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Modeling cellular self-organization in strain-stiffening hydrogels
André H. Erhardt, Dirk Peschka, Chiara Dazzi, Leonie Schmeller,
Ansgar Petersen, Sara Checa, Andreas Münch, Barbara Wagner

We develop a three-dimensional mathematical model framework for the collective evolution of cell pop-
ulations by an agent-based model (ABM) that mechanically interacts with the surrounding extracellular
matrix (ECM) modeled as a hydrogel. We derive effective two-dimensional models for the geometrical
set-up of a thin hydrogel sheet to study cell-cell and cell-hydrogel mechanical interactions for a range
of external conditions and intrinsic material properties. We show that without any stretching of the
hydrogel sheets, cells show the well-known tendency to form long chains with varying orientations.
Our results further show that external stretching of the sheet produces the expected nonlinear strain-
softening or stiffening response, with, however, little qualitative variation of the overall cell dynamics for
all the materials considered. The behavior is remarkably different when solvent is entering or leaving
from strain softening or stiffening hydrogels, respectively.

1 Introduction

Mechanical cell-cell interactions as well as mechanical interactions between individual cells and their
surrounding extracellular matrix (ECM) play an important role in many biological processes such as
tissue regeneration, angiogenesis, cancer and tissue morphogenesis in general [1–6]. Similar to cell
migration due to chemotaxis, where cells migrate toward the direction of increasing concentrations
of a chemo-attractant, in durotaxis cells migrate along gradients of the ECM stiffness. Typically, cells
move towards a higher stiffness [7], while migration towards softer regions has also been observed
in vitro [8]. Mechanical properties such as viscoelasticity, and nonlinear elasticity directly affect cell
migration, where cells respond by restructuring parts of their cytoskeleton [9, 10]. On the other hand,
cells actively influence ECM properties like stiffness, or actively remodel the ECM itself [11,12], which
in turn affects cell functions. This interplay between cells and the ECM is fundamental for understand-
ing tissue formation and its properties. Thus, investigating how the temporal mechanical interactions
between cells and the ECM influence cellular organization is a very active field of research. As em-
phasized in [13], the development of hydrogel-based biomaterials is a promising approach for the
discovery of new strategies for tissue engineering and regenerative medicine. Thus, it is important to
understand how cells mechanically interact with hydrogels and the dependency of cell activity on the
properties of the hydrogel. [13] also motivates applying external strains to explore the mechanosensing
of cells.

One mode of cell migration is initiated by the adhesion of a cell to the network fibers of the ECM, fol-
lowed by the cell’s polarization due to mechanical strains of the ECM accompanied by the cytoskeleton
restructuring and elongation to initiate cell migration. The internally generated traction force applied by
the cells result into a migration path that is either stochastic or follows directional migration paths, de-
pending on various mechanical properties of the ECM [5,14]. Moreover, while the strain they impose is
strongest close to the cell and introduces locally a stiffness that can be many times higher than the ap-
plied stress, they also impact their surrounding region [15]. As shown in Liu et al. [16], cells, or even a
single cell, may induce bands of fibers that lead to an increase in fiber density and alignment between
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cells. Such mechanical coupling between cells is suggested to be a universal mechanism in natural
ECM and in particular collagen and fibrin gels [17]. The strain-stiffening property is characteristic of
the ECM and typical for natural hydrogels, i.e. composed of biomolecular networks, such as actin, type
I collagen [18], fibrin [17]. It has been measured by Han et al. [19], where microrheology was used to
measure the nonlinear stiffening of fibrin matrices induced by single cells. To some extent nonlinear
stiffening has even been observed experimentally for stiff tissues such as cortical bones [20].

Apart from the details of the impact of microstructure of the ECM on cell-ECM mechanical interactions,
which is reviewed in [3,21,22], we will focus here on strain-stiffening properties by introducing a Gent-
type model into our hydrogel model for the ECM.

Many ECM materials can be experimentally characterized and mathematically modelled as viscoelas-
tic hydrogels [23]. In the past, hydrogels have been used in cell culture to study various cell functions,
and to isolate mechanisms influencing cell migration [24]. Also, for comparison, stress-strain measure-
ments can in principle be directly performed under stress- or strain-controlled conditions to distinguish
between the elastic and viscous components. In addition, stress change over time under a specific
strain allows to infer details of hydrogel relaxation, which can give insights if applied traction forces
lead to force or dissipation of the energy as a response [25–27]. Insight gained from such compar-
isons could potentially improve our understanding of specific cell-ECM interactions and help design
new hydrogel materials and develop strategies to control cell migration.

One main goal of our theoretical study is to investigate how initial seedings of cells on the ECM
evolve into self-organized cell patterns by taking into account the local and long-range mechanical
interactions and solvent diffusion. To this end, we use agent-based modeling, a versatile framework
in which discrete cells can be simulated to behave autonomously according to a set of rules that
can represent events at different levels [28]. Agent-based cellular models coupled with finite element
model describing the ECM are commonly utilized to model and investigate phenomena like bone
regeneration, see [29, 30] and the references contained therein. In this line of research, we study
cell-hydrogel and cell-cell interactions for stretched and unstretched hydrogels, cf. again [13], and
we investigate the long-time evolution of an interacting cell system. The impact of mechanical ECM
properties is investigated by comparing strain-softening neo-Hookean and strain-stiffening Gent-type
behavior and we allow for solvent exchange with the surrounding. Performing a plane-strain or a plane-
stress approximation, we study two effective 2D models for thin sheets or thick elastic layers.

The paper is structured as follows: In Sec. 2 we derive the mathematical model framework for the cells
and the hydrogel, beginning with the derivation of a thermodynamically consistent continuum model
for the hydrogel as a two-phase system consisting of a nonlinearly elastic network in a liquid solvent in
3D in Sec. 2.1. For later comparison we employ two different nonlinear elasticity models, a neo-Hooke
and a Gent-type model, the latter accounting for strain-stiffening properties of the fiber network. This
is followed by the derivation of an approximation for a thin hydrogel sheet and specification of the fixed
and free boundary boundary conditions. We then introduce the agent-based model (ABM) in Sec. 2.3,
specify the migration rules and the iterative path of migration decisions by the cells when interacting
with the hydrogel sheet.

In Sec. 3 we formulate the problem for a thin hydrogel sheet and investigate scenarios of a sheet
for a range of applied loads or stresses. Since the dynamic and morphological evolution of stretched
hydrogel sheets has not been modeled before, at least not as a continuum multi-phase free boundary
system, this analysis is necessary to understand the response in form of stress-strain relations and the
corresponding temporal and spatial evolution for different parameter configurations, different elasticity
models, such as neo-Hooke or Gent, and different solvent concentrations. Here, we also investigate
the effects of possible solvent loss (or gain, i.e. swelling). This will serve as a guidance for investigat-
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ing the collective response of the cell population on hydrogel sheets under various scenarios in the
following section. For comparison, we also contrast this in this section with corresponding results for
the purely elastic counterparts for neo-Hooke and Gent models, since there is a considerable literature
using such models, see e.g. [31–33].

Finally, in Sec. 4 we explore the migration response of cell populations for various mechanical stimuli
provided by the hydrogel sheet. Binning with relaxed conditions, i.e. no stretching, as a reference
state, for hydrogel as well as purely elastic sheets, we vary the magnitude of the applied stretch,
flux conditions at the free boundaries, strength of traction forces exerted by the cells. Following the
evolution of the cell population we monitor corresponding pattern formation of the cells together with
their orientation, distribution of solvent within the hydrogel sheet and the stress state. In particular, we
explore conditions for chain formation of cells, that are well documented in the literature and discuss
underlying mechanisms for their formation as well effects of strain stiffening. In Sec. 5 we conclude
and summarize this work, discuss future applications as well as extensions of our model framework.

2 Model framework for cell-hydrogel interaction

We develop a versatile and extensible mathematical framework for viscoelastic hydrogels to describe
cell migration in an extracellular matrix. First, we derive a time-dependent continuum model for a hy-
drogel based on the thermodynamics of the two-phase system consisting of cross-linked biopolymers
and a solvent. Then, we perform a model reduction to effective 2D hydrogels models in order to con-
sider thin hydrogel sheets. Finally, we develop the corresponding ABM for cell motion on thin sheets.

2.1 Hydrogel model

First, we formulate a minimal hydrogel model that exhibits some typical mechanical properties of an
ECM using a class of hydrogels that consists of a cross-linked network of biomolecules, solved in an
aqueous solution. For this we derive a time-dependent two-phase continuum model of coupled partial
differential equations in 3D describing the evolution of two species (solvent and biomolecular network),
where the mechanical properties are encoded in the mechanical energy for the cross-linked network.
Our model also accounts for possible solvent exchange with the environment to allow for contraction
or swelling via free boundaries, reflecting the typical aqueous environment of an ECM. In fact, other
material properties such as growth factors can be modeled as well and are introduced using additional
phases or components.

The elastic behavior of most hydrogels of synthetic polymers such as polyethylene glycol (PEG) and
polyacrylamide (PA) is similar to that of rubber-like materials. Their elasticity can be understood on the
basis of the classic theory of rubber elasticity. For biopolymer hydrogels such as actin, collagen and
fibrin, rheological properties such as strain-stiffening have to be incorporated in the hydrogel model.
This entails that at small deformations biopolymer hydrogels display a constant stiffness or storage
modulus that depends on polymer concentration. When the applied stress (external or internal) is
large enough they show a strong nonlinear response, with much higher values than the original elastic
modulus.

