∥ · ∥L2(U)) denotes the reconstruction of the form (3.3), induced by the trunk net τ .

In [24], the authors study the approximation of G by N . For the analysis, they consider the following
error, measured in L2

µ, where µ is associated with X ,

Ê2 := ∥G −N∥L2
µ

:=

∫
X

∫
U

|G(u)(y)−N (u)(y)|2 dy dµ(u).
(3.4)

3.3 SDEONet architecture

We now describe the construction of the SDEONet architecture, which is inspired by the DeepONet
presented above and combined with the chaos representation of Section 2.2. For this, recall the poly-
nomial chaos expansion (2.7) for a stochastic process written as

Xt(ω) =
∑
k≥0

∑
|α|=k

xα(t)Ψα(ω), (3.5)

whereω ∈ Ω. One can hence define a nonlinear operator G such thatXt(ω) = G({Ws(ω)}s∈[0,T]})(t),
i.e., it maps the Brownian motion W to the continuous stochastic process (Xt)t∈[0,T] satisfying (1.1).
One can intuitively approximate such an operator G with a DeepONet N .

Definition 3.8 (SDE solution operator). A (nonlinear) operator G : L2([0, T]×Ω) → L2([0, T]×Ω)
is said to be a if G(W) is a continuous stochastic process satisfying (1.1), where W = (Wt)t∈[0,T] is
a Brownian motion. Given Assumption 2.1, it is the strong solution of the SDE with respect to W .

Example 3.9 (Operator G of linear SDE). Consider the following linear SDE

dXt = (a(t)Xt + b(t)) dt+ h(t) dWt,

where a, b and h are bounded functions on [0, T]. Then, for ω ∈ Ω and t ∈ [0, T], we have

G(ω)(t) = exp

(∫ t

0

a(s) ds

)(
X0 +

∫ t

0

exp

(
−
∫ s

0

a(r) dr

)
b(s) ds

+

∫ t

0

exp

(
−
∫ s

0

a(r) dr

)
h(s) dWs(ω)

)
.

The ingredients of the SDEONet architecture are defined next.

Definition 3.10 (SDEONet). Let W = (Wt)t∈[0,T] be a Brownian motion and p,m = 2k ∈ N poly-
nomial chaos discretisation parameters. We construct the SDEONet (see Figure 5) as a composition
of the following operators:

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 12

L2([0, T]× Ω) L2([0, T]× Ω)

L2(Ω,R)m L2(Ω,R)p

Encoder
E : W 7→ G := (G1, . . . , Gm)

G

Approximator
A : G 7→ (Ψ̃1, . . . , Ψ̃p)

Reconstructor
R : Ψ̃ 7→∑p

i=1 x̃iΨ̃i

Figure 5: SDEONet components mapping a Brownian motion to the respective trajectory. Note thatW
(Brownian motion), Gi (integrals of (ei)i) and Ψ̃i (basis approximation) are random variables defined
on Ω. The coefficients x̃i are functions of time t.

■ Encoder: The mapping

Ep,m : L2([0, T]× Ω) → L2(Ω,R)m (3.6)

maps the Brownian motion W to (Gi)
m−1
i=0 , with

Gi =

∫ T

0

ei(t) dWt,

for i = 2n−1 + j, 1 ≤ j ≤ 2n−1 and 1 ≤ n ≤ k.

■ Approximator: Given the values {Gi}m−1
i=0 , we denote an approximator A ∈ Nm,p as a deep

neural network such that its σ-realisation RσA = (Ψ̃j)
p
j=1 : L2(Ω)m → L2(Ω,R)p approxi-

mates the chaos polynomials Ψk∗j
.

■ Branch net. Given the encoder and approximator, the branch net is defined as β := A ◦ E .

■ Trunk net: We denote a trunk net τ p ∈ N1,p as a deep neural network such that its σ-realisation
Rστ

p = (x̃j)
p
j=1 : [0, T] → Rp approximates the coefficient functions xk∗j in Theorem 2.3.

■ Reconstructor. The τ -induced reconstructor is given by

Rp
τ :

{
L2(Ω,R)p −→ L2([0, T]× Ω)

(Ψ̃j)
p
j=1 7−→∑p

j=1 x̃jΨ̃j
(3.7)

the mapping that approximates (Xm,p∗

t)t∈[0,T].

A SDEONet Nm,p approximates the nonlinear operator G in Definition 3.8. It is defined as mapping
Nm,p : L2([0, T]× Ω) → L2([0, T]× Ω) of the form Nm,p = Rτp ◦ A ◦ E .

4 Convergence analysis

In this section, a complete error analysis is carried out for the SDEONet architecture described in
the last section. Similar to the analysis of DeepONets in [24], the overall error is split into several

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 13

components that are examined successively, namely truncation, approximation, and reconstruction
errors. We state our main convergence result as a combination of the subsequent estimates in the
following Theorem 4.1.

Let G : L2([0, T] × Ω) → L2([0, T] × Ω) be a SDE solution operator according to Definition 3.8
and Nm,p be a SDEONet as of Definition 3.10 with m, p ∈ N. We consider the error measured in the
L2([0, T]× Ω)-norm defined by

Ê :=

(∫ T

0

E[|G(W)(t)−N (W)(t)|2] dt
)1/2

=

(∫ T

0

E[|Xt − X̃m,p
t |2] dt

)1/2

.

(4.1)

Theorem 4.1 (Neural network approximation of a strong solution of a SDE). Let p,m = 2k ∈ N,

G be a SDE solution operator given by Definition 3.8 and ε ∈
(
0,
[

4
e2T

]1/3)
. Then, there exists a

SDEONet N p,m given by Definition 3.10 that satisfies

Ê ≤ min
(q,ℓ)∈Jp

(
(1 + x20)

(∫ T

0

C3(t,K)

(
1

(q + 1)!
+

2T (1 + t)

ℓ

)
dt

))1/2

+
√
ε min
(q,ℓ)∈Jp

(
(1 + x20)

(
C4(K,T)−

1

(q + 1)!

T (C5T)
2(q+1)

2(q + 1) + 1

(
1 +

1

C5T

)q+1
))1/2

+ ε

√√√√ p∑
j=1

E[Ψ̃j

2
],

with C3(t,K) defined in Theorem 2.4, C4(K,T) :=
∫ T

0
eBteBt

dt and C5 = C5(K,T) are the
constants in Lemma 4.9.

