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Analysis of a drift-diffusion model for
perovskite solar cells

Dilara Abdel, Annegret Glitzky, Matthias Liero

Abstract

This paper deals with the analysis of an instationary drift-diffusion model for perovskite solar cells
including Fermi–Dirac statistics for electrons and holes and Blakemore statistics for the mobile
ionic vacancies in the perovskite layer. The free energy functional is related to this choice of the
statistical relations.

Exemplary simulations varying the mobility of the ionic vacancy demonstrate the necessity
to include the migration of ionic vacancies in the model frame. To prove the existence of weak
solutions, first a problem with regularized state equations and reaction terms on any arbitrarily
chosen finite time interval is considered. Its solvability follows from a time discretization argument
and passage to the time-continuous limit. Applying Moser iteration techniques, a priori estimates
for densities, chemical potentials and the electrostatic potential of its solutions are derived that
are independent of the regularization level, which in turn ensure the existence of solutions to the
original problem.

1 Introduction

Perovskite solar cells (PSCs) have emerged as a groundbreaking technology in photovoltaics, promis-
ing a significant impact on the renewable energy landscape. This progress is rooted in perovskite
materials’ outstanding optical and electronic properties [29]. Since perovskites do not describe one
concrete material but belong to a class of crystalline semiconductors, they have several advantages
such as adjustable band gaps, high absorption coefficients, and low exciton binding energies. With
remarkable power conversion efficiency rates exceeding 30% [26], perovskite-silicon tandem solar
cells surpass the efficiency of widely used silicon solar cells under laboratory conditions. Despite
specific architectures demonstrating lower production costs than conventional solar cells, substantial
challenges exist, including concerns regarding stability, limited lifespan, and toxicity issues [29]. Fur-
thermore, the diffusion engineering of ionic migration is an important task to overcome the previously
mentioned challenges. Several experimental observations and simulations indicate the occurrence of
ionic vacancy accumulation near the perovskite interfaces [8, 23, 29].

The presence of additional ionic vacancy migration within perovskite materials is a significant dif-
ference from classical drift-diffusion charge transport models used for (in)organic semiconductors.
Equally important is the need to constrain the accumulation of vacancies properly. Accumulating an
excessive number of vacancies is physically unrealistic, potentially damaging the crystal structure and
resulting in unrealistically high vacancy concentrations. Initial drift-diffusion models for PSCs incor-
porating ionic movement, such as [10, 28, 30, 32], did not impose limits on the vacancy density by
choosing Boltzmann statistics. Subsequent models were introduced to address this limitation [2, 7,
9], reflected by the choice of statistics equal to a Blakemore approximation. Concerning the simula-
tion, one-dimensional (partially) open-access software tools for simulating vacancy-assisted charge
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transport in PSCs are available [7, 9, 22]. However, multi-dimensional models and software are in-
dispensable, especially when analyzing charge transport in structures like nanotextured PSCs [33],
where one-dimensional simulations fall short. Therefore, as an alternative approach, we rely on the
open-source software ChargeTransport.jl [3] for simulating charge transport in semiconduc-
tors using the Voronoi finite volume method in multi-dimensions. The discretization scheme was for-
mulated and analyzed in [1]. In particular, the existence of discrete solutions was proven.

The mathematical analysis of semiconductor drift-diffusion systems is commonly restricted to Boltz-
mann statistical relations for electrons and holes [6, 14, 34]. In more sophisticated models where
elevated carrier densities play a crucial role, one must consider Fermi–Dirac statistical relations, as
detailed in [16], for a rigorous mathematical analysis. Both statistical relations share the characteristic
that as the chemical potentials of the species approach infinity, the charge carrier densities also tend
towards infinity.

In contrast, in organic semiconductor materials the so-called Gauss–Fermi statistics hold that fea-
ture bounded carrier densities. The mathematical analysis in the setting of organic semiconductor
devices, incorporating this behavior along with adapted mobility laws, was conducted in [17]. In our
current model framework, we have to deal with both, non-bounded relations for electron and holes and
bounded statistical relations for the additional ionic vacancies. Furthermore, the continuity equations
for the latter are confined to the subdomain corresponding to the perovskite material. The electric
contacts of the device are realized in form of Dirichlet boundary conditions for electrons and holes
as well as the electrostatic potential. Conversely, the total number of ionic vacancies constitutes a
conserved quantity; hence, no-flux boundary conditions and no reactions are assumed. In a related
study [19], a drift-diffusion system modeling memristive devices with an additional ionic species is ex-
plored. However, Boltzmann statistics for all species and one common domain is considered. Finally,
in photovoltaic applications, as addressed in our text, the continuity equations for electrons and holes
incorporate an additional photogeneration rate. This rate accounts for the absorption of light and the
subsequent generation of an electron-hole pair.

The paper is organized as follows: In Section 2, there is a concise overview of the fundamental model
for perovskite materials, incorporating extra mobile ionic vacancies as outlined in [2]. The significance
of including these additional species is highlighted in Section 3, where simulation results are pre-
sented. The model analysis is detailed in Sections 4 and 5. Section 4 introduces key assumptions, the
weak formulation of the problem, and initial energy estimates. The proof of the existence result is then
provided in Section 5. Lastly, Section 6 offers a concluding summary.

2 Drift-diffusion modeling of perovskite solar cells

In this section, we formulate a rescaled drift-diffusion model for describing the charge transport in
PSCs. This model, derived in [2], includes the fundamental reaction rates and initial and boundary
conditions. In Section 4.1, suitable assumptions on the data will be formulated to continue with the
model analysis.

2.1 Drift-diffusion system

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, denote the spatial domain of the solar cell and I be the index set of
moving carriers. Additionally to the movement of electrons and holes in Ω, we consider the migration
of ionic vacancy carriers with the index set I0 ⊂ I in Ω0 ⊂ Ω. We define the densities of electrons,
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holes, and vacancies as ui, i ∈ I := {n, p}∪I0, where i = n and i = p refer to electrons and holes,
respectively. The considered drift-diffusion model is given by a Poisson equation for the electrostatic
potential ψ

−∇ · (ε∇ψ) =

{
C + znun + zpup in (0,∞)× (Ω \ Ω0),

C + znun + zpup +
∑

i∈I0 ziui in (0,∞)× Ω0,
(2.1a)

where ε corresponds to a rescaled dielectric permittivity, zi to the charge number of a species i ∈ I
and C corresponds to the fixed doping density. The Poisson equation is self-consistently coupled to
the continuity equations

∂ui
∂t
−∇ · (ziµiui∇ϕi) = G−R, i = n, p, in (0,∞)× Ω, (2.1b)

∂ui
∂t
−∇ · (ziµiui∇ϕi) = 0, i ∈ I0, in (0,∞)× Ω0, (2.1c)

where µi are the rescaled carrier mobilities. The generation/recombination terms G and R entering
the continuity equations of electrons and holes (2.1b) are discussed in Section 2.3. For the ionic
vacancy species i ∈ I0 we do not take into account any reactions.

The crucial statistical relation that connects the potentials ϕi and ψ to the charge carrier densities ui
is given by

ui = NiFi(zi(ϕi − ψ) + ζi) = NiFi(vi + ζi), where ϕi =
1

zi
vi + ψ, i ∈ I, (2.2)

with the effective densities of state Ni, the chemical potentials vi and ζi := ziEi, i ∈ I , where Ei is
the band-edge energy. The function Fi, called statistics function, will be discussed in Section 2.2.

In comparison to the model in [2], we rescaled the electrostatic potential ψ and the quasi Fermi po-
tentials ϕi by the thermal voltage UT = kBT/q. Here, kB refers to the Boltzmann constant, T to
the (constant) temperature and q to the elementary charge. Furthermore, we rescaled the chemical
potentials vi and the band-edge energies Ei by kBT . Lastly, we multiply the dielectric permittivity ε
by UT/q and the mobilities µi by UT .

We highlight that the introduced setting with a unified domain Ωi = Ω0, i ∈ I0, for the vacancies, is
only for notational simplicity. Our analysis would also allow (with simple adaptions) to handle different
Ωi for the different ions. Also the situation that on the whole domain Ω we have all the considered
ions, Ωi = Ω, i ∈ I , is included in our setting.

2.2 Statistical functions

For classical (inorganic) semiconductors the statistics functions for electrons and holes is given by the
Fermi–Dirac integral of order 1/2 (see e.g., [31])

F1/2(z) =
2√
π

∫ ∞
0

ξ1/2

exp(ξ − z) + 1
dξ, for z ∈ R (2.3)

i.e.,Fn = Fp = F1/2. In the case of small to moderate carrier densities [31], the Fermi–Dirac integral
of order 1/2 can be approximated by an exponential, called Boltzmann statistics, i.e., F1/2(z) ≈ ez.
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The proof of the existence of solutions is not restricted to these specific choices, but can be established
under the following general properties

(i) Fi ∈ C1(R), lim
z→−∞

Fi(z) = 0, lim
z→+∞

Fi(z) = +∞,

(ii) z ≤ c(1 + Fi(z)) for z ∈ R+,

(iii) 0 < F ′i(z) ≤ Fi(z) ≤ ez for z ∈ R.

i = n, p. (2.4)

Concerning the ionic vacancy carriers, accumulating too many vacancies is physically unrealistic as it
can destroy the crystal structure and lead to unrealistically high vacancy concentrations. This means,
we need to adequately limit the vacancy concentration which can be done via a proper choice of
statistics function. Following [2], we choose as statistics function the Fermi–Dirac integral of order−1
(which corresponds to the Blakemore statistics FB,γ function with γ = 1)

F−1(z) = FB,1(z), where FB,γ(z) =
1

e−z + γ
for z ∈ R, (2.5)

i.e., Fi = F−1 for all i ∈ I0. As for the statistics functions of electrons and holes, we assume that the
statistics function of the vacancy carriers satisfies the following properties

(i) Fi ∈ C2(R), lim
z→−∞

Fi(z) = 0, lim
z→+∞

Fi(z) = 1,

(ii) F ′i(z) < Fi(z) < ez for z ∈ R.,

(iii) F ′′i (z) < 0,
|F ′′i (z)|
F ′i(z)

< 1 for z ∈ R+,

(iv) 1 < (ezF ′i(z))−1 < c, for z ∈ R+.

i ∈ I0. (2.6)

The Fermi–Dirac integral of order 1/2 and the Boltzmann statistics indeed satisfy these properties
(2.4) while the Fermi–Dirac integral of order −1 satisfies (2.6), see also Appendix A.