The dynamic hydrogel model is formulated in the Lagrangian frame Ω ⊂ R3. The mechanical state of
the hydrogel is characterized by a function χ : [0, T ]× Ω → R3, where χ(t,x) ∈ R3 encodes the
deformed position of a material point x ∈ Ω at the time t ∈ [0, T ]. With F = ∇χ ∈ R3×3 we denote
the deformation gradient and with J = det(F ) its determinant. The chemical state of the material is
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characterized by a concentration c : [0, T ] × Ω → Rn, where each component of c = (c1, ..., cn)
encodes the concentration ci of a component i = 1,. . . , n for n ∈ N. Combining deformation and
concentration into a state vector q = (χ, c) we have a free energy functional for the hydrogel

F (q) =

∫
Ω

W (F , c,∇c)− f · χ dx, (1a)

W = Wmech +Wchem, (1b)

where the density Wmech(c,F ) contains the elastic stored energy of the hydrogel network and the
density Wchem(F , c,∇c) contains chemical and entropic contributions to the free energy that drive
diffusion, phase transitions and phase separation and are therefore thermodynamic in nature. Addi-
tionally, with f : Ω → R3 we encode given (external) mechanical forces. Each component takes up
a certain volume fraction φi = αici/J with the component αi > 0 of the vector of specific molar
volumes α ∈ Rn. Setting

J =
n∑

i=1

αici = 1 +
n−1∑
i=1

αi(ci − c̄i) =: I(c), (2)

we have by construction
∑n

i=1 φi = 1. In the last step we assumed that cn corresponding to the
polymer network concentration is constant in space and time and that J = 1 in the reference state,
where ci(t,x) = c̄i for i = 1, ..., n − 1 and x ∈ Ω. This constraint is enforced by a Lagrange
multiplier p : [0, T ]×Ω → R contained in a state vector qp = (q = (χ, c), p) using the Lagrangian

L (qp) = F (q) +

∫
Ω

p
(
J − I(c)

)
dx. (3)

Minimizers of the free energy (1) subject to the incompressibility constraint (2) can be obtained by
considering saddle points of the Lagrangian (3). Now, we construct a thermodynamic consistent evo-
lution law for this system, i.e. the free energy is decreasing over time. Thus, we introduce chemical
potential-like variables ξ, ξ̄ : Ω → Rn and construct the diffusive mobility of components

a(ξ, ξ̄) =

∫
Ω

n−1∑
i,j=1

d∑
k,l=1

∂xk
ξi : M ik,jl ∂xl

ξ̄j dx.

In general, M (q) is a non-negative tensor that acts on components and spatial indices and depends
on the concentration c. A further dependence of M on F allows to include both anisotropic diffusion
and Eulerian interfacial energies. The corresponding diffusion is often diagonal in the concentration
and with mobility function mi = mi(ci) leads to

a(ξ, ξ̄) =

∫
Ω

n−1∑
i=1

mi ∇ξi · ∇ξ̄i dx. (4)

Corresponding to the time derivative of the state ∂tqp = (∂tχ, ∂tc, ∂tp) we consider general rates
w = (wχ, wc, wp) with wχ : Ω → R3, wc : Ω → Rn and wp : Ω → R and define a bilinear form

b(ξ,w) =

∫
Ω

ξ · wc dx (5)

coupling chemical potentials η : [0, T ] × Ω → Rn and these rates. We model the evolution of the
hydrogel by a nonlinear saddle point problem, where we seek qp(t) and η(t) such that

a(η(t), ξ) + b(ξ, ∂tqp(t)) = 0 (6a)

b(η(t),w) = ⟨DL (qp(t)),w⟩ (6b)
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holds for all (test functions) w and ξ at time t ∈ (0, T ). Here, we introduced the (Gateaux) derivative
of the Lagrangian functional

⟨DL (qp),w⟩ = lim
h→0

1
h

[
L (qp + hw)− L (q)

]
.

For details of the corresponding model derivation we refer to [34,35].

Thermodynamic consistency holds for (6) in the sense that if we choose w = (∂tχ, ∂tc, 0) we get
from (6b) that ⟨DL (qp),w⟩ = d

dt
F (q(t)) = b(η,w), where we used that the constraint (2) is

satisfied. Testing the first equation (6a) with the chemical potential ξ = η we obtain the final result

d
dt

F (q(t)) = −a(η(t), η(t)) ≤ 0, (7)

where we used that a(ξ, ξ) ≥ 0 holds by construction of a for any ξ, since we consider nonnegative
M in (4). We supplement this problem with homogeneous natural boundary conditions for c on the
entire boundary ∂Ω. For the deformation we impose homogeneous natural boundary conditions on
ΓN ⊂ ∂Ω and inhomogeneous Dirichlet boundary conditions χ(t,x) = χΓ(t,x) for x ∈ ΓD =
∂Ω\ΓN and given χΓ. Note that (7) does not strictly hold for time-dependent inhomogeneous Dirichlet
boundary conditions, since the elastic energy effectively depends explicitly on time. However, while the
free energy might even increase, the model (6) is thermodynamic consistent, since the resulting first
Piola–Kirchhoff stress tensor P and the chemical potentials η

P(q) = ∂FW + pJF−T , (8a)

η = ∂cW −∇ · ∂∇cW − αp, (8b)

contain all fundamental cross-coupling effects. Note that we used ∂FJ = JF−T . The corresponding
Cauchy stress is obtained as σ = J−1PF T . The resulting general hydrogel evolution is

∂tc−∇ · (M (q)∇η) = 0 in (0, T )× Ω , (9a)

−∇ · P(q) = f in (0, T )× Ω , (9b)

with the constraint (2) and boundary conditions

ν ·M∇η = 0 on (0, T )× (ΓN ∪ ΓD) , (9c)

P(q)ν = 0 on (0, T )× ΓN , (9d)

χ = χΓ on (0, T )× ΓD , (9e)

and initial conditions ci(t = 0,x) = c̄i ∈ R for i = 1, ..., n − 1 and χΓ(t = 0,x) = x. Here
ν is the outer normal vector field on ∂Ω. Alternatively to (9c), we also consider cases where solvent
can flow into the gel through the front faces with a flux ν · M (q)∇η + n(q)η = 0, which in an
effective 2D model for a thin sheet will lead to volumetric source terms in the hydrogel model. We
assume that the system is initially in equilibrium, i.e. F is minimal for F = I , c = c̄ and p = 0 for
f = 0. Next, we specify the energy density and restrict to two components, i.e. n = 2, for solvent
and elastic polymer molecules. In order to investigate the impact that the solvent diffusion has on the
gel dynamics, we want to be able to revert the model to a simple hyperelastic model. This can be
achieved by switching off the diffusion setting M = 0 and thus c = c̄ and J = 1 for all times. In the
following we explain specific choices for the energy density that reflect the expected mechanical and
thermodynamic properties of hydrogels.
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Entropic energy density. The energy density Wchem in (1) contains chemical and entropic contri-
butions of thermodynamic origin that contribute to the free energy. We use here a Flory-Huggins free
energy [36–38] expressed using gradients of the concentration and using volume fractions as

Wchem(F , c,∇c) =
(

1
2
∇c : γ(F )∇c+ k3

+
n∑

i=1

kiφi ln(φi) +
∑
j>i

χijφiφj

)
J,

(10)

which describes the mixing of the polymeric system [34]. Here, we restrict to a binary mixture with
n = 2, where c = c1, c̄ = c̄1, α = α1, φ1 = φ and φ2 = 1−φ so that the parameters in the density
reduce to γ, three constants k1, k2, k3 and the mixing parameter χ12 such that

Wchem =
[
γ
2
|∇c|2 + k3 + k1φln(φ)

+k2(1− φ)ln(1− φ) + χ12φ(1− φ)
]
J,

(11)

with φ = αc/J . Depending on the sign of the mixing parameter χ12 one can trigger whether mixing
or phase separation is energetically favorable. In the following we assume χ12 = 0. While k1, k2 > 0
can be chosen arbitrarily and ∂FWmech(c̄, I) = 0 see Figure 1, we set k3 so that ∂FWchem = 0
in equilibrium, i.e. c = c̄ and F = I. Therefore, the material is stress-free in the prepared refer-
ence state. In [39] a similar constant k3 was used to ensure existence of minimizers by ensuring
Wchem(F , c,∇c) ≥ 0 for all detF ≥ 0.

Elastic energy density. The elasticity of hydrogels can in general be understood on the basis of
the classic theory of rubber elasticity such as for synthetic polymers for the network phase. However,
the elastic modulus of biopolymer networks in natural hydrogels, such as actin, fibrin or collagen,
typically exhibit strain-stiffening properties. For this study we use neo-Hookean elastic materials as
one of the simplest nonlinear elasticity models, or alternatively a Gent-type material that accounts for
the strain-stiffening properties of a hydrogel. Therefore, in the following we introduce elastic energy
densities Wmech(c,F ) = W i

mech(c,F ) which allows us to investigate properties of strain-softening
by a neo-Hookean energy i = “neo-Hooke” or strain-stiffening by a Gent-type energy i = “Gent”.
These nonlinear material models for large deformations contrast a simple linear elastic model typically
valid only for small deformations, see Fig. 1.

1 1.5 2
0

1

2

3

4

5

linear

neo-Hooke

Gent

Figure 1: Mechanical energy density with µ = 1 for linear elastic material, neo-Hooke and Gent model
(Jm = 2) for the deformation in (14). The 3D Gent model becomes singular at λ = 2.
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Commonly used constitutive material laws for describing the nonlinear elastic response of a polymer
network are of neo-Hookean type [40]. Here, the strain energy density is given by

W neo-Hooke
mech =

µ

2
(tr(C− I)− 2 ln(J)) (12)

with J =
√

det(C) and left Cauchy-Green tensor C = F TF . Compared to a linear elastic material,
the stress-strain relation also starts linear but will flatten for larger strains.