The SDEONet is composed of an approximator A that satisfies

size(A) ≤ C1p max
j∈{1,...,p}

|k∗j |3 log(1 + |k∗j |)|k∗j |20 log(pε−1),

depth(A) ≤ C1 max
j∈{1,...,p}

|k∗j | log(1 + |k∗j |)2|k∗j |0 log(1 + |k∗j |0) log(pε−1),

with a positive constant C1 > 0 independent of p,m, ε and of a trunk net τ that satisfies

depth(τ) ≤ (2 + ⌈log2(n+ 1)⌉)(12 + n),

size(τ) ≤ C2p

(
ε√
T

)− 1
n+1

,

with a constant C2 > 0 that depends only on the regularity of the xj .

Proof. By Lemma 4.3, the result comes from the combination of Lemma 4.4, Lemma 4.9 and Lemma 4.12.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 14

4.1 Auxiliary results

To prepare the convergence analysis in the following sections, we first introduce a decomposition of
the error. This requires the finite multi-index set

Ip,k :=

{
α ∈ Nk : |α| :=

k∑
i=1

αi ≤ p

}
(4.2)

and the best p-terms given by

k∗ := argmin
k=(k1,...,kp)∈Ip

∫ T

0

E[|Xt −
∑
j

xkj(t)Ψkj(W)|2] dt. (4.3)

Additionally, we define the following set of tuples

Jp :=

{
(m,n) ∈ N2 :

(
m+ n

n

)
≤ p

}
.

The truncation error with respect to the basis (ei)i in L2([0, T]) can be bounded by the next result.

Proposition 4.2. Let n ∈ N. Then, for all t ∈ [0, T],

E2n−1+j(t) =

2
n−1
2√
T

(
t− T 2j−2

2n

)
T 2j−2

2n
≤ t ≤ T 2j−1

2n

2
n−1
2√
T

(
T 2j

2n
− t
)

T 2j−1
2n

≤ t ≤ T 2j
2n

0 else

, (4.4)

and
∞∑

ℓ=n+1

2n∑
j=1

(
E2

2ℓ−1+j(t) +

∫ t

0

E2
2ℓ−1+j(τ) dτ

)
≤ 2T (1 + t)2−n. (4.5)

with E defined as in (2.12).

Proof. The first expression (4.4) follows from the definition of e2n−1+j . Concerning the second ex-
pression (4.5), first, note that maxt∈[0,T]E

2
2n−1+j(t) = T2−(n+1) and that E2n−1+j(t) ̸= 0 only for

t ∈
[
T 2j−2

2n
, T 2j

2n

]
. Then,

∞∑
ℓ=n+1

2n∑
j=1

(
E2

2ℓ−1+j(t) +

∫ t

0

E2
2ℓ−1+j(τ) dτ

)
≤

∞∑
ℓ=n+1

(
T2−(ℓ+1) + tT2−(ℓ+1)

)
= 2T (1 + t)2−n,

since it is a geometric series.

Lemma 4.3 (Decomposition of the error). Let p,m ∈ N, G be a SDE solution operator according to
Definition 3.8 and N p,m a SDEONet. Then, the error Ê (4.1) can be decomposed as

Ê ≤ ÊTrunc + ÊApprox + ÊRecon, (4.6)

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 15

with

ÊTrunc :=

(∫ T

0

E[|Xt −
p∑

j=1

xk∗j (t)Ψk∗j
|2] dt

)1/2

, (4.7a)

ÊApprox :=

(∫ T

0

E[|
p∑

j=1

xk∗j (t)Ψk∗j
−

p∑
j=1

xk∗j (t)Ψ̃j|2] dt
)1/2

, (4.7b)

ÊRecon :=

(∫ T

0

E[|
p∑

j=1

xk∗j (t)Ψ̃j −
p∑

j=1

x̃j(t)Ψ̃j|2] dt
)1/2

. (4.7c)

Proof. Note that for any continuous process (Yt)t∈[0,T] one has

∥Y ∥2L2([0,T]×Ω) :=
1

T

∫ T

0

∫
Ω

Yt(ω)
2 dPYt(ω) dt,

which is a norm e.g. by using Minkowski’s inequality. Applying the triangle inequality then gives the
result.

4.2 Truncation error

We first estimate the truncation error, which results from only using a finite number of basis elements
and terms in the Wiener chaos expansion.

Lemma 4.4 (Upper bound of truncation error). Given Assumption 2.1 and let µ, σ satisfy the assump-
tions of Theorem 2.4. Then, the truncation error (4.7a) satisfies

ÊTrunc ≤ min
m,n∈Jp

(
(1 + x20)

(∫ T

0

C(t,K)

(
1

(m+ 1)!
+

2T (1 + t)

n

)
dt

))1/2

, (4.8)

with C(t,K) defined in Theorem 2.4.

Proof. Let m,n ∈ N. Let k = ⌊log2(n)⌋. Applying Theorem 2.4 leads to

E[(Xt −Xm,n
t)2] ≤ C(t,K)(1 + x20)

 1

(m+ 1)!
+

∞∑
ℓ=k+1

2k∑
j=1

(
Ej,ℓ(t)

2 +

∫ t

0

E2
j,ℓ(τ) dτ

) .

Integrating from t = 0 to T yields∫ T

0

E[|Xt −Xm,n
t |2] dt ≤

∫ T

0

C(t,K)(1 + x20)

×

 1

(m+ 1)!
+

∞∑
ℓ=k+1

2k∑
j=1

(
Ej,ℓ(t)

2 +

∫ t

0

E2
j,ℓ(τ) dτ

) dt.

Then, using Proposition 4.2, we have∫ T

0

C(t,K)(1 + x20)

 1

(m+ 1)!
+

∞∑
ℓ=k+1

2k∑
j=1

(
Ej,ℓ(t)

2 +

∫ t

0

E2
j,ℓ(τ) dτ

) dt

≤(1 + x20)

∫ T

0

C(t,K)

(
1

(m+ 1)!
+

2T (1 + t)

n

)
dt.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 16

The results follows by definition of k∗.

The above lemma shows that the truncation error decays factorially fast in the number of polynomial
chaos terms and linearly in the number of basis elements.

4.3 Approximation error

The second term in (4.6) is the approximation error that comes from the approximation of the polyno-
mial chaos. This term is more involved and requires the use of Malliavin calculus, as introduced above.
The approach is to explicitly introduce the L2 error of the polynomial chaos and show that a neural
network can indeed approximate the Hermite polynomials.