2.3 Generation-recombination and photogeneration term

Following the depiction in [13], we assume for the generation-recombination term R in (2.1b) an ex-
pression of the form

R = r(un, up)
(
1− eϕn−ϕp

)
, with r(un, up) = r0(un, up)unup, (2.7)

where the non-negative function r0 is given by the sum of all recombination processes relevant in
photovoltaics. For instance, for PSCs the function r0 is given as the sum of the Shockley-Read-Hall
(SRH) and the radiative recombination rate [2], namely

r0(un, up) =
1

τp(un + un,τ ) + τn(up + up,τ )
+ r0,rad, (2.8)

where τn, τp are the carrier lifetimes and un,τ , up,τ some reference carrier densities. Moreover, r0,rad

is the constant rate coefficient.

For Boltzmann statistics, (2.7) is equivalent to the widely used form R = r0(un, up)(unup − n2
i ),

where ni is the intrinsic carrier density. The expression for the rate in (2.7) is compatible with ther-
modynamic equilibrium. In particular, it reflects the fact that in equilibrium the quasi Fermi levels of
electrons and holes have to coincide.
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The photogeneration rate G ∈ L∞+ (Ω) is assumed to be constant in time. In the simplest case, one
assumes a Lambert–Beer generation profile in the vertical direction xvert, i.e.,

G(x) = FphαG e−αGxvert for x = (x, xvert) (2.9)

with the incident photon flux Fph and an material absorption coefficient αG.

2.4 Initial and boundary conditions

For the densities ui, i ∈ I , we prescribe initial values

ui(0) = u0
i in Ω, i = n, p, ui(0) = u0

i in Ω0, i ∈ I0. (2.10)

We decompose the boundary of the domain ∂Ω into an ohmic contact ΓD and the semiconductor-
insulator interface ΓN . The ohmic contact ΓD corresponds to the semiconductor-metal interfaces and
are model via Dirichlet boundary conditions

ψ = ψ0 + U(t), ϕn = ϕp = U(t), on R+ × ΓD, (2.11)

where U denotes an externaly applied time-dependent voltage and ψ0 some given potential [13]. In
contrast to (2.11), we assume in the framework of our work time-independent boundary conditions.
More precisely, let the Dirichlet values ψD, ϕD ∈ W 1,∞(Ω) be given. Then, we take the following
boundary conditions into account

ψ = ψD, ϕn = ϕp = ϕD, on R+ × ΓD. (2.12a)

The semiconductor-insulator interface is realized by no-flux boundary conditions

ε∇ψ · ν = µiui∇ϕi · ν = 0, i = n, p, on R+ × ΓN , (2.12b)

where ν denotes the outer normal vector. At the boundary of the perovskite domain ∂Ω0 with outer
normal vector ν0 we assume no normal flux of ion vacancies

µiui∇ϕi · ν0 = 0 on R+ × ∂Ω0, i ∈ I0. (2.12c)

Due to the regularity assumptions in the weak formulation stated in Section 4.2 we are not in need of
additional conditions for electrons and holes on the internal boundaries.

3 Physically meaningful simulations

Before we proceed with the analysis of the charge transport model, we highlight the practical sig-
nificance of additional ionic vacancy carriers from an application perspective. Mobile vacancies pro-
foundly impact the model’s potentials, densities, and consequently, the current-voltage curves and the
efficiency of the solar cells.

To this end, we examine a three-layer perovskite solar cell (PSC), illustrated in Figure 3.1, with methy-
lammonium lead iodide (MAPI) as an extensively studied perovskite material. Given that the hopping
of iodide has the lowest energy barrier within MAPI [11], we assume the movement of only one ionic
vacancy for the simulations, precisely corresponding to the iodide vacancies of MAPI. We denote this
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carrier by a, i.e., I0 = {a}, with the charge number za = 1. In total, the set of unknowns is given
by the quasi Fermi potentials of electrons, holes, and ionic vacancy and the electrostatic potential
(ϕn, ϕp, ϕa, ψ). Subsequently, the charge carrier densities can be calculated via (2.2). Moreover, we
use PCBM as electron transport layer (ETL) material and PEDOT:PSS as hole transport layer (HTL)
material [29]. For electrons and holes, we have a present photogeneration (2.9) and a recombination
rate, given by (2.7) and (2.8), entering the model via the right-hand side of the continuity equations
(2.1b). We set Fn = Fp = F1/2 and Fa = F−1. All relevant physical parameters needed for the
simulations are stated in Table 3.1.

Figure 3.1: A possible three-layer PSC geometry Ω, divided into three subdomains: two transport
layers and the perovskite material layer Ω0. Furthermore, the relevant potentials are stated for each
subdomain, indicating that we only allow ionic vacancies in Ω0.

In practice, time-dependent scan protocols involving varying applied voltages are applied to analyze
the behavior of PSCs. Mathematically, this procedure is achieved using the boundary conditions (2.11).
For our simulations, we impose a linear voltage at the right contact with a scan rate of 40 mV/s.
We utilize an implicit Euler scheme for the temporal and a two-point flux finite volume approximation
scheme for the spatial discretization [1], where also the existence of discrete solutions for the used
scheme was established.

In the following, we investigate the impact of the vacancy mobility parameter µa, entering the current
density in (2.1c), on the charge transport dynamics within PSCs. We use the same initial configuration
for all simulations, depicted in Figure 3.2.

Physical quantity Symbol Value Unit
ETL MAPI HTL

Layer thickness 60 300 50 nm

Dielectric permittivity ε 3 23.0 4 ε0

Conduction band-edge energy En −3.8 −3.8 −3.0 eV

Valence band-edge energy Ep −6.2 −5.4 −5.1 eV

Eff. conduction band DoS Nn 1× 1025 1.0× 1025 1× 1026 m−3

Eff. valence band DoS Np 1× 1025 1× 1025 1× 1026 m−3

Doping density C 2.09× 1024 −1.0× 1024 −2.09× 1024 m−3

Electron mobility µn 1.0× 10−7 2.0× 10−3 1.0× 10−5 m2/(Vs)

Hole mobility µp 1.0× 10−7 2.0× 10−3 1.0× 10−5 m2/(Vs)

Radiative recombination coeff. r0,rad 6.8× 10−17 3.6× 10−18 6.3× 10−17 m3/s

SRH lifetime, electrons τn 1.0× 10−6 1.0× 10−7 1.0× 10−6 s

SRH lifetime, holes τp 1.0× 10−6 1.0× 10−7 1.0× 10−6 s

SRH density, electrons uτ,n 7× 104 3.6× 1011 2.3× 108 m−3

SRH density, holes uτ,p 7× 104 3.6× 1011 2.3× 108 m−3

Inc. photon flux Fph 1.4× 1021 1.4× 1021 1.4× 1021 1/(m2s)

Absorption coefficient αG 0.0 4.2× 106 0.0 m−1

Table 3.1: Parameter values from [7] for the simulation of a three-layer PSC at a temperature T = 300
K with PCBM as electron transport layer material and PEDOT:PSS as hole transport layer material.
Here, ε0 denotes the vacuum permittivity.

As can be seen in Figure 3.2 (right) the initial vacancy density ua depletes near the ETL/perovskite
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interface and accumulates near the perovskite/HTL interface. Note that due to a present photogenera-
tion rate the initial electron and hole quasi Fermi potentials do not coincide and are not zero Figure 3.2
(left).
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Figure 3.2: Initial potentials (left) and charge carrier densities (right) used for all simulations, which are
independent of the choice of vacancy mobility µa. The transport layers and the perovskite layer are
shaded in the respective colors, introduced in Figure 3.1.

The power conversion efficiency (PCE) and the open circuit voltage (OCV) are crucial performance
indicators for solar cells, offering insights into how effectively these cells convert sunlight into usable
electrical energy [27]. These metrics can be derived from information deduced from the current-voltage
(I-V) curve.

0.00 0.25 0.50 0.75 1.00 1.25
bias [V]

15

10

5

0

cu
rr

en
t d

en
si

ty
 [m

A 
cm

2 ]

a = 1.0 × 10 50 m2/(Vs)

a = 5.0 × 10 16 m2/(Vs)

a = 1.5 × 10 15 m2/(Vs)

a = 1.0 × 10 2  m2/(Vs) 10 17 10 16 10 15 10 14

vacancy mobility [m2/(Vs)]

12.5

15.0

PC
E

 [%
]

10 17 10 16 10 15 10 14

vacancy mobility [m2/(Vs)]

1.150

1.175

O
C

V 
[V

]

Figure 3.3: Left: The current-voltage characteristics for selected vacancy mobilities (left). Brighter color
indicates a larger vacancy mobility. Right: The power conversion efficiency (PCE) and the open circuit
voltage (OCV) in dependence on the vacancy mobility.

As Figure 3.3 illustrates, the mobility of vacancies µa substantially impacts the current-voltage charac-
teristics, the PCE, and the OCV. As the vacancy mobility tends to either zero or infinity, no significant
changes can be observed in the I-V curve (Figure 3.3, left) and, consequently, the PCE and the OCV
saturate (Figure 3.3, right). Within the range of µa ∈ [10−17, 10−14] m2/(Vs), we observe a notable
change in the I-V curve. Higher vacancy mobilities shift the total current to the right (Figure 3.3, left),
thereby increasing the PCE and OCV (Figure 3.3, right).

The variations in the I-V curves correspond to changes in the carrier densities in dependence on the
vacancy mobility, as shown in Figure 3.4. Larger vacancy mobilities decrease the depletion at the
ETL/perovskite interface while increasing the depletion on the perovskite/HTL interface (Figure 3.4,
first column). This behavior influences the electron and hole densities un, up near these boundaries
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Figure 3.4: Densities of vacancies, electrons and holes at time t = 15 s (first row) and at the end time
t = 30 s (second row). Brighter color indicates a larger vacancy mobility.

by several orders of magnitudes (Figure 3.4, second and third column). For higher mobilities, un, up
become more uniform within the perovskite layer. Consequently, this more uniform distribution con-
tributes to a delayed increase in the total current, as observed in Figure 3.3 (left) for higher mobilities.

4 Analysis of the instationary drift-diffusion model

4.1 Assumptions on the data

We work with the Lebesgue spaces Lp(Ω) and the Sobolev spaces W 1,p(Ω), p ∈ [1,∞], and
H1(Ω) = W 1,2(Ω). For p ∈ [1,∞], we define W 1,p

D (Ω) as the closure of the set

{y|Ω : y ∈ C∞0 (Rd), suppy ∩ ΓD = ∅}

in the Sobolev space W 1,p(Ω), and we set W−1,p
D (Ω) := W 1,p′

D (Ω)∗, where 1/p+ 1/p′ = 1.

In our estimates, positive constants that may depend at most on the data of our problem are denoted
by c. In particular, we allow them to change from line to line.

We investigate the instationary drift-diffusion model under the following assumptions:

(A1) Ω0 ⊆ Ω ⊂ R2 are bounded Lipschitz domains, Ω ∪ ΓN is regular in the sense of
Gröger [18], ΓD, ΓN ⊂ Γ =: ∂Ω disjoint subsets such that ΓD ∪ ΓN = Γ and
mes(ΓD) > 0, Ωn = Ωp := Ω, Ωi := Ω0, i ∈ I0.

