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Optical mode calculation in large-area photonic crystal
surface-emitting lasers

Mindaugas Radziunas, Eduard Kuhn, Hans Wenzel, Ben King, Paul Crump

Abstract

We discuss algorithms and numerical challenges in constructing and resolving spectral prob-
lems for photonic crystal surface-emitting lasers (PCSELs) with photonic crystal layers and large
(up to several tens of mm2) emission areas. We show that finite difference schemes created
using coarse numerical meshes provide sufficient accuracy for several major (lowest-threshold)
modes of particular device designs. Our technique is applied to the example of large-area all-
semiconductor PCSELs, showing how it can be used to optimize device performance.

1 Introduction

Semiconductor diode lasers are small, efficient, and relatively cheap devices compared to other lasers.
Many applications require emission powers exceeding tens of watts from a single diode and up to a
few kilowatts from a combined laser system [1]. Such emission can be achieved using high-power
broad-area edge-emitting lasers (EELs) [2], which, unfortunately, have limitations. Although they re-
main the most efficient of all light sources, when operating at high power, the EEL emission is typically
determined by multiple lateral modes and has a poor quality, i.e., it irregularly fluctuates in time (has a
broad optical spectrum) and has large divergence, hardly improvable by external optical elements. In
addition, the output facets of edge emitters require sophisticated facet passivation to suppress failures
due to catastrophic optical mirror damage (COMD) and hence ensure long lifetimes, but at added cost
and complexity [3].

In this work, we consider photonic crystal (PC) surface-emitting lasers (SELs), see Fig. 1, which, in
contrast to EELs, can emit high-power (up to 80 W pulsed [4] and 50 W CW [5]) beams of nearly perfect
quality in the (z) direction, perpendicular to the lateral (x/y) plain of the active material. Comparable
to vertical cavity surface emitting lasers (VCSELs), the output surface of a PCSEL is a wide-bandgap
crystalline GaAs-layer, so that COMD is not an issue and facet passivation is unnecessary.

Like VCSELs, PCSELs are sandwiched from multiple thin material layers along the vertical (z) di-
rection, see Fig. 1(a), most of which are uniform in lateral directions. However, other than VCSEL, a
properly designed PCSEL explores the two-dimensional band-edge resonant effect of the PC to select
a single stable longitudinal and transverse mode that induces coherent large-area lasing. The critical
part of the PCSEL, enabling an efficient coupling of counter- and cross-propagating optical fields
generated within the active layer and their redirection along the z axis, is a-periodic in both lateral
directions PC layer. For achieving field emission in the vertical direction, the lattice constant a must
be closely related to the ratio of the central wavelength λ0 and the effective index neff of the whole
PCSEL, a ≈ λ0/neff. Moreover, for high outcoupling from a chosen surface (here, via the n-doped
substrate), PCSELs require a backside reflector (e.g., Bragg grating, see Fig. 1(a)) to recycle part of
light outcoupled into the opposite direction to the emission surface.
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Each a× a unit cell of the PC has one or several features (e.g., triangles in Fig. 1(c)); materials inside
and outside these features have different refractive indices. In simple cases, the PC layer is vertically
homogeneous. In more complex cases, this layer can have several sublayers (e.g., three sublayers in
Fig. 1(b)), and the 3-dimensional PC features should not necessarily have perpendicular side walls.
Multiple sublayer cases can be designed intentionally or arise due to, e.g., imperfect material etch-
ing/regrowth procedure; see a schematic of such PC unitary cell in Fig. 1(d). Note that only the 2nd,
4th, and 6th sublayers in this diagram contain PC features that have the same shape, size, and posi-
tion but are filled with different materials. PC layers containing vertically inhomogeneous features can
also be treated as a composition of several vertically homogeneous layers; see, e.g., schematic cross-
section of a tapered feature [6] in Fig. 1(e) or a top-view of such a feature at three different sublayers
in Fig. 1(c).
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Figure 1: Schematic depiction of exemplary PCSEL (a) with the PC layer consisting of three vertically
homogeneous sublayers (b) and different features within the PC unit cell in these sublayers (c). (d)
and (e): schematic of the PC sublayers in vertical crosssections of the unit cell.

The periodic features of the PC layer in the highest power PCSELs reported up to date are filled
with air, which guarantees a large refractive index contrast and, thus, a large coupling of optical
fields within the PC. This high index contrast yields well-centered main modes already in moderate
(∼ 0.1 mm2) emission area PCSELs [7] so are very well suited to the realization of compact devices
with output up to the watt-class, for example for application in short-reach pulsed LIDAR. For power
scaling, much larger area PCSELs are needed, to enable sufficient heat extraction. Scaling to optical
output powers into levels as high as kilowatts is estimated to require the use of very large apertures
with many millimeters in cross section [8], to enable sufficient cooling. Proper numerical tools to handle
PC structures of such large sizes require more efficient numerical algorithms, and these are the sub-
ject of the presented work. Specifically, this paper aims to present algorithms and numerical methods
for the construction and numerical resolution of the spectral problem and discuss calculation-induced
numerical errors. We illustrate the capability of the numerical tool using a low-index contrast PCSEL
design, that is fabricated using an established right-angle triangle PC arrangement, taken from Ref. [8].

In Section 2, we present and briefly explain the derivation of the field equations of the dynamic three-
dimensional coupled wave model and introduce the related spectral problem used for calculations of
optical modes that can be excited close to the lasing threshold. Section 3 discusses the algorithms
used to derive nontrivial complex field coupling matrix and the numerical challenges arising during
the derivation. Section 4 introduces finite-difference schemes for solving the spectral problem and
discusses their performance in dependence on the numerical mesh step. Section 5 gives a couple of
examples showing the dependence of the leading optical mode relations on the size of the PCSEL.
Conclusions and outlook are presented in Section 6.
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2 Model

2.1 Field equations

We exploit a three-dimensional coupled-wave model [9, 10], derived from Maxwell’s equations using
lateral Fourier expansions of the dielectric constant ñ2(r, t) = n2

S(r)+δ2
n(z,N, T ) and TE-polarized

electrical field E(r, t) = (Ex, Ey, 0)T to model large emission area (� 0.1 mm2) PCSELs. The
real-valued n2

S(r) represents (real) material indices in the cold-cavity PCSEL. It accounts for tiny
periodic structures of the PC layers, see, e.g., Fig. 2(a), and is laterally uniform in the remaining
PCSEL layers. δ2

n also accounts for small-scale laterally averaged field losses in all material layers
(defined by non-vanishing imaginary parts of corresponding dielectric constants), losses within the
active material, and gain and refractive index change induced by the carrier densityN and temperature
T . The field equations are formulated for along lateral directions counterpropagating complex, slowly
varying field amplitudes u±(x, y, t) and v±(x, y, t), which, after multiplication by the vertical mode
function Θ(z), are proportional to the electrical field Fourier components Ey,±1,0 and Ex,0,±1 at the
rapidly oscillating harmonics exp(i(ω0t ∓ β0x)) and exp(i(ω0t ∓ β0y)), respectively. By scaling of
u± and v±,