For the purposes of upper bounding the approximation error, we recall the following results.

Theorem 4.5 ([21, Theorem 2.9, page 289]). Suppose that Assumption 2.1 is fulfilled. Then, there
exists a continuous, adapted process X which is a strong solution of (1.1) relative to W , with initial
condition x0. Moreover, this process is square-integrable: for every T > 0, there exists a constant
C := C(K,T) such that

E[∥Xt∥22] ≤ C(1 + E[∥x0∥22]) exp(Ct)
for 0 ≤ t ≤ T .

Proposition 4.6 ([18, Proposition 4.1]). Under conditions of Theorem 2.4, we obtain the estimate

E[(Dn
s1,...,sn

Xt)
2] ≤ Cn(1 + x20) exp(Cnt),

where C is the same as in Theorem 4.5.

Theorem 4.7 ([38]). Let F ∈ L2(Ω). Suppose that F is infinitely Malliavin derivable and that for every
k ≥ 0, the k-th Malliavin derivative DkF of F is square-integrable. Then the symmetric functions fn
in the chaos decomposition

F =
∞∑
n=0

In(fn)

can be computed by

fn =
1

n!
E[DnF]

These results enable to bound the coefficient functions.

Lemma 4.8. Let Assumption 2.1 be satisfied, and let µ, σ satisfy the assumptions of Theorem 2.4.
Consider the Wiener chaos expansion (2.6) of Xt

Xt =
∞∑
n=0

∑
|α|=n

xα(t)Ψα.

Then, for m ∈ N, we have
m∑
ℓ=0

∑
|α|=ℓ

xα(t)
2 ≤ (1 + x20)

(
eCteCt − (CteCt)m+1

(m+ 1)!

)
,

where t ∈ [0, T] and C = C(K,T) is a constant that depends only on T and the regularity of µ and
σ.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 17

Proof. Note that

Xt =
∞∑
n=0

∑
|α|=n

xα(t)Ψα =
∞∑
n=0

In(ξn(t
n; t))

with tn := (t1, . . . , tn). Since Xt is infinitely Malliavin derivative, by Theorem 4.7 the symmetric
kernel functions are given by ξn(·; t) : tn 7→ 1

n!
E[Dn

t1,...,tn
Xt], with n-th order Malliavin derivative of

Xt denoted by DnXt. In is the multiple stochastic integral of order n introduced in Definition 2.2. It
follows that

m∑
ℓ=0

∑
|α|=ℓ

xα(t)
2 =

m∑
ℓ=0

E[(Iℓ(ξℓ(tℓ; t)))2]

=
m∑
ℓ=0

ℓ!⟨ξℓ(tℓ; t), ξℓ(tℓ; t)⟩L2([0,T]ℓ)

=
m∑
ℓ=0

∫ (ℓ);t

E[(Dℓ
t1,...,tℓ

Xt)
2] dtℓ

≤ (1 + x20)
m∑
ℓ=0

CℓeCℓt

∫ (ℓ);t

dtℓ

= (1 + x20)
m∑
ℓ=0

(CteCt)ℓ

ℓ!
,

with C = C(K,T) and
∫ (ℓ);t

f(·) dtℓ :=
∫ t

0

∫ tℓ
0
· · ·
∫ t2
0
f(·) dt1 . . . dtℓ. The inequality is derived by

using Proposition 4.6 and Theorem 4.5. Now, note that
∑m

ℓ=0
(CteCt)ℓ

ℓ!
≤ eCteCt − (CteCt)m+1

(m+1)!
using

the Taylor-Lagrange formula. With this, we obtain
m∑
ℓ=0

∑
|α|=ℓ

xα(t)
2 ≤

(
(1 + x20)(e

CteCt − (CteCt)m+1

(m+ 1)!

)
.

We can now bound the approximation error.

Lemma 4.9 (Upper bound of approximation error). Let Assumption 2.1 be satisfied and let µ, σ satisfy
the assumptions of Theorem 2.4. Then, the approximation error (4.7b) satisfies

Ê2
Approx ≤ min

(m,n)∈Jp
E

[
p∑

j=1

|Ψk∗j
− Ψ̃j|2)

]

× (1 + x20)

(
A(K,T)− 1

(m+ 1)!

T (CT)2(m+1)

2(m+ 1) + 1

(
1 +

1

CT

)m+1
)
,

with constants A(K,T) :=
∫ T

0
eCteCt

dt and C = C(K,T).

Proof. By the Cauchy-Schwarz inequality, it follows,∣∣∣∣∣
p∑

j=1

xk∗j (t)Ψk∗j
−

p∑
j=1

xk∗j (t)Ψ̃j

∣∣∣∣∣
2

=

∣∣∣∣∣
p∑

j=1

xk∗j (t)(Ψk∗j
− Ψ̃j)

∣∣∣∣∣
2

≤
(

p∑
j=1

xk∗j (t)
2

)(
p∑

j=1

|Ψk∗j
− Ψ̃j|2

)
.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 18

Taking the expectation and integrating with respect to t leads to∫ T

0

E

∣∣∣∣∣
p∑

j=1

xk∗j (t)Ψk∗j
−

p∑
j=1

xk∗j (t)Ψ̃j

∣∣∣∣∣
2
 dt ≤

∫ T

0

(
p∑

j=1

xk∗j (t)
2

)
E

[
p∑

j=1

|Ψk∗j
− Ψ̃j|2

]
dt.

The next step is to find an upper bound of
∫ T

0

(∑p
j=1 xk∗j (t)

2
)
dt. By Lemma 4.8 with (m,n) ∈ Jp

we have
m∑
ℓ=0

∑
|α|=ℓ

xα(t)
2 ≤ (1 + x20)

(
eCteCt − (CteCt)m+1

(m+ 1)!

)
.