(A2) Fi, i = n, p, fulfill (2.4), Fi, i ∈ I0, fulfill (2.6), Ni, µi ∈ L∞(Ωi), ζi = const,
0 < N ≤ Ni ≤ N, 0 < µ ≤ µi ≤ µ a.e. in Ωi, i ∈ I , and C, ε ∈ L∞(Ω),
0 < ε ≤ ε a.e. in Ω, zn = −1, zp = 1, zi ∈ Z, i ∈ I0,
vD0 := ψD, ϕD ∈ W 1,∞(Ω).
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Analysis of a drift-diffusion model for perovskite solar cells 9

(A3) R = r(x, un, up)
(
1− eϕn−ϕp

)
, such that r(x, un, up) = r0(x, un, up)un up, where

r0 : Ω× [0,+∞)2 → R is a Caratheodory function with
0 ≤ r0(x, un, up) ≤ r for a.a. x ∈ Ω and for all (un, up) ∈ [0,+∞)2,
G ∈ L∞(R+;L∞+ (Ω)).

(A4) u0
i ∈ L∞(Ω), 0 < u ≤ u0

i ≤ u, i = n, p,
u0
i ∈ L∞(Ω0), 0 < u ≤ u0

i ≤ ui < Ni a.e. in Ω0, i ∈ I0.

In the following, we suppress in the writing the spatial position x in the reaction coefficients r and r0,
respectively.

4.2 Weak formulation

We define the functions ei : R→ (0,∞), i = n, p, ei : R→ (0, 1), i ∈ I0, by

ei(z) = Fi(z + ζi), i = n, p, ei(z) = Fi(z + ζi), i ∈ I0. (4.1)

Then, Assumption (A2) guarantees

ui = Niei(vi) = NiFi(vi + ζi), vi = e−1
i ( ui

Ni
) = F−1

i ( ui
Ni

)− ζi,

∇ ui
Ni

= F ′i(vi + ζi)∇vi = e′i(vi)∇vi.

Note that the inverses e−1
i are well-defined on (0,∞) for i = n, p, and on (0, 1) for i ∈ I0.

We introduce the following function spaces

VD := {y ∈ H1(Ω) : y|ΓD = 0}, V0 := H1(Ω0), V := V 3
D × V

#I0
0 ,

H := VD × L2(Ω)2 × L∞(Ω0)#I0 , Z := H1(Ω)× L∞(Ω)2 × L∞(Ω0)#I0 ,

U :=
{
u ∈ V ∗D × L∞(Ω)2 × L2(Ω0)#I0 : lnui ∈ L∞(Ω), i = n, p,

0 < ess inf
x∈Ω0

ui/Ni ≤ ess sup
x∈Ω0

ui/Ni < 1, i ∈ I0

}
.

As in [15–17], we will use a weak formulation of (2.1) in the form

u′ + A(v, v) = 0, u = E(v), u(0) = u0

with the variables v = (v0, vn, vp, (vi)i∈I0) = (ψ, ψ−ϕn, ϕp−ψ, (zi(ϕi−ψ))i∈I0) (potentials),
u := (u0, un, up, (ui)i∈I0) and u0 := (u0

0, u
0
n, u

0
p, (u

0
i )i∈I0) (densities), where u0 denotes the to-

tal charge density. The initial total charge density u0
0 is given via 〈u0

0, w〉VD =
∑

i∈I
∫

Ωi
ziu

0
iw dx +∫

Ω
Cw dx for all w ∈ VD. Here, zn = −1, zp = 1, and zi, i ∈ I0, stand for the charge number of the

ion vacancies. Thus, we have the relations

vi = zi(ϕi − v0), and ϕi =
1

zi
vi + v0, i ∈ I. (4.2)

In these variables, our problem reads

−∇ · (ε∇v0) =

{
C + znun + zpup, in (0,∞)× (Ω \ Ω0)

C + znun + zpup +
∑

i∈I0 ziui, in (0,∞)× Ω0

,

∂ui
∂t
−∇ · (µiui(∇vi + zi∇v0)) = G−R, i = n, p,

∂ui
∂t
−∇ · (µiui(∇vi + zi∇v0)) = 0, i ∈ I0,

(4.3)
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with R = r(un, up)
(
1− e−vn−vp

)
and ui = Niei(vi), i ∈ I .

Moreover, we introduce the Dirichlet values vDn := vD0 − ϕD, vDp := ϕD − vD0 . For the ionic
vacancies we do not have to prescribe a Dirichlet value. But, for a unified notion we set vD :=
(vD0 , v

D
n , v

D
p , (0)i∈I0).

We consider operators E0 : vD0 + VD → V ∗D, E : (vD + V )∩Z → V ∗, A : Z × (vD + V )→ V ∗,

〈E0(v0), v0〉VD :=

∫
Ω

ε∇v0 · ∇v0 dx,

E(v) := (E0(v0), (Niei(vi))i∈I),

〈A(w, v), v〉V :=
∑
i∈I

∫
Ωi

Niei(wi)µi∇(vi + ziv0) · ∇(vi + ziv0) dx

+

∫
Ω

[r(Nnen(wn), Npep(wp))
(
1− e−wn−wp

)
−G](vn + vp) dx

=
∑
i∈I

∫
Ωi

z2
iNiei(wi)µi∇ϕi · ∇ϕi dx

+

∫
Ω

[r(Nnen(wn), Npep(wp))
(
1− eξn−ξp

)
−G](ϕp − ϕn) dx,

for all v0, vn, vp ∈ VD, vi ∈ V0, i ∈ I0, where ξi = w0 + 1
zi
wi, ϕi = v0 + 1

zi
vi, ϕi = v0 + 1

zi
vi,

i ∈ I . Note that the element u0 := E0(v0) represents the total charge density of the device under
consideration, we treat u0 as one of the unknowns of the problem.

For the initial state u0, we denote by v0
0 the unique solution to E0(v0) = u0

0 (note that E0 is
strongly monotone and Lipschitz continuous). Moreover, let v0

i := e−1
i (u0

i /Ni), i ∈ I , and v0 :=
(v0

0, (v
0
i )i∈I).

The weak formulation of the drift-diffusion system (2.1), (2.10), and (2.12) is Problem

u′ + A(v, v) = 0, u = E(v) a.e. on R+, u(0) = u0,

u ∈ H1
loc(R+, V

∗), v − vD ∈ L2
loc(R+, V ) ∩ L∞loc(R+, Z).

(P)

The set

U0 :=
{
u ∈ U : 〈u0 − C + un − up, y〉VD −

∑
i∈I0

zi〈ui, y|Ω0〉V0 = 0 ∀y ∈ VD
}

can be interpreted as the set of all possible states of the PSC device. Note that by definition u0
0 ∈ U0,

and u(t) ∈ U0 for all t ≥ 0 has to be verified for solutions (u, v) to (P).

Remark 4.1 Let (u, v) be a solution to (P). Then,∫
Ω0

ui(t) dx =

∫
Ω0

u0
i dx, i ∈ I0, for all t ∈ R+.

For i ∈ I0 this is obtained for any t ∈ R+ by testing u′ + A(v, v) = 0 by the test function being 1 in
the i-th component and 0 in all other components that belongs to L2(0, t;V ).
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4.3 Energy estimates for weak solutions

In the analytical treatment of drift-diffusion problems, entropy methods [15, 16, 20] play an important
part. We will work with a free energy functional (4.6) containing an electrostatic part and a chemical
part that is related to the statistical relations of the different types of species. The operator E is a
strictly monotone operator with the potential Φ : vD + V → R ∪ {+∞},

Φ(v) :=

∫
Ω

{ε
2
|∇v0|2 −

ε

2
|∇vD0 |2

}
dx+

∑
i∈I

∫
Ωi

Ni

∫ vi

vDi

ei(y) dy dx, (4.4)

note that vDi = 0 for i ∈ I0. The conjugate functional of Φ (see [12]) is

Ψ : V ∗ → R, Ψ(u) := Φ∗(u) = sup
w∈V
{〈u,w〉V − Φ(w + vD)}. (4.5)

Both functionals are convex. Note that the values of Φ(v) and Ψ(u) may be +∞. Because of
Φ(vD) = 0, we obtain Ψ(u) ≥ 0 for all u ∈ V ∗. Since the functional Φ is continuous, strictly
convex, and Gâteaux differentiable, it is also subdifferentiable and satisfies ∂Φ(v) = {Ev} if v ∈
(vD + V ) ∩ Z .

For states u = Ev ∈ V ∗, u ∈ U we calculate

Ψ(u) = 〈E(v), v − vD〉V − Φ(v)

=

∫
Ω

ε

2
|∇(v0−vD0 )|2 dx+

∑
i∈I

∫
Ωi

∫ vi

vDi

[ui−Niei(y)]dy dx,
(4.6)

where we took advantage from E0v0 = u0. Let ω :=
∫ vi
vDi

(ui−Niei(y)) dy. By separately consider-
ing different cases and exploiting that ei is monotonically increasing we derive:

A) If vDi < vi and |vDi − vi| ≤ 1 then

ω ≥ [ui −Niei(v
D
i + 1)](vi − vDi ) ≥ [ui −Niei(v

D
i + 1)] · 1.

B) If vDi < vi and |vDi − vi| > 1 then

ω ≥
∫ vDi +1

vDi

(ui −Niei(y)) dy ≥ [ui −Niei(v
D
i + 1)] · 1.

C) If vDi > vi then

ω =

∫ vDi +1

vi

(Niei(y)− ui) dy +

∫ vDi +1

vDi

(ui −Niei(y)) dy ≥ [ui −Niei(v
D
i + 1)] · 1.

Therefore, we obtain from (4.6) for these arguments u = E(v) that

‖un‖L1(Ω) + ‖up‖L1(Ω) +
∑
i∈I0

‖ui‖L1(Ω0) + ‖v0 − vD0 ‖2
H1 ≤ c(1 + Ψ(u)). (4.7)

For a state u ∈ V ∗ the quantity Ψ(u) can be interpreted as the free energy of the state u.

Note that in case of Fi = F−1 the part of the chemical energy for the ionic vacancies i ∈ I0 in (4.6)
can be written as∫

Ω0

∫ vi

0

[ui −Niei(y)]dy dx =

∫
Ω0

(
ui ln

ui
Ni

+ (Ni−ui) ln
(

1− ui
Ni

)
+Ni ln 2

)
dx

which forces the ionic vacancy density ui to stay in (0, Ni).
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Theorem 4.1 Let (A1) – (A4) be fulfilled. There exists a constant c > 0 such that for any weak
solution (u, v) to the instationary Problem (P) the free energy fulfills

Ψ(u(t)) ≤
(
Ψ(u(0)) + c

)
ect ∀ t > 0.

