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On collocation points for physics-informed neural networks
applied to convection-dominated convection-diffusion problems

Derk Frerichs-Mihov, Marwa Zainelabdeen, Volker John

Abstract

In recent years physics-informed neural networks (PINNs) for approximating the solution to
(initial-)boundary value problems gained a lot of interest. PINNs are trained to minimize sev-
eral residuals of the problem in collocation points. In this work we tackle convection-dominated
convection-diffusion problems, whose solutions usually possess layers, which are small regions
where the solution has a steep gradient. Inspired by classical Shishkin meshes, we compare hard-
constrained PINNs trained with layer-adapted collocation points with ones trained with equispaced
and uniformly randomly chosen points. We observe that layer-adapted points work the best for a
problem with an interior layer and the worst for a problem with boundary layers. For both problems
at most acceptable solutions can be obtained with PINNs.

1 Introduction

A fundamental class of problems in computational fluid dynamics are convection-diffusion-reaction
problems that model the distribution of a scalar quantity like energy or mass inside a flowing medium.
In their strong form, we are seeking a smooth enough function u such that

−ε∆u+ b · ∇u+ cu = f in Ω, u = gD along ∂Ω, (1)

where Ω ⊂ Rd, d ∈ {2, 3}, is a domain with a polyhedral Lipschitz boundary ∂Ω, 0 < ε ∈ R is the
diffusion coefficient, b ∈ [W 1,∞(Ω)]d models the convection, c ∈ L∞(Ω) describes a reaction term,
f ∈ L2(Ω) denotes exterior forces, and g ∈ H1/2(∂Ω) the Dirichlet boundary conditions. It is well
known that, if convection dominates diffusion, then the solution to these problems exhibit usually very
thin regions where the solution has a steep gradient, so-called layers; see, e.g., [13, 7].

Physics-informed neural networks (PINNs) as presented in [2, 12] became popular for approximating
the solution to (initial-)boundary value problems (IBVPs). The approximation is performed by minimizing
some form of the residual of the governing equations and the corresponding boundary and possibly
initial conditions in so-called collocation points [8].

In the past few years, it was recognized that the choice of the collocation points significantly influences
the quality of the PINN approximation; see, e.g., [1, 11, 14, 5, 16]. In these references the collocation
points are adaptively generated or redistributed during the training. Inspired by Shishkin meshes for
classical numerical methods and in contrast to the former references, in this work, we use a fixed
distribution of points that is chosen accordingly to the challenging regions of the solution, the layers. We
compare the performance of PINNs trained with these points to PINNs trained with a random choice
and an equispaced choice of the collocation points. The goal consists of further exploring the benefits
but also the limitations of PINNs.
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2 Physics-informed neural networks

PINNs are data-driven methods that approximate the solution of a given (I)BVP by minimizing a loss
that incorporates the strong form of the residual of the differential equation, the boundary and possibly
initial conditions [8]. In our numerical studies we deploy hard-constrained PINNs as introduced, e.g., in
[9]. They use uN := g̃D + hindũN as ansatz, where hind : Ω→ R is an indicator function satisfying
hind(x) = 0, if x ∈ ∂Ω, and hind(x) > 0 else, g̃D ∈ C(Ω) is a continuous extension of the Dirichlet
boundary condition gD to Ω, and ũN is a multilayer perceptron model (MLP). With this approach
the Dirichlet conditions are satisfied exactly if g̃D|∂Ω = gD. MLPs are made of L ∈ N layers, which
consist of ni ∈ N, i = 1, 2, . . . , L, nodes each representing a real value. For the basic variant of
PINNs it holds n1 := dim(Ω) and nL := dim(Im(u)) since PINNs try to approximate an exact
solution u. We collect the nodes of the ith layer in a vector ŷi ∈ Rni . Then, for a given x ∈ Ω,
we define ũN (x) := ŷL as the value(s) of the last layer that is recursively computed by ŷ1 := x,

ŷi := σi(Wiŷi−1 + b̂i), i = 2, 3, . . . , L, where σi : Rni → Rni is a component-wise defined

non-linear activation function, Wi ∈ Rni×ni−1 is the weight matrix and b̂i ∈ Rni is the bias vector.
Examples for activation functions are the hyperbolic tangent tanh and mish from [10] that are, for a
given x ∈ R, defined as

tanh(x) :=
ex − e−x

ex + e−x
, mish(x) := x · tanh (ln (1 + ex)) . (2)