∑
ν=±(|uν |2+|vν |2) is a local two-dimensional photon density. The amplitudes u = (u

+

u−)

and v = (v
+

v−) evolve according to the 1(time)+2(space) dimensional partial differential equations

i

vg

∂

∂t

(
u
v

)
= H(∆β)

(
u
v

)
+Fsp, (x, y) ∈ [0, L]×[0, L], (1a)

u+(0, y) = u−(L, y) = v+(x, 0) = v−(x, L) = 0, (1b)

H(∆β) = ∆β − i
(
σ ∂
∂x

0
0 σ ∂

∂y

)
−C, σ =

(
1 0
0 −1

)
, (1c)

∆β =
β2 − β2

0

2β0

+
k2

0

2β0

∫
δ2
n(z,N, T )|Θ(z)|2dz. (1d)

L, Fsp, and vg in (1a) denote the lateral dimension of the PCSEL, the Langevin noise source vector,
and the group velocity. Boundary conditions (1b) suggest no reflections (i.e., full absorption) of the
fields escaping through the lateral bounds of the domain, but can be easily modified, allowing non-
vanishing reflections at the borders. Eq. (1c) shows the structure of the operatorH, which depends on
the complex 4×4 field coupling matrix C and relative complex propagation factor ∆β(x, y, t) defined
in (1d). Here, k0 = 2π/λ0 and β0 = 2π/a are the central and the Bragg wavevectors, respectively.
β = k0neff ≈ β0 is the propagation factor defined by the effective refractive index neff, which, together
with Θ (black-dashed and violet lines in Fig. 2(c)), can be found by solving one-dimensional Helmholtz
problem [ d2

dz2
+ k2

0(n2
0(z)− n2

eff)
]
Θ(z) = 0,

∫
|Θ|2dz = 1, (2a)[ d

dz
− σb

]
Θ(z = 0) =

[ d
dz

+ σt

]
Θ(z = Lz) = 0, (2b)

σj = k0

√
n2

eff − n2
j , <σj ≥ 0, j ∈ {b, t}, (2c)

where z = 0 and z = Lz are the bottom and top sides of the PCSEL, whereas nb and nt are
(in general, complex) refractive indices of media behind these borders. Real-valued function n2

0(z)
in Eq. (2) (red dots in Fig. 2(c)) is a PC cell-wise lateral average of n2

S(r): n2
0(z) = 〈n2

S〉a =
1
a2

∫∫ a/2
−a/2 n

2
S(r)dxdy. A detailed knowledge of n2

S(r), n2
0(z), and Θ(z), all shown in Fig. 2(a) and

(c), is also needed to construct the coupling matrix C, which will be discussed in Section 3.
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Figure 2: Structure of the considered PCSEL example. (a): Refractive index nS(r) within the PC cell.
(b): Several factors |ξr,s| for |r|+|s| > 0. (c): Function n0(z) (red), corresponding neff (black dashed),
and vertical mode intensity |Θ|2 (violet).

2.2 Spectral problem

In general, the field equations (1) should be supplemented with the model for δ2
n(z,N, T ), see, e.g.,

Ref. [11], and models accounting for dynamics of carrier density N [10, 11] and temperature dis-
tribution T [12]. This paper considers PCSELs where ∆β remains stationary in time. For example,
once operating close to the lasing threshold, ∆β remains time-independent and (nearly) uniform
in space, such that it can be well represented by a single complex constant ∆β. By substituting
(uv) = Φ(x, y)eiω̃t into Eqs. (1), we get the spectral problem [9][

C+i

(
σ ∂
∂x

0
0 σ ∂

∂y

)]
Φ = ΩΦ, (x, y) ∈ [0, L]×[0, L], (3a)

Φ+
u (0, y) = Φ−u (L, y) = Φ+

v (x, 0) = Φ−v (x, L) = 0, (3b)

Ω = ∆β +
ω̃

vg
, ‖Φ‖2 =

∫∫ L

0

|Φ(x, y)|2dxdy = 1. (3c)

Here, |Φ(x, y)|2 = Φ∗ ·Φ is a real-valued mode intensity distribution function, whereas ‖ξ‖2 and later
used (ξ, ζ) denote the squared norm and the standard scalar product of four-component vector func-
tions. Eqs. (3) define (∆β-dependent) optical modes (ω̃,Φ(x, y)) [13], with ω̃ and Φ(x, y) =

(
Φu
Φv

)
denoting complex frequency and scaled four-component distribution of the mode, respectively. Posi-
tive and negative =ω̃ indicate exponential damping or amplification of the modes, whereas the mode
with constant in time amplitude should have =ω̃ = 0. When the PCSEL is not lasing, all modes are
damped, =ω̃ > 0. The complex frequency ω̃ enters the spectral problem together with the propaga-
tion factor ∆β, whose imaginary part, =∆β = g−α0

2
, is determined by the gain g and internal field

losses α0. Like ∆β, the factor Ω in Eq. (3c) is, in general, a complex spatially distributed function and,
thus, can not be directly treated as the eigenvalue (or scaled eigenfrequency) of the problem (3a),
(3b). In the close-to-threshold case, when ∆β = ∆β, however, Ω is a complex constant depending
only on the field coupling matrix C (defined by the heterostructure of the cold cavity PCSEL) and
the lateral size factor L. Real and imaginary parts of Ω, <Ω and =Ω, represent frequency detuning
from the Bragg condition and the gain required for the corresponding mode to reach its threshold [9]
(i.e., =ω̃ = 0).1 Thus, complex eigenfrequencies Ω with low =Ω are crucial in selecting PCSEL het-

1Mode threshold =Ω = =∆β also includes a field loss term. If this loss is constant, it gives only a correcting up-shift
of the mode threshold gain value.
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erostructures. Finding several major (low-threshold) modes allows for predicting the lasing threshold
and estimating the side mode suppression (damping) in the close-to-threshold operating state. While
=∆β of just switched-on laser remains fixed by =Ω1, the threshold gap =(Ωj − Ω1) =

=ω̃j
vg

, j > 1,
defines damping of higher order modes. Additional information on the quality of each mode at its
threshold can be obtained from the integral relation [9] derived using the scalar product of Eqs. (3a)
with Θ∗:

g = α0 + αe + gr, gr = 2=(Φ,CradΦ),

αe =
∫ L

0
|Φ+

u (L, y)|2 + |Φ−u (0, y)|2dy
+
∫ L

0
|Φ+

v (x, L)|2 + |Φ−v (x, 0)|2dx.
(4)

Here, gr is part of the gain used for the field outcoupling into the vertical direction, Crad is by the
radiative field componentsEx/y,0,0 induced contribution to matrix C, and the loss factor αe represents
the fields escaping through the lateral borders.