Additionally, if the Dirichlet values are compatible with thermodynamic equilibrium (meaning vD0 , ϕ
D =

const) and if the photogeneration rate G is identically zero, then the free energy Ψ(u(t)) is monoton-
ically decreasing.

Proof. Let t ∈ R+ be arbitrarily given. We test u′ + A(v, v) = 0 by v − vD ∈ L2(0, t;V ). Since
u(s) = E(v(s)) f.a.a. s ∈ [0, t] we obtain v(s) − vD ∈ ∂Ψ(u(s)) f.a.a. s ∈ [0, t] and the Brézis
formula (cf. [5, Lemma 3.3]) ensures the chain rule

Ψ(u(t))−Ψ(u(0)) =

∫ t

0

〈u′(s), v(s)−vD〉V ds = −
∫ t

0

〈A(v(s), v(s)), v(s)−vD〉V ds

= −
∫ t

0

[ ∫
Ω

∑
i=n,p

µiui∇ϕi · ∇(ϕi−ϕD) dx +

∫
Ω0

∑
i∈I0

z2
i µiui∇ϕi · ∇(ϕi−vD0 ) dx

]
ds

−
∫ t

0

∫
Ω

[r(eϕn−ϕp − 1) +G](ϕn − ϕp) dx ds

≤
∫ t

0

∫
Ω

∑
i=n,p

ui
2

(−µi|∇(ϕi − ϕD)|2 + c|∇ϕD|2) dx ds

+

∫ t

0

∫
Ω0

∑
i∈I0

z2
i

ui
2

(−µi|∇ϕi|2 + c|∇vD0 |2) dx ds+

∫ t

0

∫
Ω

G(vn + vp) dx ds

≤ c

∫ t

0

∫
Ω

(
(un + up)|∇ϕD|2 + v+

n + v+
p

)
dx ds+ c

∫ t

0

∫
Ω0

|∇vD0 |2 dx ds

≤ c

∫ t

0

∑
i=n,p

(‖ui‖L1 + ‖v+
i ‖L1 + 1) dx ds ≤ c

∫ t

0

∑
i=n,p

(‖ui‖L1 + 1) dx ds.

(4.8)

In (4.8), we applied Young’s inequality and toke into account the monotonicity of the exponential func-
tion and that ui ≤ Ni, i ∈ I0, on solutions (since u(t) = E(v(t)) f.a.a. t). By assumption we have
vD0 , ϕ

D ∈ W 1,∞(Ω), and G ∈ L∞(R+;L∞+ (Ω)). According to the assumption (ii) in (2.4) we have
‖v+

i ‖L1 ≤ c(1 + ‖ui‖L1), i = n, p. Moreover, (4.7) ensures an estimate of ‖ui(s)‖L1(Ω), i = n, p,
in terms of Ψ(u(s)) + c.

Then, we apply Gronwall’s lemma to get Ψ(u(t)) ≤ (Ψ(u(0))+c)ect for all t > 0. The last assertion,
for data compatible with thermodynamic equilibrium, directly results from (4.8). �

5 Existence result

In this section, T > 0 denotes an arbitrary finite time horizon. We consider the time interval S :=
[0, T ] and introduce the problem

u′ + A(v, v) = 0, u = E(v) a.e. on S, u(0) = u0,

u ∈ H1(S, V ∗), v − vD ∈ L2(S, V ) ∩ L∞(S,Z).
(PS)
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In the treatment of the instationary drift-diffusion model for PSCs, we have to overcome the following
essential problems compared to the classical van Roosbroeck system [14, 16]: (i) the statistical re-
lation for the ion vacancies does not satisfy the standard assumption in Gajewski/Gröger [16, (2.3)]
(see also [15, (3.5)] also for the treatment of non-Boltzmann statistics). In particular, we have finite
charge carrier densities in the case ei(y) = F−1(y + ζi) such that we do not have the property that
limy→+∞ ei(y) = +∞. However, the estimate e′i(y) ≤ cei(y) for all y ∈ R remains true in that
case which is of importance for the proof of lower bounds for the ionic vacancy densities. (ii) The con-
tinuity equations for electron and holes feature the additional photogeneration rate G, which models
the absorption of light and subsequent generation of an electron-hole pair. This additional term has to
be included in the a priori estimates.

The guideline for the existence proof is as follows: To show the existence of a weak solution for any
arbitrarily chosen finite time interval S = [0, T ], we first discuss a regularized problem (PM) on the
finite time interval S, where the state equations as well as the reaction term are regularized (with
parameter M ). We ensure the solvability of (PM) by time discretization, derivation of suitable a priori
estimates, and passage to the limit (see Lemma 5.2). Up to here, estimates are allowed to depend on
the regularization level M .

Then, we provide a priori estimates for solutions to (PM) that are independent of M (see Lemma 5.6,
here we use Moser techniques to get positive lower bounds for the carrier densities and Lemma 5.7,
where we derive upper bounds for the densities not depending on M ). Thus a solution to (PM) is a
solution to (P) on S, if M is chosen sufficiently large.

5.1 A regularized problem (PM)

For
M > M∗ := max

{
max
i∈I
‖e−1

i (u0
i /Ni)‖L∞(Ωi), ‖vDn ‖L∞ , ‖vDp ‖L∞

}
, (5.1)

we define the cut off function dM : R→ [−M,M ], dM(z) := min{max{z,−M},M} (and use it
also for vectors componentwise), and the regularized statistical relations

ui = Niei(dM(vi)) =: NieMi(vi), i ∈ I.

For our problem, we regularize the statistical relations and the reaction term, and consider regularized
operators EM : vD + V → V ∗, AM : (vD + V )2 → V ∗,

EM(v) := (E0v0, (NieMi(vi))i∈I),

〈AM(w, v), v〉V :=
∑
i∈I

∫
Ωi

z2
iNieMi(wi)µi∇ϕi · ∇ϕi dx

+

∫
Ω0

∑
i∈I0

zi
(
ziϕi−dM(ziw0)−dM(wi)

)
ϕi dx

+

∫
Ω

ρM(w)[r(Nnen(wn), Npep(wp))
(
1−e−wn−wp

)
−G](vn+vp) dx,

(5.2)

for all v0, vn, vp ∈ VD, and vi ∈ V0, i ∈ I0, where ϕi = v0 + 1
zi
vi, ϕi = v0 + 1

zi
vi, i ∈ I , and

ρM : R#I+1 → [0, 1] is a continuous function such that

ρM(v) =

{
0, if max{|vn|, |vp|} ≥M,

1, if max{|vn|, |vp|} < M/2.
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Note that ρM(v) = ρM(dM(v)). Then we consider the problem

u′ + AM(v, v) = 0, u = EM(v), u(0) = u0, u ∈ H1(S, V ∗), v − vD ∈ L2(S, V ). (PM)

Remark 5.1 Let (u, v) be a solution to the problem (PM) and let us assume that

(1 + max
i∈I0
|zi|)‖v0‖L∞(S,L∞(Ω)) ≤M, ‖vi‖L∞(S,L∞(Ω)) ≤ M

2
, i = n, p,

and ‖vi‖L∞(S,L∞(Ω0)) ≤M , i ∈ I0, then (u, v) solves (PS).

We solve the Problem (PM) by time discretization. For any Banach space X and k ∈ N we define
hk := T

k
and Ck(S,X) as the space of all functions u : S → X being constant on each of the

intervals ((l−1)hk, lhk], l = 1, . . . , k. Let ul denote the value of u ∈ Ck(S,X) on ((l−1)hk, lhk]
and introduce the maps τk and ∆k from Ck(S,X) into itself via

(τku)l := ul−1, (∆ku)l :=
1

hk
(ul − ul−1), l = 1, . . . , k,

with the given initial value u0. Additionally, we work with the continuous, piecewise linear function

(Kkuk)(t) := u0 +

∫ t

0

(∆kuk)(s) ds.

The time-discrete analogon of (PM) now reads

∆kuk + AM(vk, vk) = 0, uk = EM(vk), vk − vD ∈ Ck(S, V ) (5.3)

or written in more detail

EM(vlk) + hkAM(vlk, v
l
k) = EM(vl−1

k ) for l = 1, . . . , k and u0
k = EM(v0

k) = u0. (5.4)

Lemma 5.1 We assume (A1) – (A4). Then for all k ∈ N there exists a unique solution (uk, vk) to
problem (5.3). Additionally,

sup
k∈N

{
‖vk − vD‖L2(S,V ) + ‖∆kuk‖L2(S,V ∗) + ‖Kkuk‖C(S,H∗)

}
<∞.

Proof. 1. The operator v 7→ 1
hk
EM(v) + AM(v, v) with the given argument splitting in the definition

of the operator AM is an operator of variational type (see [25, p. 182]). Note that the main part (in the
argument v in (5.2)) is monotone, continuous and bounded and the regularized reaction term (in the
argument w) is bounded and Lipschitz continuous. Together with the coercivity of v 7→ 1

hk
EM(v) +

AM(v, v) this ensures for any given vl−1
k a solution vlk to (5.4). Thus, we can successively compose

from the solution for each time step a solution to (5.3).

2. We introduce the regularized functionals ΦM : vD + V → R, ΨM : V ∗ → (−∞,∞] by

ΦM(v) :=

∫
Ω

{ε
2
|∇v0|2 −

ε

2
|∇vD0 |2

}
dx+

∑
i∈I

∫
Ωi

Ni

∫ vi

vDi

eMi(y) dy dx,

ΨM(u) := sup
w∈V
{〈u,w〉V − ΦM(w + vD)}, u ∈ V ∗.

(5.5)
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Note that by definition vDi = 0 for i ∈ I0. The functional ΦM has the Fréchet derivative Φ′M = EM ,
and the conjugate functional ΨM for arguments u = EM(v) is obtained by

ΨM(u) = 〈u, v − vD〉V − ΦM(v) =
〈(
E0v0, (NieMi(vi))i∈I

)
, v − vD

〉
V
− ΦM(v). (5.6)

Moreover, we have v − vD ∈ ∂ΨM(u) provided that u = EM(v) for v ∈ vD + V . Exploiting (5.5)
and (5.6), we estimate the regularized free energy ΨM(u) for u = EM(v) where v ∈ vD + V from
below by

ΨM(u) =

∫
Ω

ε

2
|∇(v0 − vD0 )|2 dx+

∑
i∈I

∫
Ωi

∫ vi

vDi

(ui −NieMi(y)) dy dx

≥ c‖v0 − vD0 ‖2
H1 +

∑
i∈I

∫
Ωi

∫ dM (vi)

vDi

(ui −Niei(y)) dy dx

≥ c‖v0 − vD0 ‖2
H1 +

∑
i∈I

∫
Ωi

(
ui −Niei(v

D
i + 1)

)
dx.