The entries of the weight matrices and the bias vectors are called parameters, which we denote by
p ∈ Rdp , where dp :=

∑L
i=2 (ni + ni · ni−1). These are the degrees of freedom of the network that

will be adapted to the problem. All remaining quantities to define a MLP are called hyperparameters.
They are specified by the user and are fixed. The parameters are adapted during the so-called training.
Let uN ;p be the ansatz whose underlying MLP ũN has a certain value of the parameters vector p.
During the training we search for the optimal parameters p∗ ∈ Rdp such that

p∗ ∈ arg min
p∈Rdp

L(uN ;p), (3)

i.e., the parameters are adapted to minimize a certain loss functional L : Rdp → R that depends on
the problem. To solve the minimization problem (3) often a variant of stochastic gradient descent is
applied; see also [6].

The idea of PINNs is to decode information about the (I)BVP in L. Omitting the dependency of uN on
its MLP parameters p, for the convection-diffusion problem (1) the standard loss functional is given by

Lst(uN ) :=
|Ω|
NI

NI∑
i=1

(Res(uN )(xi,I))
2 , (4)

where xi,I ∈ Ω, i = 1, 2, . . . , NI, denote NI interior collocation points, and

Res(uN ) := −ε∆uN + b · ∇uN + cuN − f.

In [3, 4] two more loss functionals are introduced that are especially designed for convection-diffusion
problems; see [3, 4] for a derivation. The limited residual Llr

t0
loss functional and the limited residual

with crosswind Llrcw
t0

loss are defined as

Llr
t0

(uN ) :=

NI∑
i=1

ξ

(
|Ω|
NI t0

(Res(uN ) (xi,I))
2

)
, (5)
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Llrcw
t0

(uN ) :=

NI∑
i=1

ξ

(
|Ω|
NI t0

(Res(uN ) (xi,I))
2

)
+
|Ω|
NI

NI∑
i=1

Φ
(
|b⊥(xi,I) · ∇uN (xi,I)|

)
, (6)

depending on a positive user-chosen constant t0 ∈ R, and with, in two dimensions,

b⊥(x) :=


(b2(x),−b1(x))T√
b1(x)2+b2(x)2

, if b(x) 6= 0,

0, else,

and ξ : R→ R,Φ : R→ R are given, for any x ∈ R, by

Φ(x) :=

{√
x, if x ≥ 1,

0.5 (5x2 − 3x3) , else,
, ξ(x) :=

{
1
2
x4 − x3 − 1

2
x2 + 2x, if x ≤ 1,

1, else.

3 Set-up of numerical studies

In our numerical studies we train PINNs with three different sets of NI := 4, 096 collocation points:
Randomly chosen points drawn from a uniform distribution, equispaced points and what we call layer-
adapted points inspired by classical Shishkin meshes. For the latter, for each problem below we define
corresponding layer regions and generate NI/2 equispaced points in these particular regions and
NI/2 equispaced points in the remaining parts of the domain.

We deploy hard-constrained PINNs, for which we define g̃D := 0 and

hind :=
(
1− e−κx

) (
1− e−κy

) (
1− e−κ(1−x)

) (
1− e−κ(1−y)

)
with κ := (10ε)−1, which is in correspondence with Problems 1 and 2 below. The PINNs are im-
plemented in TensorFlow [15] and the Adam algorithm is used for optimization with TensorFlow’s
default values, except for the learning rate. During the training, the parameters are adapted to minimize
either one of the losses given in equations (4) to (6) plus an L2-weight decay regularization term
λwdnbs/(2NI)

∑
j w

2
j , where λwd ∈ R is a positive constant, nbs := 32, and wj denotes the entries

of all weight matrices. For Llr
t0
,Llrcw

t0
we vary t0 ∈ { 101, 100, 10−1, 10−2 }. We deploy networks with

n1 := 2 and nL := 1 nodes in the first and the last layer, resp., and seven intermediate layers with 30
nodes each. While in the last layer the identity is deployed as activation function, in the intermediate
layers either tanh or mish are applied. The weights are initialized using the Glorot initialization based
on the seeds given in Table 1 and the biases are initially set to zero. We train in total 144 networks with
the hyperparameters given in Table 1 with each loss functional and every set of collocation points for
7, 500 epochs. Afterwards, we compute a mean over the seeds, assess the L2 error with respect to
the exact solution and train for each loss and each set of collocation points the seven best networks
until 100, 000 epochs are reached. Afterwards, again the mean over the seeds is taken and the L2

error is measured. To compute the error, Ω is divided into 10, 000 equally-sized squares in which a
Gauss–Legendre quadrature rule with ten points per coordinate direction is utilized.