We model strain stiffening hydrogels by employing the Gent model [41] with strain energy

WGent
mech = −µ

2

(
Jm ln

(
1− 1

Jm
tr(C− I)

)
+ 2 ln(J)

)
, (13)

where Jm = Im − 3 is the so-called limiting deformation of the material and I1 = tr(C) is the
first invariant of the right Cauchy-Green deformation tensor. Stretchability of soft tissue varies with
age, pathology, humidity, as well as the type of tissue [42]. Tendons and ligaments can be uniaxially
stretched to a strain of around 15% [43], cartilage 120% [43], skins 110% [44] and aorta 100% [43].
These value correspond to a deformation Jm = 0.06, 2.75, 2.36 and 2.00, respectively. This param-
eter can be tuned by changing the cross-link density of the polymer chains or by varying the mixture
of different kinds of polymers. In the limit Im → ∞ the Gent model converges to the neo-Hookean
model. In Fig. 1 we show the three elastic energy densities for a uniaxial deformation with J = 1 of
the form

F =

λ 0 0
0 λ−1/2 0
0 0 λ−1/2

 , (14)

showing clearly that the energies W i
mech are minimal for F = I and that Gent or neo-Hookean

materials are softer or stiffer compared to linear elastic ones for larger strains λ, respectively. For
elastic models one might want to consider a dependence µ = µ(c) to describe the effect of drying-
induced softening or stiffening as in [45], but here we will consider a constant elastic modulus that
does not depend on concentration.

x

y

z

0 L

L

ΓsideΓside

H

Ω

Γbot

Γtop

x

y

0 L

L

Ω̂

Γ̂bot

Γ̂top

Γ̂side Γ̂side

Figure 2: (left) 3D sheet Ω = Ω̂ × (0, H) and (right) its 2D cross section Ω̂ = (0, L)2. We denote
the top and bottom faces of the cuboid by Γtop = Γ̂top × (0, H) and Γbot = Γ̂bot × (0, H) where

Γ̂top = (0, L)× {L} and Γ̂bot = (0, L)× {0}, as indicated by the gray dashed lines. The side faces

of the cuboid are Γside = Γ̂side × (0, H) where Γ̂side = {0, L} × (0, L). Additionally, the front faces
of the cuboid are Γfront = (0, L)2 × {0, H}.
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2.2 Dimension reduction for sheets

We consider an elastic sheet in a rectangular cuboid domain Ω = Ω̂×(0, H) ⊂ R3 with Ω̂ = (0, L)2

with the simple sheet geometry shown in Fig. 2. In that sketch we introduce front, side, top and bottom
faces on which boundary conditions are defined. In order to solve (9) we use inhomogeneous Dirichlet
boundary conditions on ΓD = Γtop ∪ Γbot and no-stress boundary conditions on ΓN = Γside ∪ Γfront.

Model reduction for elastic sheets and membranes is usually based on an assumption that a general
elastic deformationχ(t,x) = x+u(t,x) depending on time t and spacex = (x̂, z)with x̂ = (x, y)
and with displacement u(t,x) = (ux(t,x), uy(t,x), uz(t,x)) can be approximated

χ(t,x) = x+

 ûx(t, x̂)
ûy(t, x̂)

ŵ(t, x̂)(z − H
2
)

 ,

with functions ûx, ûy, ŵ : [0, T ]× Ω̂ → R that only depend on the cross-section x̂ ∈ Ω̂ and thus

F =

(
F̂ 0

0 F̂zz

)
, F̂ =

(
F̂xx F̂xy

F̂yx F̂yy

)
(15)

such that J = Ĵ F̂zz = I(ĉ) with Ĵ = det F̂ holds for the determinant. Furthermore, we ap-
proximated the concentration by c(t,x) = ĉ(t, x̂). Under these assumptions one distinguishes the
plane-stress approximation for thin sheets H ≪ L and the plane-strain approximation for H ≫ L.

Figure 3: Comparison of 3D hydrogel model with the corresponding 2D hydrogel model in plane stress
approximation (Gent). We show the deformed domain χ(Ω) (mesh) and the concentration ĉ (shading)
for increasing applied strain χΓ from left to right. The left half of each plot is from the 3D problem and
the right half from the effective 2D problem.

Plane stress approximation. Solving the above condition for a general F̂zz with I(c) = 1+α(ĉ−c̄)
given by the constraint (2) yields an explicit expression

F̂zz(F̂ , ĉ) =
(1 + α(ĉ− c̄))

Ĵ
. (16)

This allows to approximate the original three-dimensional problem by a two-dimensional problem for
χ̂(t, x̂) = x̂ + û(t, x̂) ∈ R2 where we use û = (ûx, ûy) and with F̂ = ∇χ̂ we can replace
F = F stress(F̂ , ĉ) via (15) and (16) in the free energy. This approximation is commonly used for thin
sheets H ≪ L with appropriate boundary conditions, e.g. here we are going to use ux = uz = 0
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and uy = uD
y on ΓD for the 3D model or correspondingly ûx = 0 and ûy = ûD

y on Γ̂D for the
corresponding plane stress approximation. Note that in the plane stress approximation the constraint
(2) is automatically satisfied and no multiplier is required. Thus, the plane stress approximation of a
3D incompressible material is effectively a 2D model that allows for compression in the xy-plane.

Plane strain approximation. The corresponding plane strain approximation assumes ŵ = 1 and
thus

F̂zz = 1. (17)

This produces J = Ĵ , which in the plane stress approximation also needs to be enforced using
a Lagrange multiplier. Also this yields F = F strain(F̂ , ĉ) (here trivially independent of ĉ) that can
be used in the free energy. This approximation is commonly used for H ≫ L or with appropriate
boundary conditions on Γfront. Thus, the plane strain approximation of a 3D incompressible material
is effectively a 2D model that also does not allow for compression in the xy-plane.

1

2

3

Figure 4: (left) Exemplary multi-cell state a = (a1, ..., ancells
) ∈ A for a lattice of cell position Ωcell

with N = 10 and ncells = 8 and ai = (x̂i, di) ∈ A. The cell center positions x̂i are indicated
using blue dots and the corresponding orientations di are indicated using red dots at x̂i ± di and red
lines connecting these with the cell center. For any given state a, the traction force f̂(a) pulls the
hydrogel at each red dot towards the corresponding cell center with strength ftrac. (middle) Proposed
cell update for the cell state from the bottom left corner of the multi-cell state. The new positions and
orientations for cell 1 and cell 2 (white labels) are indicated using light blue dots and dashed blue lines,
whereas cell 3 is fixed because at every iteration not all cells are updated. (right) New configuration
where the updated cell state was rejected for cell 1 and accepted for cell 2.

Models for two-dimensional sheets. In that sense, the main step of both approximations is to
replace the energy in (1) by the 2D approximation q̂ = (χ̂, ĉ) which gives

F̂ (q̂) =

∫
Ω̂

W (F j(F̂ , ĉ), ĉ, ∇̂ĉ)− f̂ · χ̂ dx̂, (18)

with W = Wmech + Wchem as before, which relies on the assumption that the external force density
was already effectively two-dimensional before, i.e. f(x) = (f̂(x̂), 0). We define F j = F (F̂ , F̂zz)

from (15) for j = “stress” by inserting F̂zz from (16) and for j = “strain” by inserting F̂zz from (17),
respectively. While in the plane stress approximation q̂ already satisfies the constraint, in the plane
strain approximation we need to enforce it via the Lagrange multiplier p contained in q̂p = (q̂, p̂) by
defining the Lagrange functional

L̂ (q̂p) = F̂ (q̂) +

∫
Ω̂

p̂
(
Ĵ − [1 + α(ĉ− c̄)]

)
dx̂. (19)
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The bilinear forms for the effective 2D model are

â(ξ, ξ̄) =

∫
Ω̂

m(ĉ) ∇̂ξ · ∇̂ξ̄ + n(ĉ)ξξ̄ dx̂. (20)

and with rates w = (wχ, wc) for plane stress or w = (wχ, wc, wp) for plane strain let

b̂(ξ,w) =

∫
Ω̂

ξ · wc dx̂, (21)

where we avoided the “hats” on chemical potentials and rates for ease of notation. A nonzero mobility
n(ĉ) in (20) leads to a non-conserved evolution caused by a possible contact of the hydrogel with a
solvent bath through the side and front faces. Introducing a time discretization q̂k = q̂(kτ) with time
step size τ , in the plane stress approximation this leads to

â(ηk, ξ) + b̂(ξ, δtq̂
k) = 0 (22a)

b̂(ηk,w) = ⟨DF̂ (q̂k),w⟩ (22b)

with δtq̂
k = 1

τ
(q̂k − q̂k−1) and in the plane strain approximation with

â(ηk, ξ) + b̂(ξ, δtq̂
k
p) = 0 (23a)

b̂(ηk,w) = ⟨DL̂ (q̂k
p),w⟩. (23b)

with δtq̂
k
p =

1
τ
(q̂k

p − q̂k−1). As described in [35], this nonlinear saddle point problem is discretized in
space using finite elements on triangular meshes and discretized in time via an incremental minimiza-
tion. We implement the problem using the finite element library FEniCS [46, 47]. Solving (22) or (23)
with a force f̂ produced by the cell configuration contributes to one time step (iteration) of the hydro-
gel model. For more details we also refer to the supplementary source code [48]. For thin sheets, a
comparison of 2D and 3D deformation and concentration in the plane stress approximation in shown
in Fig. 3. While in particular close to the top and bottom boundary, due to a mismatch of boundary
conditions in the plane stress approximation slight differences in the solvent concentration are visible.
Nevertheless, the 2D deformation describes the thin 3D hydrogel sheet very well. In the following we
explain the ABM and the construction of the force f̂ that couples to the hydrogel.