The estimate in the last line results similar to the derivation of (4.7) by considering the different cases
for ωM :=

∫ dM (vi)

vDi
(ui −Niei(y)) dy. In summary, we obtain for arguments u = EM(v) that

‖un‖L1(Ω) + ‖up‖L1(Ω) +
∑
i∈I0

‖ui‖L1(Ω0) + ‖v0 − vD0 ‖2
H1 ≤ c(1 + ΨM(u)). (5.7)

Using (5.4), the subdifferential property, and the strong monotonicity of AM in the second argument,
we find for l = 1, . . . , k,

ΨM(ulk)−ΨM(u0) =
l∑

j=1

(
ΨM(ujk)−ΨM(uj−1

k )
)
≤

l∑
j=1

〈
ujk − u

j−1
k , vjk − v

D
〉
V

= −hk
l∑

j=1

〈
AM(vjk, v

j
k), v

j
k − v

D
〉
V

= −hk
l∑

j=1

{〈
AM(vjk, v

j
k)− AM(vjk, v

D), vjk − v
D
〉
V

+
〈
AM(vjk, v

D), vjk − v
D
〉
V

}
≤ −hk

l∑
j=1

{ ∑
i=n,p

µNei(−M)‖∇(ϕjki − ϕ
D
i )‖2

L2(Ω)

+
∑
i∈I0

z2
i

(
µNei(−M)‖∇(ϕjki − v

D
0 )‖2

L2(Ω0) + ‖ϕjki − v
D
0 ‖2

L2(Ω0)

)
+
〈
AM(vjk, v

D), vjk − v
D
〉
V

}
≤ −c

∫ lhk

0

{ ∑
i=n,p

‖∇(ϕki − ϕDi )‖2
L2(Ω) +

∑
i∈I0

‖ϕki − vD0 ‖2
V0

+
}

dt+ cM ,

(5.8)

where cM > 0 does not depend on k. Here we used that for any test function w ∈ L2(S, VD), we
can estimate the generation and recombination term by∫

S

∫
Ω

ρM(vk)[r(NneMn(vkn), NpeMp(vkp))
(
1− e−vkn−vkp

)
−G]w dx dt

≤ c(M)‖e2M + 1 + γ‖L2(S,L2(Ω))‖w‖L2(S,L2(Ω)).

(5.9)
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Because of ΨM(u0) <∞, the estimates (5.7), (5.8) guarantee that

sup
k∈N

{
‖vk0 − vD0 ‖L∞(S,VD) + ‖vk − vD‖L2(S,V )

}
<∞. (5.10)

Due to the regularizations in AM , we find from (5.10) that supk∈N ‖AM(vk, vk)‖L2(S,V ∗) < ∞
and supk∈N ‖∆kuk‖L2(S,V ∗) < ∞. Moreover, from uk0 = E0vk0 and (5.10) we conclude that
supk∈N ‖uk0‖L∞(S,V ∗D) < ∞. Taking into account that Niei(−M) ≤ uki < Niei(M), i ∈ I , and

(Kkuk)(t) =
(
t
hk
− l + 1

)
ulk +

(
l − t

hk

)
ul−1
k for t ∈ ((l−1)hk, lhk] we have Kkuk ∈ C(S,H∗)

and supk∈N ‖Kkuk‖C(S,H∗) <∞. �

Lemma 5.2 We assume (A1) – (A4). Then there exists a solution (u, v) to Problem (PM).

Proof. 1. Let {(uk, vk)}k∈N be a sequence of solutions to the time discretized problems according to
Lemma 5.1. Then, we find functions v and u and a non-relabelled subsequence such that

vk − vD ⇀ v − vD in L2(S, V ), Kkuk ⇀ u in L2(S,H) and H1(S, V ∗). (5.11)

We denote ϕi := v0 + 1
zi
vi, i ∈ I .

2. Since for w ∈ V and t ∈ S the map z 7→ 〈z(t), w〉, z ∈ H1(S, V ∗), defines a continuous linear
functional on H1(S, V ∗) we get from (5.11) that (Kkuk)(t) ⇀ u(t) in V ∗ for all t ∈ S. Moreover,
the boundedness of (Kkuk)(t) in H then guarantees (Kkuk)(t) ⇀ u(t) in H for t ∈ S. From
(Kkuk)(0) = u0, k ∈ N, we obtain u(0) = u0.

3. Since ‖Kkuk − uk‖L2(S,V ∗) ≤ hk‖∆kuk‖L2(S,V ∗) → 0 we find another non-relabelled subse-
quence such that (Kkuk − uk)(t) → 0 in V ∗, and uk(t) ⇀ u(t) in H f.a.a. t ∈ S. Using that
uki/Ni = eMi(vki) < ei(M), eMi are Lipschitzian, and {vki} are bounded in L2(S,H1(Ωi)) we
establish the boundedness of {uki/Ni} in L2(S,H1(Ωi)), too. And Lebesgue’s theorem ensures

uki ⇀ ui in L2(S, L2(Ωi)), i ∈ I. (5.12)

Next, we take advantage of the inequality (6.40) in [24, p. 529]:

For all δ > 0 there is a Lδ ∈ N such that

‖y‖2
L2 ≤

Lδ∑
j=1

(y, ψj)
2
L2 + δ‖y‖2

H1 ∀y ∈ H1(Ωi) ({ψj}j∈N ON-base in L2(Ωi)).

Setting y = (uki − uli)/Ni, we integrate this inequality over S. By the weak convergence in L2(Ωi)
a.e. in S, the boundedness of {uki(t)} in L2(Ωi) for t ∈ S, Lebesgue’s theorem and the bounded-
ness of {uki/Ni} in L2(S,H1(Ωi)) we verify that {uki} is a Cauchy sequence in L2(S, L2(Ωi)).
And (5.12) ensures the strong convergence

uki → ui, uki/Ni → ui/Ni in L2(S, L2(Ωi)), i ∈ I. (5.13)

In connection with Kkuk − uk → 0 in L2(S, V ∗) we conclude that (Kkuk − u)i → 0 in L2(S, V ∗D)
for i = n, p and (Kkuk − u)i → 0 in L2(S, V ∗0 ) for i ∈ I0.

4. Sine 〈AM(vk, vk), (y, (−ziy|Ωi)i∈I)
〉
V

= 0 for any y ∈ VD, we derive from (5.3) and partial
integration that for any fixed indices k1 and k2 of our subsequence and every y ∈ VD and all t ∈ S

0 =

∫ t

0

〈
∆k1uk1 −∆k2uk2 , (y, (−ziy|Ωi)i∈I)

〉
V

ds

=
〈
(Kk1uk1 −Kk2uk2)(t), (y, (−ziy|Ωi)i∈I)

〉
V
.
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Analysis of a drift-diffusion model for perovskite solar cells 17

Let JD be the duality map of VD. We set y = y(t) = J−1
D [(Kk1uk1 −Kk2uk2)0(t)] and obtain

‖(Kk1uk1 −Kk2uk2)0(t)‖2
V ∗D

=
〈
(Kk1uk1 −Kk2uk2)0(t), J−1

D [(Kk1uk1 −Kk2uk2)0(t)]
〉

=
∑
i=n,p

〈
(Kk1uk1 −Kk2uk2)i(t), J

−1
D [(Kk1uk1 −Kk2uk2)0(t)]

〉
VD

+
∑
i∈I0

〈
(Kk1uk1 −Kk2uk2)i(t), J

−1
D [(Kk1uk1 −Kk2uk2)0(t)]|Ω0

〉
V0
.

After integration over S we arrive at

‖(Kk1uk1 −Kk2uk2)0‖L2(S,V ∗0 )

≤ c
∑
i=n,p

‖(Kk1uk1 −Kk2uk2)i‖L2(S,V ∗D) + c
∑
i∈I0

‖(Kk1uk1 −Kk2uk2)i‖L2(S,V ∗0 ).

Thus, the last convergence results of Step 3 and the weak convergence in (5.11) ensure the strong
convergences (Kkuk)0 → u0 in L2(S, V ∗D) and Kkuk → u in L2(S, V ∗). Again by Step 3, we also
get uk → u in L2(S,H), and for a non-relabelled subsequence, uk(t)→ u(t) in V ∗ f.a.a. t ∈ S.

5. We consider any subinterval S̃ of S and ũ ∈ V ∗ with finite regularized free energy, ΨM(ũ) <∞.
Since ΨM is lower semicontinuous and vk − vD ∈ ∂ΨM(uk) a.e. in S we estimate∫

S̃

〈ũ− u(t), v(t)− vD〉V dt = lim
k→∞

∫
S̃

〈ũ− uk(t), vk(t)− vD〉 dt

≤ lim sup
k→∞

∫
S̃

(ΨM(ũ)−ΨM(uk(t))) dt ≤
∫
S̃

(ΨM(ũ)−ΨM(u(t))) dt.

This guarantees for a.a. t ∈ S that 〈ũ − u(t), v(t) − vD〉V ≤ ΨM(ũ) − ΨM(u(t)) meaning that
for the limit functions v(t)− vD ∈ ∂ΨM(u(t)) and u(t) ∈ ∂ΦM(v(t)) = EM(v(t)) for a.a. t ∈ S.
Applying the chain rule [5, Lemma 3.3] yields

ΨM(u(t))−ΨM(u0) =

∫ t

0

〈u′(s), v(s)− vD〉V ds ∀ t ∈ S. (5.14)

6. Using the strong monotonicity of E0 and u0(t) = E0v0(t), uk0(t) = E0vk0(t) a.e. in S we find for
the subsequence by the test with vk0 − v0 ∈ VD and integration over S

c‖vk0 − v0‖2
L2(S,VD) ≤

∫
S

〈E0vk0−E0v0, vk0−v0〉VDdt ≤ ‖uk0 − u0‖L2(S,V ∗D)‖vk0 − v0‖L2(S,VD).

Thus, c‖vk0 − v0‖L2(S,VD) ≤ ‖uk0 − u0‖L2(S,V ∗D) → 0 by Step 4. Additionally, from (5.13) and the

Lipschitz continuity of e−1
i on the interval [ei(−M), ei(M)] we get

dM(vki) = e−1
i (uki/Ni)→ e−1

i (ui/Ni) in L2(S, L2(Ωi)), i ∈ I. (5.15)

Let v̂ := (v0, (e
−1
i (ui/Ni))i∈I) and let Â(v) ∈ L2(S, V ∗) for u = EMv be defined by

〈Â(v), v〉V :=

∫
Ω

{
unµn∇ϕn · ∇ϕn + upµp∇ϕp · ∇ϕp

}
dx

+

∫
Ω0

∑
i∈I0

{
z2
i uiµi∇ϕi ·∇ϕi + zi

(
ziϕi−dM(ziv0)−v̂i

)
ϕi
}

dx

+

∫
Ω

ρM(v̂)[r(un, up)
(
1− e−v̂n−v̂p

)
−G](vn + vp) dx.
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D. Abdel, A. Glitzky, M. Liero 18

Taking into account that ρM(vk) = ρM(dM(vk)) we find

ρM(vk)r(Nnen(vkn), Npep(vkp))(1− e−vkn−vkp)

= ρM(dM(vk))r(Nnen(dM(vkn)), Npep(dM(vkp)))(1− e−dM (vkn)−dM (vkp)).