Integrating with respect to t results in

∫ T

0

m∑
ℓ=0

∑
|α|=ℓ

xα(t)
2 dt ≤ (1 + x20)

∫ T

0

eCteCt

dt︸ ︷︷ ︸
=:A(K,T)

−
∫ T

0

(CteCt)m+1

(m+ 1)!
dt

= (1 + x20)

(
A(K,T)− 1

(m+ 1)!

m+1∑
ℓ=0

(
m+ 1

ℓ

)∫ T

0

(Ct)2(m+1)−ℓ dt

)

= (1 + x20)

(
A(K,T)− 1

(m+ 1)!

m+1∑
ℓ=0

(
m+ 1

ℓ

)
T (CT)2(m+1)−ℓ

2(m+ 1)− k + 1

)

≤ (1 + x20)

(
A(K,T)− 1

(m+ 1)!

m+1∑
ℓ=0

(
m+ 1

ℓ

)
T (CT)2(m+1)−ℓ

2(m+ 1) + 1

)

= (1 + x20)

(
A(K,T)− 1

(m+ 1)!

T (CT)2(m+1)

2(m+ 1) + 1

(
1 +

1

CT

)m+1
)
.

By definition of k∗ it thus follows for all (m,n) ∈ Jp that∫ T

0

(
p∑

j=1

xk∗j (t)
2

)
dt ≤ (1 + x20)

(
A(K,T)− 1

(m+ 1)!

T (CT)2(m+1)

2(m+ 1) + 1

(
1 +

1

CT

)m+1
)
.

Combining the above results, we obtain

Ê2
approx ≤ E

[
p∑

j=1

|Ψk∗j
− Ψ̃j|2

]

× min
(m,n)∈Jp

(1 + x20)

(
A(K,T)− 1

(m+ 1)!

T (CT)2(m+1)

2(m+ 1) + 1

(
1 +

1

CT

)m+1
)
.

The approximation of the Ψj by neural networks according to Theorem 3.3 yields the following result.

Corollary 4.10 (Deep ReLU neural networks approximation of polynomials chaos). Let p ∈ N. For
any ε ∈ (0, e−1/p) there exists a neural network Φε such that

E

[
p∑

j=1

|Ψk∗j
− (RσΦε)j|2

]
≤ ε

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 19

with complexity given by

size(Φε) ≤ Cp max
j∈{1,...,p}

|k∗j |3 log(1 + |k∗j |)|k∗j |20 log(pε−1),

depth(Φε) ≤ C max
j∈{1,...,p}

|k∗j | log(1 + |k∗j |)2|k∗j |0 log(1 + |k∗j |0) log(pε−1).

Proof. Recall that k∗ := argmink=(k1,...,kp)∈Ip

∫ T

0
E[|Xt−

∑
j xkj(t)Ψkj(W)|2] dt. Let j ∈ {0, . . . , p}.

By Theorem 3.3 (take Λ = {k∗j}) there exists a neural network Φε,j such that

∥Ψk∗j
−RσΦε,j∥

L2
µ(R

|k∗
j
|0)

≤ ε

p
.

Moreover, there exists a positive constant C (independent of |k∗j |, |k∗j |0, ε and of p) such that

size(Φε,j) ≤ C|k∗j |3 log(1 + |k∗j |)|k∗j |20 log(pε−1),

depth(Φε,j) ≤ C|k∗j | log(1 + |k∗j |)2|k∗j |0 log(1 + |k∗j |0) log(pε−1).

The result follows by parallelisation as in Proposition 3.2.

4.4 Reconstruction error

For the following results, we consider the common activation function σ = ReLU. The last error term
in (4.6) is the approximation of the deterministic coefficient functions in the Wiener chaos expansion.
We show that they can be approximated by neural networks due to the regularity of the corresponding
ODE trajectories and Theorem 3.5.

Corollary 4.11 (Approximation of ODEs). Let f : [t0, t1] × Rm → Rm ∈ Ck and Lipschitz with
respect to the second variable, k ∈ N, p > 0, and x0 ∈ Rm. Consider the Cauchy problem with
X : [t0, t1] → Rm,

dX

dt
(t) = f(t,X(t)), X(t0) = x0. (4.9)

The ODE (4.9) has a unique solution X : [t0, t1] → Rm ∈ Ck+1 and for any ε ∈ (0, (m(t1 −
t0))

1/p/2) there exists a neural network ΦX
ε ∈ N1,m such that

∥Rσ(Φ
X
ε)−X∥Lp([t0,t1]) < ε,

∥Rσ(Φ
X
ε)∥∞ ≤ K,

where K = K(t0, t1, X) is a constant, and

depth(ΦX
ε) ≤ (2 + ⌈log2(k + 1)⌉)(12 + k),

size(ΦX
ε) ≤ mc

(
ε

(t1 − t0)1/p

)− 1
k+1

.

Proof. Case m = 1.
Under the assumptions on f , the problem (4.9) has a unique solutionX : [t0, t1] → R by the Cauchy-
Lipschitz (Picard-Lindelöf) theorem. By induction on k it can be shown that X ∈ Ck+1. Note that the
solution X is (k, 1)-Hölder continuous. Let

T :

{
[−1/2, 1/2] −→ [t0, t1]

x 7−→ (x+ 1
2
)(t1 − t0) + t0

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 20

which is a diffeomorphism, and define Y = X ◦ T : [−1/2, 1/2] → R which is (k, 1)-Hölder
continuous on [−1/2, 1/2]. Let B := maxα∈{0,...,k}

∥∥ dαY
dxα

∥∥
∞. Applying Theorem 3.5, there exists a

constant c = c(k,B) > 0 and a neural network ΦY
ε such that

depth(ΦY
ε) ≤ (2 + ⌈log2(k + 1)⌉)(12 + k),

size(ΦY
ε) ≤ c

(
ε

(t1 − t0)1/p

)− 1
k+1

.

Moreover,

∥Rσ(Φ
Y
ε)− Y ∥Lp([−1/2,1/2]) <

ε

(t1 − t0)1/p
,

∥Rσ(Φ
Y
ε)∥∞ ≤ ⌈B⌉.

Now, note that

∥Rσ(Φ
Y
ε)− Y ∥pLp([−1/2,1/2]) =

1

t1 − t0

∫ t1

t0

(Rσ(Φ
Y
ε)(T

−1(x))− Y (T−1(x)))p dx,

=
1

t1 − t0
∥Rσ(Φ

Y
ε) ◦ T−1 −X∥pLp([t0,t1])

.

If we write ΦY
ε = ((W 1, b1), . . . , (WL, bL)) then

ΦX
ε = ((

1

t1 − t0
W 1, b1 −

(
t0

t1 − t0
+

1

2

)
W 1), (W 2, b2), . . . , (WL, bL))

satisfiesRσΦ
Y
ε ◦T−1 = RσΦ

X
ε and size(ΦY

ε) = size(ΦX
ε). Using the previous equation, we deduce

∥Rσ(Φ
X
ε)−X∥Lp([t0,t1]) ≤ ε.