3 Coupling matrix C

3.1 Construction of the coupling matrix

To complete the construction of the model equations (1) and (3), one still has to define the coupling
matrix C, which is a a combination of the following set of parameters [9, 10]:

ξ(j)
r,s = ξr,s(z)|z∈Sj = 〈n2

S(x, y, z)|z∈Sjeiβ0(rx+sy)〉a, (5a)

P(j) =

∫
Sj

|Θ(z)|2dz, (5b)

G(k,j)
(r,s) =

∫
Sk

Θ∗(z)

∫
Sj

G(r,s)(z, z
′)Θ(z′)dz′dz. (5c)

Here, r and s belong to the infinite set of integer numbers, whereas the indices k and j represent
the finite set of material layers Sk and Sj . ξr,s(z) in Eq. (5a) are Fourier coefficients of the function
n2
S(r) =

∑
r,s ξr,s(z)e−iβ0(rx+sy), see, e.g., red dots in Figs. 2(c) and Fig. 2(b), representing n0(z) =√

ξ0,0(z) in all layers and |ξr,s(z)| of several most essential coefficients within the single PC layer,
respectively. For the real-valued n2

S , we have ξ−r,−s = ξ∗r,s. Like n2
S(r), ξr,s are layer-wise constant

functions of z and, thus, can be represented by a finite set of complex constants ξ(j)
r,s . P(j) in Eq. (5b)

represents part of the vertical mode intensity within the material layer Sj . Factors G(k,j)
p with p =

(r, s), |p| =
√
r2 + s2 6= 1 in Eq. (5c) are obtained by integrating the expressions involving Green’s

function Gp(z, z
′), which solves the inhomogeneous problem[

∂2

∂z2
+ k2

0n
2
0(z)− β2

0 |p|2
]
Gp(z, z

′) = −δ(z − z′),[
∂
∂z
− σp,b

]
Gp(0, z

′) =
[
∂
∂z

+ σp,t
]
Gp(Lz, z

′) = 0,

σp,j = k0

√
β2

0 |p|2 − k2
0n

2
j , <σp,j ≥ 0, j ∈ {b, t}.

(6)

For real-valued nj and |p| = 0,<σ0,j in Eq. (6) vanishes, meaning that the tails ofGp(z, z
′) are fixed-

amplitude oscillations when z → ±∞. We use σ0,j = i|σ0,j|, which reminds us of Sommerfeld’s
radiation conditions, even though those are formulated only for two- and three-dimensional cases.

The Fourier coefficients ξ(j)
r,s with |r| + |s| 6= 0 are non-vanishing only when Sj is a PC sublayer.

Since these coefficients are only used as multipliers of the factors P(j) and G(k,j)
p or G(j,k)

p , we should
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Figure 3: Calculations of C using different truncation parameters D. (a): Relative error of C(D)
2D ele-

ments as function of D, decaying as 1/D with growing D. (b): spectrum of C in dependence on D.
Crosses show eigenfrequencies of C obtained using D = 20.

calculate P(j) and G(k,j)
p only for those indices k, j which correspond to the PC sublayers. For the

formulas defining C as function of ξr,s, P , and Gp, see Refs. [9, 10]. The algorithms for optimizing
the matrix C and its eigenfrequencies by selecting the PC configuration and, thus, tailoring the set of
coefficients ξr,s were discussed in Ref. [8]. This work briefly introduces the algorithms used to calcu-

late P(j) and G(k,j)
p and the challenges arising during these calculations [14]. For a mathematically

rigorous description of these algorithms, see Ref. [15].

Typically, C is written as a sum of a non-hermitian matrix Crad(G(0,0), ξ±1,0, ξ0,±1) (out-of-plane cou-
pling via radiative waves), and two Hermitian matrices C1D(P , ξ±2,0, ξ0,±2) (coupling of counterprop-
agating waves) and C2D (2D coupling via higher order, |m|+ |n| > 1, modes). The Hermitian nature

of the last two matrices, which is because n2
s(r), P(j), and G(k,j)

p for |p| > 1 are real-valued, is
explored when calculating the fields at the upper or lower edges of the PCSEL, for example. Small
imaginary dielectric constant contributions in cold cavity PCSEL ignored when constructing C should
be included into δn and, thus, ∆β.

The last matrix C2D is an infinite sum,

C2D =
∑

|r|+|s|>1

C
(r,s)
2D (P ,G(r,s), ξr±1,s, ξr,s±1). (7)

In our calculations, we truncate this sum, i.e., replace C2D with C
(D)
2D , which accounts only for param-

eter sets (r, s) with {|r|, |s|} ≤ D [16]. Fig. 3, which explores the PCSEL configuration defined by
the multiple material layers with indices n0(z), see Fig. 2(c), and the PC cells containing isosceles
right triangle features with leg lengths of 0.8a, Fig. 2(a), shows a typical relatively slow convergence
of calculations with growing D. Panel (a) of this figure shows a (1/D)-type decay of the relative er-

rors
|C(D)

2D,ij−C2D,ij |
|C2D,ij |

of four well-distinguishable matrix elements with increasing D. An unknown exact

matrix C2D was substituded by C(1000)
2D in the relative error estimates. At D ∼ 150, these errors are

below 1%, and adding further terms induces only minor changes of C. Another representation of this
convergence is given in Fig. 3(b), where changes of four eigenfrequencies ΩC of the matrix C (each
corresponding to one of the band-edge modes of the infinitely broad PCSEL) with an up-sweep of D
(yellow: small D, dark: large D) are shown. Since we explore analytic formulas [15] for constructing
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C, matrix calculations using D = 500 in the presented case could be done in only 20 seconds on a
standard notebook. Note that this time includes not only an estimation of C2D but also reading and
reorganization of the input parameters, 2D-Fourier transform of n2

S(r) within the PC layer, solution
of the Helmholtz problem (2), and calculation of the factors P , matrices C1D, and Crad. However,
the time needed for estimation of C2D grows nearly quadratically with the increasing number of PC
sublayers, such that using relatively small D can be an attractive option when fast estimation of C is
essential. Matrices constructed using D = 20 and D = 500 are explored in example simulations
in the remainder of the paper. Even though ΩC calculated with D = 20 is still apart from the final
position, see the inset of Fig. 3(b), this D can be sufficient for practical calculations. Estimation of C
using D = 20 and fully numerical procedures for G(k,j)

p and P(j) in PCSELs with multilayer PCs are
less precise and can take hours and even days.