Using additionally (5.13) and (5.15) and Lebesgue’s dominated convergence theorem we derive for a
non-relabelled subsequence the convergence

AM(vk, v)→ Â(v) in L2(S, V ∗). (5.16)

7. Because (uk, vk) are solutions to (5.3), our convergence results for a subsequence obtained so far
(see also Step 2 in the proof of Lemma 5.1) lead to

0 = lim
k→∞

∫
S

〈∆kuk + AM(vk, vk), vk − v〉V dt

= lim
k→∞

∫
S

{
〈∆kuk, vk − vD〉V − 〈u′, v − vD〉V

+
〈
AM(vk, vk)− AM(vk, v), vk − v

〉
V

+
〈
AM(vk, v), vk − v

〉
V

}
dt

≥ lim sup
k→∞

{
ΨM(ukk)−ΨM(u0)

+

∫
S

[
〈u′, vD − v〉V + c

( ∑
i=n,p

‖∇(ϕki − ϕi)‖2
L2(Ω) +

∑
i∈I0

‖ϕki − ϕi‖2
V0

)]
dt
}
.

Note that the limit of the last term in the third line is zero because of (5.16) and vk − vD ⇀ v − vD
in L2(S, V ). The last two terms in the last line results from the strong monotonicity of AM in the last
argument. The weak lower continuity of ΨM on V ∗ yields

lim sup
k→∞

ΨM(ukk) = lim sup
k→∞

ΨM(uk(T )) ≥ ΨM(u(T )).

Therefore, using (5.14), the estimates of Step 7 ensure

ϕki − ϕi → 0 in L2(S, VD), i = n, p, ϕki → ϕi in L2(S, V0), i ∈ I0. (5.17)

In Step 6 it was already proven that ‖vk0 − v0‖L2(S,V0) → 0. Thus, we also verify the convergence
‖vki − vi‖L2(S,VD) → 0, i = n, p, ‖vki − vi‖L2(S,V0) → 0, i ∈ I0, and finally ‖vk − v‖L2(S,V ) → 0.

8. From vki → vi in L2(S, L2(Ωi)) we obtain dM(vki) → dM(vi) in L2(S, L2(Ωi)). By (5.15)
we have dM(vki) → e−1

i (ui/Ni) in L2(S, L2(Ωi)). The uniqueness of the limit gives dM(vi) =

e−1
i (ui/Ni) = v̂i, i ∈ I . Using again ρM(v) = ρM(dM(v)) we establish that Â(v) = AM(v, v) in
L2(S, V ∗). Therefore, for arbitrary w ∈ L2(S, V ) we estimate

〈AM(vk, vk)− AM(v, v), w〉V = 〈AM(vk, vk)− Â(v), w〉V
= 〈AM(vk, vk)− AM(vk, v), w〉V + 〈AM(vk, v)− Â(v), w〉V
≤ c
( ∑
i=n,p

‖ϕki − ϕi‖L2(S,VD) +
∑
i∈I0

‖ϕki − ϕi‖L2(S,V0)

)
‖w‖L2(S,V )

+ ‖AM(vk, v)− Â(v)‖L2(S,V ∗)‖w‖L2(S,V ).
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Thus,

‖AM(vk, vk)− AM(v, v)‖L2(S,V ∗) = sup
w∈L2(S,V )

〈AM(vk, vk)− AM(v, v), w〉L2(S,V )

‖w‖L2(S,V )

≤ c
∑
i=n,p

‖ϕki − ϕi‖L2(S,VD) + c
∑
i∈I0

‖ϕki − ϕi‖L2(S,V0) + ‖AM(vk, v)− Â(v)‖L2(S,V ∗).

Due to (5.16) and (5.17), we obtain for that subsequence AM(vk, vk) → AM(v, v) in L2(S, V ∗).
Since Step 1 yields AM(vk, vk) = −∆kuk ⇀ −u′ in L2(S, V ∗), we end up with the identity u′ +
AM(v, v) = 0. The relation u = EMv was already shown in Step 5 such that the limit (u, v) is
indeed a solution to (PM), which completes the proof. �

5.2 A priori estimates for problem (PM)

By the choice of M in (5.1) and the definition of ΨM , the value of ΨM(u0) does not depend on M ,

ΨM(u0) =

∫
Ω

ε

2
|∇(v0

0 − vD0 )|2 dx+
∑
i∈I

∫
Ωi

∫ v0
i

vDi

(u0
i −Niei(y)) dy dx = Ψ(u0).

Lemma 5.3 We assume (A1) – (A4). Let M fulfill (5.1). Then, there exist c, c∗ > 0 not depending
on M and u0 such that

‖v0(t)− vD0 ‖2
H1(Ω) +

∑
i∈I

‖ui(t)‖L1(Ωi) ≤ cecT (1 + Ψ(u0)) =: cT ∀t ∈ S,

‖v0(t)‖H1(Ω) + ‖v0(t)‖L∞(Ω) ≤ c∗(1 +
∑
i=n,p

‖ui(t)‖L2(Ω)) ∀t ∈ S,

for any solution (u, v) to (PM).

Proof. 1. By means of the test function v − vD for u′ + AM(v, v) = 0 we find for all t ∈ S

0 = ΨM(u(t))−Ψ(u0)

+

∫ t

0

{∑
i∈I

∫
Ωi

NieMi(vi)µi∇(vi + ziv0) · ∇(vi − vDi + zi(v0 − vD0 )) dx

+
∑
i∈I0

∫
Ω0

(
vi + ziv0 − dM(vi)− dM(ziv0)

)
(vi + zi(v0 − vD0 )) dx

+

∫
Ω

ρM(v)[r(Nnen(vn), Npep(vp))
(
1− e−vn−vp

)
−G](vn + vp) dx

}
ds

≥ ΨM(u(t))−Ψ(u0) +

∫ t

0

{∑
i∈I

∫
Ωi

NieMi(vi)µi
2

|∇(vi − vDi + zi(v0 − vD0 ))|2

+
∑
i∈I0

∫
Ω0

1

2

(
vi + ziv0 − dM(vi)− dM(ziv0)

)2
dx

− c
∫

Ω

(∑
i∈I

|∇(vDi + ziv
D
0 )|2 + |vD0 |2

)
dx

+

∫
Ω

ρM(v)[r(Nnen(vn), Npep(vp))
(
1− e−vn−vp

)
−G](vn + vp) dx

}
ds.
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Here we used the inequality (f + g−dM(f)−dM(g))(f + g) ≥ (f + g−dM(f)−dM(g))2 ≥ 0.
Moreover, note that ϕD, vD0 ∈ W 1,∞(Ω), the monotonicity of the exponential function, and that
ρM(v)(vn + vp) = ρM(v)(dM(vn) + dM(vp)) ≤ ρM(v)(dM(vn)+ + dM(vp)

+) ≤ un + up + c,
see (2.4). We arrive at

ΨM(u(t)) ≤ Ψ(u0) + c

∫ t

0

(
1 +

∑
i=n,p

‖ui(s)‖L1(Ω)

)
ds.

Next, we use (5.7) and apply Gronwall’s lemma to gain the first estimate of the lemma.

2. Since for arbitrarily given y ∈ V0, 〈AM(v(s), v(s)), (y, (−ziy|Ωi)i∈I)〉V = 0 we find

0 =

∫ t

0

〈u′(s), (y, (−ziy|Ωi)i∈I)〉V ds

= 〈(u0 + un − up)(t)− u0
0 − u0

n + u0
p, y〉VD −

∑
i∈I0

〈zi(ui(t)− u0
i ), y|Ω0〉V0 ∀ t ∈ S

and thus u(t) ∈ U0. Therefore, the test of E0v0(t) = u0(t) by v0(t)− vD0 yields

‖v0(t)‖VD ≤ c
(∑

i∈I

‖ui(t)‖L2(Ωi) + 1
)
≤ c
( ∑
i=n,p

‖ui(t)‖L2(Ω) + 1
)
.

Here we toke into account that vD0 ∈ W 1,∞(Ω), C ∈ L∞(Ω), and ui ≤ Ni0 for i ∈ I0.

3. Let l ≥ l0 := ‖vD0 ‖L∞ and y := (v0(t)− l)+ − (v0(t) + l)− ∈ VD. Then the test of E0v0(t) =
u0(t) leads to

c1‖y‖2
H1(Ω) ≤

∫
Ω

ε∇v0 · ∇y dx =

∫
Ω

(
C +

∑
i∈I

χΩiziui

)
y dx

≤ c
( ∑
i=n,p

‖ui(t)‖L2(Ω) + 1
)
‖y‖L2(Ω) ≤ c

( ∑
i=n,p

‖ui(t)‖L2(Ω) + 1
)
‖y‖L6(Ω)m

1/3
l

≤ c
( ∑
i=n,p

‖ui(t)‖L2(Ω) + 1
)
‖y‖H1(Ω)m

1/3
l .

Here, we used that C ∈ L∞(Ω), ui < Ni a.e. in Ω0 for i ∈ I0 and ml is the Lebesgue measure of
the set {x ∈ Ω : |y(x)| > l}. The last inequality ensures

(k − l)m1/6
k ≤ ‖y‖L6(Ω) ≤ c

( ∑
i=n,p

‖ui(t)‖L2(Ω) + 1
)
.

By [21, Lemma B.1] we conclude that ml = 0 for l ≥ l0 + c
(∑

i=n,p ‖ui(t)‖L2(Ω) + 1
)
. In other

words, ‖v0(t)‖L∞(Ω) ≤ c(1 +
∑

i=n,p ‖ui(t)‖L2(Ω)) for all t ∈ S. �

Exploiting the regularity result of Gröger [18, Theorem 1] for elliptic equations with non-smooth data
and mixed boundary conditions in two spatial dimensions for the Poisson equation and using the
boundedness of C and ui < Ni, i ∈ I0, we obtain

Lemma 5.4 We assume (A1) – (A4). Then, there exists a constant c > 0 and an exponent π > 2
(independent of M and T ) such that for any solution (u, v) to (PM)

‖v0(t)‖W 1,π(Ω) ≤ c
(

1 +
∑
i=n,p

‖ui(t)‖Lσ′ (Ω)

)
∀t ∈ S, where σ :=

2π

π − 2
, σ′ :=

2π

π + 2
.
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The following three results are proven in such a way that their estimates can be used for Problem (PM)
as well as for Problem (PS).