Table 1: Set of hyperparameters leading to 144 different PINN architectures.

activation function tanh, mish
learning rate 0.01 · 3−1, 0.01 · 3−2, 0.01 · 3−3, 0.01 · 3−4, 0.01 · 3−5, 0.01 · 3−6

initialization seed 42, 43, 44
weight decay λwd 10−1, 10−2, 10−3, 10−4
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(a) Sketch of points for Problem 1. (b) Sketch of points for Problem 2.

Figure 1: Sketch of layer-adapted points for Problems 1 and 2 on the unit square. Red points lie within
the layer region(s) and blue points away from them. Dashed lines separate the layer regions from the
non-layer regions.

4 Numerical studies with different sets of collocation points

We investigate two problems whose solutions show different kinds of layers.

Problem 1 (Circular internal layer). Let Ω := (0, 1)2, ε := 10−8, b := (2, 3)T , and c := 2. The other
data of the problem are derived from the prescribed solution

u(x, y) := 16x(1− x)y(1− y)

(
1

2
+

arctan ((r2
0 − (x− x0)2 − (y − y0)2)/

√
ε)

π

)
,

where r0 := 0.25 and x0 := y0 := 0.5. The solution possess an interior layer at the circle with radius
r0 around (0.5, 0.5); cf. Fig. 6(a) in [4].

To generate layer-adapted points, we place
√
NI points along

√
NI rays. Let α` := 2π`/

√
NI for

` ∈ { 0, 1, . . . ,
√
NI−1 }. The `th ray is given by (0.5, 0.5)+t(cos(α`), sin(α`)), where 0 ≤ t ∈ R.

Let D := 100
√
ε be the layer width. Along each ray, we put

√
NI/4 equispaced points between

(0.5, 0.5) and the intersection point of the ray with a circle of radius r0 − D/2 around (0.5, 0.5),√
NI/2 equispaced points between r0−D/2 and r0 +D/2, and

√
NI/4 equispaced points between

r0 +D/2 and the intersection point of the ray with ∂Ω; see Figure 1a for a visualization with 144 points
and a layer width of 0.15.

From Table 2, we observe that layer-adapted points work worse for the standard loss but the best for
seven out of eight of the novel functionals. The overall best error is achieved with Llr

1.0 trained on the
layer-adapted points, which is roughly 36.5% smaller than the best result obtained with the standard
loss functional.

The best PINN solution that is obtained with Llr
1.0 trained on the layer-adapted points is shown in

Figure 2a. It can be seen that the hump structure can be recognized and that the solution has a steep
gradient in the layer region. However, the solution’s maximum is only roughly half as large as it should
be. Furthermore, the solution possesses significant positive values away from the layer, where it should
be close to zero. A reason might be that too many points lie in the layer region and hence the network
focusses too much on this region during the training. On the other hand, with random and equispaced
points it might be too difficult for the network to catch the steep gradient in the layer. Overall, due to
the huge difference between the numerical and the exact solution we consider the MLP solution as
non-acceptable.
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Table 2: Minimal value of the error ‖u− uN‖L2 after 100, 000 epochs of the best PINNs that approxi-
mate the solution to Problem 1 for all distributions. The smallest value in each row is marked with bold
font. The blue number is the overall best value and the corresponding solution is plotted in Figure 2a.

loss functional random equispaced layer-adapted

Lst 3.885 · 10−1 3.488 · 10−1 1.971 · 100

Llr
0.01 2.690 · 10−1 2.763 · 10−1 2.379 · 10−1
Llr

0.1 2.633 · 10−1 2.808 · 10−1 2.490 · 10−1
Llr

1.0 2.723 · 10−1 2.565 · 10−1 2.213 · 10−1
Llr

10.0 2.704 · 10−1 2.464 · 10−1 2.399 · 10−1
Llrcw

0.01 2.799 · 10−1 2.731 · 10−1 2.434 · 10−1
Llrcw

0.1 2.667 · 10−1 2.794 · 10−1 2.284 · 10−1
Llrcw

1.0 2.570 · 10−1 2.481 · 10−1 2.393 · 10−1
Llrcw

10.0 2.759 · 10−1 2.583 · 10−1 2.716 · 10−1

Problem 2 (Outflow layers). Let Ω := (0, 1)2, ε := 10−8, b := (2, 3)T , c := 1 and the other data of
the problem are given by the prescribed solution

u(x, y) :=xy2−y2 exp

(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x− 1) + 3(y − 1)

ε

)
,

which is depicted in Fig. 6(b) in [4].

