
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Generative modelling with tensor train approximations of

Hamilton–Jacobi–Bellman equations

David Sommer1, Robert Gruhlke2, Max Kirstein3, Martin Eigel1, Claudia Schillings2

submitted: December 21, 2023

1 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: david.sommer@wias-berlin.de

martin.eigel@wias-berlin.de

2 FU Berlin
Animallee 6
14195 Berlin
Germany
E-Mail: r.gruhlke@fu-berlin.de

c.schillings@fu-berlin.de

3 Bosch Center for
Artificial Intelligence
31102 Hildesheim
Germany
E-Mail: max.kirstein@de.bosch.com

No. 3078

Berlin 2023

2020 Mathematics Subject Classification. 35F21, 35Q84, 62F15, 65N75, 65C30,

Key words and phrases. Generative modelling, approximate sampling, Hamilton-Jacobi-Bellman, low rank tensors.

DS & ME acknowledge support by the Profit project ReLkat - Reinforcement Learning for complex automation engineering
as well as support by the ANR-DFG project COFNET: Compositional functions networks - adaptive learning for high-
dimensional approximation and uncertainty quantification. RG, ME & CS acknowledge support by the DFG MATH+ project
AA5-5 (was EF1-25) - Wasserstein Gradient Flows for Generalised Transport in Bayesian Inversion. ME acknowledges
partial funding by the DFG priority program SPP 2298 “Theoretical Foundations of Deep Learning”. This study does not
have any conflicts to disclose.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Generative modelling with tensor train approximations of
Hamilton–Jacobi–Bellman equations

David Sommer, Robert Gruhlke, Max Kirstein, Martin Eigel , Claudia Schillings

Abstract

Sampling from probability densities is a common challenge in fields such as Uncertainty Quan-
tification (UQ) and Generative Modelling (GM). In GM in particular, the use of reverse-time diffu-
sion processes depending on the log-densities of Ornstein-Uhlenbeck forward processes are a
popular sampling tool. In [5] the authors point out that these log-densities can be obtained by so-
lution of a Hamilton-Jacobi-Bellman (HJB) equation known from stochastic optimal control. While
this HJB equation is usually treated with indirect methods such as policy iteration and unsuper-
vised training of black-box architectures like Neural Networks, we propose instead to solve the
HJB equation by direct time integration, using compressed polynomials represented in the Ten-
sor Train (TT) format for spatial discretization. Crucially, this method is sample-free, agnostic to
normalization constants and can avoid the curse of dimensionality due to the TT compression.
We provide a complete derivation of the HJB equation’s action on Tensor Train polynomials and
demonstrate the performance of the proposed time-step-, rank- and degree-adaptive integration
method on a nonlinear sampling task in 20 dimensions.

1 Introduction and related work

Consider the problem of sampling from a probability measure µ∗ on Rd, d ∈ N, with Lebesgue-density

π∗(y) =
1

Z
exp(−Φ(y)), (1.1)

where Φ: Rd → R is a sufficiently regular function called the potential and Z ∈ (0,∞) is a normal-
ization constant such that

∫
Rd π∗(y)dy = 1. Throughout this manuscript, we assume that Φ is known

and can be evaluated, while the normalization constant Z is unknown and difficult or even impossible
to compute. Over time, a myriad of different sampling methods have been devised, including Markov
Chain Monte Carlo (MCMC) methods [35, 6, 34], methods based on Stein variational gradient descent
[24], Langevin dynamics [36, 14, 15, 32, 7, 12], or Langevin dynamics preconditioned with measure
transport [41] to name just a few. In the last few years, interacting particle systems have received a lot
of attention [16, 14, 15, 32, 7, 12]. An important application where one aims to sample from densities
of the form (1.1) stems from solutions of inverse problems via Bayesian inference [40].

Since our approach is linked to (interacting particle-) Langevin samplers, we take a moment to review
these methods in more detail. All methods proposed in [14, 15, 32, 7] work with an Itô diffusion process
of the form

dXt = f(Xt)dt+ g(Xt)dWt, (1.2)

where W is a standard Brownian motion with appropriate dimension, f is the drift and g is the diffu-
sion. Under certain assumptions on the potential, e.g. (strong) convexity, convexity at infinity, regularity

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 2

and growth conditions, this process is ergodic [42, 15] and admits either µ∗ (in the case of a single
particle process) or ⊗B

i=1µ∗ (in the case of a system of B ∈ N interacting particles) as an invariant
measure.

Samples from µ∗ are obtained by propagating an initial batch of arbitrarily distributed samples through
the process (1.2) for infinite time. In the classical overdamped Langevin dynamics, the drift term f is
given by the negative gradient −∇Φ of the potential. In state-of-the-art interacting particle methods
like the Affine Invariant Langevin Dynamics (ALDI) [14], this drift is modified by a reversible pertur-
bation of the underlying process (see e.g. [41, Equation 2.4] for a general definition of reversible
perturbations and [15, Definition 3.1] for the specific perturbation of ALDI). Reversible perturbations
can increase convergence speed [33], while ensuring that the perturbed SDE maintains the same in-
variant measure as the unperturbed system and is still time-reversible. Even if the resulting system is
time-reversible, the reverse-time process is not considered in those works, since the forward process
(1.2) admits µ∗ as invariant measure.

While the time-homogeneous drift term of (1.2) makes these methods conceptually simple, it comes
with a potential downside with regard to the class of measures µ∗ that can be approximated. ALDI
comes with theoretical convergence guarantees only in the case of a potential with Gaussian tails
outside of a compact set [14]. In [12], the authors propose using a time-inhomogeneous process

dXt = f(t,Xt)dt+ g(Xt)dWt, (1.3)

where f(t, ·) is defined by gradients of log-densities of intermediate measures defined upon time
dependent interpolation, e.g. a convex combination of the target potential Φ and a simpler auxiliary
potential. By the choice of the auxiliary measure, the flow towards the target distribution is fixed. While
this so called homotopy -approach can substantially increase convergence speed in practice, e.g. to
sample from multimodal target distributions, the choice of auxiliary measures allowing for optimal flows
remains an open question.

Contrary, reverse-time diffusion processes offer a principled way of defining a process of the form
(1.3), which can be used to sample from µ∗. The key observation, dating back to [1], is that the
reverse-time process corresponding to (1.3) defines again a diffusion process of the form (1.3). For
some years, this property has been used in what is now called Diffusion Generative Modelling [37,
18, 39]. In contrast to Bayesian inference, where µ∗ is known but difficult to sample from, the goal
here is to generate new samples from some completely unknown data distribution of which a finite
number of samples {xi}Di=1, D ∈ N, are available. The central idea is to use an Ornstein-Uhlenbeck
process mapping any distribution to a standard-normal distributionN (0, Id) for t→∞ and then, by
using the available samples {xi}Di=1, learning the drift of the reverse-time process, mappingN (0, Id)
back to the data distribution [39]. More specifically, the gradient-log-density or score of the Ornstein-
Uhlenbeck process is learned by minimizing a score-matching objective function [22, 38], which is
essentially a weighted time-average of mean-squared errors (see e.g. [39, Equation 7]). The score
determines the reverse process. Once the score is known, new samples from the data distribution can
be obtained by sampling from the standard-normal distribution and propagating the samples through
the reverse process. However, classical score-matching relies on the samples {xi}Di=1 of the data
distribution, which are usually not available in a Bayesian setting. Hence, we consider an alternative
approach.

The authors of [5] point out that the negative log-density of a reverse-time diffusion process satisfies a
Hamilton-Jacobi-Bellman (HJB) equation. Since the score is invariant under additive constants to the
log-density, it suffices to solve this HJB equation up to an additive constant to obtain the correct score.
In particular, the normalization constant of the target density need not be known. Hence, solving the
corresponding HJB equation is a viable method of obtaining the score in a Bayesian setting.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 3

Tensor Trains [29] have been used successfully in several works on approximations of HJB equations
for nonlinear optimal control, see e.g. [31, 11] and references therein. In [31] the solution of the de-
terministic finite horizon HJB equation is obtained by a combination of Monte-Carlo (MC) sampling
and policy iteration. While this approach is appealing due to its model-free nature, the policy iteration
requires the solution of multiple nonlinear optimization problems at each time step. Furthermore, MC
sampling may lead to slow convergence. In [11] a spectral discretization is used, circumventing the
slow convergence rate of MC sampling and achieving algebraic convergence for a class of determin-
istic infinite horizon optimal control problems. In contrast to these works, we propose a method not
reliant on policy iteration. Furthermore, no nonlinear optimization has to be performed except at the
initial time point. Instead, the HJB right-hand side is discretized by orthogonal projection onto polyno-
mial space, resulting in an ODE in tensor space. Subsequently, this ODE is integrated using methods
for time-integration of Tensor Trains.

1.1 Contribution and Outline

The main contribution of this work lies in providing an interpretable solver based on compressed
polynomials for the reverse-time HJB equation as it appears in the context of Generative Modelling
and Bayesian Inference. Specifically, we integrate the HJB equation using orthogonal projections of
the right-hand side and rank-retractions onto a smooth manifold within polynomial space defined by
Tensor Trains of a fixed rank. The solver adaptively chooses its stepsize based on current projection-
and retraction-errors as well as the local stiffness, which is estimated by local linearizations of the HJB.
This approach is sample-free and agnostic to normalization constants and can therefore be used in a
Bayesian setting. We demonstrate the performance of the solver on a nonlinear test case in d = 20
dimensions.

The outline of the rest of the paper is as follows.

■ Section 2 covers the relevant theory of diffusion processes necessary to construct a process
of the form (1.3), which can be used to sample from µ∗. In particular, Remark 2.1 offers one
such form as a reverse-time Ornstein-Uhlenbek process. The corresponding reverse-time HJB
equation determining the score of this process is given in (2.5).

■ In Section 3 we introduce our approximation class for the log-densities, namely functional Tensor
Trains with orthogonal polynomial ansatz functions. A motivation for this ansatz class can be
found in Appendix C. This section further introduces all algebraic operations on tensor space
necessary to solve a projected version of the HJB equation.

■ Section 4 is the main part of the paper, where we are concerned with the solution of the HJB.
We state the equivalence of the HJB projected onto polynomial space of fixed degree with an
ODE in tensor space (Theorem 4.1). Furthermore, we give a precise version of the proposed
solution algorithm (Algorithm 2).

■ Finally, the performance of the solver is demonstrated on a Gaussian test case as well as a
20-dimensional nonlinear potential in Section 5.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 4

2 Reverse-time diffusion processes and HJB equation

Let the terminal time T > 0 and a d-dimensional Ornstein-Uhlenbeck process (Xt)t∈[0,T] be defined
by

dXt = −Xtdt+
√
2dWt, X0 ∼ µ∗, (2.1)

where Wt denotes standard d-dimensional Brownian motion. The probability density function πt of
this process satisfies the Fokker-Planck equation

∂tπt = ∆πt + x · ∇πt + dπt, π0 = π∗, (2.2)

for t ∈ [0, T]. Since the (standard normal) invariant measure of (2.1) satisfies a log-Soboloev inequal-
ity, the corresponding law µXt of (2.1) converges exponentially in Kullback-Leibler divergence (KL) to
the standard normal distributionN (0, Id) on Rd [27], i.e.