2.3 ABM for cell migration

For the interaction of the ECM with the cells we neglect the short time adhesion process between
cell and hydrogel, and focus on the nonlinear mechanics on the time-scales of cell migration. Cells
are characterized by a spatial location and an orientation and each probing the hydrogel by exerting a
dipole traction force of a given strength that is transmitted to the hydrogel and in turn to other cells, that
are also probing the hydrogel. In our current study we restrict the investigation to a few basic rules,
that are generally thought to govern cell migration in cell-ECM systems, namely that cells move to
locations of highest stiffness. The collective migration for a given distribution of cells is then described
by an ABM governing the migration decisions of each cell as a function of the states of other cells and
the hydrogel.

Migrating cells (fibroblasts) are assumed to have an elongated shape as they move through their
hydrogel environment by exerting dipole-like traction forces on the hydrogel, pulling two regions to
which the cell attaches toward the cell center. Since cells have an elongated shape, each cell also

DOI 10.20347/WIAS.PREPRINT.3076 Berlin 2023



Modeling cellular self-organization in strain-stiffening hydrogels 11

1. Seed cell configuration: For the given N = 100 and ncells = 500, initialize the multi-cell configuration by
picking a random (iid) element a0 ∈ A and set k = 0. Set hydrogel initial data q̂0 =
(χ̂0 = x̂, ĉ = c̄) at t0 = 0.

2. Propose cell update ak → a∗: For given ak, select a random neighboring multi-cell state a∗ ∈ A with a∗ ∼ ak,
where ≈ 20% of the single cells do not move, i.e. ai = a∗

i , see Fig. 4 (left). Note:
Depending on the algorithm selecting a∗, this percentage can increase if positions of
neighbors of ak

i are occupied in ak.

3. Propose hydrogel update q̂∗:

a) Traction forces: Compute traction forces f̂(a∗) by cells, cf. (25).

b) Boundary conditions: Apply inhomogeneous Dirichlet boundary conditions χΓ(t = kτ).

c) Propose hydrogel state: Starting from q̂k, find the tentative solution q̂∗ of the nonlinear hydrogel problem (22) or
(23) at time tk+1 = (k + 1)τ with traction from 3a).

4. Generate update ak+1: Cycle through all cells 1 ≤ i ≤ ncells and perform 4a,b) to update cells.

a) Deformation: Compare the new deformation def(q̂∗, a∗
i ) with the old def(q̂k, ak

i ) cf. (26).

b) Update: If the old deformation was lower and the old position x̂k
i is unoccupied in a∗, then

ak+1
i = ak

i . Otherwise accept the update and set ak+1
i = a∗

i .

5. Generate update q̂k+1: Compute hydrogel state based on updated cell states.

a) Traction forces: Compute traction forces by cells f̂(ak+1).

b) Update hydrogel state: Starting from q̂k, find the solution q̂k+1 of the nonlinear hydrogel problem (22) or (23)
at time tk+1 = (k + 1)τ with traction from 5a).

6. Iterate: Set t = (k + 1)τ and increment k → k + 1. Repeat steps 2.-6. until t = T .

Table 1: Implementation of ABM that computes a(tk+1) = ak+1 and q̂(tk+1) = q̂k+1 based on the
solution at previous time tk = kτ . The update is performed via intermediate states for cells a∗ and
for hydrogel q̂∗. We say two single cells a = (x̂, d), a∗ = (x̂∗, d∗) ∈ A are neighbors and write
a ∼ a∗ if there exists a direction d̃ ∈ ∆ such that x̂ = x̂∗ + d̃ or x̂ = x̂∗ − d̃ or if a = a∗. Two
multi-cell configurations a,a∗ ∈ A are neighbors and we write a ∼ a∗, if all of their components are
neighbors ai ∼ a∗i for i = 1, ..., ncells. We say a cell position x̂ ∈ Ωcell in a = (a1, ..., ancells

) ∈ A is
unoccupied (by a cell), if for no component ai = (x̂i, di) i = 1, ..., ncells we have x̂ = x̂i. Otherwise
we say the position x̂ is occupied (by a cell) in a.

posseses an orientation. While we assume that cells within the thin hydrogel sheet have four possible
orientations, i.e. horizontal, vertical or in one of two diagonal orientations, they align and can only be
oriented horizontally at the top and bottom boundaries and vertically at the left and right boundaries
of the rectangular hydrogel sheet. These properties of cells can be described using the following sets
and functions.

Cell state space. First, we define the set of admissible states A of single cells a ∈ A and then
the set of admissible states A of many cells a = (a1, ..., ancells

) ∈ A with ai ∈ A and ncells ∈
N. Therefore, for given N ∈ N and h = L/N let us construct the sets of cell positions and cell
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Figure 5: Traction forces with a magnitude ftrac on the ECM induced by the cell (blue dot).

orientations by

Ωcell = Ω̂ ∩ (hZ)2, (24a)

∆ =
{
d↔, d↕, d↗↙, d↖↘

}
⊂ R2, (24b)

where d↔ = (h, 0), d↕ = (0, h), d↗↙ = (h, h) and d↖↘ = (h,−h). By combining position x̂ ∈ Ωcell

on a lattice and discrete orientations d ∈ ∆ in pairs, we build the set of admissible single cell states

A =

{
(x̂, d) ∈ Ωcell ×∆

∣∣∣∣ (d=d↕ if x̂∈Γ̂side)
and

(d=d↔ if x̂∈Γ̂top∪Γ̂bot)

}
,

i.e. cells on the boundary are aligned in the sense d · ν̂ = 0 with the normal vector field ν̂ : ∂Ω̂ → R2.
From this we construct the set of multi-cell configurations with ncells ∈ N cells by

A =
{(

a1, ..., ancells

)
∈ Ancells | ∀i ̸= j : x̂i ̸= x̂j

}
,

i.e. cells ai = (x̂i, di) ∈ A for 1 ≤ i ≤ ncells occupy different positions. The cells generate a dipole-
type force f̂(a) that pulls material towards the cell center by pulling in the direction given by the cell
orientation. For any cell configuration a = (a1, ..., ancells

) ∈ A that force is

f̂(a) =

ncells∑
i=1

(δx̂i−di − δx̂i+di)
di

∥di∥
ftrac , (25)

where the traction strength is ftrac > 0, see also Fig. 5. For any given state of the hydrogel q̂ =
(χ̂, ĉ) ∈ Q̂, a single cell a = (x̂, d) ∈ A in the ABM can probe the response generated by the
traction force by the function def : Q̂ × A → R that measures the local deformation at the cell
location x̂ ∈ Ωcell ⊂ R2 via

def(q̂, a) =


|ûx(x̂− d)− ûx(x̂+ d)| d = d↔

|ûy(x̂− d)− ûy(x̂+ d)| d = d↕

∥û(x̂− d)− û(x̂+ d)∥ else

(26)

with ∥û∥ = (û2
x + û2

y)
1/2 and where û = (ûx, ûy). This function does not explicitly depend on ĉ.

The state of the ABM for cell motion at any discrete time t = kτ is given by ak ∈ A. The definitions
before now allow us to model the dynamic evolution of the cell configuration ak and the hydrogel q̂k

by updating q̂k+1 and ak+1 at each time step.

Multi-cell dynamics. The final modeling step is a description of the cell migration via an ABM satis-
fying certain rules [5,6,49,50]. In the first step, the ABM is seeding the biological cells on the substrate,
e.g. an elastic material or a hydrogel, cf. Figure 4.
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Cells act on the ECM by exerting a dipole-type traction force. The dipole orientation is given by the
cell orientation and pulls material towards the cell core, cf. Fig. 5. Each time step, approximately 80%
of the cells are moved to a neighboring cell position. The cells on the left and right boundaries can
only apply traction forces as vertical dipoles, while the cells on the top and bottom can only apply
traction forces as horizontal dipoles. All other cells can also apply traction forces as diagonal dipoles.
The cells have a clear preference to stay on a stiff place [51], i.e. cells prefer a locations with small
deformation. Therefore, after moving the cells to a random adjacent cell position and assuming a
random orientation, the algorithm determines the deformation of the substrate at each cell based
on the mechanical deformation and the dipole orientation. In case the new proposed cell position is
less stiff compared to the old cell position, i.e. produces a higher deformation as a reaction to the
dipole force, the cell moves back provided the previous cell position is unoccupied. Then, the new
deformation of the ECM is determined by solving the hydrogel model with traction forces generated by
the new cells configuration with cells that migrated to potentially stiffer positions. We summarize this
procedure in Table 1.

3 Strain-stiffening effects in stretched hydrogel sheets

Before we investigate the interactions of cells on hydrogel sheets and emerging population pattern,
we focus on the material properties of hydrogel sheets for a range of applied stresses. In particular we
are interested in the different mechanical response for hydrogels, where the nonlinear elastic energy
density is of neo-Hooke or of Gent type. The comparison will give insight into the parameter ranges
when to expect significant differences in cell behavior as properties such as strain-stiffening will be-
come relevant. To this end, we present a brief comparative study regarding the material properties
under plane strain and plane stress condition discussed in Sec. 2.2, respectively, while stretching their
elastic sheets.

We note, that mechanical and morphological properties of elastic sheets is a fascinating research
topic by itself and has been investigated in the past, in particular for purely elastic sheets [52, 53],
where however the strain-stiffening aspects have not been the focus of theoretical studies. Moreover,
a continuum two-phase model for hydrogel sheets, both for neo-Hooke and Gent-type rheology, is also
new and has a multitude of applications, in particular in biology, such as concerning the morphological
shapes and transitions of cells and tissue [54–56]. We thus focus a comprehensive analysis of the
class of hydrogel sheets and its applications in a companion paper.