Case m > 1.
Let (ΦXk

ε)mk=1 be m neural networks that approximate Xk with accuracy ε
m1/p in the Lp norm. Con-

siderΦX
ε = P ((ΦXk

ε)mk=1) as a parallelisation according to Proposition 3.2 with size(ΦX
ε) =

∑m
k=1 size(Φ

Xk
ε)

and RσΦ
X
ε = (RσΦ

Xk
ε)mk=1. Then,

∥RσΦ
X
ε −X∥pLp([t0,t1])

≤
m∑
j=1

∥RσΦ
Xk
ε −Xk∥pLp([t0,t1])

≤ m
(ε

m1/p

)p
= εp.

Lemma 4.12. With Assumption 2.1 and n-times continuously differentiable µ, σ, ej with respect to
their variables, for any ε ∈ (0,

√
pT/2) there exists a neural network Φε ∈ N1,p such that

p∑
j=1

∥xk∗j − x̃j∥2L2([0,T]) ≤ ε2.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 21

The reconstruction error can be bounded like

Ê2
Recon ≤ ε2

(
p∑

j=1

E[Ψ̃j

2
]

)

and

depth(Φε) ≤ (2 + ⌈log2(n+ 1)⌉)(12 + n),

size(Φε) ≤ pc

(
ε√
T

)− 1
n+1

.

Proof. By the Cauchy-Schwarz inequality one has∣∣∣∣∣
p∑

j=1

xk∗j (t)Ψ̃j −
p∑

j=1

x̃j(t)Ψ̃j

∣∣∣∣∣
2

=

∣∣∣∣∣
p∑

j=1

(xk∗j (t)− x̃j(t))Ψ̃j

∣∣∣∣∣
2

≤
(

p∑
j=1

|xk∗j (t)− x̃j(t)|2
)(

p∑
j=1

Ψ̃j

2

)
.

Taking the expectation and integrating with respect to t leads to

∫ T

0

E

∣∣∣∣∣
p∑

j=1

xk∗j (t)Ψ̃j −
p∑

j=1

x̃j(t)Ψ̃j

∣∣∣∣∣
2
 dt ≤

(
p∑

j=1

∥xk∗j − x̃j∥2L2([0,T])

)(
p∑

j=1

E[Ψ̃j

2
]

)
.

Recall that µ, σ, ej are n-times continuously differentiable with respect to their variables. By Corol-
lary 4.11 for any ε ∈ (0,

√
pT/2) there exists a neural network Φε ∈ N1,p such that

depth(Φε) ≤ (2 + ⌈log2(n+ 1)⌉)(12 + n),

size(Φε) ≤ pc

(
ε√
T

)− 1
n+1

.

Moreover,
p∑

j=1

∥xk∗j − x̃j∥2L2([0,T]) ≤ ε2.

4.5 D-dimensional SDE

Let H = L2([0, T];Rd) ∼= L2([0, T]) ⊗ Rd. Let B := (B1
t , . . . , B

d
t)t∈[0,T] be a d-dimensional

Brownian motion defined on (Ω,F , (Ft)t∈[0,T],P), where (Ft)t is its natural filtration and F :=
σ(W (h) : h ∈ H). Then,

W (h) :=
d∑

k=1

∫ T

0

hk(t) dW k
t

is an isonormal Gaussian process for H .

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 22

Let (ϕij)
j=d
j=1,i≥0 be an orthonormal basis of L2([0, T];Rd). For instance, ϕij = ψi ⊗ ej , where

(ψi)i≥0 is a orthonormal basis of L2([0, T]) and (ej)
d
j=1 is the canonical basis of Rd. Then, any

random variable F ∈ L2(Ω,F ,P) admits the following Wiener chaos expansion

F =
∞∑
k=0

∑
|α|=k

α∈Id

fα

d∏

j=1

∞∏
i=1

Hαj
i
(W (ϕij))︸ ︷︷ ︸

=:Ψα

 .

Consider the following d-dimensional Itô process

dXt = µ(t,Xt) dt+ σ(t,Xt) · dBt,

which in integral form reads

Xt = X0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

σ(s,Xs) · dBs.

The Wiener chaos expansion for each component Xj
t of Xt is given by

Xj
t =

∞∑
k=0

∑
|α|=k

α∈Id

xjα(t)

(
d∏

j=1

∞∏
i=1

Hαj
i
(W (ϕij))

)
.

Following the proof of Theorem 2.3, it is possible to show that the xjα(t) satisfy a system of ordinary
differential equation.

Suppose that we want to approximate each component Xj
t with p coefficients. Then, the analysis

for the approximation of the coefficients xjα(t) Lemma 4.12 does not change qualitatively since by
Proposition 3.2 the size is only multiplied by d. Since we have d times more Hermite polynomials the
polynomial chaos Ψα, by Corollary 4.10 the size of the network again is multiplied by d.

5 Numerical experiments

This section illustrates that our SDEONet architecture is able to approximate the stochastic process
(Xt)t at any time t in numerical computations with a reasonable number of parameters. To enforce
the learning of the initial condition X0, a second term is added to the loss, which then becomes

L(θ) = 1

B

(
B∑
i=1

∥Xti −RσNm,p
θ (W i, ti)∥22 +

B∑
i=1

∥X0 −RσNm,p
θ (W i, 0)∥22

)
. (5.1)

To assess the performance of our model, we use different metrics. These are computed at each time
step on the time grid to check if our model is able to approximate the stochastic process at any time

t. The first two are the absolute L2 error ∥Xt − X̃t∥L2 and the relative L2 error
∥Xt−X̃t∥L2

∥Xt∥L2
. They are

approximated by a Monte-Carlo estimation

∥F∥L2 ≈
(

1

N

N∑
i=1

|F i|2
)1/2

,

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 23

where (Fi)
N
i=1 are realisations of F .