3.2 Numerical algorithms

To solve the Helmholtz problem (2), we replace it with a characteristic equation constructed using
transfer matrices [17]. Within each material layer Sj , functions Θ(z) satisfying Eq. (2a) and their
derivatives d

dz
Θ(z) can be written as linear combinations of eσj(z−zj) and eσj(zj−1−z), where zj−1 =

zj − |Sj|, zj , and |Sj| are two edges and thickness of the layer Sj , while σj = k0

√
n2

eff − n2
0|z∈Sj

with <σj ≥ 0. Thus, provided neff and Θ(z) at the edges of Sj are known, the field intensity factor
P(j) can be written using analytic formulas. When neff is not known, e±σj |Sj | can be interpreted as
functions of the variable n•. We use them to construct 2 × 2-transfer matrices Mj(n•), translating
vector V (z) = (Θ, d

dz
Θ)T across material layers Sj . The consequent product of these matrices

built for all layers gives us an overall transfer matrix M(n•), translating V (z) from z = 0 up to
z = Lz, where both components of V are related by Robin-type boundary conditions (2b), and σb,t
are functions of n•. The complex characteristic equation reads as χ(n•) = (σt, 1)M

(
1
σb

)
= 0.2 For

real n0, the roots n• are also real and are located between maximal and minimal n0(z). We find these
roots using Newton iterations, exploring analytic formulas for χ(ξ) and d

dξ
χ(ξ). For each root n•, we

reconstruct related Θ(z) using transfer matrices. The mode with the largest intensity within the QW
and PC layers is the main vertical mode Θ(z), and a corresponding n• is the effective index neff. For
more details, see Ref. [15].

For some structures, exponentials e<σj |Sj | can be huge, such that evaluation of Mj(ξ) and χ(ξ) using
the first version of our code was impossible. To solve this computer-arithmetic-related problem [18],
we introduced bounded matrices M̃j = Mje

−σj |Sj | and explored them to construct the characteristic
function. An example of calculated vertical mode, the corresponding function n0(z) and neff, is given
in Fig. 2(c).

In Ref. [15], we also demonstrated that for any (z, z′) ∈ Sk × Sj , the Green’s function Gp(z, z
′) can

be written as

Gp =

{
e−σp,j |z−z

′|

2σp,j
+ ETp,j(z′)Bp,jEp,j(z) k = j

ETp,j(z′)A
j
p,kEp,k(z) k 6= j

,

Ep,j(ζ) = 2

1+e−σp,j |Sj |

(
eσp,j(ζ−zj)

eσp,j(zj−1−ζ)

)
,

σp,j =
√
β2

0 |p|2 − k2
0n

2
0(z), <σp,j ≥ 0,

(8)

where Bp,j and Aj
p,k are 2×2 constant matrices, which can be calculated using analytic expressions.

2For Dirichlet boundary conditions used in the example of Fig. 2, [∂z ∓ σb,t] in Eq. (2b) are replaced by 1, and the
characteristic function is χ = M21(n•).
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Since Θ∗(z)Gp(z, z
′)Θ(z′) for (z, z′) ∈ Sk × Sj is given by a linear combination of exponentials,

the integral factors G(k,j)
p in Eq. (5c) can also be expressed by analytic formulas.

We fixed z′ ∈ Sj and used the homogeneity of Eq. (6) for z < z′ and z > z′ to derive these formulas.

Within each Sk, k 6= j, the transfer matrices M̃p,k (built using σp,k instead of σk) translate Robin-type
boundary conditions between the edges of the layer. Thus, we can translate these conditions defined
by σp,b and σp,t in Eq. (6) from z = 0 to zj−1 and form z = Lz to zj , obtaining (z′-independent)

factors η(j)
p,b and η(j)

p,t , respectively. Similarly, we build z′-dependent transfer matrices M̃+
p,j and M̃−

p,j

translating the vector (Gp, ∂zGp)
T from zj−1 to z′ − 0 and from zj to z′ + 0. These matrices, Robin-

type conditions at the edges of Sj , continuity of Gp, and δ-function induced jump down by 1 of ∂zGp

at z = z′ imply the following system of two inhomogeneous linear equations:

M̃+
p,j

(
1

η
(j)
p,b

)
Gp(zj−1, z

′) + M̃−
p,j

(
−1

η
(j)
p,t

)
Gp(zj, z

′) =
(

0
1

)
.

The formulas for constant matrix Bp,j in Eq. (8) directly follow from the z′-dependent expressions of
Gp(zj−1, z

′) and Gp(zj, z
′). Translation of the Robin-type conditions at zj−1 and zj over Sk, k 6= j,

allows a quick calculation of Gp(z, z
′) at the remaining material interfaces, which are sufficient for

deriving formulas for matrices Aj
p,k in Eq. (8).

Notably, analytic formulas representing Gr,s and related double integrals G(k,j)
(r,s) for large |r| and |s|

can imply floating-number-arithmetic-related problems [18] since we must handle very large and small
exponentials e±

√
r2+s2β0z. Our first simulations using built-in sinh and cosh functions within transfer

matrices failed at D = 25. By treating large and small exponentials separately (i.e., replacing pos-
sibly huge matrices Mp,j with bounded matrices M̃p,j) and avoiding division of very large and small
numbers, we could run calculations up to D ≈ 200. After accounting for further computer-arithmetic
problems (such as ε + 1 − 1 ≡ 0 whereas ε + (1 − 1) ≡ ε for |ε| < 10−16), we could use much
larger D: see, e.g., Fig. 3, where calculations were performed up to D = 510.

4 Solution of the spectral problem

4.1 Finite difference scheme

Let us return to the solution of the spectral problem (3). Since we cannot resolve this problem ana-
lytically, we rely on fully numerical procedures and finite difference schemes, and instead of vector
functions Φ(x, y) and eigenfrequencies Ω, we look for their discrete analogs Φh and Ωh, which for
properly constructed schemes should provide good approximations of the original values. The domain
[0, L] × [0, L] is discretized to q2 equal small squares (cells) with the edge length h = L

q
. Each

of the four model equations (3a) is approximated in the center of each such cell, i.e., at q2 positions
(xr, ys) = ((r − 0.5)h, (s − 0.5)h), r, s ∈ {1, . . . , q}. We introduce the mesh function Φh with
elements Φh±

u,r,s−0.5 (including r = 0) and Φh±
v,r−0.5,s (including s = 0), which approximate original

continuous functions Φ±u and Φ±v at (rh, (s−0.5)h) and ((r−0.5)h, sh), i.e., at the center of vertical
and horizontal edges of all cells, respectively. Overall, this mesh function Φh has 4q(q + 1) unknown
complex elements. Or, more exactly, 4q2 unknown elements, since due to Eq. (3b), 4q variables at the
edges of the whole domain should be zeros. A simple central finite difference scheme, consisting of
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Optical modes of photonic crystal surface-emitting lasers 9