KL(µXt||N (0, Id)) ≤ e−2tKL(µ∗||N (0, Id)). (2.3)

Hence, for sufficiently large T , the measure µXT
will be close to a standard normal distribution in

KL divergence. The following remark provides a reverse-time process (Yt)t∈[0,T] with Y0 ∼ µXT
and

YT ∼ µ∗.

Remark 2.1 (Reverse-time Ornstein-Uhlenbeck process). Let (Xt)t∈[0,T] be defined by (2.1). Then,
for any λ ∈ [0, 1] the process (Yt)t∈[0,T] defined by

dYt = [Yt + (2− λ)∇ log πT−t(Yt)] dt+
»
2(1− λ)dWt, Y0 ∼ µXT

(2.4)

satisfies µYt = µXT−t
and in particular µYT

= µ∗. This result is an immediate consequence of [21,
Appendix G], which covers a much wider range of diffusion processes. The most common choices for
λ are λ = 0, used for the reverse process e.g. in [39], and λ = 1, which leads to a reverse ODE
known as probability flow ODE [39].

To formulate the reverse process (Yt)t∈[0,T] we need the score ∇ log πt. If a sufficient number of
samples of µ∗ are available, we can apply score matching techniques (see [37, 39] and references
therein). Lacking these samples, we could try to obtain πt by solving (2.2), but the fact that πt needs
to be a density for every t makes this approach cumbersome for approximation methods. Instead, we
apply a Hopf-Cole transformation vt := − log πt to (2.2). A short calculation by product and chain
rule (see Appendix A) yields that vt satisfies the PDE

∂tvt = ∆vt + x · ∇vt − ∥∇vt∥22 − d, v0 = − log π∗, (2.5)

for t ∈ [0, T]. This nonlinear PDE is the time-reverse of a HJB equation appearing in finite-horizon
stochastic optimal control. As [5] pointed out, we can now apply techniques from optimal control to ap-
proximate the score. A straightforward way is to approximately solve the HJB equation (2.5) with some
suitable class of functions such as Neural Networks [44, 4, 28]. Instead of this black-box approach, we
propose solving (2.5) by means of compressed polynomials represented by a low-rank tensor format,
the details of which are provided in the next section. In contrast to Neural Networks, this approach is
highly interpretable and utilizes the structure of the HJB equation. In particular, we make frequent use

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 5

of the fact that the right-hand side F (v) := ∆v + x · ∇v − ∥∇v∥22 − d of (2.5) can be split into a
constant, linear and nonlinear contribution, given by

Const(v) = d, (2.6)

Lin(v) = ∆v + x · ∇v, (2.7)

NonLin(v) = −∥∇v∥2. (2.8)

Before going into the detail about the polynomial approximation in the following section, we briefly
sketch some of the core ideas.

First, we note the constant term (2.6) can be dropped from (2.5) since the score is agnostic to constant
shifts of the log-density. More precisely, vt is a solution to (2.5) if and only if vt := vt+ td is a solution
to ∂tvt = ∆vt+x ·∇vt−∥∇vt∥22, v0 = − log π∗, t ∈ [0, T]. The two solutions vt and vt differ only
by a constant shift for every t ∈ [0, t], hence the score satisfies∇ log πt = −∇vt = −∇vt. By the
same reasoning, an arbitrary constant can be added to the initial condition of (2.5) without affecting
the score. By choosing this constant equal to − log(Z), we achieve − log π∗ − log(Z) = Φ. Thus,
from now on we consider the equation

∂tvt = Lin(vt) + NonLin(vt), v0 = Φ. (2.9)

Morevover, if vt is a polynomial of fixed degree N ∈ N for any t, then Lin(vt) is also a polynomial of
degree N . This means that if v0 is a polynomial of a fixed degree, integrating only the linear part of
(2.9) would yield a polynomial of same degree for all t ∈ [0, T]. For the nonlinear part NonLin(vt) this
is only true for N = 2. In this quadratic case, (2.9) can be solved to arbitrary accuracy. In particular, if
µ∗ is a zero mean Gaussian with density

π∗(x) =
1√

(2π)d|Σ|
ex

⊺Σ−1x (2.10)

for positive definite Σ ∈ Rd,d, then (2.9) corresponds to the HJB equation of a linear-quadratic optimal
control problem with solution given by vt(x) = x⊺Ptx, where Pt ∈ Rd,d, t ∈ [0, T], solves a Ricatti
matrix differential equation (see Appendix B).

Solving (2.9) e.g. with an explicit Euler method for time discretization leads to a steady increase of
the degree over time for all initial degrees larger than N = 2. This is due to the nonlinear term: if vt
for some t ∈ [0, T] is a polynomial of degree N , then NonLin(vt) is (in general) a polynomial of
degree ≤ 2N . To prevent this degree increase, we project the nonlinear part of the right-hand side
back onto the space spanned by polynomials of degree N before performing the time integration step.
Furthermore, since the linear space of polynomials suffers from the curse of dimensionality, we use a
compression or retraction after every time step, finding a best approximation of the new iterate in a low
dimensional manifold. In the case of an explicit Euler method, the resulting integration scheme can be
written as

vt+τt = Compression [vt + τt (Lin(vt) + Projection [NonLin(vt)])] , (2.11)

where τt > 0 is the current adaptively chosen stepsize. The precise definition of all terms involved is
the subject of the next section.

3 Functional Tensor Trains (FTT) and Tensor Trains (TT)

In this section we introduce the approximation class used as a spatial discretization for the HJB equa-
tion. Let K ⊂ Rd be a compact hypercube defined by ai, bi ∈ R with ai < bi for i = 1, . . . , d

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 6

n ∈ Nd
0 dimension array n = (n1, . . . , nd)

kn+ l (kn1 + l, . . . , knd + l) for k, l ∈ N0

[n] indexing [n] =×d

i=1
{0, . . . , ni}

n1 ≥ n2, n ≥ k component wise comparison n,n1,n2 ∈ Nd, k ∈ N

α, β, γ multiindex in Nd
0, note that we always index starting from 0

Rn tensor space Rn1,...,nd

A,B,C tensor elements in Rn

r rank r = (r1, . . . , rd−1) in Nd−1

r1r2 multiplication r1r2 = (r11r
2
1, . . . , r

1
d−1r

2
d−1) in Nd−1

ki, li rank enumeration indices in {1, . . . , ri}

Ai, Bi, Ci component order 3 tensor in Rri−1,ni+1,ri with entries indexed by [ki−1, αi, ki]

Ai[αi] matrix extraction Ai[αi] = Ai[: , αi, :] ∈ Rri−1,ri of component tensor Ai

Ai[ki−1, : , ki] vector extraction in Rni+1 for each rank enumeration ki−1, ki

A[α] tensor indexing A[α1, . . . , αd] for A ∈ Rn, α ∈ [n], n ∈ Nd
0

Table 1: List of compact notations used in this work.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 7

and K =×d

i=1
[ai, bi]. A function f : K → R is said to have functional Tensor Train (FTT) [30] rank

r = (r1, . . . , rd−1) ∈ Nd−1 with the convention r0 = rd = 1, if it can be written as

f(x1, . . . , xd) = F1(x1)F2(x2) · · ·Fd(xd) (3.1)

with matrix valued functions Fi(xi) ∈ Rri−1,ri , xi ∈ [ai, bi] for i = 1, . . . , d. For discussions
regarding the approximation of functions of mixed regularity or compositional structures we refer to
[3, 17, 2].

In order to obtain a discrete approximation class, for each i = 1, . . . , d and α ∈ N0 let piα denote the
α-th orthonormal Legendre polynomial with respect to the standard L2 inner product on [ai, bi]. For
n ∈ Nd

0, we define the discrete set of orthonormal polynomials of degree n by

Πn := {pα :=
d⊗

i=1

piαi
|α ∈ [n]}, (3.2)

where [n] is defined as in Table 1. For f with FTT rank r, we then may approximate

f(x1, . . . , xd) ≈
∑
α∈[n]

C[α]pα(x1, . . . , xd), (3.3)

with a tensor array C ∈ Rn+1 with Tensor Train (TT) rank r = (r1, . . . , rd−1)
⊺ ∈ Nd−1 bounded by

the FTT rank r. In particular we have the decomposition into a Tensor Train (or Matrix Product State)
format

C[α] = C1[α1]C2[α2] · · ·Cd[αd], (3.4)

with matrices Ci[αi] ∈ Rri−1,ri and the convention that r0 = rd = 1. Note that the relation of r and
r depends on the relation of Fi and the polynomials in i-th direction. In particular it holds r = r if for
all i = 1, . . . , d and α = 0, . . . , ni it holds

bi∫
ai

Fi(xi)p
i
α(xi)dxi ̸= 0 ∈ Rri−1,ri .

Provided that the ranks can be bounded, the TT format exhibits a storage complexity of
O(max(n1, . . . , nd)dmax(r1, . . . , rd−1)

2), which scales only linearly in the dimension d, hence
avoiding the curse of dimensionality. The set of such Tensor Trains of fixed rank r defines a manifold
Mr ⊂ Rn+1, see e.g. [20].

As a first step of our HJB solver, we propose to approximate V0 = − log π∗ in a functional Tensor Train
format based on orthogonal polynomial space discretization as in (3.3) for some TT rank r ∈ Nd−1.
A motivation for this type of approximation for Bayesian posteriors can be found in Appendix C. In
what follows we discuss the actions of the linear and nonlinear operators defined in (2.7) and (2.8)
on functions given in that format. To that end, we define for any tensor A ∈ Rn+1 the associated
polynomial vA ∈ spanΠn by

vA =
∑
α∈[n]

A[α]pα. (3.5)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 8

3.1 The linear part

This section is concerned with the operator Lin from (2.7), appearing in the right-hand side of the HJB
in (2.9).

Let the differential operatorD : C2(R)→ C(R) be defined asDv = ∂2
xv+ x∂xv for v ∈ C2(R) and

let I : C2(R)→ C2(R) denote the identity operator. Then, it holds

Lin = D ⊗ I ⊗ . . .⊗ I + I ⊗ D ⊗ I ⊗ . . .⊗ I + . . .+ I ⊗ . . .⊗ I ⊗D. (3.6)

As a first result we discuss the effect of the operator on functions v given in FTT format.

Lemma 3.1. Let f ∈ C2(K) have FTT-rank r ∈ Nd−1. Then, Lin(f) has FTT-rank at most 2r.

Proof. The assertion follows immediately since Lin(f) defines a Laplace-like sum of FTTs, meaning
that each summand only modifies a single component of the FTT. More precisely, we have

Lin(f)(x) =
[
DF1(x1) F1(x1)

] ï F2(x2) 0
DF2(x2) F2(x2)

ò
· · ·

· · ·
ï
Fd−1(xd−1) 0
DFd−1(xd−1) Fd−1(xd−1)

ò ï
Fd(xd)
DFd(xd)

ò
,

(3.7)

which defines a product of matrix valued functions as in (3.1). The rank bound follows immediately
from the block structure of (3.7) and the dimensions of Fi,DFi for i = 1, . . . , d.