Another reasonable metric to consider is the Wasserstein 2-distance defined by

W2(µ, ν)
2 := min

γ∈Π(µ,ν)

∫
Rd

∥x− y∥22 dγ(x, y),

where Π(µ, ν) :=
{
γ ∈ P(Rd × Rd) : (π0)♯γ = µ, (π1)♯γ = ν

}
is the transport plan and π0 and

π1 are the two projections of Rd ×Rd onto its factors. When d = 1, it is possible to approximate it by
considering the empirical measures µn = 1

n

∑n
i=1 δXi

, νn = 1
n

∑n
i=1 δYi

and then to compute

W2(µn, νn)
2 =

1

n

n∑
i=1

∥X(i) − Y(i)∥22,

where X(1) ≤ X(2) ≤ · · · ≤ X(n). For higher dimensions d > 1, the computation of W2 is quite
elaborate. There are methods to approximate it, e.g. by the well-known Sinkhorn algorithm [8, 6].

Definition 5.1 (Entropy regularised optimal transport cost [6]). Let µ, ν be two probability measures
on Rd with finite second-moment. Then, the entropy regularised optimal transport cost is defined as

Tλ(µ, ν) := min
γ∈Π(µ,ν)

E(X,Y)∼γ

[
∥X − Y ∥2ℓ2

]
+ 2λH(γ, µ⊗ ν),

where Π(µ, ν) :=
{
γ ∈ P(Rd × Rd) :

∫
γ(x, ·) dx = ν,

∫
γ(·, y) dy = µ

}
is the set of transport

plans between µ and ν, λ ≥ 0 is the regularisation parameter, andH(γ, µ⊗ν) is the relative entropy
(or Kullback-Leibler divergence) of γ with respect to µ⊗ ν defined by

H(γ, µ⊗ ν) :=

∫
Rd×Rd

log

(
dγ(x, y)

dµ(x) dν(y)

)
dγ(x, y).

Note that T0(µ, ν) = W2
2 (µ, ν) and that the choice Tλ(µ̂n, ν̂n) is not optimal since it introduces a

large bias. The Sinkhorn divergence defined by

Sλ(µ, ν) := Tλ(µ, ν)−
1

2
(Tλ(µ, µ) + Tλ(ν, ν))

is an estimator of W2(µ, ν)
2.

5.1 1D processes

In the next experiments the model is defined by m = 32, p = 64, 2 hidden layers of 256 neurons
each. The model is learned on a dataset of 20,000 samples ofXt with t ∼ U(0, T) during 30 epochs
with a learning rate of 3 · 10−4 with the Adam optimizer [22] and a batch size of 64.

5.1.1 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is a crucial stochastic process in the area of mathematical physics
and stochastic calculus. It is a continuous-time stochastic process that finds extensive application in
emulating a diverse range of phenomena across multiple fields such as physics, finance, biology, and
engineering. This process is useful for modelling mean-reversing behaviour, where a variable tends to

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 24

0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

0.0

0.2

0.4

0.6

0.8

1.0

X
t

Xt

X̃t

Figure 6: Trajectories of the true process Xt and the approximation X̃t (OU).

return to its mean over time. This makes it a valuable tool for understanding and modelling stable and
self-correcting processes. It is defined by

dXt = −θ(Xt − µ) dt+ σ dWt,

where θ > 0, µ and σ > 0 are parameters. Using Itô’s formula, it is possible to get an explicit
expression of Xt given X0 by

Xt = X0e
−θt + µ(1− e−θt) +

σ√
2θ
W1−e−2θt .

For the numerical experiments, we chose θ = 1, µ = 1.2, and σ = 1.3.all figures have
to be as readable
as fig 6 -> larger
fonts, thicker lines Examining the trajectories depicted in Figure 6, we observe that the approximation X̃t exhibits a

notable smoother behaviour compared to the true stochastic process Xt. This behaviour is likely due
to a small dimension of polynomial chaos. Moreover, we can discern the impact of the additional term
incorporated into the loss function. This supplementary term plays a crucial role in aiding the model
to effectively learning the initial state, represented by X0, which is confirmed by Figure 7a. Figure 7b
also shows that the model is able to learn the stochastic process at each time step t very accurately
since the random variables Xt and X̃t are close in distribution.

5.1.2 Geometric Brownian motion

The Geometric Brownian motion (GBM) is a widely used stochastic process in finance, mathematical
modelling, and statistical physics. In particular, this process is crucial for understanding and describing
the pricing of financial assets and to model stock prices. GBM represents an extension of the classic
Brownian movement, which incorporates exponential growth and is characterised by its capacity to
capture the innate uncertainty and volatility linked with genuine financial markets.

The Geometric Brownian motion is defined by

dXt = µXt dt+ σXt dWt,

where µ and σ > 0 are parameters. Using Itô’s formula, it is possible to obtain an explicit expression
of Xt given X0, namely

Xt = X0 exp

((
µ− σ2

2

)
t+ σWt

)
.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 25

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

10−2L
2

lo
ss ‖Xt − X̃t‖2

L2

‖Xt−X̃t‖L2

‖Xt‖L2]

2

10−1 R
el

at
iv

e
L

2
lo

ss

(a) L2 loss (blue) and relative L2 loss (red) over time.

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

10−2

W
2

W2(Xt, X̃t)

(b) W2(Xt, X̃t)

Figure 7:L2 loss and Wasserstein 2-distance over time for the Ornstein-Uhlenbeck process, computed
over 2,000 samples and averaged over 100 independent realisations. The error bars correspond to 3σ.

0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

1.0

1.5

2.0

2.5

3.0

3.5

X
t

Xt

X̃t

Figure 8: Trajectories of the true process Xt and the approximation X̃t (GBM).

For the numerical experiments, we chose µ = 1.0 and σ = 0.3.

The plot in Figure 8 shows a similar behaviour as for the Ornstein-Uhlenbeck process above. However,
we see that the approximation is slightly worse due to the nature of the Geometric Brownian motion.
In practice, we also notice that for large σ it becomes more difficult to learn the stochastic process.

Figure 9a shows that with this choice of parameters µ and σ the model is able to learn the stochastic
process with a small L2 and relative L2 error. Moreover, Figure 9b illustrates that the random variables
Xt and X̃t are close in distribution at each time step t. This can be considered a more appropriate
metric to assess the accuracy of the learned operator model.