Lemma 5.5 We assume (A1) – (A4). Let M ≥M∗ with M∗ as in (5.1). Then, there exists a c0 > 0
depending only on the data (but not on M ) such that for any solution (u, v) to (PM)

ui(t) ≤ c0(T ) a.e. in Ω ∀t ∈ S, i = n, p.

Proof. 1. Let (u, v) be a solution to (PM) and q ≥ 2 (not the elementary charge as in Section 2!). Let

K := max
{

max
i=n,p
‖ei(zi(ϕD − vD0 ))‖L∞(Ω),max

i∈I
‖u0

i /Ni‖L∞(Ωi)

}
.

We define wi := ( ui
Ni
−K)+, i = n, p, and use for the equation u′+AM(v, v) = 0 the test function

q(0, wq−1
n , wq−1

p , 0, . . . , 0) ∈ L2(S, V )

to obtain for all t ∈ S∑
i=n,p

‖wi(t)‖qLq(Ω) +

∫ t

0

∫
Ω

∑
i=n,p

{
qµiui∇(vi + ziv0) · ∇wq−1

i

+ qρM(v)[r(1− exp{−vn − vp})−G]wq−1
i

}
dx ds = 0.

(5.18)

2. Since in this proof all spatial integrations concern Ω, we leave out here the domain Ω in the notation
for the norms. Using e′i(x) < ei(x), i = n, p, and the characteristic function χwi of the support of wi,
we estimate the diffusion term

ui
Ni

∇vi · ∇wq−1
i = (q−1)wq−2

i eiM(vi)∇vi · ∇(eiM(vi)−K)+

= (q−1)wq−2
i eiM(vi)e

′
iM(vi)|∇vi|2χwi ≥ (q−1)wq−2

i χwie
′
iM(vi)

2|∇vi|2

= (q−1)wq−2
i |∇wi|2 = 4(q−1)

q2 |∇wq/2i |2 ≥ 2
q
|∇wq/2i |2.

Using π and σ from Lemma 5.4, the essential drift part is estimated by∫
Ω

ui
Ni

∇v0 · ∇wq−1
i dx ≤ c(‖wq/2i ‖Lσ + 1)(‖∇v0‖Lπ + 1)‖∇wq/2i ‖L2 .

For the treatment of the reaction terms, note that due to Fn(x), Fp(x) ≤ ex we have re−vn−vp =
r0Nnen(vn)Npep(vp)e

−vn−vp ≤ c. Moreover, ρM(v)r ≥ 0 such that

qρM(v)[G− r(1− exp{−vn − vp})]wq−1
i ≤ cqwq−1

i .

In summary, the previous arguments ensure to conclude from (5.18) the inequality∑
i=n,p

‖wi(t)‖qLq ≤
∫ t

0

∑
i=n,p

{
− 2µN‖∇wq/2i ‖2

L2 + cq(‖wq/2i ‖2
L2 + 1)

+ cq(‖wq/2i ‖Lσ + 1)(‖∇v0‖Lπ + 1)‖∇wq/2i ‖L2

}
ds.

(5.19)
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3. For q = 2 we obtain from (5.19) due to Lemma 5.4∑
i=n,p

‖wi(t)‖2
L2 ≤

∫ t

0

∑
i=n,p

{
−2µN‖∇wi‖2

L2 + c(‖wi‖2
L2 + 1)

+ c(‖wi‖Lσ + 1)(‖∇v0‖Lπ + 1)‖∇wi‖L2

}
ds

≤
∫ T

0

∑
i=n,p

{
−2µN‖∇wi‖2

L2 + c(‖wi‖2
L2 + 1)

+ c(‖wi‖Lσ + 1)(
∑
j=n,p

‖uj‖Lσ′ + 1)‖∇wi‖L2

}
ds.

Note that ui ≤ Ni(wi +K). For all y ∈ H1
D(Ω) we estimate by Gagliardo-Nirenberg’s inequality

‖y‖2
L2 ≤ c‖y‖L1‖∇y‖L2 , ‖y‖Lσ ≤ c‖y‖1/σ

L1 ‖∇y‖1/σ′

L2 , ‖y‖Lσ′ ≤ c‖y‖1/σ′

L1 ‖∇y‖1/σ

L2 ,

such that after applying Young’s inequality and the first estimate from Lemma 5.3 we find∑
i=n,p

‖wi(t)‖2
L2 ≤ c(K)

∫ t

0

(
∑
i=n,p

‖wi‖2
L1 + 1) ds ≤ c(K)

∫ T

0

(c2
T + 1) ds = ĉ(T ). (5.20)

Because of σ′ < 2 and ui ≤ Ni(wi +K), Lemma 5.4 ensures a T dependent bound

κT := (‖v0‖C(S,W 1,π
D (Ω)) + 1)2σ. (5.21)

4. For q ≥ 2 we obtain from (5.19) under the use of Gagliardo-Nirenberg’s and Young’s inequality and
(5.21) that ∑

i=n,p

‖wi(t)‖qLq ≤ cq2σκTT
∑
i=n,p

(sup
t∈S
‖wi‖qLq/2 + 1) ∀t ∈ S. (5.22)

Setting q = 2m,m ≥ 0, andωm :=
∑

i=n,p(supt∈S ‖wi(t)‖2m

L2m+1) we findωm ≤ c̃m 2cκTTω
2
m−1,

c̃ := 22σ, and repeated application gives ωm ≤ (c̃ 2cκTTω0)2m which means∑
i=n,p

sup
t∈S
‖wi(t)‖L2m ≤ c̃ 2cκTT

∑
i=n,p

(sup
t∈S
‖wi(t)‖L1 + 1),

and leads in the limit m→∞ to∑
i=n,p

sup
s∈S
‖wi(t)‖L∞ ≤ c̃ 2cκTT

∑
i=n,p

(sup
t∈S
‖wi(t)‖L1 + 1) ∀t ∈ S. (5.23)

Together with the inequality wi ≤ ui/Ni and the first estimate in Lemma 5.3, we obtain the bound∑
i=n,p ‖wi(t)‖L∞ ≤ c(T ) for all t ∈ S. This ensures that ui(t) ≤ Ni(wi(t) + K) ≤ N(wi(t) +

K) ≤ N(c(T ) +K) for all t ∈ S. �

Lemma 5.6 We assume (A1) – (A4). Let M ≥ max{M∗,maxi∈I0 |zi|c∗(1 + 2c0(T )|Ω|1/2} with
M∗ as in (5.1), c∗ from Lemma 5.3 and c0(T ) from Lemma 5.5. Then, there exists c1 > 0 depending
only on the data (but not on M ) so that for any solution (u, v) to (PM)

ui(t) ≥ c1(T ) a.e. in Ωi ∀t ∈ S, i ∈ I.
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Proof. 1. Let (u, v) be a solution to (PM). We set

K := max
{

max
i=n,p
‖ln ei(vDi )‖L∞ , max

i∈I
‖
(

ln(u0
i /Ni)

)−‖L∞ , max
i∈I

ln ei(0)
}
.

Our choice of K ensures that
(

ln (ui/Ni) + K
)−

(0) = 0, i ∈ I , and
(

ln (ui/Ni) + K
)− ∈

L2(S, VD), i = n, p. First, we show the assertion for i = n and use the test function

−q
(
0,

wq−1

un/Nn

, 0, 0, . . . , 0
)
∈ L2(S, V ), q ≥ 2, w :=

(
lnun/Nn +K

)−
.

Analogously this can be done for i = p. Note that due to the definition of the reaction rate, the
boundedness of r0 and the charge carrier density (see Lemma 5.5) and the sign of the test function

R
wq−1

un/Nn

= r0(un, up)Nnup

(
1− exp

{
−e−1

n (un)−e−1
p (up)

})
wq−1 ≤ c(T )wq−1,

−G wq−1

un/Nn

≤ 0.

(5.24)

We arrive at

‖w(t)‖qLq ≤
∫ t

0

∫
Ω

q
{
µnun∇(vn − v0) · ∇

( wq−1

un/Nn

)
+ cwq−1

}
dx ds

≤
∫ t

0

∫
Ω

q
{
µnNn(∇vn −∇v0) · ∇w

(
(q−1)wq−2 + wq−1

)
+ c(wq + 1)

}
dx ds. (5.25)

Since e′n(y) ≤ en(y) for all y ∈ R (see (iii) of (2.4)) we find

∇vn · ∇w = −|∇vn|2
e′Mn(vn)χsupp w

eMn(vn)
≤ −

(
|∇vn|

e′Mn(vn)χsupp w

eMn(vn)

)2

= −|∇w|2. (5.26)

Moreover, we rewrite

q(q−1)wq−2|∇w|2 =
4(q−1)

q
|∇wq/2|2, qwq−1|∇w|2 =

4q

(q + 1)2
|∇w(q+1)/2|2.

We continue the estimate (5.25) with suitable δ > 0 and c̃(T ) > 1 by

‖w(t)‖qLq ≤
∫ t

0

{
− δ‖wq/2‖2

H1 −
δ

q
‖w(q+1)/2‖2

H1 + c(T )q(‖wq/2‖2
L2 + 1)

+ cq(‖wq/2‖Lσ + 1)(‖v0‖Lπ + 1)‖∇wq/2‖L2

}
ds

≤
∫ t

0

−δ
q
‖w(q+1)/2‖2

H1 + c̃(T )q2σκT (‖wq/2‖2
L1 + 1)

}
ds.

(5.27)

Here we used the definition (5.21) and again Gagliardo-Nirenberg’s and Young’s inequality.

2. With the estimate for values θ ∈ R+ and the function w ∈ V0

θ ‖w‖2
L1 ≤ θ c ‖w‖2

L3/2 = θ c ‖w3/2‖4/3

L1 ≤ θ c ‖w3/2‖4/3

H1 ≤
δ

2
‖w3/2‖2

H1 + c θ3,

we now consider the inequality (5.27) for q = 2 and get ‖w(t)‖2
L2 ≤ c(T ) for all t ∈ S. Therefore

‖w(t)‖L1 ≤ c‖w(t)‖L2 ≤ c(T ) for all t ∈ S.
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For arbitrary q ≥ 2, we exploit (5.27) and omit the first term on the right-hand side to obtain

‖w(t)‖qLq ≤ ĉ(T )q2σκT (sup
s∈S
‖wq/2(s)‖2

L1 + 1). (5.28)

3. Setting q = 2m, m ≥ 0, and ωm := supt∈S ‖w(t)‖2m

L2m + 1 we find ωm ≤ c̃m 2ĉ(T )κTω
2
m−1,

c̃ := 22σ, and repeated application gives ωm ≤ (c̃ 2ĉ(T )κTω0)2m which means

sup
t∈S
‖w(t)‖L2m ≤ c̃ 2ĉ(T )κT (sup

t∈S
‖w(t)‖L1 + 1).