Model parameters and forces. The geometry of the hydrogel sheet is fixed as described in Fig. 2
with L = 1 so that Ω̂ = [0, 1]2. In order to measure the mechanical response of the hydrogel
or hydrogel-ABM system we apply an inhomogeneous Dirichlet boundary condition (i.e. an external
tensile load) for the deformation of the form

χ̂Γ(t, x̂) = x̂+

{
0 x̂ ∈ Γ̂bot(
0, εeng(t)

)
x̂ ∈ Γ̂top

(27)

with engineering strain εeng(t) = εmaxmin(t, 1), i.e. the material is stretched for 0 ≤ t ≤ 1 and
kept at a constant strain εeng = εmax for t > 1. The engineering strain is related to the length of
the deformed domain L + δL via εeng = δL/L. Note that depending on the material law, certain
elastic materials can only sustain a certain maximal engineering strain at which the stress or the
deformation become singular. Since the bulk modulus does not depend on the concentration, we
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can rescale the free energy density of the system such that µ = 1. Using typical dimensional cell
traction forces of 10−8N , typical hydrogel geometries with HL = 10−8 . . . 10−6m2 and elastic
moduli of soft tissues µ = 103 . . . 104 Pa, we obtain a range of nondimensional traction forces of
ftrac = 10−8N/(µHL) = 10−6 . . . 10−3, e.g. cf. [5, 57]. In order to enhance nonlinear effects, we
will use ftrac = 10−3.

The dynamic model has different time scales: The intrinsic time scale for the ABM motility and orien-
tation dynamics is given by the time step size τ , as cells are updated each time step. However, the
practical migration rate then also depends on the magnitude of differences in the deformation function
generated by cell-cell and cell-ECM interaction. The typical diffusive and reactive relaxation time of the
hydrogel is encoded in the mobilities m and n in (20). For the mobility of the hydrogel we consider two
limiting cases, where either m = n = 0, so that no diffusion or solvent transport occurs and the re-
sponse of the hydrogel is purely elastic. The other limiting cases are either of conserved Cahn-Hilliard
type, i.e. if m = 105, n = 0, or of mixed non-conserved Allen-Cahn type, i.e. if m = n = 105. For the
Cahn-Hilliard evolution this implies that after each time step with τ = 10−3 the solvent concentration
is practically in equilibrium with constant chemical potential η and

∫
Ω̄
(ĉ − c̄) dx̂ = 0 for the given

applied strain. The viscoelastic relaxation time is assumed to be smaller than the time step size and
thus the evolution is dominated by the ABM’s cell dynamics.

For the Allen-Cahn evolution this equilibrium assumption implies that at each time t the chemical
potential is close to zero η ≈ 0 and the free energy is minimal under the given applied strain, including
the possibility of solvent exchange with the surrounding. For the Gent model we use a moderate
limiting deformation Jm = 2, consistent with values for biological materials discussed in Sec. 2.1. The
prefactor γ in the chemical energy is chosen small γ = 5 · 10−4 to regularize the diffusion in regions
of strong convection in regions of large stress differences, e.g. near corner singularities of the elastic
sheet. We use representative parameters α = 4 and c̄ = 0.2 and systematically study the impact of
different hydrogel energies with k1 = k2 = k. We mentioned before, in order to ensure that initially
the hydrogel is in equilibrium, we need to set k3 = k ln(αc̄), where by definition 0 < αc̄ < 1.

In the following, we discuss the ingredients to compute the mechanical stress for an effective 2D
hydrogel sheet for any given applied (engineering) strain εeng. For the three-dimensional hyperelastic
material with energy density W (F , c,∇c) as introduced in (1), the first Piola-Kirchhoff tensor defined
in (8a) receives its main contribution from Pmech = ∂FWmech, which for a neo-Hookean material is

Pmech = µF
(
I− C−1

)
= µ(F − F−T ).

Similarly, for the Gent model (13) one has

Pmech =µ

(
Jm

Jm − tr(C− I)
F − F−T

)
.

At each point these are 3 × 3 tensors (matrices). The corresponding mechanical contribution to the
(symmetric) Cauchy stress is given by σmech = J−1Pmech F

T . Due to the Lagrange multiplier, we
can replace J in Wchem by I(c) = 1 + α(c − c̄), so that Wchem does not directly contribute to the
mechanical stresses but only indirectly via the Lagrange multiplier that enforces the incompressibility,
i.e. P = Pmech + pJF−T .

In the two-dimensional sheet approximation we replace the energy density by W (F j(F̂ , ĉ), ĉ, ∇̂ĉ),

which induces some minor modifications in the effective stress tensor P̂. In the plane stress approxi-
mation we use the chain rule to obtain

P̂stress =
∂W

∂F̂
= Pmech ·

∂F stress

∂F̂
, (28)
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whereas in the plane strain approximation

P̂strain =
∂W

∂F̂
= Pmech ·

∂F strain

∂F̂
+ p̂ĴF̂

−T
, (29)

using the different expressions for F j(F̂ , ĉ) for j ∈ {strain, stress}, respectively. Therefore, for the
thin two-dimensional hydrogel sheet, the engineering stress σeng is calculated in terms of the first

Piola-Kirchhoff stress tensor P̂ and using the normal vector ν̂ on Γ̂ with

σeng =

∫
Γ̂top

ν̂ · P̂ν̂ ds. (30)

Due to the direct dependence of Wchem on J , due to the direct coupling with I(c) and due to the
indirect coupling with the Lagrange multiplier the engineering stress of the sheet depends on all the
hydrogel parameters. The same coupling will result in an inhomogeneous solvent concentration c
when an external stress is applied.
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Figure 6: Stress-strain relation for pure elastic Gent model and pure elastic neo-Hooke model in the
plane strain and plane stress approximation. The thin dotted lines show the strains for the plane stress
approximation used in Fig. 7.

Purely elastic sheets. In Fig. 6, as reference curves we show the stress-strain relation for a purely
elastic Gent (black lines) and neo-Hooke model (grey lines) in the plane strain (dashed lines) as well in
the plane stress (solid lines) approximation. The plane stress approximation is suitable for systems of
thin incompressible elastic sheets that expand and shrink in the sheet direction and change thickness
without considerable bending or wrinkling. The plane strain approximation is suitable for rather thick
elastic sheets, where the deformation is primarily within one plane and negligible in the orthogonal
direction.

The strain-stiffening capability of the Gent model for both plane strain and plane stress can be directly
observed in the stress-strain relation in Fig. 6, where the stress for the Gent model grows super-linearly
(stiffening) and for the Neo-Hooke model it grows sub-linearly (softening). For small engineering strains
0 < εeng < 0.2, Gent and neo-Hookean materials follow the same (linear elastic) behavior with
different effective elastic bulk modulus for plane strain (stiffer) and plane stress (softer), respectively.
The same behavior can also be observed in Fig. 7, where we show the trace tr(C− I) indicating that
value of that term in the free energy density of the Gent and neo-Hookean material. For εeng = 0.2
both materials show qualitatively the same behavior with large deformation gradients in the corner
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Figure 7: Stretching of (left column) pure elastic Gent material with Jm = 2 and of (right column)
neo-Hookean material for increasing engineering strain (top to bottom) of εeng = 0.2, 0.7, 0.95. The
colored shading in each row shows tr(F TF − I) and for the Gent model never exceeds Jm. In each
row the (left) and (right) panel share a color bar, where white regions indicate that values exceed its
range.

of the elastic sheet. For larger strain εeng = 0.7 the strains starts to differ both in the corner and
in the center of the sheet, where the neo-Hookean material has systematically larger deformations
encoded in tr(C− I). Near the stress singularity εeng = 0.95, the Gent material stiffens with tr(C−
I) close to Jm, whereas the softer neo-Hookean material develops even more singular deformation
gradients in the corner of the elastic sheet. In general, one may stretch the neo-Hookean sheets much
further than sheets of Gent-type, since for the latter ln

(
1− J−1

m tr(F TF − I)
)

becomes singular for
a certain maximal sustainable engineering strain at which the corresponding stress becomes infinite.
That maximal engineering strain depends on several parameters, e.g. on the geometry, on the elastic
parameters µ and Jm, but also on the hydrogel energy and the type of 2D approximation.
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While strain softening also occurs in some biological tissue [8], most biological gels show strain stiff-
ening properties. A microscopic picture is discussed in [24]. Furthermore, hydrogels also show drying
induced stiffening and softening that would need to be considered additionally [45]. In this study we
discuss the contribution that the hydrogel character has on stress-strain relations. While we also point
out the differences between plane stress and plane strain approximation, we will focus on thin sheets
best described using the plane stress.
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Figure 8: (Top) Stress-strain relations for Gent-type hydrogels with plane stress and plane strain for
different hydrogel parameters k compared to pure elastic behavior (vanishing mobility m = n = 0).
Note that all full lines overlap. (Bottom) Stress-strain curves for thin sheets (plane stress): purely
elastic Gent model vs. Gent hydrogel model with the Allen-Cahn equation. Hydrogels are considered
for different parameters k1 = k2 = k compared to pure elastic models.

Hydrogel sheets. For hydrogels with conserved solvent concentration, as described by the Cahn-
Hilliard equation, the stress-strain relationship of thin sheets as described by the plane stress approx-
imation only shows small differences to that of a purely elastic material visible from the result that
all full lines in Fig. 8 (top) for hydrogels for different values of k and the pure elastic material over-
lap. This behavior is shown for Gent-type materials and is similar for neo-Hookean hydrogels (not
shown). However, in the plane strain approximation this changes. In this case the stress-strain curves
are dependent on the values of the parameter k in the Flory-Huggins energy, i.e for large values of k
the stress-strain converge to the relation of the purely elastic model whereas for lower k values the
engineering stress reduces, see the dashed lines in Fig. 8 (top). Regarding the independence of the
stress-strain relation for the plane stress case we note that the mechanical energy is expanded around
the reference state with F = I and ĉ = c̄ so that variations are smaller compared to a purely elastic
model for a hydrogel expanded around the dry state ĉ = 0 as the reference. Again, this behavior is
qualitatively similar for a neo-Hookean material (not shown).