When applied to polynomials, the linear operator can be expressed in terms of its action on the
polynomial’s coefficients. More precisely, the discretization of Lin on the finite set Πn for some
n = (n1, . . . , nd)

⊺ ∈ Nd
0 implies a linear operator L : Rn+1 → Rn+1 given as

L :=
d∑

i=1

Li, Li :=

(
i−1⊗
j=1

Inj+1

)
⊗Di ⊗

(
d⊗

j=i+1

Inj+1

)
, (3.8)

with identity matrix In ∈ Rn,n. For the structure of the matrix Di ∈ Rni+1,ni+1 we refer to Appendix
E.1, specifically equation (E.5). For the moment it suffices to note that Di governs the action of the
differential operator D on the coefficients of the polynomials in dimension i. It can be shown that the
action of Lin on a polynomial corresponds to algebraic manipulation of the coefficient tensor with
respect to L, which is the result of the following lemma.

Lemma 3.2. Let n ∈ Nd
0, Lin and L from (3.6) and (3.8). Then, for A ∈ Rn+1 we have

Lin vA = vLA. (3.9)

Proof. Let Li[β,α] :=
Ä⊗i−1

j=1 Inj+1[βj, αj]
ä
⊗ Dni

[βi, αi] ⊗
Ä⊗d

j=i+1 Inj+1[βj, αj]
ä

. Then,

the action of Li on A defines a tensor Bi given as Bi[β] =
∑

α∈[n] Li[β,α]A[α]. Moreover,

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 9

LA =
d∑

i=1

Bi. Hence,

Lin vA =
d∑

i=1

∑
α∈[n]

(
i−1⊗
j=1

I

)
⊗D ⊗

(
d⊗

j=i+1

I

)
A[α]p1α1

⊗ · · · ⊗ pdαd

=
d∑

i=1

∑
β∈[n]

∑
α∈[n]

Li[β,α]A[α]p1α1
⊗ · · · ⊗ pdαd

=
d∑

i=1

∑
β∈[n]

Bi[β]p
1
β1
⊗ · · · ⊗ pdβd

= v d∑
i=1

Bi

The contraction LA is cumbersome for full tensors A. However, it is easy to implement if A ∈ Mr

is a Tensor Train of fixed rank r ∈ Nd−1, such that A[α] = A1[α1]A2[α2] · · ·Ad[αd] with Ai[αi] ∈
Rri−1,ri for i = 1, . . . , d. In this case, let Di,Ai

[βi] :=
ni∑

αi=0

Di[βi, αi]Ai[αi] for i = 1, . . . , d. Then,

(LA) [β] =
d∑

i=1

∑
α∈[n]

Li[β, α]A[α]

=
d∑

i=1

(
i−1⊗
j=1

Aj[βj]

)
⊗Di,Ai

[βi]⊗

(
d⊗

j=i+1

Aj[βj]

)

=
[
D1,A1 [β1]

⊺ A1[β1]
⊺
] ï A2[β2]

⊺ 0
D2,A2 [β2]

⊺ A2[β2]
⊺

ò
· · ·

· · ·
ï

Ad−1[βd−1]
⊺ 0

Dd−1,Ad−1
[βd−1]

⊺ Ad−1[βd−1]
⊺

ò ï
Ad[βd]

Dd,Ad
[βd]

ò
.

Hence, LA is given in TT format through a Laplace-like sum with TT rank bounded by 2r, which
is consistent with Lemma 3.1. In particular, this formula involves only contractions of the matrices
Di ∈ Rni+1,ni+1 with the order three tensors Ai ∈ Rri−1,ni+1,ri for i = 1, . . . , d. No contraction with
the full tensor A is required.

3.2 The nonlinear part

This section is concerned with the operator NonLin(·) = ∥∇ · ∥2 from (2.8), appearing in the
right-hand side of the HJB equation in (2.9), in case the arguments are functions given in FTT format.
This operator is a combination of partial derivatives, squares and a summation. We split the results
into two Lemmas. First, we derive a more general bound on the FTT-rank of a product of functions with
bounded FTT-rank.

Lemma 3.3. Let g, f have FTT-rank rf and rg, respectively. Then g · f has FTT-rank at most rgrf .

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 10

Proof. We write f(x) = F1(x1)·. . .·Fd(xd) and g(x) = G1(x1)·. . .·Gd(xd)withFi(xi) ∈ Rrfi−1,r
f
i ,

Gi(xi) ∈ Rrgi−1,r
g
i for i = 1, . . . , d. Let ⊗k denote the standard matrix-Kronecker product with the

convention that for two scalar values a, b ∈ R we set a⊗k b = a · b. Then, we have

f(x)g(x) = F1(x1)·. . .·Fd(xd)·G1(x1)·. . .·Gd(xd) = F1(x1)⊗kG1(x1)·. . .·Fd(xd)⊗kGd(xd),

where Fi(xi)⊗k Gi(xi) ∈ Rrfi−1r
g
i−1,r

f
i r

g
i .

Second, the rank bound of the nonlinear right hand side is provided.

Lemma 3.4. Let f have FTT-rank r, then NonLin(f) = ∥∇f∥2 =
d∑

i=1

Ä
∂f
∂xi

ä2
has FTT-rank at most

2r2.

Proof. Note that ∂f
∂xi

= F1(x1) . . . ∂xi
Fi(xi) . . . Fd(xd) has FTT-rank ≤ r for all i. By Lemma

3.3, (∂f
∂xi

)2 has FTT-rank at most r2. To bound the FTT-rank of
∑d

i=1

Ä
∂f
∂xi

ä2
, the derivation is the

same as in the proof of Lemma 3.1, only that the operator D is replaced by an operator mapping
C1(R)→ C(R) and v 7→ (∂xv)

2.

We now turn our view on the discretization of the corresponding operator with respect to Πn.

3.2.1 The operator in Tensor Train format

For a practical algorithm, we need a discretization of NonLin on the finite set Πn such as (3.8) for the
linear part. Here, we refrain from deriving a formula in the general setting of a full coefficient tensor and
directly examine the case of a TT with fixed rank. We consider the square operation first. Let n ∈ Nd

and the multiplication operation Mg : f 7→ g · f , where g, f are given by

f(x) = vA(x) =
∑
α

A[α]
d∏

i=1

piαi
(xi), g(x) = vB(x) =

∑
β∈[n]

B[β]
d∏

j=1

pjβj
(xj) (3.10)

with tensors A,B ∈ Rn+1 both given in Tensor Train format with TT-rank r = (r1, . . . , rd−1) ∈
Nd−1 and

A[α] = A1[α1] · · ·Ad[αd], B[β] = B1[β1] · · ·Bd[βd]. (3.11)

We aim to define a Tensor Train operator MB : Rn+1 → R2n+1 such that

Mg(f) = vMB(A) =
∑

γ∈[2n]

MB(A)[γ]
d∏

i=1

piγi(xi). (3.12)

For n ∈ N0 let Ti,n ∈ Rn+1,n+1 denote the transformation matrix mapping the coefficients of Leg-
endre polynomials up to degree n on [ai, bi] to the corresponding coefficients of standard monomials
1, x, x2, . . . up to degree n. Let

Â[α] := Â1[α1] · · · Âd[αd], Âi[αi] =

ni∑
α′
i=0

Ti,ni
[αi, α

′
i]Ai[α

′
i], (3.13)

B̂[j] := B̂1[β1] · · · B̂d[βd], B̂i[βi] :=

ni∑
β′
i=0

Ti,ni
[βi, β

′
i]Bi[β

′
i], (3.14)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 11

define the coefficient tensors of f and g with respect to monomials. Now, for i = 1 . . . , d and αi =
0, . . . , ni define the matrix Di,αi

by

Di,αi
:=

0αi,ni+1

Ini+1,ni+1

0ni+1−αi,ni+1

 ∈ R2ni+1,ni+1, (3.15)

where 0m,n ∈ Rm,n is a matrix with all entries equal to 0, which we define to be empty if m or n equal
zero. Furthermore, for i = 1, . . . , d, ki−1, ℓi−1 ∈ {1, . . . , ri−1}, ki, ℓi ∈ {1, . . . , ri} we define the
vector Ĉi[ki−1, ℓi−1, ki, ℓi] ∈ R2ni+1 as

Ĉi[ki−1, ℓi−1, ki, ℓi] =

ni∑
αi=0

Di,αi
B̂i[ki−1, : , ki]Âi[ℓi−1, αi, ℓi]. (3.16)

Note that Di,αi
B̂i[ki−1, : , ki] denotes a matrix-vector multiplication, whereas Âi[ℓi−1, αi, ℓi] is scalar

valued.

With slight abuse of notation, we denote the γi-th entry of the vector Ĉi[ki−1, ℓi−1, ki, ℓi]
by Ĉi[ki−1, ℓi−1, γi, ki, ℓi] ∈ R, which defines an order 5 tensor Ĉi ∈ Rri−1,ri−1,2ni+1,ri,ri . For
convenience, we reshape Ĉi to an order 3 tensor by flattening together the first two and last two
dimensions, again overloading notation with Ĉi ∈ Rr2i−1,2ni+1,r2i . Now we revert to the Legendre
polynomial system and define the coefficient tensor C ∈ R2n+1 given in TT format by

C[γ] := C1[γ1] · · ·Cd[γd], Ci[γi] =

2ni∑
γ′
i=0

T−1
i,2ni

[γi, γ
′
i]Ĉi[γ

′
i]. (3.17)

This construction yields the following result.

Lemma 3.5. Let f and g have FTT-rank r and given as in (3.10). Then, fg has FTT-rank at most r2,
in particular

g(x)f(x) =
∑

γ∈[2n]

C[γ]
d∏

i=1

piγi(xi), (3.18)

with coefficient tensor C with TT-rank at most r2 given by (3.17).

By this Lemma, we have

MB(A) = C (3.19)

with C from (3.17). For ease of notation, we further define the square operation S : Rn+1 →
R2n+1,A 7→MA(A).

Finally, note that the partial derivative ∂xi
defines a linear operator that, analogous to Section 3.1,

implies a linear operator Lxi
: Rn+1 → Rn+1 based on the polynomial discretization such that

∂xi
vA = vLxiA

. This operator has the form Lxi
= I ⊗ . . . ⊗ I ⊗ Dxi

⊗ I ⊗ . . . ⊗ I with

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 12

Dxi
∈ Rni+1,ni+1 given in Appendix E.2. Putting all of the above together, we see that

⟨∇vB,∇vA⟩ =
d∑

i=1

(∂xi
vA)(∂xi

vB) =
d∑

i=1

vLxiA
vLxiB

=
d∑

i=1

vMLxiB
(LxiA) = v d∑

i=1
MLxiB

(LxiA)

(3.20)

This leads to a Tensor Train operator representing the nonlinear part (2.8). In particular, for A,B ∈
Rn+1 let

NL(A) := −
d∑

i=1

S(Lxi
A), (3.21)

NLB(A) := −
d∑

i=1

MLxiB
(Lxi

A). (3.22)

Then, by (3.20), we have NonLin(vA) = vNL(A) and −⟨∇vB,∇vA⟩ = vNLB(A). This concludes
the derivation of the nonlinear part.