4q2 linear equations and constructed using two-point stencils, is realized by substituting

Φ±u (xr, ys) =
Φh±u,r,s−0.5+Φh±u,r−1,s−0.5

2
+O(h2),

∂xΦ
±
u (xr, ys) =

Φh±u,r,s−0.5−Φh±u,r−1,s−0.5

h
+O(h2),

Φ±v (xr, ys) =
Φh±v,r−0.5,s+Φh±v,r−0.5,s−1

2
+O(h2),

∂yΦ
±
v (xr, ys) =

Φh±v,r−0.5,s−Φh±v,r−0.5,s−1

h
+O(h2),

(9)

into Eqs. (3a) at each of q2 positions (xr, ys). TermsO(h2) in Eq. (9), obtained using Taylor’s expan-
sion of Φ at (xr, ys), show that our scheme is of second order (w.r.t. the small step h). We note that
such scheme possesses a discrete version of the conservation law (4) [15] which we use to estimate
the quality of the modes. After eliminating trivial boundary elements of Φh and ordering all elements
of Φh into a single vector, we can write the resulting discrete spectral problem as

LhΦ
h = DhΩhΦ

h ⇔ D−1
h LhΦ

h = ΩhΦ
h. (10)

Lh, Dh are complex 4q2 × 4q2 matrices, each having ∼ 32q2 and ∼ 8q2 non-vanishing elements.
Dh is easily invertible; construction of D−1

h Lh requires only 4q2 arithmetic operations, but the matrix
itself has ∼ 8q3 entries.

When simulating large PCSELs, which, in general, requires large q and, thus, substantial memory
resources and processing time, one can use higher-order schemes. Redefinition of the mesh function
Φh is not needed; the schemes in the discretized domain’s larger (inner) part can be constructed
using centered differences and straight 2ν-point stencils (2ν: order of the scheme). The drawback of
such schemes is that at each of the ν − 1 cell layers at the domain borders, one has to use (2ν + 1)-
point stencils and non-centered finite differences. Stil sparse matrices Dh, Lh have additional nonzero
entries, and, compared to the standard scheme, the solution of the same size problem (10) takes more
time. A clear advantage is an enhanced precision in approximating several leading eigenfrequencies
Ω, which can be achieved using moderate step h. Thus, if achieving good precision is essential,
schemes with moderate h and ν > 1 can be significantly faster, compared to the standard scheme (9)
with much finer h.

4.2 Example

The (finite-dimensional) numerical scheme (10) does not approximate all (i.e., an infinite number of)
modes of the original problem (3); the numerically induced error of mode approximation grows with
an increasing mesh step h. For large-area PCSELs and moderate or small discretization steps (e.g,
L ≥ 5 mm, h = 10µm, q ≥ 500), Eq. (10) defines millions of modes, but not all of them can be
found because of computer memory and time constraints. Fortunately, only a few modes are essential.
Thus, we exploit the sparseness of the matrices and look only for a few dominant modes preselected
in preliminary calculations with a coarse numerical mesh.

For the construction and solution of the discrete spectral problem (10), we used the Julia programming
language (version 1.9) [19] and the available spectral solvers. The example calculations presented
in Fig. 4 were performed using coupling matrix C from Fig. 3 estimated for D = 20 or 500. We
assumed that L = 1 mm and the PC lattice constant a = λ0/neff is defined by the central wavelength
λ0 = 1.07µm and the effective refractive index neff determined by Eq. (2). Light blue dots in Fig. 4(a)
show only a small part of Ωh calculated using D = 20 and q = 48. Five lowest threshold modes are
represented by blue dots within the black ellipse in the inset of Fig. 4(a) and the diagrams of Fig. 4(c),

DOI 10.20347/WIAS.PREPRINT.3075 Berlin 2023



M. Radziunas et al. 10

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC
Ωx

1D

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC
Ωx

1D

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC
Ωx

1D
Ωy

1D

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC
Ωx

1D
Ωy

1D

 14 
 16 
 18 
 20 
 22 
 24 
 26 
 28 

-300 -200 -100 0 100 200 300 400
 q=48
D=20

(a)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

ΩC
Ωx

1D
Ωy

1D
Ωh

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

15

16

17

-145 -140 -135

5 main
modes

ℑΩ
  [

1/
cm

]

ℜΩ  [1/cm]

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

14.8
14.9

15
15.1
15.2
15.3
15.4
15.5

-142 -141 -140 -139 -138 -137 -136 -135 -134 -133

(b)

m
od

e 
th

re
sh

ol
d 
ℑΩ

 [1
/c

m
]

detuning   ℜΩ       [1/cm]

q=16
q=24
q=32
q=40
q=48

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500
D=20

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500
D=20

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500
D=20

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500
D=20

1

10

100

10 20 40re
l. 

er
ro

r [
×1

0-5
]

q

D=500
D=20
~1/q2

(c)

0

L

y

αe=0.32/cm

1-st

0

L

y

αe=0.69/cm

2-nd

0

L

y

αe=0.54/cm

3-rd

0

L

y

αe=1.3/cm

4-th

0 Lx0

L

y

αe=0.66/cm

5-th

Figure 4: (a): Exact eigenfrequencies of Eq. (3) when L → ∞ (black triangles ΩC) or field cross-
coupling terms in C are omitted (red squares/rhombs Ω

x/y
1D ), and numerically estimated Ωh of Eq. (9)

for q = 48 (light blue dots). Inset: surrounding of the lowest threshold modes. (b): dependence of
three main Ωh on q and D (filled/empty bulets: D = 20 and 500, respectively). Inset: 2nd order
convergence of two main Ωh with an increase of q. (c): intensity distribution |Φ(x, y)|2 of five dominant
modes, located within the black ellipse in the inset of (a). L=1 mm, other parameters as in Figs. 2, 3.

which show the intensity distribution |Φ(x, y)|2 of these modes. The operation on the main mode, with
a single broad, well-centered circular peak of |Φ(x, y)|2 and a balance between the edge losses and
mode seperation is desirable in applications.