However, if we allow for a solvent flux into or out of the hydrogel to describe exchange with a sur-
rounding solvent bath, then also in the plane stress limit the stress-strain relation and the materials
stiffness differs visibly from that of a pure elastic material, cf. Fig. 8 (bottom). For large constants k, the
material behavior is closer to that of the pure elastic material and for smaller k the material gets softer.
This effect should not be confused with drying induced softening or stiffening but is purely related
to the change in hydrogel volume that allows a further reduction of the total free energy of the sys-
tem as opposed to the incompressible (conserved) elastic system, where such a change of volume is
impossible. These observations demonstrate the importance of distinguishing between stiffening and
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softening effects in hydrogels that are caused by strain, solvent drying or even just solvent redistribu-
tion by diffusion. The main difference between the stress-strain relation of the neo-Hookean hydrogel
and the Gent hydrogel visible in Fig. 8 (bottom) is that while for neo-Hookean hydrogel the deviation
from pure elastic behavior is evident for all strains, for Gent-type hydrogels it is only clearly visible for
large strains.

In Fig. 9 first row, tr(F TF−I) at an engineering strain of εeng = 0.94 for both models, the neo-Hooke
and Gent hydrogel with with conserved solvent concentration and non-conserved solvent concentra-
tion for different k is presented. Furthermore, the corresponding solvent concentrations are highlighted
int Fig. 9 second row.

Interestingly, Fig. 9 reveals significant qualitative differences between neo-Hookean hydrogels and
Gent-type hydrogels upon stretching. Firstly, while for large k both hydrogels behave like their elastic
counterparts, for sufficiently small k the neo-Hookean hydrogel absorbs solvent upon stretching and
therefore, increases its volume, the Gent-type hydrogel releases solvent upon stretching and therefore,
reduces its volume. This effect can be most prominently seen in the lower row of Fig. 9 in c) showing
absorption and in f) showing release of solvent. In particular for the neo-Hookean material this results
in the strikingly different cross-section shape, where the deformed side boundaries are almost straight
due to solvent absorption. With conserved solvent concentration, the lower panels a) and d) show that
solvent diffusion due to stretching leads to lower solvent concentration in the middle area of the sheet
and higher solvent concentration near the top and bottom boundaries. Additionally, in the upper panel
d) we observe that strain-stiffening effect already observed in Fig. 7 for the purely elastic material. In
particular in the upper panels e) and f) one can see that with lower k the hydrogel mechanical energy
is reduced and therefore, the material becomes softer.

The consistent coupling of such effects in biological hydrogels is a necessity for a fundamental under-
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Figure 9: Comparison of stretched hydrogels in the plane stress approximation at an engineering
strain εeng = 0.94. In the first row tr(F TF − I) is illustrated, while in the second row the solvent
concentration c. From left to right different hydrogels and configurations are presented: (a) neo-Hooke
hydrogel with Cahn-Hilliard evolution and k = 0.5, neo-Hooke hydrogel with Allen-Cahn evolution and
(b) k = 50 or (c) k = 0.5, (d) Gent hydrogel with Cahn-Hilliard evolution and k = 0.5, Gent hydrogel
with Allen-Cahn evolution and (e) k = 50 or (f) k = 0.5.
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standing of such a complex system in order to make meaningful predictions that are able to distinguish
from more complex biological processes, where cell movement depends on biochemical signaling pro-
cesses in addition to mechanical stimuli, which can be modeled with such a system.

4 Collective migration of cells on hydrogel sheets

The main focus of this section is the discussion of interactions between cells and hydrogels, i.e.
with Gent-type or neo-Hookean elastic models under the plane strain or plane stress condition for
conserved (Cahn-Hilliard) or non-conserved (Allen-Cahn) solvent concentration. We concentrate on
choices that have a clear impact on the resulting cell migration and pattern formation. In addition, we
will investigate the interaction of cells with purely elastic materials under the plane strain and plane
stress condition to complete our study. Since for the unstretched situation, Gent type and neo-Hooke
materials give comparable results, since we are essentially in linear regime, we will discuss our results
only for the purely elastic neo-Hooke model.

Notice that we will use for all simulations the same (random) initial distribution of 500 cells for bet-
ter comparison of the pattern formation. Also, note that due to the different boundary conditions on
top/bottom and the side boundaries, cells can have a preferred orientation even without any stretching
of the sheet. This orientation may change once we apply a (engineering) strain εeng by stretching the
sheet. We will consider this in Sec. 4.1. We then investigate the effects on cell migration and pattern
formation for vanishing strain εeng = 0 in Sec. 4.2. In Sec. 4.3 we provide a qualitative analysis of the
phenomena observed by detailed local case studies of the deformation function used by the ABM.
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Figure 10: Number of cells with horizontal, vertical or diagonal orientation and effective number of
computed dipoles in a stretched hydrogel with εeng = εmaxmin(t, 1) with εmax = 0.9 computed (left)
for the neo-Hookean hydrogel and (right) for the Gent-type hydrogel. In the (lower panel) the history
0 ≤ t ≤ 3 and the the (upper panel) the initial stage for 0 ≤ t ≤ 0.1 is shown. The dotted lines
indicate the time of the snapshots shown in Fig. 11 and Fig. 12, i.e. εeng = {0, 0.06, 0.51, 0.9, 0.9}
from left to right.
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The evolution of cell patterns and the cell’s orientations is accompanied by the corresponding evolution
of the number of horizontal, vertical and diagonal cells, where we define the effective dipole count via

Ndipole =

∫
Ω̄

∥f̂(t, x̂)∥ dx̂, (31)

which reduces if the dipole force field of adjacent cells overlap fully (same orientation) or partially
(different orientation) and therefore serves as an effective count of cell chains.

In the upper left and right panel of Fig. 10 we observe that for early times 0 < t < 0.1 the neo-
Hookean and Gent-type hydrogel evolve the same, since they have the same linear material behavior.
Remarkably, between t = 0.05 and t = 0.1 we can observe the change from mainly vertical to mainly
horizontal orientation of cells. Usually, the response of cell orientation due to a change of local elastic
behavior is relatively fast compared to migration and chain formation of cells. Diagonal orientation of
cells is negligible for both neo-Hookean and Gent-type materials for most of the time. This effect is
caused by the non-isotropic nature of dipole positions that for the moment need to be aligned with
the computational mesh and should be overcome by future ABM that allow generic cell orientations.
Currently, only strongly favorable diagonal strains will lead to diagonal cell orientations. In the lower
panels of Fig. 10 the neo-Hookean horizontal orientation for 1 < t < 3 stays basically constant,
while for the Gent-type hydrogel the number of horizontal cells reduces at the expense of vertical
and diagonal cells that accumulate at the top and bottom boundary. Considering the effective dipole
number, cell chains continue to grow in length for the neo-Hookean material, while for the Gent-type
material, the rapid change in cell configuration during the interval of 0.5 < t < 1 leads to a reduction
in chain length.

4.1 Cells on stretched sheets

In accordance with Sec. 3, we begin the analysis of the interaction of cells and hydrogels by analyzing
the patterning, orientation and migration of cells for stretched hydrogels. For this, we first consider the
evolution of hydrogels with non-conserved solvent concentration in the plane-stress limit for neo-Hooke
and Gent-type materials. We consistently use ncells = 500 cells with a traction force ftrac = 10−3

for a single cell, which is a typical value given in the literature, e.g. in [5]. For cell traction forces on
this scale, effects of nonlinear elasticity will be negligible. Here, we investigate the cells’ response by
applying a finite strain via stretching the hydrogel sheets in our numerical stretching experiments.

Fig. 11 shows the typical evolution of strain and solvent concentration and the corresponding cell
patterns during the initial stretching 0 ≤ t ≤ 1 of a neo-Hookean hydrogel (a-d) and for later times
(e) t = 3. It can be seen that the initially random cell configuration from panel (a) at t = 0 leads to a
vertical orientation of the cells after a short time, as can be seen in (b). Beyond a strain of εeng = 0.1,
the cells orient themselves horizontally (c) and after some time form longer chains (d). As the chain
formation progresses further, on a longer time scale cells accumulate at the lower and upper boundary
of the thin hydrogel sheet, (e) at t = 3. However, since the neo-Hookean hydrogel does not contract
as much due to solvent absorption as previously observed in Fig. 9(c), a significant proportion of the
cells remain in the inner area of the sheet.

From the point of view of the loading and hydrogel parameters, the stretching experiment with the
Gent-type model in Fig. 12 (a-c) is performed analogously. Only, as already shown in Fig. 9, the
solvent leaves the Gent-type hydrogel and thus reduces the total volume. While the same flipping
from vertical to horizontal cell orientation can be observed as for the neo-Hookean material, especially
at the beginning of the tensile experiment, the much stronger constriction of the hydrogel leads to a
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stronger migration of the cells and thus to a rapid accumulation at the lower and upper edge of the
thin layer visible in (d) and (e). The horizontal orientation of cells for the highly stretched Gent-type
material is experimentally unexpected as for the stiffening material alignment with the direction of the
stretch would be expected, cf. [13]. Our model for the hydrogel sheet predicts horizontal alignment,
which is caused by the definition of the deformation function preferring a horizontal alignment since for
sufficiently large external stretch |Fxx − 1| is smaller than |Fyy − 1| for both neo-Hookean and Gent
type materials. However, biological cells constantly reattach to the ECM and therefore only measure
changes in the deformation relative to an external field, i.e. the stiffness being the second derivative of
the energy density. This property of the cell-ECM interaction might suggest an extension of the ABM
for external strains.