3.3 Projection and retraction

The discussion so far shows that linear and nonlinear operations on the polynomial discretization with
Tensor Trains may increase the rank as well as the underlying polynomial degree. Therefore, we shall
discuss operations that keep a fixed polynomial degree and a fixed TT-rank with possible error control,
namely projection and retraction. Regarding the projection, let n,m ∈ N0, n ≤ m and define
Pm,n : spanΠm → spanΠn by

Pm,n(·) :=
n1,...,nd∑

α1,...,αd=0

d⊗
i=1

piαi

〈
d⊗

i=1

piαi
, ·

〉
(3.23)

Due to the orthonormality of the piαi
, the projection is simply obtained by truncating the coefficients,

as the following result states.

Lemma 3.6. For n ≤ m and A ∈ Rm+1 we have Pm,nVA = VPm,nA, where Pm,n : Rm+1 →
Rn+1 is defined by

(Pm,nA)[α1, . . . , αd] = A[α1, . . . , αd] (3.24)

for all A ∈ Rm+1 and α ∈ Nn
0 .

Note that by Parseval’s identity, the projection error in L2-norm can be computed by simply adding the
squares of the elements that are eliminated by the projection, i.e. with assumptions of Lemma 3.6, we
have

∥Pm,nvA − vA∥2L2(K) =

m1,...,md∑
α1=n1+1,...,αd=nd+1

A[α1, . . . , αd]
2. (3.25)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 13

A possible realization of a retraction operator

Rr :
⋃
r̂≥r

Mr̂ →Mr, (3.26)

for given fixed rank r ∈ Nd−1, is obtained by using the TT rounding scheme first presented in [29,
Algorithm 2], which is based on efficient high-order singular value decomposition exploiting the struc-
ture of TTs. The operators in (3.24) and (3.26) provide us with the necessary tensor operations to fix
the degree as well as the rank of the HJB solution, concluding this section.

4 A direct low-rank HJB solver

In this section, we consider polynomial potentials Φ ∈ spanΠn for some n ∈ Nd
0. If the poten-

tial is not available in polynomial form, we can obtain a suitable polynomial approximation e.g. by the
Alternating Linear Scheme (ALS) [19] as was done in [31] for the purpose of approximating value func-
tions. Crucially, the ALS yields an approximation in a chosen low rank TT format. For Φ ∈ spanΠn,
we consider a projected version of the modified HJB equation (2.9) restricted to the hypercube K
defined by ß

∂tvt = P2n,n [Lin(vt) + NonLin(vt)] ,
v0 = Φ,

in K, (4.1)

for t ∈ [0, T] and some T > 0 large enough. Note, that the projection only acts on the nonlinear part,
as the linear part does not increase the polynomial degree.

With the work from the previous section, we can show that this PDE is equivalent to an ODE on a
tensor space. Let L, NL, NLB for any B ∈ Rn+1 and P ≡ P2n+1,n+1 be given by (3.8), (3.21),
(3.22) and (3.24), respectively. Then the following theorem holds true.

Theorem 4.1 (Projected HJB equation is equivalent to tensor-valued ODE). Let A(t) ∈ Rn+1 be a
solution of the tensor-valued ODE

Ȧ(t) = LA(t) + PNL(A(t)), A(0) = A0, (4.2)

for t ∈ [0, T]. Then vt := vA(t) solves (4.1). Conversely, if vt ∈ spanΠn solves (4.1), then there
exists a unique A(t) ∈ Rn+1 such that vt = vA(t) and A(t) solves (4.2).

Proof. Let A(t) ∈ Rn+1 solve (4.2). Then, v̇A(t) = vȦ(t) = vLA(t)+PNL(A(t)) = vLA(t) +

vPNL(A(t)) = Lin(vA(t)) + P2n+1,n+1

[
NonLin(vA(t))

]
and vA(0) = vA0 = Φ, showing the

first part of the claim. Conversely, if vt ∈ spanΠn solves (4.1), then there exists a unique A(t) with
vt = vA(t) and vȦ(t) = ∂tvt = vLA(t)+PNL(A(t)). Since the mapping A 7→ vA is injective, this
yields the second part of the claim.

The solution algorithm for (4.2) which will be presented in the following relies on local linearizations of
the HJB for stiffnes based stepsize control. Hence, we state the following result on the form of such
local linearizations.

Lemma 4.1 (Local linearization). Let B ∈ Rn+1. Then, the linearization of (4.2) at B is given by

Ȧ(t) = (L+ 2PNLB)A(t)− PNL(B). (4.3)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 14

Proof. Note that the linearization of NonLin(v) = −∥∇v∥2 around a fixed v0 ∈ spanΠn is given
by

NonLinv0(v) = −2⟨∇v0,∇v⟩+ ∥∇v0∥2 = −2⟨∇v0,∇v⟩ − NonLin(v0). (4.4)

Now, for A,B ∈ Rn+1 we have

NonLinvB(vA) = −2⟨∇vB,∇vA⟩ − NonLin(vB) (4.5)

= 2vNLBA − vNL(B) (4.6)

= v2NLBA−NL(B). (4.7)

Since the other operators appearing on the right hand side of (4.1) are linear, (4.3) follows.

By Theorem 4.1, it suffices to solve (4.2) for A(t) since this solution defines the solution of (4.1) via
vt = vA(t). In the rest of this section, we present principled ways of computing approximate solutions
to (4.2) on the low rank manifoldMr. Two methods are investigated:

1 A simple explicit Euler scheme with adaptive step sizes and retraction after every step, see
Section 4.1.

2 A dynamical low rank integrator designed for time integration of Tensor Trains [26], see Section
4.2.

4.1 Time adaptive explicit Euler scheme

Preliminaries. In the following, we define a number of time points N ∈ N, a sequence of times
0 = t0 < t1 < . . . < tN = T , a TT-rank function t 7→ rt ∈ Nd−1 assigning to every time a Tensor
Train rank and discrete approximationsMrtn ∋ Ytn ≈ A(tn), n = 0, . . . , N , to the solution A(t) of
(4.2). Throughout this section, let τmax, δproj, δrank, δcontr > 0 and a reduction parameter ρ ∈ (0, 1).
Denote the potential of the standard normal distribution by v∞(x) = ∥x∥2/2 and note that by Lemma
D.2 this function has FTT rank (2, . . . , 2). In practice we choose rt to be bounded by TT-rank(v0)
and TT-rank(v∞) with adaptive rank reduction based on TT-rounding error induced by the retraction
from (3.26).

Time adaptive explicit Euler step. Starting with n = 0, we have Ytn ∈ Mrtn . By Section 3,
the right-hand side of (4.2) applied to Ytn , i.e. the tensor LYtn + PNL(Ytn) has TT-rank at most
2r + 2r2 and so the addition

Y tn+τn = Ytn + τn(LYtn + PNL(Ytn)) (4.8)

has TT-rank at most 3r+ 2r2 for any τn > 0.

Since we require the next iterate to be a Tensor Train of rank rtn+τn , we retract to the appropriate
manifold, setting

Ytn+τn = Rrtn+τn
(Y tn+τn), (4.9)

where Rr denotes the TT rounding procedure based on higher order singular value decomposition
and mapping toMr, which was presented in [29, Algorithm 2]. Note that (4.9) corresponds to (2.11)
with the Compression given by the retraction operator, i.e. by the higher order singular value decom-
position. Up to now the choice of the step size τn was arbitrary. In what follows we set constraints on
the step size τn based on three stability criteria.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 15

Criterion 1: local stiffness. At each iteration, we restrict the stepsize dependent on the local stiff-
ness of the ODE. We use a heuristic based on local linearizations of (4.2) to determine suitable upper
bounds for the stepsize. By Lemma 4.1, the local stiffness at the current iterate Ytn is governed by the
linear operator

HYtn
:= L+ 2PNLYtn

. (4.10)

If the current iterate Ytn defines a zero mean Gaussian with diagonal covariance diag(aii, i =
1, . . . , d), the eigenvalues of HYtn

can be bounded by 2
∑d

i=1 |1 − 2aii| (the details of the cal-
culation can be found in Appendix E.3). In general, HYtn

defines a non-symmetric TT operator. To
the knowledge of the authors, estimation of the largest absolute eigenvalue of general non-symmetric
TT operators is an open question. Here, we rely on a simpler idea. In particular as we are dealing with
real valued tensors Ytn , we avoid analyzing the operator action on complex space. In contrast, we are
interested in the effect of the current operator in the neighborhood of the current iterate. This is real-
ized by estimating the largest absolute real eigenvalue of HYtn

denoted by λtn with corresponding
eigenspace that is not orthogonal to the current iterate Ytn , by a power iteration. The resulting scheme
is detailed in Algorithm 1. The current Tensor Train iterate Ytn serves as an initial guess for the eigen-
tensor. The procedure then resembles a standard power iteration with an additional retraction step in
line 6, which reduces computational burden. In practice we are only interested in the absolute value of
the eigenvalue or a meaningful upper bound λtn and not in the corresponding eigentensor. Note that
the eigenvalue usually converges at much higher order than the eigentensor. The aforementioned up-
per bound then is obtained through a simple rounding up strategy with a specified number of accurate
non-zero digits, see Algorithm 1. Based on the return λtn of the power iteration, we define a maximal
stable stepsize τλ by

τλ :=
2ρ

|λtn|
. (4.11)

In experiments, this stiffness estimation proves essential for the solver to converge.

Algorithm 1 Upper bound estimating the principal real eigenvalue λtn of HYtn
from (4.10) based on

power iteration.

Input:

ß
• current iterate X0 = Ytn • maximum allowed TT rank r ∈ Nd−1

• application of HYtn
• number of correct non-zero digits p ∈ N

Output: upper bound λtn

1: Let λk
tn denote the k-th iterate.

2: Set k = 0.
3: while p-th non-zero digit of λk

tn is changing do
4: Let K ∈ N, X0 ∈Mr.
5: X̂k = Xk/∥Xk∥F
6: Xk+1 = Rr(HYtn

X̂k)

7: λk
tn = ⟨X̂k,Xk+1⟩

8: k = k + 1
9: end while

10: Define position P of first non zero digit with P = ⌈− log10(λ
k
tn)⌉.

11: Define upper bound treshold ϵp = 10−(P+p).

12: Define λ
k

tn = λk
tn + ϵp.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 16

Criterion 2: local relative projection error. For stepsize τ > 0 consider the iterate Y tn+τ defined

by (4.8) for τn = τ and let Y tn+τ = Ytn + τ(LYtn + NL(Ytn)) be an Euler step with the non-
projected equation. Let

τproj :=

®
τmax, if ∥PNL(Ytn)−NL(Ytn)∥F = 0,

δproj
∥PNL(Ytn)−NL(Ytn)∥F /∥NL(Ytn)∥F

, else.
(4.12)

Then, for any τ ≤ τproj we get

∥Y tn+τ − Y tn+τ∥F ≤ τ∥PNL(Ytn)−NL(Ytn)∥F ≤ δproj∥NL(Ytn)∥F . (4.13)

Hence, the projection error of the Euler step, normalized with respect to the magnitude of the degree
increasing nonlinear part NL(Ytn), is bounded from above by δproj.