To understand numerical errors induced by discretization, we also find the eigenfrequencies of two
related systems that can be solved exactly, i.e., do not depend on the domain discretization factor q.
Black triangles in Fig. 4(a) are eigenfrequencies ΩC of the 4 × 4-matrix C, which properly repre-
sent accumulation points of Ωh at very large L. Even for moderate L = 1 mm used in our example
calculations, one can recognize how multiple blue dots (Ωh) approach the black triangles (ΩC). An-
other system that can be treated analytically is obtained by ignoring field cross-coupling in the original
system (3), i.e., setting off-diagonal 2 × 2 blocks of C to zero. Eq. (3) decouples into two effectively
one-dimensional spectral problems, similar to those that arise when considering linear DFB lasers, and
can be treated using discretization-independent transfer-matrix-based methods [13]. Red squares and
rhombs represent finite sets of eigenfrequencies Ωx,y

1D of this limit case problem in Fig. 4(a). Slight dif-
ferences between Ωx

1D and Ωy
1D, see, e.g., inset of panel (a), are due to tiny (in praxis - unavoidable)

distortion of the PC feature’s symmetry w.r.t. the diagonal of the PC cell which also violates symmetry
ξr,s = ξs,r for the Fourier coefficients and induces corresponding changes of C. Most of the light
blue dots appear in prolonged clusters. For low thresholds, =Ωh < 10/cm, one side of nearly all
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Optical modes of photonic crystal surface-emitting lasers 11

clusters with densely located eigenfrequencies therein is attached to one of the red boxes Ω1D, which
suggests a weak cross-coupling of the field components in the related modes. This agreement is de-
graded for higher thresholds because of discretization-induced numerical dispersion that implies too
large damping of the modes having Ωh far away from zero.

Thus, several main modes of Eq. (3) with a low threshold =Ω can be properly estimated even with
coarse numerical mesh defined by a small factor q. The precision of this approximation in dependence
on q is further analyzed in Fig. 4(b). The filled bullets in this diagram represent three lowest-threshold
modes calculated using different (still small) q, varying it from 16 to 48. For all these q, the eigenfre-
quencies are not changing significantly; an increase of q implies some shifts, but the magnitude of
these shifts decreases with the growth of q. 2nd and 3rd modes have more pronounced shifts, which
agrees with our previous discussion of numerical dispersion issues. Filled bullets in the inset of the
same diagram represent the quadratic decay of the relative error |Ωh(q)−Ω

Ω
| for two main modes. For

convenience, the inset is drawn using log-log scaling of both axes. The dashed line, which is propor-
tional to 1

q2
= h2, shows the expected second-order convergence rate. “Exact” Ω in the relative error

formula was estimated by extrapolating the shift of calculated Ωh(q) for q →∞.

At least in the considered example, the discretization step-induced error is small when comparing it to
matrix C-truncation-induced changes. This is shown in Fig. 4(b) and its inset, where filled and empty
bullets represent eigenfrequencies of the problems constructed using truncated matrices C

(D)
2D with

D = 20 and 500, respectively. Shifts of bullets in panel (b) show that real and imaginary parts of q-
induced absolute errors of Ωh(q)|q≥12 in both cases do not exceed (0.0057, 0.021)/cm for the main
mode and about seven-fold values for the second and third modes. On the contrary, the parameter D
induced changes of three main Ωh vary between (0.128, 4.877)/cm and (0.147, 4.965)/cm, similar
to (0.118, 4.995)/cm dislocation of the lowest threshold ΩC shown in the inset of Fig. 3. On the
other hand, the mode landscape in Fig. 4(a) and the relations between the main eigenfrequencies Ωh

calculated for D = 20 and 500 are almost preserved, which suggests that a constant contribution to
real and imaginary parts of ∆β can nearly compensate the differences induced by the selection of
small parameter D.

5 Parameter study

Finally, we use our algorithms and code for numerical parameter continuation experiments to receive
quick information about the PCSEL structures considered. Fig. 5 summarizes the main mode calcu-
lations of in Fig. 4 considered PCSEL with different size factors L, varying from 100µm up to 3 mm
(D = 20 and q = 32 in this case). Since the vertical configuration is unchanged, the matrix C should
be constructed only once during the initiation step. We are interested in PCSEL configurations with
low threshold gain of the main mode, see black bullets panel (a), low losses αe at the lateral edges
of PCSEL, panel (c), and large threshold separation to the remaining modes, panel (d). In panel (b),
we also show shifts of =Ω for considered five modes with the increase of L. Due to insufficient field
coupling in small emission area (L ≤ 0.2 mm) PCSELs with no reflections at the lateral borders, the
mode threshold and corresponding losses αe are huge, and the mode intensity |Φ(x, y)|2 is concen-
trated at the lateral borders of the domain. Such PCSEL configurations are useless; the switching-on
performance of these devices can be compared with that of short edge-emitting DFB diodes with
weak coupling and antireflective coating of the facets. Excellent operation of similar-sized PCSELs
discussed in Refs. [9, 10] could be achieved because of a much larger refraction index contrast be-
tween the surrounding semiconductor material and the air-filled features in the elementary PC cells.
With an increase of L, the main mode’s eigenfrequency Ω (black bullets in panels (a) and (b)) rapidly
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Figure 5: Threshold =Ω (a), detuning <Ω (b), and losses αe (c) of the five main modes, and the
threshold separation=(Ωj−Ω1) between the fundamental (first) and the remaining four higher-order
modes (d) as functions of the size factor L. Dashed lines in (a), (b): lowest threshold mode ΩC of C.
D = 20, q = 32, while other parameters as in Fig. 4.

approaches the lowest threshold band-edge mode ΩC (horizontal lines in the same panels). Loss αe,
panel (c), decreases as well and is below 0.1/cm for L ≥ 1.5 mm. Unfortunately, the threshold gap
(panel (d)) decays with increasing L as well, which is due to the accumulation of eigenfrequencies Ω
at ΩC in the large L limit. Thus, at very large L, one can expect multimode emission with suboptimal
beam characteristics.

In the last example, we performed a similar continuation of L assuming the PCSEL configuration
with vertically tilted side walls of features within the PC layer [6]. Such PC layers can be designed
intentionally but also unintentionally induced by material etching/regrowth procedures. Thus, such
simulations can be helpful when testing the robustness of selected structures to minor technology
imperfections. To perform simulations, we subdivided the (previously sole) PC layer into 15 sublayers,
assuming that the central sublayer has isosceles right triangle features with 0.8a-short legs, Fig. 2(a),
considered in all previous examples. We linearly changed the triangle leg size across the whole PC
layer, such that at the bottom/top sublayers, it was 0.7a/0.9a (up-taper) or 0.9a/0.7a (down-taper).
Such a down-taper configuration in a 3-sublayer PC is shown in Fig. 1. Note that the hypotenuse
of the triangular feature in our example still defines an unchanged vertical feature’s wall within all
PC sublayers. Since neff for three considered structures was slightly different (neff = 3.3073, 3.309
and 3.3059 for PCSELs with uniform, up- and down-tapered PC features, respectively), we have also
adapted the corresponding PC cell size a = λ0/neff.