In the later Sec. 4.3 we provide a qualitative explanation for the different orientation and the cell
migration due to the cell-hydrogel interaction and for the chain formation due to the cell-cell interaction.

4.2 Cells on relaxed sheets

Our next goal is to investigate the cell interaction with the unstretched materials, starting with purely
elastic models. As before, we always start with the same initial cell configuration to allow for a better
comparison of the cell dynamics. Furthermore, for unstretched elastic sheets and small traction force
by the cells, Gent and neo-Hookean materials behave quite similar, as they are still in their linearly
elastic regime. We thus focus our analysis here only on the neo-Hookean model.

(a) (b) (c) (d) (e)

Figure 11: Neo-Hookean hydrogel with k = 0.5 and non-conserved solvent concentration for increas-
ing strain 0 ≤ εeng ≤ 0.95 from left to right showing (a) initial configuration, (b) εeng = 0.06, (c)
εeng = 0.51 and (d,e) εeng = 0.9. The (upper panel) shows strains tr(F TF − I) (Note: color bar
changes) and the (lower panel) shows concentrations ĉ.
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(a) (b) (c) (d) (e)

Figure 12: Gent-type hydrogel with k = 0.5 with non-conserved solvent concentration and increasing
strain 0 ≤ εeng ≤ 0.95 from left to right for (a) initial configuration, (b) εeng = 0.06, (c) εeng = 0.51
and (d,e) εeng = 0.9. The (upper panel) shows strains tr(F TF − I) and the (lower panel) shows
concentrations ĉ.

We begin with a comparison of the number of vertical, horizontal and diagonal dipoles. Fig. 13 shows
that the number of diagonal dipoles decreases rapidly and the cells are mainly horizontally and verti-
cally orientated.

In the plane strain case shown in Fig. 13 (right) there is no clear preference for one orientation com-
pared to the plane stress case shown in Fig. 13 (left), where the cells favor a vertical orientation. The
effect in the plane stress situation has been observed before in [5]. Interestingly, in both situations the
number of computed dipoles is comparable. This indicates that the cells form long-range alignments
in both cases.

Considering the long-time cell patterns Fig. 14 illustrates that under the plane strain condition cells
tend to aquire a more horizontal orientation. In the plane strain situation almost the complete fixed
boundaries are covered by cells. Although cells have a clear preference to stay at positions with small
deformation in the plane stress case, fewer number of cells move to the clamped boundaries. Fur-
thermore, in the plane stress case the cells form long-range alignments in the vertical direction, while
in the plane strain case the alignments are shorter and a clear vertical or horizontal orientation is not
present. If one compares the temporal development of the dipole orientations in Fig. 13 in combination
with the cell distribution of the clamped boundary, it can be seen that the cells away from the clamped
boundary are almost uniformly oriented vertically and horizontally under the plane strain condition,
while the cells are quickly oriented vertically under the plane stress condition. This means that in the
plane stress case one has less ’active dipoles’ in the sense that aligned cells applying traction forces
to the same node cancel their forces out and one has a net force of zero at this node. In addition, in
areas where one has a high concentration of cells forming long-range alignments with the same ori-
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Figure 13: Number of cells with different orientation and effective dipole count for the unstretched
pure elastic neo-Hookean material (left) under plane stress condition and (right) under plane strain
condition.

Figure 14: Final cell configuration without stretching after T = 5, i.e. 5000 iterations. Purely elastic
neo-Hookean material (left) under plane stress condition and (right) under plane strain condition. The
colored surface represents strain tr(F TF − I) and the red lines the cells.
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Figure 15: Cell configuration without stretching at T = 5, i.e. after 5000 iterations. Neo-Hooke hy-
drogel with Allen-Cahn evolution and k = 0.5 (left), Gent hydrogel with Allen-Cahn evolution and
k = 0.5 (middle), and Gent with Cahn-Hilliard evolution and k = 0.5 (right) under plane stress
condition. The colored surface represents strain tr(F TF − I) and the red lines the cells.
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Figure 16: Number of cells with horizontal, vertical or diagonal orientation and effective number of
computed dipoles for the neo-Hooke hydrogel with Allen-Cahn evolution and k = 0.5 (left), for the
Gent hydrogel with Allen-Cahn evolution and k = 0.5 (middle), and for the Gent with Cahn-Hilliard
evolution and k = 0.5 (right) under plane stress condition.
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entation the elastic material experience almost no deformation. If the cells on the clamped boundary
are ignored, the difference between vertical and horizontal dipoles would increase in the case of plane
stress, while in the case of plane strain, the number of vertical and horizontal dipoles would become
much closer.

A comparison of the corresponding hydrogels under plane strain and plane stress condition shows
similar results and we focus here on hydrogels under plane stress. In addition we briefly compare
the neo-Hooke hydrogel for the Allen-Cahn (non-conserved) case, the Gent-type hydrogel for Allen-
Cahn case and the Gent-type hydrogel for the Cahn-Hilliard (conserved) case, for k = 0.5. We
obtain comparable behavior for unstretched and stretched hydrogels for the Cahn-Hilliard case and
the corresponding purely elastic materials based on our previous findings. This is also reflected in
Fig. 15 (right) and Fig. 16 (right). Furthermore, Fig. 15 and Fig. 16 show that under plane stress the
hydrogels behave quite similar due to the relative small deformation, which we already highlighted in
Sec. 4.1.

4.3 ABM for cell-cell and cell-hydrogel interactions

The simulations of the ABMs in Sec. 4.1 and Sec. 4.2 show that cells migrate and orient on both
relaxed and on stretched hydrogels. Both migration and orientation are affected by the type of hydrogel
model, the cell-cell and cell-hydrogel interactions, governed by the ABM via the deformation function
def(q̂, a) ≥ 0 from (26). Due to the update proposed in the ABM Table 1, cells a = (x̂, d) favor
positions x̂ and orientations d for which the deformation function is minimal.

We now show that the main features of migrating cell populations on hydrogels as observed in Sec. 4.1
and Sec. 4.2, can be understood by an analysis of the hydrogel-cell system for cell configurations
a ∈ A with as few as ncells = 1 (cell-hydrogel) and ncells = 2 (cell-cell) cells.

0 10

1

4.2 4.9
×10 4

(a) plane strain

0 10

1

5.2 5.7
×10 4

(b) plane stress

Figure 17: Cell-hydrogel interaction from single cell computation showing def1(a) for different neo-
Hookean elastic materials. The red line indicates the optimal orientation and the colors shows the
optimal cell location based on the smallest value of the deformation function.

Cell-hydrogel interaction. For a given time-independent single cell state a = (x̂, d) = a1 ∈ A
with ncells = 1 we compute the traction force f̂(a1) and solve the corresponding (stationary) hydrogel
problem for q̂1(a) = limt→∞(q̂(t)). With this solution we evaluate the 1-cell deformation

def1(a) := def(q̂1(a), a), (32)
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Figure 18: Single cell deformation def1(a) on unstretched or slightly stretched Neo-Hookean elastic
sheets in (a,b,c) plane strain or (d,e,f) plane stress approximation, where (a,d) are unstretched εeng =
0 and (b,e) are slightly stretched εeng = 0.05 and (c,f) are slightly more stretched εeng = 0.1.

in order to evaluate, for example, the most likely orientation. Therefore, for fixed cell position x̂ one
needs to find the orientation d ∈ ∆ for which def1((x̂, d)) is smallest. Similarly, by plotting the function
def1,x̂(x̂) = mind∈∆ def1

(
x̂, d

)
one finds the places where the deformation function has a local or

global minimum and therefore are places that cells would migrate to by cell-hydrogel interaction. In
Fig. 17 the corresponding comparison of the neo-Hookean elastic material in the plane strain and in the
plane stress approximation is shown without additional strain, i.e. εeng = 0. While in the plane stress
approximation vertical orientation is favored at all points, in the plane strain approximation the central
region also supports horizontally oriented cells. Note that ultimately, due to the boundary condition
cells would also favor locations close to the top and bottom boundary due to the smaller deformation,
where the cell states are constrained to horizontal orientation. These observations also support our
findings in Fig. 13, where the plane strain configuration has a higher count of horizontal cells due to
cells at the center and cells at the lower and upper boundary. The trend of cells migrating to the top
and boundaries was observed in Fig. 14.

Note that we can also quantify the transition of orientation and migration due to stretching by computing
the single-cell deformation function on slightly stretched neo-Hookean sheets in Fig. 18. Here one can
clearly observe that for small strains εeng < 0.1 (plane strain) and ε < 0.05 (plane stress) the vertical
orientation is even enhanced but breaks down for large strains. In particular close to the transition, the
local deformation function looks quote different in the the plane stress (H ≪ L) and plane strain case
(H ≫ L). Observing such a strain-induced change of orientation would of course strongly support a
certain strategy for cell motion and orientation encoded in an ABM. In Fig. 19 we extend the single-cell
analysis to strongly stretched neo-Hookean hydrogels (right) compared to pure elastic materials (left).
While both show a clear preference for a horizontal cell orientation, the variations in the single-cell
deformation function are much smaller leading to a somewhat smaller migration rate.