Criterion 3: local relative retraction error. Determine maximum τrank such that

∥Y tn+τrank − Ytn+τrank∥F
∥Y tn+τrank∥F

≤ δrank. (4.14)

Here, we initially choose τ 0rank = τn−1 and proceed with τ krank = 1
2
τ k−1
rank until τ krank fulfils condition

(4.14). Then, we use bisection iteration to determine the maximum τrank ∈ (1
2
τ krank, τ

k
rank] satisfying

(4.14).

Final stepsize choice. After these three criteria, the next step size τn in (4.9) and the next time
tn+1 are defined as

τn := min{τmax, τλ, τproj, τrank, T − tn}, (4.15)

tn+1 := tn + τn, (4.16)

where the term T − tn ensures that we end exactly at terminal time T . The single time step (4.9) is
repeated for n = 0, 1, . . . with stepsize (4.15) until tn+1 = T , in which case we define N = n+ 1.

In addition to the adaptivity in the stepsize, the solver also incorporates adaptivity in the polynomial
degree as well as the TT rank, which is detailed in the following.

Adaptive decrease of polynomial degree Motivated by the fact that vt → v∞ ∈ Π(2,...,2) as
t→∞ at exponential rate, we introduce a simple adaptive choice for the polynomial degree. Assume
that the degrees of Ytn at time tn are given by ntn ∈ Nd

0. Let Y k
tn denote the order d − 1 tensor,

which for k = 1, . . . , d is given as

Y k
tn = (Ytn [α])α∈[ntn],αk=(ntn)k

.

This is a slice of the full coefficient tensor Ytn fixing αk = (ntn)k which is the highest polynomial
degree in the k-th dimension at time tn. Now, in case of

∥Y k
tn∥F ≤ δcontr, (4.17)

we truncate the highest polynomial degree in the k-th direction. Since Ytn is given in TT format with

Ytn [α] = Yt,1[α1] · . . . · Yt,d[αd],

this operation is realized by truncation of the component tensor Yk and possibly adapting the TT-ranks.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 17

Adaptive choice of TT rank Motivated by the conjecture, that the FTT rank of vt is bounded by the
FTT rank of v0 and v∞, i.e. r∞ = (2, . . . , 2), we perform two retraction steps with respect to these
bounds after the time step at time tn. First a retraction with respect to the rank

r̂tn+τn = max{rtn , r∞} (4.18)

is performed where the maximum is understood component wise. This serves to ensure that the rank
of the solution remains bounded by the maximum of the initial rank and the rank of the standard normal
potential. Furthermore, a rounding procedure [29, Algorithm 2] with respect to δcontr is performed to
potentially further decrease the rank and thus define rtn+τn . In practice both retraction steps can be
performed efficiently in a single operation, which leads to (4.9).

The proposed time adaptive explicit Euler scheme is summarized in Algorithm 2.

Algorithm 2 Time adaptive explicit Euler Scheme to solve HJB equation based on Tensor Trains

Input:

• v0 given in TT format,

• T > 0 maximum finite time horizon,

• τmax > 0, bound for the stepsize

• reduction stiffness parameter ρ ∈ (0, 1),

• step size proposal hyperparameter δproj, δrank,

• degree of freedom contribution tolerance δcontr > 0.

Output: Discrete sequence (vtn)n defined on subsequently determined adaptive time points tn ∈
[0, T].

1: Set t = 0.
2: while t ≤ T do
3: Determine next time step:
4: Compute maximal stable stepsize τλ. ▷ see (4.11)
5: Compute step size proposal τproj based on projection error. ▷ see (4.12)
6: Compute step size proposal τrank based on relative retraction error. ▷ see (4.14)
7: Determine final step size τ = min{τmax, τλ, τproj, τrank, T − t}.
8: Perform a single Euler step
9: Set t = t+ τ .

10: Approximate vt via algebraic manipulation of the underlying TT format. ▷ see (4.8)
11: Perform a retraction step of the resulting coefficient in TT format. ▷ see (4.9)
12: (Re-)compression
13: Check for potential polynomial degree decrease using δcontr. ▷ see (4.17)
14: Check for potential rank reduction using δcontr. ▷ see (4.18)
15: end while

4.2 Dynamical low rank approximation

While the time adaptive explicit Euler scheme presented in the previous section offers a conceptu-
ally simple integration method, Dynamical low rank appromxation (DLRA) [23, 25, 26] methods offer
another principled way of approximately integrating tensor valued ODEs of the form (4.2).

Here, the idea is to formulate an approximation of a tensor valued ODE

Ȧ(t) = F (t,A(t)), A(0) = A0,

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 18

where n ∈ Nd, A(t) ∈ Rn and F : [0,∞] × Rn → Rn on a fixed rank manifold Mr. This is
done via projection of the right-hand side onto the tangent space ofMr. More precisely, for a fixed
r ∈ Nd−1, the approximation is defined as

Ẏ (t) = PTY (t)
F (t,Y (t)), Y (0) = Y0 ≈ A0, (4.19)

where Y0 ∈ Mr and PTY (t)
denotes the orthogonal projection (in Frobenius norm) onto the tangent

space ofMr in Y (t). Note that due to this projection, a solution of (4.19) satisfies Y (t) ∈ Mr for
all t. In [13] the authors use an explicit Euler discretization of (4.19) for the solution of HJB equations
appearing in deterministic optimal control based on spatially discretized parabolic PDEs. However,
leveraging the form of the tangent space, the projector on the right hand side can be decomposed
into a sum of projectors corresponding to orthogonal subspaces. In [25], the authors propose to use
this sum structure for a Lie-Trotter type splitting scheme in the case of a matrix valued ODE, which is
termed the projector-splitting integrator. Consequently, [26] extends the projector splitting integrator to
the tensor setting. One of the key properties of this integrator is that each discrete step preserves the
rank r.

In our scheme, using a step with the integrator from [26] instead of the explicit Euler step (4.8) leads to
a new iterate Y tn+τn with the same rank as Ytn . Hence, the retraction (4.9) becomes a mere rounding
procedure and the rank of two consecutive iterates is monotonically decreasing. This is a desirable
property if the initial rank satisfies rt0 ≥ (2, . . . , 2). For rt0 ≱ (2, . . . , 2), the projector-splitting is
unsuited because it restricts the rank from above to rtn ≤ rt0 and so rtn can not converge to the
correct rank (2, . . . , 2).

Incorporating more recent state-of-the-art dynamical low rank integrators for matrix valued ODEs such
as [8, 9] to the Tensor Train setting could lead to significant improvements of the proposed method. In
particular, the Basis Update & Galerkin (BUG) integrator [8] introduces rank adaptivity, while the fully
parallel integrator [9] could additionally greatly speed up computations in high dimensions. However, to
the knowledge of the authors neither of these integrators have been formulated for the setting of high
dimensional Tensor Trains at the time of writing. Therefore, their application in our method remains a
topic of future research.

4.3 Evaluation of the low-rank model

As the result of section 4.1 or 4.2 we have a representation of the value function in the spirit of (3.5) at
discrete set of time points the form t ∈ {t0, t1, . . . , T} of the form

vt(x) =
∑

α∈[nt]

Yt[α]pα(x), (4.20)

for some nt ∈ Nd
0 and Yt given in tensor train format resulting as the discrete solution of (4.2).

We now want to discuss the evaluation of vt(x) at arbitrary time t ∈ [0, T] and x ∈ Rd. This is
motivated by the reverse-time sampling process, which is permitted to be time adaptive and may
require evaluation in time points not included in the set {t0, . . . , tN} .

For this we propose a very simple solution. Let t∗ ∈ [0, T]. Let

t = max{t ∈ {t0, . . . , tN} : t ≤ t∗} (4.21)

Let τ = t∗ − t. Then, we compute the coefficient representation in Tensor train format of vt∗ through
a single Euler- or DLRA step with step size τ . Note that this step size is within the step size bounds

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 19

implied by the adaptive scheme proposed earlier. In particular, τ is smaller than the step size implied
by local stiffness.

Lastly, we discuss how the evaluation of the model class is performed in practice. Aside from the
evaluation of the polynomial basis functions, only matrix- and vector products have to be computed
to evaluate vt. This efficient evaluation is one of the strengths of the Tensor Train format. For x =
(xs, . . . , xd) ∈ Rd and t ∈ [0, T], the approximation is defined by a TT Yt with dimensions nt =
(nt,1, . . . , nt,d) and ranks rt = (rt,1, . . . , rt,d). To evaluate (4.20), one first computes pij(xi) for
all i = 1, . . . , d and j = 0, . . . , nt,i. Now the TT format provides a decomposition of the form
Yt[α] = Yt,1[α1]Yt,2[α2] · · ·Yt,d[αd], where Yt,i ∈ Rrt,i−1,nt,i,rt,i , α ∈ [nt] and hence αi runs from
0 to nt,i. In particular, (4.20) implies

vt(x) =

nt,1∑
α1=0

. . .

nt,d∑
αd=0

Yt,1[α1]Yt,2[α2] · · ·Yt,d[αd]p
1
α1
(x1)p

2
α2
(x2) . . . p

d
αd
(xd)

=: Y x1
t,1 · Y x2

t,2 · · ·Y
xd
t,d ,

(4.22)

where Y xi
t,i ∈ Rrt,i−1,rt,i results from a simple contraction of Yt,i with the vector (pi1(xi), . . . , p

i
nt,i

(xi))
over the nt,i-dimension. Y x1

t,1 ·Y x2
t,2 · · ·Y

xd
t,d is now a simple matrix product. Note since rt,0 = rt,d = 1,

this product boils down to a matrix-vector product, when performed from left to right or vice-versa,
yielding a scalar value.

5 Numerical results

Based on Remark 2.1, we generate approximate samples from µ∗ by means of the discrete process
described in Algorithm 3. The algorithm utilizes the reverse-time process from Remark 2.1 with λ = 0
discretized at the time-points tn at which approximate solutions Ytn of the projected HJB (4.1) are
available. These approximations define our surrogate for the score∇ log πt based on

vtn ≈ − log πtn , n = 0, . . . , N, (5.1)

where vtn := vYtn
is understood in the sense of (3.5). The inner loop over k in Algorithm 3 consists

of additional Langevin-postprocessing steps [39] after every step with the reverse process.

As a necessary condition for convergence of the computed solutions vtn to the potential v∞(x) =
1
2
x⊺Idx of the standard normal distribution, we consider convergence of the coefficients of the quadratic

part. More precisely, since vtn is a polynomial, we can always write

vtn(x) = atn + b⊺tnx+ x⊺Σ−1
tn x+ higher order terms, (5.2)

with atn ∈ R, btn ∈ Rd and a symmetric Σtn ∈ Rd×d. In this section, we call covariance error at time
tn the term

CovErr(tn) =
∥∥Σ−1

tn − Id/2
∥∥
F
/ ∥Id/2∥F , (5.3)

i.e. the relative error in Frobenius norm between the current precision matrix and the precision matrix
of the standard normal distribution.