The calculations of the main mode are presented in Fig. 6. Besides both tapered feature configura-
tions, here we show again the modes of an above-studied PCSEL with vertically uniform PC cells
(black bullets). Compared to the uniform-feature PCSEL, lasers with down-tapered features (orange)
have reduced =ΩC, see triangles in panel (d), and, consequently, reduced thresholds of the main
mode, panel (a). The edge losses and gain gap are also slightly improved; cf. orange and black bullets
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Figure 6: Main modes of PCSELs with down-tapered (orange), up-tapered (light blue), and uniform
(black) PC features. Threshold =Ω (a), loss αe (b) of the main mode, and the threshold gap <(Ω2 −
Ω1) (c) as functions of L. (d): down-shifts of Ω with increasing L. Triangles: eigenfrequencies ΩC.

in panels (b) and (c). The mode landscape (such as in Fig. 4(a), for example) and the locations of
the main modes, except of slightly reduced =Ω and increased separation of different stop-band side
modes, have no significant differences. On the other hand, in the PCSELs with up-tapered features
(light blue), which have only slightly changed mode threshold, loss factor αe, and threshold gap, cf.
light blue and black dots in panels (a)-(c), the mode relations are quite different. In contrast to the pre-
viously considered cases, the dominating mode is now located close to the band-edge mode on the
other side of the stopband, see down-shifting light blue bullets at the right side of Fig. 6(d). Thus, ta-
pering of PC features can not only cause relatively smooth small-scale shifts of the band edge modes
(as, e.g., observed in Fig. 3) and corresponding smooth changes of the mode landscape and the main
eigenfrequencies Ω there but also induce a jump to a new group of dominant modes determined by
another band edge mode with significantly differing optical frequency.

At L ≈ 0.15 mm, two different stop-band side modes of the PCSEL with down-tapered PC features
have equal thresholds: see the light blue dots at L = 0.13 mm and 0.16 mm in panel (d) and rapidly
reduced threshold gap at these L in panel (c). Here, an increase of L implies the role exchange for
these modes, visible as a “jump” of the main mode over the stopband in Fig. 6(d). All such mode role
exchanges are due to different mode sensitivity d

dp
=Ω to the change of the considered parameter p

(L in our example). Similar (even though on a smaller scale) swaps of the mode roles in Figs. 5 and
6 are represented by small defects of otherwise smooth parameter-depending curves. For example,
the light blue curve in Fig. 6(c) and green/orange curves in Fig. 5(b) and (c) show such defects for
L ≈ 0.75 mm, where the second and third modes are swapped; at L ≈ 0.95 mm in the same panels
of Fig. 5 a new mode takes role of the fourth-lowest threshold mode. In Fig. 5(d), the local minimum
of the orange curve also indicates the exchanging roles of the modes with the lowest and the second-
lowest thresholds at L = 0.2 mm. An understanding and controlling the mode shift rates d

dp
=Ω with

the changes of model parameters could be very helpful when designing the PCSEL configuration and
will be discussed elsewhere.
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6 Conclusions and outlook

In this work, we have presented analytic-expression-based algorithms for constructing the field cou-
pling matrix of a three-dimensional coupled wave model for PCSELs. Our algorithms bypass computer
arithmetic-induced problems when dealing with large and small exponentials; they are fast and exact,
in contrast to approximative approaches [6, 9, 16] or procedures based on numerical integration meth-
ods. We have also demonstrated how coarse numerical meshes, 2nd-order precision finite difference
schemes, and standard spectral solvers provide a good approximation of a few major optical modes
in PCSELs with large (several tens of mm2) emission areas. Once better precision, more modes, or
handling of even large PCSELs are required, we suggest higher-order numerical schemes, which can
reduce discretization-induced errors by a few orders or more, depending on the mesh step h.

Optical mode calculations and analysis of their properties in this work were performed assuming time
independent and uniform in space propagation factor ∆β, which is typically the case at the sub-
threshold or near-threshold operation of lasers. Close to the threshold, potentially important modes are
well distinguished, and the mode with the lowest threshold =Ω determines the emission properties.
Even if remaining stationary in time, above threshold ∆β is a spatially distributed function, accounting
for the distribution of carrier density (which itself depends on the inhomogeneous injection and carrier
hole burning) and temperature, which typically induces enhancement of the refractive index within the
lateral region where the field intensity is high (thermal lensing effects). Deviations of ∆β from the
spatially uniform state change the mode landscape, implying the mode wavelength shifts towards or
from the Bragg condition, causing a reduction or enhancement of the threshold gaps between the
main and higher-order modes. As we have shown in this paper, these gaps in large-area PCSELs are
reduced, which is due to increasing concentration of eigenfrequencies Ω close to ΩC with growing L.
A theoretical understanding of (hot cavity) PCSEL operation can be improved by performing complex
theoretical analysis and simulations of the dynamical model [10] (Eqs. (1) supplemented with models
for gain dispersion, carrier density [11] and temperature [12], for example) along with simulations and
analysis of instantaneously on ∆β(x, y, t) depending optical modes, their coupling, and changes with
time [13].

The numerical examples used in this work assumed a single-lattice PC crystal characterized by a
single isosceles right triangle feature within the PC cell and a low-index contrast PC technology. Efforts
to scale power and conversion efficiency in large area PCSELs are expected to benefit from the
use of more sophisticated PC designs, for example, as discussed in Ref. [8]. The newly developed
numerical tool provides sufficient precision and provides solutions with short calculation times, so that
design development can proceed rapidly, especially when laser operation is properly included. A key
challenge remains designing large area PCSELs with enhanced threshold gap between the main and
the higher-order modes, which would remain robust w.r.t. technology-induced misalignments and laser
operation-induced shaping of ∆β(x, y).

References

[1] M.S. Zediker and E.P. Zucker, “High-power diode laser technology XX: a retrospective on 20
years of progress,” in Proc. SPIE, vol. 11983, art.no. 1198302, 2022, doi: 10.1117/12.2615260

[2] M. Wilkens, H. Wenzel, J. Fricke, A. Maaßdorf, P. Ressel, S. Strohmaier, A. Knigge, G. Erbert,
and G. Tränkle, “High-Efficiency Broad-Ridge Waveguide Lasers,” IEEE Phot. Techn. Letters, vol.
30, pp. 545–548, 2018, doi: 10.1109/LPT.2018.2801621.