5.2 Multi-dimensional

For the multidimensional experiment, we consider the Langevin process with the potential of the multi-
variate Normal distribution. Consider a particle subject to the force induced by a potential V ∈ C1(Rd)
(defined by −∇V), a friction and a random white noise. Let Xt be the position of the particle at time

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 26

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

10−1

L
2

lo
ss ‖Xt − X̃t‖2

L2

‖Xt−X̃t‖L2

‖Xt‖L2]

2

2× 10−2

3× 10−2

4× 10−2

6× 10−2

R
el

at
iv

e
L

2
lo

ss

(a) L2 loss (blue) and relative L2 loss (red) over time
for the approximation of the Geometric Brownian Mo-
tion.

0.0 0.2 0.4 0.6 0.8 1.0
Time (t)

10−2

W
2

W2(Xt, X̃t)

(b) W2(Xt, X̃t)

Figure 9: L2 loss and Wasserstein 2-distance over time for the Geometric Brownian motion computed
over 2,000 samples and averaged over 100 independent realisations. The error bars correspond to
3σ.

t, k the Boltzmann constant and T the temperature. Then, Newton’s equation of motion leads to

m
d2Xt

dt2
= −∇V (Xt)− λm

dXt

dt
+
√
kT

dBt

dt
,

where λ is friction coefficient and (Bt)t≥0 is a standard Brownian motion. This is a second-order
stochastic differential equation with initial conditions X0 and dXt

dt
(0), which can be written as

dXt = Vt dt,

dVt = −(∇V (Xt) + λmVt) dt+
√
kT dBt.

If we assume that the friction coefficient λ is large and the particle moves slowly enough that the
acceleration term can be neglected, then the stochastic differential equation can be simplified to

dXt = −∇V (Xt) dt+
√
2 dBt,

which is commonly called a Langevin process. Now, considering a large ensemble of particles that
evolve independently under this motion, it is necessary to establish if the distribution of particles con-
verges to a defined limit as t→ ∞. This question requires some assumptions regarding the potential
V , which should prevent the particles from escaping infinitely. Typically, it is assumed that V is m-
strongly convex and that the initial distribution has a finite second moment. With these assumptions,
it can be shown that there exists a stationary distribution [35]. When writing the Fokker-Planck equa-
tion of this stochastic differential equation, we have that the probability density p(·, t) of Xt evolves
according to

∂p

∂t
(x, t) = div(∇V (x)p(x, t) +∇xp(x, t)),

where div is the divergence operator defined by div(f) :=
∑d

j=1 ∂jf . From this equation, we imme-
diately see that

p∞ :=
exp(−V)∫
exp(−V)

is stationary. It can also be shown that the convergence is exponentially fast.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 27

Consider the multivariate normal distribution with mean µ, covariance matrix Σ and probability density
function

γ(x) := (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The associated potential V := − log γ is given by

V (x) =
d

2
ln(2π) +

1

2
ln(detΣ) +

1

2
(x− µ)TΣ−1(x− µ).

Therefore, the respective Langevin process can be written as

dXt = −Σ−1(Xt − µ) dt+
√
2 dBt.

For the numerical experiment, we have chosen d = 5, Σ = I and µ = 2((−1)jj)d−1
j=0 . The neural

network has the same architecture as in the one dimensional case, except that we now consider 64
coefficients for each component of the approximation X̃t.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (t)

10−1

100

L
2

lo
ss ‖Xt − X̃t‖2

L2

‖Xt−X̃t‖L2

‖Xt‖L2]

2

2× 10−1

3× 10−1

4× 10−1

R
el

at
iv

e
L

2
lo

ss

(a) L2 loss (blue) and relative L2 loss (red)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (t)

10−1

100

W
2

W2(Xt, X̃t)

(b) W2(Xt, X̃t) distance

Figure 10: L2 loss and Wasserstein 2-distance over time for the Langevin process, computed over
2,000 samples and averaged over 10 independent realisations. The error bars correspond to 3σ.

The error plots in Figure 10 show that the model is still able to approximate the stochastic process
Xt in higher dimensions, even though the task is structurally more complicated. We expect that an
extended training effort would lead to an even better operator model.

6 Conclusion

In this work, we have developed a new NN architecture called SDEONet to approximate the solution
of a SDE (1.1) using the notion of DeepONet [26] and a polynomial chaos expansion (2.6). Classical
methods using polynomial chaos expansion for solving SDE [18] struggle to handle the

(
p+m
p

)
coef-

ficients, which increase very quickly when the number of basis elements m or the maximal degree
p is increased. It hence is inevitable to devise an appropriate truncation and compression, that still
allows for accurate results in practice. The method we have developed is a new strategy to learn a
sparse Wiener chaos expansion of the solution of the SDE. The analysis shows that the size of the
required neural networks is quite small due to the regularity of the coefficients and the use of Hermite
polynomials.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 28

The experiments have shown promising results with small relative L2 and W2 errors. However, the
stability of the model should be improved when the process has a large variance, like with Geometric
Brownian motion. Concerning the multidimensional case, as discussed in Section 4.5, the experiment
in Section 5.2 also suggests that our model is able to accurately approximate the solution of a multidi-
mensional SDE without suffering from the “curse of dimensionality”.

The presented work motivates the extension to a more complex class of equation, e.g. backward
stochastic differential equations (BSDE). These equations are more challenging to solve, especially in
high dimensions. Some recent works already have considered Wiener chaos expansions for solving
BSDE [4].

References

[1] Christian Bayer, Martin Eigel, Leon Sallandt, and Philipp Trunschke, Pricing high-dimensional
Bermudan options with hierarchical tensor formats, SIAM Journal on Financial Mathematics 14
(2023), no. 2, 383–406.

[2] Christian Beck, Sebastian Becker, Philipp Grohs, Nor Jaafari, and Arnulf Jentzen, Solving the
kolmogorov pde by means of deep learning, Journal of Scientific Computing 88 (2021), 1–28.

[3] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen, Deep optimal stopping, The Journal of
Machine Learning Research 20 (2019), no. 1, 2712–2736.

[4] Philippe Briand and Céline Labart, Simulation of BSDEs by Wiener chaos expansion, 24 (2014),
no. 3.

[5] Robert H Cameron and William T Martin, The orthogonal development of non-linear functionals
in series of fourier-hermite functionals, Annals of Mathematics (1947), 385–392.

[6] Lénaïc Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard, and Gabriel Peyré,
Faster Wasserstein distance estimation with the Sinkhorn divergence, Proceedings of the 34th
International Conference on Neural Information Processing Systems (Red Hook, NY, USA),
NIPS’20, Curran Associates Inc., 2020.