We remark that, in the test cases we considered, the results produced by the dynamical low rank
integrator [26] (using the same heuristics for adaptive stepsize determination) are similar to the results
produced by an explicit Euler stepping with subsequent retraction. Hence, we only present the results
of the latter.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 20

Algorithm 3 Sampling from π∗

Input:

• Initial samples {zi0}Ii=1 ∼ N (0, Id) ,

• Times {tn}Nn=1 and discrete HJB solution {vYtn
}Nn=1 defined by Algorithm 2,

• Stepsize τ and number of steps K ∈ N for Langevin postprocessing,

• Parameter λ ∈ [0, 1] for reverse-time process

Output: Samples {ziN}Ii=1 ∼ µ∗.

1: for i = 1, . . . , I in parallel do
2: Generate time points {tin}Nn=1.
3: for n = 0, 1, . . . , N − 1 do
4: Set τ in = tin+1 − tin
5: Sample ξn ∼ N (0, Id) if λ ̸= 1.
6: Set zin+1 = zin +

[
zin + (2− λ)∇vYT−tn

(zin)
]
τ in +

√
2(1− λ)τnξn. ▷ Reverse-time

process step
7: for ℓ = 0, 1, . . . , L do
8: Sample ξk ∼ N (0, Id)
9: zin+1 ←− zin+1 − τ∇vYT−tn

(zin+1) +
√
2τξk. ▷ Langevin post-processing step

10: end for
11: end for
12: end for

5.1 Verification result: Gaussian setting

Problem definition Let d = 10, K = [−5, 5]10 and Φ(x) = x⊺Σ−1x, where Σ is a randomly
generated symmetric positive definite matrix (we sample entries of a matrix A uniformly on [0, 1] and
then define Σ−1 = A⊺A+ 0.1Id). Note that in this setting the polynomial degree of the HJB solution
is bounded by n = (2, . . . , 2) as πt remains a Gaussian density if π0 and π∞ are Gaussian.

Parameters For Algorithm 2, we choose T = 12, τmax = 0.1, ρ = 0.2, δproj = δrank = 0.01,
δcontr = 10−8.

Evaluation By Lemma D.1, Φ has FTT- r = (3, 4, 5, 6, 7, 6, 5, 4, 3). Since the solution of the HJB
is a strictly quadratic polynomial for all times (meaning that no higher or lower degrees than 2 appear),
Lemma D.1 also yields that the FTT rank of the solution is bounded from above by r for all tn. In Figure
5.1 the ranks of the solution during integration are displayed. Once the solution reaches a covariance
error of ∼ 10−7, the solver starts to truncate the ranks, meaning that at this point higher ranks give
a contribution to the solution which is less than δcontr = 10−8 in relative Frobenius norm. Finally, all
ranks higher than 2 are truncated, which is to be expected since the standard normal potential has
FTT rank r ≡ 2. At t = 12, the covariance error has decreased to ∼ 10−11.
Figure 5.2 displays the stepsizes chosen by the solution algorithm. Since the polynomial degree does
not increase and the ranks are bounded from above by the initial rank, the stiffness estimate (4.11)
determines the stepsize.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 21

Figure 5.1: Development of the solution ranks and the covariance error (5.3) over time in the Gaus-
sian setting. Once the solution is close to convergence (in terms of the covariance error), the ranks
decrease to the rank (2, . . . , 2) of the potential of the standard normal distribution.

Figure 5.2: Approximations of the maximal absolute eigenvalues of the linearized right-hand side |λt|
determined by the power method (left) and accordingly chosen stepsize 2ρ/|λt| (right) over time in
the Gaussian setting. Note that the eigenvalues decrease monotonically, permitting a monotonous
increase of the stepsize until the maximal permitted stepsize τmax = 0.1 is reached.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 22

5.2 Mixed nonlinear density

Problem definition Let d = 20, K = [−5, 5]2 × [−2, 2]2 × [−5, 5]2 × [−2, 2]14. Consider the
transport map T : R2 → R2 and matrix Σ with

T (x, y) = (x, y + x2 + 1), Σ =

Å
1 0.9
0.9 1

ã
. (5.4)

Let Φ1(x, y) = v∞(Σ−1T (x, y)) , Φ2(x, y) = x4 + y4 − 4x2 − 4y2 − 0.4x + 0.1y + 8 and
Φ3(x, y) = x6 + y6 + 3xy. Define Φ(x) = Φ1(x1, x2) + Φ2(x3, x4) + Φ3(x5, x6) +

∑20
i=7 x

2
i .

The first six dimensions of this potential define a banana-shaped marginal density in the first two
dimensions, a nonsymmetric multimodal marginal density in the third and forth dimensions, and a
bimodal marginal density in the fifth and sixth dimensions (see the right most column in Figure 5.3).
By construction, this potential has rank r = (3, 2, 2, 2, 3, 2, . . . , 2).

Parameters We choose n = (4, 2, 4, 4, 6, 6, 2, . . . , 2) ∈ N20 according to the degrees appearing
in the potential. For Algorithm 2 we set T = 10, τmax = 0.05, δproj = δrank = 0.01, δcontr = 10−8.
To account for the high stiffness of the equation at small time t≪ 1, we set the stiffness parameter ρ
in Algorithm 2 to ρ = 0.001 as long as t < 10−6 and ρ = 0.5 for t ≥ 10−6. Langevin postprocessing
(see Algorithm 3) is performed with L = 100 steps and stepsize τ = 0.005.

Evaluation While the rank between independent parts of the density does not increase under the
HJB flow, the initial ranks r1 = r5 = 3 may increase due to the time stepping scheme and hence
incur a truncation error. However, with the specified values for ρ we discover that the stepsize result-
ing from the stiffness criterion (4.11) satisfies both the projection and the truncation criterion (4.13),
(4.14) with the requested tolerance, suggesting that the solver keeps these errors sufficiently small.
Figure 5.4 shows these stepsizes with a jump around t = 10−6 due to the increase in the stiffness
control parameter ρ. Figure 5.5 shows the exponential decay in the covariance error (5.3) between
the HJB solution and the standard normal distribution. Note that there is an initial spike in the error for
small times t. In experimentation, this spike seems to decrease in magnitude when permitting higher
polynomial degrees. Hence, we can attribute it to a discretization error. The optimal choice of permit-
ted degrees to balance accuracy and computational feasibility is an open question at this point. We
conjecture that it is at this point that future research will prove most fruitful: the difficult region close to
t = 0, where the true solution of the HJB is far away from the standard normal potential. Finally, Figure
5.3 shows the densities corresponding to the HJB solution obtained by Algorithm 2 and the samples
at the corresponding time points in the reverse process. We note that the curvature of the banana
potential in the first two dimensions as well as the multimodalities in higher dimensions are recovered
by the method. Finally, we note the large number of postprocessing steps used in this example. We
observed a drastic decrease in sample quality for less postprocessing steps.

6 Conclusion and Outlook

We presented an interpretable solver for the HJB equation arising from Hopf-Cole transformation of
the Fokker-Planck equation in the setting of Bayesian inference and Generative Modelling. The ap-
proach uses functional Tensor Trains and spatial discretization with Legendre polynomials. A surro-

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 23

Figure 5.3: Development of marginal densities (blue) and the samples produced by the corresponding
reverse process defined by Algorithm 3 (red) in the setting of the mixed nonlinear case (Section 5.2).
The first row shows the values of the densities and samples on the (x1, x2)-plane, which is governed
by the the Banana potential. The second row concerns the (x3, x4)-plane, which is governed by the
nonsymmetric multimodal potential. The third row shows the (x5, x6)-dimension, governed by the
bimodal potential. On the level of the HJB solver, the plot should be viewed from right to left since the
target density (right) is transformed to a standard Gaussian (left). On the level of the reverse process,
the samples (red) move from the standard Gaussian on the left to the target measure on the right.
We note that in all cases the sampler is able to reproduce the multimodality and curvature of the
corresponding density.

Figure 5.4: Approximations of the maximal absolute eigenvalues of the linearized HJB right-hand side
(left) and accordingly chosen time stepsizes (right) as in Figure 5.2 but for the mixed nonlinear potential
from Section 5.2. Note the jump in the stepsize at t = 10−6 which corresponds to a change in the
stiffnes control parameter ρ. Up to small perturbations which may be attributed to inaccuracy of the
power method the stepsizes are monotonically increasing again.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 24

Figure 5.5: Decay of the covariance error (5.3) for the mixed nonlinear potential of Section 5.2. Note
that after an initial spike, which may be attributed to degree and rank increase of the true HJB solution,
the error decays exponentially.

gate replacement for the HJB equation, which reduces to an ODE on tensor space, was derived. The
applicability of the method was demonstrated on linear and nonlinear test cases.

There are some obvious avenues for future work.

■ Incorporating more recent state-of-the-art dynamical low rank integrators for matrix valued
ODEs such as [8, 9] to the Tensor Train setting could lead to substantial performance improve-
ments of the proposed method. In particular, the Basis Update & Galerkin (BUG) integrator [8]
introduces rank adaptivity, while the fully parallel integrator [9] could additionally greatly speed
up computations in high dimensions.

■ Sampling from the reverse process via an Euler-Maruyama discretization usually requires a
small step size and a high number of time steps. In a recent work [43], a Diffusion Exponential
Integrator Sampler (DEIS) was proposed, which utilizes the semilinear structure of the learned
diffusion process (2.4) to reduce the discretization error. This integrator could be applied in our
setting. In particular, the combination with recent dynamical low rank solvers such as [9] could
lead to a greatly reduced number of necessary steps both in solving the HJB as well as in
discretizing the reverse process.

■ We provided results for the FTT rank structure of the HJB solution in case of Gaussian dis-
tributions (Lemma D.1) and distributions with independent components (Lemma D.2) but it is
an open question if there are further rank structures that are preserved under the HJB flow.
As a fist step, Lemma D.2 can be generalized to independence between groups of compo-
nents: Let f(x) = f1(x1, . . . , xn) + f2(xn+1, . . . , xd). Then the FTT ranks of both f and
Lin(f) + NonLin(f) satisfy rn ≤ 2. We conjecture that there are further situations in which
the solution ranks can be bounded:

Conjecture: The HJB flow FTT ranks rt are (up to a constant) bounded by r0 of v0 and
r∞ ≡ 2 for v∞.

This analysis is part of investigations in a subsequent work.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 25

■ Finally, a rigorous analysis providing error estimates between the solution of the projected equa-
tion (4.1) and the solution of the HJB equation (2.9) needs to be carried out. For a Gaussian
potential, the solution of (4.1) coincides with that of (2.9). For more general densities the quality
of the approxmiation largely depends on the initial condition, the contraction properties of the
right-hand side of the HJB equation and the projection error.

References

[1] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Appli-
cations, 12(3):313–326, 1982.

[2] M. Bachmayr. Low-rank tensor methods for partial differential equations. Acta Numerica, 32:1–
121, 2023.

[3] M. Bachmayr, A. Nouy, and R. Schneider. Approximation by tree tensor networks in high dimen-
sions: Sobolev and compositional functions. arXiv preprint arXiv:2112.01474, 2021.