DOI 10.20347/WIAS.PREPRINT.3075 Berlin 2023

http://dx.doi.org/10.1117/12.2615260
http://dx.doi.org/10.1109/LPT.2018.2801621


Optical modes of photonic crystal surface-emitting lasers 15

[3] J. E. Boschker, U. Spengler, P. Ressel, M. Schmidbauer, A. Mogilatenko, and A. Knigge, “Stability
of ZnSe-Passivated Laser Facets Cleaved in Air and in Ultra-High Vacuum,” IEEE Photonics
Journal, vol. 14, art.no. 1531606, 2022, doi: 10.1109/JPHOT.2022.3176675

[4] T. Inoue, R. Morita, K. Nigo, M. Yoshida, M. De Zoysa, K. Ishizaki, and S. Noda, “Self-evolving
photonic crystals for ultrafast photonics,” Nat. Communications, vol. 14, art.no. 50, 2023, doi:
10.1038/s41467-022-35599-2.

[5] M. Yoshida, S. Katsuno, T. Inoue, J. Gelleta, K. Izumi, M. De Zoysa, K. Ishizaki, and S. Noda,
“High-brightness scalable continuous-wave single-mode photonic-crystal laser,” Nature, vol. 618,
pp. 727–732, 2023, doi: 10.1038/s41586-023-06059-8.

[6] C. Peng, Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, “Coupled-wave analysis for photonic-
crystal surface-emitting lasers on air holes with arbitrary sidewalls,” Optics Express, vol. 19, pp.
24672–24686, 2011, doi: 10.1364/OE.19.024672.

[7] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, “Watt-class high-
power, high-beam-quality photonic-crystal lasers,” Nature Photonics, vol. 8, pp. 406–411, 2014,
doi: 10.1038/nphoton.2014.75.

[8] T. Inoue, M. Yoshida, J. Gelleta, K. Izumi, K. Yoshida, K. Ishizaki, M. De Zoysa, and S. Noda,
“General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-
mode operation,” Nat. Comm., vol. 13, art.no. 3262, 2022, doi: 10.1038/s41467-022-30910-7.

[9] Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave analysis
for square-lattice photonic crystal surface emitting lasers with transverse-electric polarization:
finite-size effects,” Optics Express, vol. 20, pp. 15945–15961, 2012, doi: 10.1364/OE.20.015945.

[10] T. Inoue, R. Morita, M. Yoshida, M. De Zoysa, Y. Tanaka, and S. Noda, “Comprehensive analysis
of photonic-crystal surface-emitting lasers via time-dependent three-dimensional coupled-wave
theory,” Phys. Rev. B, vol. 99, art.no. 035308, 2019, doi: 10.1103/PhysRevB.99.035308.

[11] A. Zeghuzi, M. Radziunas, H.-J. Wünsche, J.-P. Koester, H. Wenzel, U. Bandelow, and A. Knigge,
“Traveling wave analysis of non-thermal far-field blooming in high-power broad-area lasers,” IEEE
J. Quantum Electron., vol. 55, art.no. 2000207, 2019, doi: 10.1109/JQE.2019.2893352.

[12] A. Zeghuzi, H.-J. Wünsche, H. Wenzel, M. Radziunas, J. Fuhrmann, A. Klehr, U. Bandelow,
and A. Knigge, “Time-dependent simulation of thermal lensing in high-power broad-area semi-
conductor lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 25, art.no. 1502310, 2019, doi:
10.1109/JSTQE.2019.2925926.

[13] M. Radziunas, H.-J. Wünsche, “Multisection Lasers: Longitudinal Modes and their Dynamics,” in
Optoelectronic Devices - Advanced Simulation and Analysis, pp. 121–150, ed. J. Piprek, Springer
Verlag, New York, 2005, doi: 10.1007/0-387-27256-9_5.

[14] M. Radziunas, E. Kuhn, H. Wenzel, B. King, and P. Crump, “Calculation of optical modes in large
emission area photonic crystal surface-emitting lasers,” in IEEE Proc. of Int. Conf. on Numerical
Simulation of Optoelectronic Devices (NUSOD), Turin, Italy, Sep 18-21, pp. 89-90, 2023, doi:
10.1109/NUSOD59562.2023.10273475.

[15] M. Radziunas, E. Kuhn, H. Wenzel, “Solving a spectral problem for large-area photonic crystal
surface-emitting lasers,” submitted to Mathematical Modelling and Analysis. WIAS-Preprint 3059,
2023, doi: 10.20347/WIAS.PREPRINT.3059.

DOI 10.20347/WIAS.PREPRINT.3075 Berlin 2023

http://dx.doi.org/10.1109/JPHOT.2022.3176675
http://dx.doi.org/10.1038/s41467-022-35599-2
http://dx.doi.org/10.1038/s41467-022-35599-2
http://dx.doi.org/10.1038/s41586-023-06059-8
http://dx.doi.org/10.1364/OE.19.024672
http://dx.doi.org/10.1038/nphoton.2014.75
http://dx.doi.org/10.1038/s41467-022-30910-7
http://dx.doi.org/10.1364/OE.20.015945
http://dx.doi.org/10.1103/PhysRevB.99.035308
http://dx.doi.org/10.1109/JQE.2019.2893352
http://dx.doi.org/10.1109/JSTQE.2019.2925926
http://dx.doi.org/10.1109/JSTQE.2019.2925926
http://dx.doi.org/10.1007/0-387-27256-9_5
http://dx.doi.org/10.1109/NUSOD59562.2023.10273475
http://dx.doi.org/10.1109/NUSOD59562.2023.10273475
http://dx.doi.org/10.20347/WIAS.PREPRINT.3059


M. Radziunas et al. 16

[16] Y. Liang, C. Peng, K. Sakai, S. Iwahashi, and S. Noda, “Three-dimensional coupled-wave model
for square-lattice photonic crystal lasers with transverse electric polarization: A general ap-
proach,” Phys. Rev, B, vol. 84, art.no. 195119, 2011, doi: 10.1103/PhysRevB.84.195119.

[17] J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveg-
uides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A, vol. 1, pp. 742–753,
1984, doi: 10.1364/JOSAA.1.000742.

[18] S. Boldo, C.-P. Jeannerod, G. Melquiond, J.-M. Muller, “Floating-Point Arithmetic,” Acta Numerica,
vol. 32, pp. 203-290, 2023, doi: 10.1017/S0962492922000101.

[19] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, “Julia: A fresh approach to numerical
computing,” SIAM Review, vol. 59, pp. 65–98, 2017, doi: 10.1137/141000671.

DOI 10.20347/WIAS.PREPRINT.3075 Berlin 2023

http://dx.doi.org/10.1103/PhysRevB.84.195119
http://dx.doi.org/10.1364/JOSAA.1.000742
http://dx.doi.org/10.1017/S0962492922000101
http://dx.doi.org/10.1137/141000671

	Introduction
	Model
	Field equations
	Spectral problem

	Coupling matrix C
	Construction of the coupling matrix
	Numerical algorithms

	Solution of the spectral problem
	Finite difference scheme
	Example

	Parameter study
	Conclusions and outlook