[7] Albert Cohen and Ronald DeVore, Approximation of high-dimensional parametric PDEs, Acta
Numerica 24 (2015), 1–159.

[8] Marco Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport, Advances in
Neural Information Processing Systems (C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K.Q. Weinberger, eds.), vol. 26, Curran Associates, Inc., 2013.

[9] Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis, Approx-
imation rates of DeepONets for learning operators arising from advection–diffusion equations,
Neural Networks 153 (2022), 411–426.

[10] Martin Eigel, Robert Gruhlke, and David Sommer, Less interaction with forward models in
Langevin dynamics, arXiv preprint arXiv:2212.11528 (2022).

[11] Martin Eigel, Charles Miranda, Janina Schütte, and David Sommer, Approximating Langevin
Monte Carlo with ResNet-like Neural Network architectures, arXiv preprint arXiv:2311.03242
(2023).

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

SDEONet 29

[12] Oliver G Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann, On the convergence
of generalized polynomial chaos expansions, ESAIM: Mathematical Modelling and Numerical
Analysis 46 (2012), no. 2, 317–339.

[13] Zhiwei Gao, Liang Yan, and Tao Zhou, Adaptive operator learning for infinite-dimensional
bayesian inverse problems, arXiv preprint arXiv:2310.17844 (2023).

[14] Alfredo Garbuno-Inigo, Nikolas Nüsken, and Sebastian Reich, Affine invariant interacting
Langevin dynamics for Bayesian inference, SIAM Journal on Applied Dynamical Systems 19
(2020), no. 3, 1633–1658.

[15] Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis, Physics-informed
deep neural operator networks, Machine Learning in Modeling and Simulation: Methods and
Applications, Springer, 2023, pp. 219–254.

[16] Wolfgang Hackbusch, Numerical tensor calculus, Acta numerica 23 (2014), 651–742.

[17] Helge Holden, Bernt Øksendal, Jan Ubøe, Tusheng Zhang, Helge Holden, Bernt Øksendal, Jan
Ubøe, and Tusheng Zhang, Stochastic partial differential equations, Springer, 1996.

[18] Tony Huschto, Mark Podolskij, and Sebastian Sager, The asymptotic error of chaos expansion
approximations for stochastic differential equations, (2019), 145–165.

[19] Tony Huschto and Sebastian Sager, Solving stochastic optimal control problems by a Wiener
Chaos approach, Vietnam Journal of Mathematics 42 (2014), no. 1, 83–113.

[20] Svante Janson, Gaussian Hilbert spaces, no. 129, Cambridge university press, 1997.

[21] Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, Springer New
York, 1998.

[22] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization, CoRR
abs/1412.6980 (2014).

[23] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar, Neural operator: Learning maps between function spaces
with applications to pdes, Journal of Machine Learning Research 24 (2023), no. 89, 1–97.

[24] Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis, Error estimates for Deep-
ONets: A deep learning framework in infinite dimensions, 6 (2022), no. 1.

[25] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar, Fourier neural operator for parametric par-
tial differential equations, 9th International Conference on Learning Representations, ICLR 2021,
OpenReview.net, 2021.

[26] Lu Lu, Pengzhan Jin, and George Em Karniadakis, DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators, 3
(2021), no. 3, 218–229.

[27] Carlo Marcati and Christoph Schwab, Exponential convergence of deep operator networks for
elliptic partial differential equations, SIAM Journal on Numerical Analysis 61 (2023), no. 3, 1513–
1545.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

M. Eigel, C. Miranda 30

[28] Paul-André Meyer, Un cours sur les intégrales stochastiques (exposés 1 à 6), Séminaire de
probabilités de Strasbourg 10 (1976), 245–400 (fre).

[29] Anthony Nouy, Low-rank methods for high-dimensional approximation and model order reduction,
Model Reduction and Approximation: Theory and Algorithms 15 (2017), no. 171, 3672148.

[30] David Nualart, The Malliavin calculus and related topics, second ed., Probability and its Applica-
tions (New York), Springer-Verlag, Berlin, 2006. MR 2200233

[31] Bernt Øksendal, Stochastic differential equations, Springer Berlin Heidelberg, 2003.

[32] J. A. A. Opschoor, Ch. Schwab, and J. Zech, Exponential ReLU DNN expression of holomorphic
maps in high dimension, Constructive Approximation 55 (2021), no. 1, 537–582.

[33] Ivan V Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33 (2011),
no. 5, 2295–2317.

[34] Philipp Petersen and Felix Voigtlaender, Optimal approximation of piecewise smooth functions
using deep ReLU neural networks, Neural Networks 108 (2018), 296–330.

[35] Gareth O. Roberts and Richard L. Tweedie, Exponential convergence of Langevin distributions
and their discrete approximations, Bernoulli 2 (1996), no. 4, 341 – 363.

[36] Christoph Schwab and Claude Jeffrey Gittelson, Sparse tensor discretizations of high-
dimensional parametric and stochastic pdes, Acta Numerica 20 (2011), 291–467.

[37] Christoph Schwab and Jakob Zech, Deep learning in high dimension: Neural network expression
rates for analytic functions in L2(Rd, γd), SIAM/ASA Journal on Uncertainty Quantification 11
(2023), no. 1, 199–234.

[38] Daniel W. Stroock, Homogeneous chaos revisited, p. 1–7, Springer Berlin Heidelberg, 1987.

[39] Andrew M Stuart, Inverse problems: a bayesian perspective, Acta numerica 19 (2010), 451–559.

[40] Tianping Chen and Hong Chen, Universal approximation to nonlinear operators by neural net-
works with arbitrary activation functions and its application to dynamical systems, 6, no. 4, 911–
917.

[41] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang, Diffusion models: A comprehensive survey of methods and ap-
plications, ACM Computing Surveys 56 (2023), no. 4, 1–39.

DOI 10.20347/WIAS.PREPRINT.3079 Berlin 2023

	Introduction
	SDEs and Wiener chaos
	Definitions and notation
	Wiener chaos expansion of SDEs

	Deep operator networks
	Neural Networks
	Operator Neural Networks
	SDEONet architecture

	Convergence analysis
	Auxiliary results
	Truncation error
	Approximation error
	Reconstruction error
	D-dimensional SDE

	Numerical experiments
	1D processes
	Ornstein-Uhlenbeck process
	Geometric Brownian motion

	Multi-dimensional

	Conclusion