Cell-cell interaction. Similarly, the cell-cell interaction can be studied using two time-independent
cells a2 = (a, a∗) ∈ A with ncells = 2. Here, we fix one cell at the center of the domain with
a fixed orientation, i.e. a∗ = (x̂∗, d∗) with x̂∗ = (L/2, L/2) ∈ Ωcell and d∗ = d↕. Then we set

a = (x̂, d) ∈ A arbitrary, compute the traction force f̂(a2) and solve the corresponding (station-
ary) hydrogel problem for q̂2(a) = limt→∞(q̂(t)). Based on this solution, we define the two 2-cell
deformations

def2(a) := def(q̂2(a), a), (33)

def∗2(a) := def(q̂2(a), a
∗), (34)

relative to the given cell a∗, where up-to discretization artifacts due to the singular nature of the traction
force f̂ , both definitions should give rise to the same interpretation of cell-cell interactions. As before,
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Figure 19: Cell-hydrogel interaction for strongly stretched elastic sheet from single cell computation
showing def1(a) for neo-Hookean material in the plane stress approximation. We show (left) the pure
elastic material and (right) the non-conserved solvent with k = 0.5
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Figure 20: Cell-cell interaction from double cell computation showing def2(a). The red line indicates
the optimal cell orientation of a second cell and the colors shows the optimal cell location based on
the smallest value of the deformation function. The first cell is fixed at x̂ = (0.5, 0.5) with a vertical
orientation (blue line).

from a we can deduce most likely orientations and cell positions.

In Fig. 20 we show the resulting two-cell deformation function based on def∗2 and observe that cell-
cells interactions favor formation of chains with cells a, a∗ of same orientations being at positions
x̂∗ = x̂ ± 2d. However, note that the magnitude of cell-cell interaction is ∼ 10−4, whereas the cell-
hydrogel interaction is usually stronger with ∼ 10−3 and therefore dominates the cell dynamics. On
the other hand, cell-hydrogel interaction is usually a long-range effect whereas cell-cell interaction is
extremely short-ranged and limited to a few diameters of cell-dipole distances. The cell-cell interaction
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map shown in Fig. 20 confirms the previously made observation of cells forming long chains, an
effect that in a transient regime might be disrupted by external strain fields as we observed in the
right panel of Fig. 10. This investigation of the deformation function shows that single and double-cell
investigations provide a basic understanding of the collective pattern formation and the migration and
(re)orientation of cells in external strain fields.

Figure 21: Concentration and deformation in the region [0.47, 0.53]2 ⊂ Ω̂ of a single horizontal cell at
x̂ = (0.5, 0.5) on spatially uniformly and (locally) highly resolved computational meshes. (Upper left)
neo-Hookean uniform vs (upper right) neo-Hookean highly resolved and (lower left) Gent uniform vs
(lower right) Gent highly resolved with large traction force ftrac = 4 · 10−2. The shading shows the
concentration with red, white and blue corresponding to c ≈ 0, c ≈ c̄ = 0.2 and c ≈ 0.4. The colored
vector field shows the displacement field and the thin gray mesh displays the deformed computational
mesh.

Local cell-hydrogel response. Effects of single cells on strain-stiffening hydrogels, have been ob-
served for example in [58] or in [59, 60]. Within our current hydrogel-ABM model framework, where
we use N = 100 for (coarse) tensorial computational meshes, such that the vertices of the triangle
mesh for the finite element approximation Ω̂ coincide with the cell positions Ωcell. However, since a
cell at x̂ exerts a dipole-like force a neighboring mesh vertices x̂ ± d, in particular the near-field of
the hydrogel deformation and concentration might be massively underresolved. To see the impact,
we compare in Fig. 21 deformation and concentration profile near a single cell at x̂ = (0.5, 0.5)
for underresolved (left panels) and highly resolved (right panels) hydrogels for neo-Hookean (upper
panels) and Gent (lower panels) hydrogels. Here, instead a dipole generated by Dirac measures we
approximate δx̂ ≈ (2πε)−1 exp(− 1

2ε
|x− x̂|2) with ε = 10−6 and successively increase the traction
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force to its maximal value1 to find a stationary solution of the nonlinear hydrogel problem. This shows
a good approximation of the elastic problem on a coarse grid, since for the ABM in its current form,
only the deformation in the vicinity of the cell is of importance. However, in particular the effect of
solvent displacement due to cell traction on the coarse grid is greatly underestimated and could have
an impact on the predictive power of the fully coupled model.

In order to capture the cell’s active strain-stiffening impact on the hydrogel network higher resolutions
of the numerical grid will be necessary.

5 Summary and outlook

We used hydrogels as a bottom-up approach for designing three-dimensional models that mimic cer-
tain properties of a native ECM environment, e.g. swelling and solvent diffusion. For this we have
developed a model framework that couples a continuum two-phase model for a viscoelastic hydrogel
with an agent-based model that governs the migration decisions of each cell as it interacts with the
hydrogel and other cells of the population. While the coupled cell-hydrogel model framework devel-
oped in this study can in principle be used for modeling a wide range of applications in the context of
cell invasion into three-dimensional hydrogel scaffolds, we focused on cell migration on scaffolds of a
thin hydrogel sheet. We analyzed the geometrical set-up of a fixed hydrogel sheet for which we inves-
tigated the stress-strain state by applying specific loads at the fixed boundaries of a rectangular sheet,
leaving the other two boundaries free. We compared scenarios that also allow for possible exchange
of the solvent phase through the free boundaries. In addition we compared our results with those us-
ing a neo-Hooke model for the nonlinear elastic network to contrast the effects of strain-stiffening on
pattern formation of the cell population. The numerical approach is based on a thermodynamic con-
sistent mechanical model that uses incremental minimization to ensure the descent of the hydrogel
free energy.

Using the stress-strain relationship, it can be demonstrated that Gent-type materials are strain-stiffening,
while neo-Hookean materials exhibit strain-softening behavior. Moreover, the stress-strain relationship
for hydrogels under plane stress condition with constant solvent concentration, barely differs from that
of a purely elastic material. However, this changes in the approximation for plane strains. In addition, in
case a solvent flow into or out of the hydrogel is allowed to describe the exchange with a surrounding
solvent bath, then the stress-strain relationship and the stiffness of the material also differ significantly
from that of a purely elastic material under plane stress condition.

Furthermore, turning towards cell migration and orientation on thin stretched hydrogel sheets, one
initially recognizes expected behavior, i.e. cells orient themselves vertically, in the direction of stretch
under small applied strain. However, when a critical value of the applied strain is reached, the ori-
entation of the cells rapidly flips in the horizontal direction, which is an experimentally unexpected
phenomenon, cf. [13]. The value of this critical strain depends on the strength of the traction force of
the cells and is observed for both Gent-type and neo-Hookean hydrogels.

Moreover, at higher strains for non-conserved hydrogels under plane stress conditions, we observe a
dramatic change in the morphology of the Gent hydrogel compared to the neo-Hookean one. While
the Gent hydrogel undergoes a strong contraction and the solvent flows out of the hydrogel, the shape
of the neo-Hookean hydrogel is only slightly contracted as a solvent flows into the material. This in turn
has a significant effect on cell migration. In the case of the Gent hydrogel, the cells migrate towards

1At this maximal value the elastic material self-intersects or det F̂ → 0 or det F̂ → ∞, so that the solution of the
mechanical problem becomes meaningless.
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the clamped boundaries and the formation of cell chains is suppressed. In the neo-Hookean model,
on the other hand, the cells form horizontal long-range alignments that are distributed over the entire
length of the stretched thin sheet.

In the current study we have not yet explored the range of traction forces imparted by a single cell
where strain-stiffening effects become relevant. Thus, cells move rather passively and do not yet fully
capture the mechanical reciprocity of the cell-hydrogel system. In order to investigate possible qual-
itative different behavior of the cell population for the Gent-type and neo-Hookean hydrogels in this
regime, it will be necessary to allow for a higher spatial resolution near cells. This will also allow to ro-
bustly generate larger traction forces in the strain-stiffening range and thus cells become active agents.
This will further entail modifications of the ABM that also accounts for hydrogel stiffness for example
via a second derivative of the mechanical energy, for example as introduced in [57, 61, 62]. We note
that our model framework for the cell-hydrogel system can be systematically extend the by adding,
apart from further cell species, also further networks with prescribed properties, such as allowing for
possible degradation, by adding a further phase into the formulation. Similarly, one can add another
(non-conserved) phase to model the network fibers that are secreted by the cells and thus allow for re-
modeling of the hydrogel. In addition, further properties such as phase separation into regions of high
and low fiber concentration induced by cell traction forces can be included. The systematic extensions
of the model framework and their predictions form the basis for validation by in vitro experimental work
in order to gain a fundamental understanding of the intricate mechanical interplay between cells and
the ECM in tissue formation.

In general, the framework presented in this work provides a versatile toolbox to model complex pro-
cesses that affect the cellular movement. Its true strength lies in extensibility, allowing for the integration
of intricate biological processes such as biochemical signaling or cellular responses.

Table 2: Model-specific mathematical notation and explanation of symbols

agent-based model hydrogel model

symbol name def. symbol name def.

x̂ cell position Sec. 2.3 φ volume fraction Sec. 2.1
d cell orientation Sec. 2.3 c concentration Sec. 2.1
ncells number of cells Sec. 2.3 χ deformation Sec. 2.1
A single-cell state Sec. 2.3 F deformation gradient Sec. 2.1
A multi-cell state Sec. 2.3 J Jacobian determinant Sec. 2.1
Ωcell cell position set Eq. (24a) P first Piola-Kirchhoff stress Eq. (8a)
∆ cell orientation set Eq. (24b) q state vector Eq. (1)
def deformation function Eq. (26) χΓ Dirichlet boundary cond. Eq. (27)

f̂ traction force Eq. (25) x coordinates (x̂, z) ∈ R3 Sec. 2.1
δx Dirac δ-distribution x̂ coordinates (x, y) ∈ R2 Sec. 2.2
ftrac traction strength Eq. (25) F free energy functional Eq. (1)
ai ∼ aj neighboring cells Table 1 L Lagrangian functional Eq. (3)
N cell grid size Eq. (24a) W energy density Sec. 2.1
Ndipole dipole count Eq. (31) Id d× d identity matrix

C left Cauchy-Green tensor Sec. 2.1
I(c) incompressibility constraint Eq. (2)
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