The layer-adapted mesh is given as follows: Let D := 10ε be the layer width. We choose
√
NI/2

equispaced points in [0, 1−D], and
√
NI/2 equispaced points in [1−D, 1]. Finally, a tensor product

of these points is computed to get two-dimensional collocation points; see Figure 1b for a sketch with
NI = 144 and D = 0.15.

From Table 3 we can see that layer-adapted points lead to bad results for all loss functionals. Random
points work the best for five functionals, and for the remaining four functionals equispaced points
lead to the best results. Overall the best result is obtained with Llrcw

10.0 followed by Llr
10.0 both trained

on equispaced points. Their error is approximately half as large as the best result obtained with the
standard functional.

The best PINN approximation trained with Llrcw
10.0 on equispaced points is depicted in Figure 2b. It has

roughly the shape it should have, but it’s maximum (0.88) is significantly smaller than the maximum

0.00

0.10

0.20

0.30

0.40

0.52

(a) PINN solution to Problem 1.
−0.03

0.20

0.40

0.60

0.80
0.88

(b) PINN solution to Problem 2.

Figure 2: PINN solutions that lead to the smallest errors, cf. Tables 2 and 3. The left one is obtained
using Llr

1.0 and layer-adapted points and the right one by training PINNs with the Llrcw
10.0 on equispaced

points.
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Table 3: Minimal value of the error ‖u− uN‖L2 after 100, 000 epochs of the best PINNs that approxi-
mate the solution to Problem 2 for all distributions. The smallest value in each row is marked with bold
font. The blue number is the overall best value and the corresponding solution is plotted in Figure 2b.

loss functional random equispaced layer-adapted

Lst 6.517 · 10−2 6.951 · 10−2 2.582 · 10−1

Llr
0.01 1.196 · 10−1 1.795 · 10−1 2.005 · 10−1

Llr
0.1 9.590 · 10−2 3.122 · 10−1 1.547 · 10−1

Llr
1.0 1.242 · 10−1 7.605 · 10−2 1.740 · 10−1

Llr
10.0 1.375 · 10−1 3.462 · 10−2 1.908 · 10−1

Llrcw
0.01 1.675 · 10−1 5.206 · 10−1 2.580 · 10−1

Llrcw
0.1 1.655 · 10−1 1.960 · 10−1 2.540 · 10−1

Llrcw
1.0 1.781 · 10−1 6.694 · 10−2 2.497 · 10−1

Llrcw
10.0 2.006 · 10−1 3.418 · 10−2 2.570 · 10−1

of the exact solution (≈ 1.0). Moreover, it shows negative values, which the exact solution does
not have, and the network has difficulties to approximate the solution in the upper left corner of Ω.
Overall, we think that this is a somewhat unsatisfactory but still an acceptable solution. The reason why
layer-adapted points lead to worse solutions compared to the other choices of points might be again
that too much focus is spend on the layer regions. The numerical layer of the discrete solution is mainly
determined by the choice of the indicator function hind. With layer-adapted points and a non-optimal
choice of hind huge deviations between the discrete and the exact solution can occur in the layers
such that the networks have to spend too much training to counteract these errors. Moreover, when
the numerical layer is completely determined by the indicator function, both random and equidistant
points work comparably well since the solution in the rest of the domain is rather smooth and therefore
comparably easy to approximate.

5 Conclusion

We numerically compared the approximation quality of PINNs for convection-dominated convection-
diffusion problems trained with randomly drawn, equispaced and layer-adapted chosen collocation
points that are inspired by Shishkin meshes. It was observed that for a problem with an interior layer the
layer-adapted points worked the best, but the solution itself was quite inaccurate. For the problem with
boundary layers, layer-adapted points led to the worst results. An explanation for the behavior might be
that too much effort is put onto the layer region which makes it difficult for the network to approximate
the solution reasonably well in the whole domain. For problems with boundary layers we suggest to
control the layers by the indicator function of hard-constrained PINNs and remove any points from
the layer regions. In contrast, it seems to be useful to have points inside interior layers, but a suitable
proportion of these points compared to non-layer points is an open question.
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