[4] J. Berner, M. Dablander, and P. Grohs. Numerically solving parametric families of high-
dimensional kolmogorov partial differential equations via deep learning. Advances in Neural
Information Processing Systems, 33:16615–16627, 2020.

[5] J. Berner, L. Richter, and K. Ullrich. An optimal control perspective on diffusion-based generative
modeling. arXiv preprint arXiv:2211.01364, 2022.

[6] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov Chain Monte Carlo. CRC
press, 2011.

[7] E. Calvello, S. Reich, and A. M. Stuart. Ensemble Kalman methods: A mean field perspective,
2022.

[8] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank
approximation. BIT Numerical Mathematics, 62(4):1149–1174, 2022.

[9] G. Ceruti, J. Kusch, and C. Lubich. A parallel rank-adaptive integrator for dynamical low-rank
approximation, 2023.

[10] A. Cohen, R. Devore, and C. Schwab. Analytic regularity and polynomial approximation of para-
metric and stochastic elliptic pde’s. Analysis and Applications, 9(01):11–47, 2011.

[11] S. Dolgov, D. Kalise, and K. K. Kunisch. Tensor decomposition methods for high-dimensional
hamilton–jacobi–bellman equations. SIAM Journal on Scientific Computing, 43(3):A1625–A1650,
2021.

[12] M. Eigel, R. Gruhlke, and D. Sommer. Less interaction with forward models in langevin dynamics,
2022.

[13] M. Eigel, R. Schneider, and D. Sommer. Dynamical low-rank approximations of solutions to the
hamilton–jacobi–bellman equation. Numerical Linear Algebra with Applications, 30(3):e2463,
2023.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 26

[14] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions: Gra-
dient structure and ensemble Kalman sampler. SIAM Journal on Applied Dynamical Systems,
19(1):412–441, 2020.

[15] A. Garbuno-Inigo, N. Nusken, and S. Reich. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM Journal on Applied Dynamical Systems, 19(3):1633–1658, 2020.

[16] J. Goodman and J. Weare. Ensemble samplers with affine invariance. Communications in applied
mathematics and computational science, 5(1):65–80, 2010.

[17] M. Griebel, H. Harbrecht, and R. Schneider. Low-rank approximation of continuous func-
tions in sobolev spaces with dominating mixed smoothness. Mathematics of Computation,
92(342):1729–1746, 2023.

[18] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[19] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor optimization
in the tensor train format. SIAM Journal on Scientific Computing, 34(2):A683–A713, 2012.

[20] S. Holtz, T. Rohwedder, and R. Schneider. On manifolds of tensors of fixed tt-rank. Numerische
Mathematik, 120(4):701–731, 2012.

[21] C.-W. Huang, J. H. Lim, and A. C. Courville. A variational perspective on diffusion-based
generative models and score matching. Advances in Neural Information Processing Systems,
34:22863–22876, 2021.

[22] A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

[23] O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis and
Applications, 29(2):434–454, 2007.

[24] Q. Liu and D. Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. Advances in neural information processing systems, 29, 2016.

[25] C. Lubich and I. Oseledets. A projector-splitting integrator for dynamical low-rank approximation.
BIT Numerical Mathematics, 54:171–188, 2013.

[26] C. Lubich, I. V. Oseledets, and B. Vandereycken. Time integration of tensor trains. SIAM Journal
on Numerical Analysis, 53(2):917–941, 2015.

[27] P. A. Markowich and C. Villani. On the trend to equilibrium for the fokker-planck equation: an
interplay between physics and functional analysis. Mat. Contemp, 19:1–29, 2000.

[28] N. Nüsken and L. Richter. Solving high-dimensional hamilton–jacobi–bellman pdes using neural
networks: perspectives from the theory of controlled diffusions and measures on path space.
Partial differential equations and applications, 2:1–48, 2021.

[29] I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

[30] I. V. Oseledets. Constructive representation of functions in low-rank tensor formats. Constructive
Approximation, 37:1–18, 2013.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 27

[31] M. Oster, L. Sallandt, and R. Schneider. Approximating optimal feedback controllers of finite hori-
zon control problems using hierarchical tensor formats. SIAM Journal on Scientific Computing,
44(3):B746–B770, 2022.

[32] S. Reich and S. Weissmann. Fokker–Planck particle systems for Bayesian inference: Computa-
tional approaches. SIAM/ASA Journal on Uncertainty Quantification, 9(2):446–482, 2021.

[33] L. Rey-Bellet and K. Spiliopoulos. Improving the convergence of reversible samplers. Journal of
Statistical Physics, 164:472–494, 2016.

[34] C. Robert and G. Casella. A Short History of Markov Chain Monte Carlo: Subjective Recollections
from Incomplete Data. Statistical Science, 26(1):102 – 115, 2011.

[35] G. O. Roberts and J. S. Rosenthal. General state space Markov chains and MCMC algorithms.
Probability surveys, 1:20–71, 2004.

[36] G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, pages 341–363, 1996.

[37] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

[38] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to density
and score estimation. In R. P. Adams and V. Gogate, editors, Proceedings of The 35th Uncertainty
in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research,
pages 574–584. PMLR, 22–25 Jul 2020.

[39] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based gener-
ative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

[40] A. M. Stuart. Inverse problems: A bayesian perspective. Acta Numerica, 19:451–559, 2010.

[41] B. J. Zhang, Y. M. Marzouk, and K. Spiliopoulos. Transport map unadjusted langevin algorithms,
2023.

[42] K. S. Zhang, G. Peyré, J. Fadili, and M. Pereyra. Wasserstein control of mirror langevin monte
carlo. In Conference on Learning Theory, pages 3814–3841. PMLR, 2020.

[43] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. In The
Eleventh International Conference on Learning Representations, 2023.

[44] M. Zhou, J. Han, and J. Lu. Actor-critic method for high dimensional static hamilton–jacobi–
bellman partial differential equations based on neural networks. SIAM Journal on Scientific Com-
puting, 43(6):A4043–A4066, 2021.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 28

A Hopf-Cole Transformation

Let πt satisfy the Fokker-Planck equation

∂tπt = ∆πt + x · ∇πt + dπt. (A.1)

Then, by the chain and product rule, we have the identities

∂t log πt =
1

πt

∂tπt =
1

πt

(∆πt + x · ∇πt + dπt), (A.2)

∆ log πt = ∇ ·
Å
1

πt

∇πt

ã
=

1

πt

∆πt −
1

π2
t

∇πt · ∇πt =
1

πt

∆πt − ∥∇ log πt∥22. (A.3)

Putting these together, we see that

∂t log πt = ∆ log πt + ∥∇ log πt∥22 + x · ∇ log πt + d (A.4)

and hence vt = − log πt satisfies

∂tvt = ∆vt − ∥∇vt∥22 + x · ∇vt − d. (A.5)

B Optimal Control Perspective

We consider the case where π∗ is a zero-mean Gaussian with symmetric positive definite covariance
matrix Σ. Hence, (2.9) becomes

∂tvt = Lin(vt) + NonLin(vt), v0 =
1

2
x⊺Σ−1x. (B.1)

This is a familiar form in stochastic optimal control. Consider an SDE

dXt = (f(Xt) + g(Xt)ut)dt+ σ(Xt)dWt, (B.2)

X0 = x0, (B.3)

with initial condition x0, control ut, diffusion σ, free drift part f and controlled drift part g ·ut. Associate
with this SDE a cost functional given by

J(t, x, u) = E
ñ∫ T

t

λu⊺
tutdt+ E(XT)

∣∣Xt = x

ô
, (B.4)

where λ > 0 and E is a positive definite terminal cost function. The associated HJB equation for the
value function V reads

∂tV + f⊺∇V − 1

4λ
∇V ⊺gg⊺∇V +

σ2

2
∆V = 0, V (T, x) = E(x).

Now, choose f(x) = x, g(x) ≡ Id, E(x) = x⊺Σ−1x/2, λ = 1/4 and σ =
√
2 to arrive at

∂tV = −∇V ⊺x+ ∥∇V ∥2 −∆V,

V (T, x) =
1

2
x⊺Σ−1x.

(B.5)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 29

Clearly, reversing the time by defining
←−
V (t, x) := V (T − t, x) and regrouping the terms yields

∂t
←−
V = ∆

←−
V +∇

←−
V ⊺x− ∥∇

←−
V ∥2 = Lin(

←−
V) + NonLin(

←−
V),

←−
V (0, x) =

1

2
x⊺Σ−1x,

(B.6)

and hence vt =
←−
V (t, ·). In total, the log-density of the foward SDE is given as the reverse-time value

function of a linear quadratic optimal control problem. The linear quadratic problem has the property
that its solution is the same in the deterministic and stochastic setting. Hence, instead of the stochastic
problem, we may also consider the deterministic optimal control problem defined by

ẋ = x+ u, x(0) = x0, (B.7)

J(t, x, u) =

∫ T

t

1

4
u(t)⊺u(t)dt+

1

2
X(T)⊺Σ−1X(T). (B.8)

Now, setting A = Id, B = Id, Q ≡ 0 ∈ Rd×d, R = 1
4
Id and Qf = 1

2
Σ−1

ρ this leads to

ẋ = Ax+Bu, x(0) = x0, (B.9)

J(t, x, u) =

∫ T

t

x(t)Qx(t) + u(t)⊺Ru(t)dt+X(T)⊺QfX(T). (B.10)

The solution of this problem is given by the LQR V (t, x) = x⊺Ptx, where Pt solves a Riccati differ-
ential equation with inputs A,B,Q,R,Qf . It follows that

∇vT−t(x) = ∇V (t, x) = 2Ptx,

leading for λ = 0 to a reverse-time generative process defined by

dYs = (Id − 4Ps)Ysds+
√
2dWs. (B.11)

C Motivation for using (Functional) Tensor Trains

We give an informal motivation for the use of FTTs and in particular polynomials represented in the
Tensor Train format in the setting of Bayesian inference for paramteric PDEs. For more rigorous rep-
resentations and decay rates in polynomial chaos representations of solutions of parametric PDEs we
refer e.g. to pioneering work in [10] and follow up research. In this setting, the fact that usually only
very few data points are available often renders high frequency components non-informative. Hence,
the higher mode dimensions are often close to the prior information even after inference. Assuming
that the prior is given as a (standard) Gaussian, it is reasonable to assume that these higher modes
will be close to Gaussian. In particular, this motivates a form of potential similar to the nonlinear po-
tential used in Section 5.2. The following provides a sketch on how such a form might be obtained.
Let M1 ∈ N, M1 < d, denote a number of relevant modes and for maximal polynomial degrees
d1 ≥ d2 ≥ . . . ≥ dM1 ≥ 2 let

relevant =
M1×
i=1

{0, . . . , di},
√

relevant =
M1×
i=1

{0, . . . , ⌊
√

di⌋}.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 30

Observe that solutions u of parameteric PDEs with spatial variable x and parameter y can often be
written as

u(x, y) ≈
∑

α∈
√

relevant

uα(x)pα(y)

where uα is an element of some function space V for every α. Let G(y) = u(·, y) ∈ V and for
some K ∈ N letO : V → RK be a linear observation operator (e.g. point evaluations in x). Hence:

O(G(y)) = O(u(·, y)) =
∑

α∈
√

relevant

uαpα(y), uα ∈ RK .

Then, assuming a Bayesian setting with a zero mean Gaussian prior with covariance matrix Σ, the log
posterior density has the form

log π(y) = −1

2
∥O(G(y))− δ∥2σId −

1

2
∥y∥2Σ

where δ is an observation and σId, σ > 0, is the covariance of the zero mean Gaussian observational
noise. By the form of O(G(y)), it then follows that there are coefficient tensors cprior and clikelihood

such that the potential or negative log posterior density is of the form with non-Gaussian parts confined
to the relevant modes 1, . . . ,M1.

D Functional Tensor Train rank of HJB solutions

Lemma D.1 (Gaussian distributions). Let d ∈ N and f : Rd → R admit the form f(x) = x⊺Mx for
a symmetric positive definite matrix M ∈ Rd,d. Then f has finite FTT rank r ∈ Nd−1. In particular for
d ≥ 3,

r ≤ r := 2 +

®(
1, 2, . . . , d

2
, . . . , 2, 1

)
, d even,(

1, 2, . . . , d−1
2
, d−1

2
, . . . , 2, 1

)
, d odd,

and r = 2 ∈ N for d = 2.

Proof. The case d = 2 follows since M is invertible and the TT rank coincides with the matrix rank.
Let d ≥ 3 and write M = (mij) and r = (ri)

d−1
i=1 , r0 = rd = 1. We seek a representation

f(x) = U1(x1)U2(x2) · · ·Ud(xd), Ui(xi) ∈ Rri−1,ri , i = 1, . . . , d.

Let In ∈ Rn,n denote the identity matrix and 0k,l ∈ Rkl be a zero matrix and 0k ∈ Rk be a zero
vector.

Define the matrices Ũi(xi) for i = 1, d as

Ũ1(x1) =
(
1 2x1 m11x

2
1

)
∈ R1,r1 , Ũd(xd) =

(
1 2xd mddx

2
d

)⊺ ∈ Rrd−1,1.

Moreover, for i = 2, . . . , d− 1 except for i = d−1
2

+ 1 in case hat d is odd let

Ũi(xi) =

2xi miix

2
i

m1ixi
...

mi−1,ixi

0 1

Ii 0i−1

0⊺
i

 ∈ Rri−1,ri , i = 2, . . . ,

°
d− 1

2

§
,

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 31

Ũi(xi) =

1
2xi

mi,ix
2
i md,ixi · · · mi+1,ixi 1

02,d−i 02

0d−i Id−i 0d−i

∈ Rri−1,ri i =

õ
d+ 3

2

û
, . . . , d− 1.

If d is odd we define the middle square component Ui(xi) for i = d−1
2

+ 1 by

Ũi(xi) =

miix

2
i mi,i+1xi · · · mi,dxi 1

m1,ixi
...

mi−1,ixi

1 0

1
2
M1:i−1,i+1:d 0i−1

0⊺
d−i

, i =
d− 1

2
+ 1.

For d even we define for i = d
2
+ 1 =

⌊
d+3
2

⌋

Ui(xi) =

0 1

1 0

0⊺
d−i

0i−1 M1:i−1,i+1:d 0i−1

0⊺
d−i

Ũ(xi)

and in any other case set Ui(xi) = Ũi(xi).

Lemma D.2 (Measures of independent variables). Let d ∈ N and f : Rd → R admit the form
f(x) =

∑d
i=1 fi(xi) for fi ∈ C2(R,R), i = 1, . . . , d. Then both f and Lin(f) + NonLin(f) have

FTT rank r = (2, . . . , 2)⊺ ∈ Nd−1.

Proof. The result follows immediately from [30, Theorem 2] and the structure of Lin(f)+NonLin(f).

E Details of HJB solutions

Let p(mon)
α for α ∈ N0 denote the α-th monomial, i.e. p(mon)

α (x) = xα. As in Section 3, let Ti,n ∈
Rn+1,n+1 denote the basis transformation matrix between Legendre polynomials of degree n on
[ai, bi] and the monomials up to degree n.

E.1 Derivation matrices in the linear operator part

Note that for every i = 1, . . . , d and for every c ∈ Rni+1, we have

∂2
x

ni∑
α=0

cαp
(mon)
α =

ni∑
α=0

(M i
ddc)αp

(mon)
α , (E.1)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 32

where

M i
dd =

2
6

. . .
ni(ni − 1)

0
0

 ∈ R(ni+1)×(ni+1). (E.2)

In a similar way, we get

x∂x

ni∑
α=0

cαp
(mon)
α =

ni∑
α=0

(M i
xdc)αp

(mon)
α , (E.3)

where

M i
xd =

â
0

1
2

. . .
ni

ì
∈ R(ni+1)×(ni+1). (E.4)

With the basis transformation matrix Ti,ni
we can express the action of these operators on the coeffi-

cients of the original basis pi. In particular, we have

(∂2
x + x∂x)

ni∑
α=0

cαp
i
α = (∂2

x + x∂x)

ni∑
α=0

(Ti,ni
c)αp

(mon)
α

=

ni∑
α=0

((M i
dd +M i

xd)Ti,ni
c)αp

(mon)
α

=

ni∑
α=0

(T−1
i,ni

(M i
dd +M i

xd)Ti,ni
c)αpα =

ni∑
i=0

(Dic)αp
i
α,

(E.5)

with Di := T−1
i,ni

(M i
dd +M i

xd)Ti,ni
∈ R(ni+1)×(ni+1).

E.2 Derivation of the nonlinear part

Note that for every c ∈ Rni+1, we have

∂x

ni∑
α=0

cαp
(mon)
α =

ni∑
α=0

(M i
dc)αp

(mon)
α , (E.6)

where

M i
d =

â
1

2
. . .

ni

0

ì
∈ R(ni+1)×(ni+1), (E.7)

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

GM with TT approximations of HJB equations 33

and hence

∂x

ni∑
α=0

cαp
i
α = ∂x

ni∑
α=0

(Ti,ni
c)αp

(mon)
α (E.8)

=

ni∑
α=0

(M i
dTi,ni

c)αp
(mon)
α (E.9)

=

ni∑
α=0

(T−1
i,ni

M i
dTi,ni

c)αp
i
α =

ni∑
α=0

(Dxi
c)αp

i
α, (E.10)

with Dxi
= T−1

i,ni
M i

dTi,ni
∈ R(ni+1)×(ni+1).

E.3 Estimating the eigenvalues for Gaussian distributions

Let n = (2, . . . , 2)⊺ ∈ Nd and g(x) = 1
2
x⊺Ax for all x ∈ Rd, where A ∈ Rd×d. Note that

∇g(x) = Ax and hence for any v ∈ spanΠn, we have NonLing v = ⟨Ax,∇v⟩ = (Ax) · ∇v.
Hence, the linearized HJB at g reads

v̇ = x · ∇v +∆v − 2⟨Ax,∇v⟩+ ⟨Ax,Ax⟩, v(0) = g (E.11)

In order to determine the stiffness, we need to determine the effect of this right-hand side on the
coefficient tensor of v. From now on, let v = vC , where C ∈ Rn+1. Assume that vC(x) =

1
2
x⊺Ĉx

for some Ĉ ∈ Rd×d, i.e. VC has only terms with degree 2. We know that x · ∇vC + ∆vC = vLC

and ⟨Ax,∇vC⟩ =
∑d

i=1

∑d
j=1 aijxj∂ivC . Now, note that ∂ivC = v(Id⊗...⊗Pi⊗...⊗Id)C , where

Pi = T−1
i,2

Ñ
0 1 0
0 0 2
0 0 0

é
Ti,2, (E.12)

and xjvC = v(Id⊗...⊗Xj⊗...⊗Id)C , where

Xj = T−1
j,2

Ñ
0 0 0
1 0 0
0 1 0

é
Tj,2. (E.13)

In the case of i = j this leads to xi∂iVC = v(Id⊗...⊗T−1
i,2 M i

xdT
−1
i,2 ⊗...⊗Id)C

, where

M i
xd =

Ñ
0 0 0
0 1 0
0 0 2

é
. (E.14)

Let

M =
d∑

i,j=1

aijId ⊗ . . .⊗ Id ⊗ Pi ⊗ Id ⊗ . . .⊗ Id ⊗Xj ⊗ Id ⊗ . . .⊗ Id, (E.15)

then we have ⟨Ax,∇vC⟩ = vMC .

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

D. Sommer, R. Gruhlke, M. Kirstein, M. Eigel, C. Schillings 34

Diagonal covariance. We consider the special case where A = diag(aii, i = 1, . . . , d) is a diagonal
matrix. In this case, we have

M =
d∑

i=1

aiiId ⊗ . . . Id ⊗ T−1
i,2 M

i
xdTi,2 ⊗ Id ⊗ . . .⊗ Id (E.16)

and hence the linear operator governing the right-hand side is given by

L− 2M =
d∑

i=1

Id ⊗ . . . Id ⊗Hi ⊗ Id ⊗ . . .⊗ Id, (E.17)

where Hi := Di − 2aiiT
−1
i,2 M

i
xdTi,2 = T−1

i,2 (M
i
dd + (1− 2aii)M

i
xd)Ti,2 and

M i
dd + (1− 2aii)M

i
xd =

Ñ
0 0 2
0 1− 2aii 0
0 0 2(1− 2aii).

é
(E.18)

The point spectrum σ(Hi) of Hi is given by σ(Hi) = {0, 1 − 2aii, 2(1 − 2aii)}. The eigenvector
corresponding to the eigenvalue with largest absolute value 2(1− 2aii) is given by

v̂i = T−1
i,2

Å
1

1− 2aii
, 0, 1

ã⊺
Ti,2. (E.19)

Let vi denote any eigenvector of Hi. Then, v = (v1⊗ . . .⊗ vd) is an eigenvector of L− 2M . Since
this leads to 3d possible combinations, the whole spectrum of L−M is defined by such eigenvectors.
Moreover, since the eigenvalues Hi are bounded by |2(1− 2aii)|, the largest absolute eigenvalue of
L− 2M is given by 2

∑d
i=1 |1− 2aii|.

DOI 10.20347/WIAS.PREPRINT.3078 Berlin 2023

	Introduction and related work
	Contribution and Outline

	Reverse-time diffusion processes and HJB equation
	Functional Tensor Trains (FTT) and Tensor Trains (TT)
	The linear part
	The nonlinear part
	The operator in Tensor Train format

	Projection and retraction

	A direct low-rank HJB solver
	Time adaptive explicit Euler scheme
	Dynamical low rank approximation
	Evaluation of the low-rank model

	Numerical results
	Verification result: Gaussian setting
	Mixed nonlinear density

	Conclusion and Outlook
	Hopf-Cole Transformation
	Optimal Control Perspective
	Motivation for using (Functional) Tensor Trains
	Functional Tensor Train rank of HJB solutions
	Details of HJB solutions
	Derivation matrices in the linear operator part
	Derivation of the nonlinear part
	Estimating the eigenvalues for Gaussian distributions