For the limit m→∞, we derive

sup
s∈S
‖w(t)‖L∞ ≤ c̃ 2ĉ(T )κT (sup

t∈S
‖w(t)‖L1 + 1) ∀t ∈ S.

Together with supt∈S ‖w(t)‖L1 ≤ c(T ) we obtain ‖w(t)‖L∞ ≤ 2c̃ ĉ(T )κT (c(T ) + 1) for all t ∈ S.
Finally, this ensures for all t ∈ S

− ln
un(t)

Nn

≤ K + 2c̃ ĉ(T )κT (c(T ) + 1), c1(T ) := Ne−K−2c̃ ĉ(T )κT (c(T )+1) ≤ un(t) a.e. in Ω.

4. The lower estimate for up follows exactly the same technique as presented for un. For ui, i ∈ I0 we

use the test function with the i-th component−q wq−1

ui/Ni
∈ L2(S, V0), q ≥ 2, w :=

(
lnui/Ni +K

)−
.

All other components are zero. In contrast to the situation for un and up, here no parts coming from
the generation-recombination of electrons and holes appear, but∫

Ω0

q(ziϕi − dM(ziv0)− dM(vi))
wq−1

ui/Ni

dx =

∫
Ω0

q(ziv0 + vi − dM(ziv0)− dM(vi))
wq−1

ui/Ni

dx

has to be estimated on the right hand side. Our choice of M guarantees that dM(ziv0) = ziv0 a.e.
in Ω0 for all t ∈ S. Therefore the last integral reduces to

∫
Ω0
q(vi − dM(vi))

wq−1

ui/Ni
dx which is non-

positive and can be neglected in the estimate. Note that our choice of K ensures that vi ≤ 0 in case
that w 6= 0. The drift term is estimated as for electrons and holes using the expression κT such that
we can proceed as in estimate (5.27) and follow the Steps 2 and 3 of the present proof. �

After obtaining the positive lower bound for ui we are able to verify a suited upper bound for ui less
thanNi, i ∈ I0, by choosing powers of the function (evi−K)+, i ∈ I0, for a Moser iteration technique
(see Lemma 5.7).

Lemma 5.7 We assume (A1) – (A4). Let M ≥ max{M∗,maxi∈I0 |zi|c∗(1 + 2c0(T )|Ω|1/2} with
M∗ as in (5.1), c∗ from Lemma 5.3 and c0(T ) from Lemma 5.5. Then, there exists a constant c2,
0 < c2(T ) < 1, depending only on the data (but not on M ) such that for any solution (u, v) to (PM)

ui(t) ≤ c2(T )Ni a.e. in Ω0, ∀t ∈ S, i ∈ I0.

Proof. 1. For the derivation of upper bounds for the density ui strictly lower than Ni, i ∈ I0, we verify
a finite upper bound for the potential vi, more precisely, for evi . This is recommendable, since for test
functions of the form

q
[
(evi −K)+

]q−1
evi

e′i(vi)
(5.29)
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in a corresponding Moser iteration, all terms arising from the test of the continuity equation for ui
can be handled. Here the estimates in (2.6) play an important role. They ensure for vi > −ζi the
inequalities

eζi ≤ 1

evie′i(vi)
≤ ceζi ,

|e′′i (vi)|
e′i(vi)

< 1, e′′i (vi) < 0. (5.30)

However, we cannot use the function in (5.29) directly since it is not a priori clear that it belongs to
L2(S, V0). We have to approximate it by substituting vi in (5.29) by vL := min(vi, L) for L large
enough and considering the limit L→∞ in the resulting estimates.

2. Let (u, v) be a solution to (PM). We set K := maxi∈I0 max{e‖e
−1
i (u0

i /Ni)‖L∞(Ω0) , e−ζi , 1}. Let i ∈
I0 be arbitrarily fixed and L > lnK > 0, vL := min(vi, L), L̃ := Niei(L), and uL̃ := min(ui, L̃).
We use the test function with the i-th component

qWL(vi) := q
wq−1
L evL

e′i(vL)
, q ≥ 2, wL :=

(
evL −K

)+
. (5.31)

All other components are set to zero. Since e′i(y) > 0 for all y and F ′′i (η) < 0 for all η ≥ 0, we
obtain e′i(vL) ≥ c(L) > 0 for vi ≥ lnK . Moreover, evL < c̃(L). (5.30) ensures an upper bound for
|e′′i (vL)|. Thus we find an estimate for

∇WL(vi) =
{(q−1)[(evL −K)+]q−2e2vL

e′i(vL)
+

[(evL −K)+]q−1evL

e′i(vL)

− [(evL −K)+]q−1evLe′′i (vL)

(e′i(vL))2

}
∇vi χ{x:lnK≤vi≤L}

such that WL(vi) ∈ L2(S, V0) and (5.31) is an admissible test function. Moreover, our choice of K
guarantees that wL(0) = 0. Next, we rewrite

WL(vi) =
[(ee

−1
i (u

L̃
) −K)+]q−1ee

−1
i (u

L̃
)

e′i(e
−1
i (uL̃))

=: ũL̃

and obtain ∫ t

0

q〈u′i, ũL̃〉V0 ds =

∫
Ω

(
g(ui(t))− g(u0

i )
)

dx, (5.32)

where

g(y) :=

∫ y

0

[(ee
−1
i (min(τ,L̃)) −K)+]q−1ee

−1
i (min(τ,L̃))

e′i(e
−1
i (min(τ, L̃)))

dτ.

The validity of (5.32) is clear for smooth ui ∈ H1(S, L2). For general ui the validity of this relation is
obtained via approximation by smooth functions and passing to the limit. Note that due to the choice
of K we have g(u0

i ) = 0. Additionally, we have the lower estimate

g(ui) ≥ g(min(ui, L̃)) = g(uL̃) =

∫ min(ui,L̃)

0

[(ee
−1
i (min(τ,L̃)) −K)+]q−1ee

−1
i (min(τ,L̃))

e′i(e
−1
i (min(τ, L̃)))

dτ

= [(ee
−1
i (min(ui,L̃)) −K)+]q = [(emin(vi,L) −K)+]q = [(evL −K)+]q = wqL.

3. The term resulting from the regularization∫
Ω0

(dM(ziv0) + dM(vi)− ziϕi)
qwq−1

L evL

e′i(vL)
dx

=

∫
Ω0

(dM(ziv0) + dM(vi)− ziv0 − vi)
qwq−1

L evL

e′i(vL)
dx
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has to be estimated on the right hand side. Our choice of M guarantees that dM(ziv0) = ziv0

a.e. in Ω0 for all t ∈ S. Therefore the last term reduces to
∫

Ω0
q(dM(vi) − vi)

wq−1
L evL

e′i(vL)
dx which is

non-positive (note that wL = 0 for vi < 0), and will be neglected.

4. Using the test function (5.31) and the relation (5.32), the estimate for the function g, and Step 3, it
follows that

‖wL(t)‖qLq(Ω0) ≤ −
∫ t

0

q

∫
Ω0

µiui∇(vi − ziv0) · ∇
(wq−1

L evL

e′i(vL)

)
dx ds

= −
∫ t

0

q

∫
Ω0

µi
{
ui
(
Θ1 + Θ2 + Θ3 + Θ4 + Θ5 + Θ6

)}
dx ds,

(5.33)

where the terms Θi, i = 1, . . . , 6, are defined and estimated separately. Since here all spatial inte-
grals are with respect to Ω0, we will leave this out in the notation of the estimated norms in the rest of
the poof. We use the properties ∇vi · ∇wL = |∇wL|2 e−vL , wL < evL , ∇vi · ∇vL = |∇vL|2 and
the estimates in (5.30) such that

Θ1 := q(q−1)∇vi · ∇wLwq−2
L

evL

e′i(vL)
≥ q(q−1)|∇wL|2wq−2

L

wL
evLe′i(vL)

= q(q−1)|∇wL|2wq−1
L

1

evLe′i(vL)
=

4q(q−1)

(q + 1)2

|∇w(q+1)/2
L |2

evLe′i(vL)
≥ ceζi |∇w(q+1)/2

L |2,

Θ2 := q|∇vL|2wq−1
L

evL

e′i(vL)
≥ 0, Θ3 := −q∇vi · ∇vLwq−1

L

evLe′′i (vL)

(e′i(vL))2
≥ 0.

The terms resulting from the drift are estimated as follows

Θ4 := q(q−1)∇v0 · ∇wLwq−2
L

evL

e′i(vL)
= q(q−1)∇v0 · ∇wLw

q−1
2

L w
q−3

2
L

evL

e′i(vL)

=
2q(q−1)

q + 1
∇v0 · ∇(w

q+1
2

L )w
q−3

2
L

evLevL

evLe′i(vL)
,

|Θ4| ≤ cq|∇v0||∇w
q+1

2
L |

(
|w

q+1
2

L |+ 1
) 1

evLe′i(vL)
≤ cq|∇v0||∇w

q+1
2

L |
(
|w

q+1
2

L |+ 1
)
.

For the remaining terms Θ5 and Θ6, we argue

Θ5 := q∇v0 · ∇vLwq−1
L

evL

e′i(vL)
= q∇v0 · ∇wLw

q−1
2

L w
q−1

2
L

evL

evLe′i(vL)
,

|Θ5| ≤ c|∇v0||∇w(q+1)/2
L |

(
|w

q+1
2

L |+ 1
) 1

evLe′i(vL)
≤ c|∇v0||∇w(q+1)/2

L |
(
|w

q+1
2

L |+ 1
)
,

Θ6 := −q∇v0 · ∇vLwq−1
L

evLe′′i (vL)

(e′i(vL))2
= −q∇v0 · ∇wLw

q−1
2

L w
q−1

2
L

evL

evLe′i(vL)

e′′i (vL)

e′i(vL)
,

|Θ6| ≤ c|∇v0||∇w(q+1)/2
L |

(
|w

q+1
2

L |+ 1
) 1

evLe′i(vL)

|e′′i (vL)|
e′i(vL)

≤ c|∇v0||∇w(q+1)/2
L |

(
|w

q+1
2

L |+ 1
)
.

By the estimates for Θi, i = 1, . . . , 6, c1(T ) ≤ ui < Ni a.e. in Ω0 (see Lemma 5.6), and (A2), we
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continue estimate (5.33) and ensure for a suitable δ = δ(T ) > 0 (and π, σ and κT from (5.21)) that

‖wL(t)‖qLq ≤
∫ t

0

{
− δ‖w

q+1
2

L ‖
2
H1 + cq(‖w

q+1
2

L ‖
2
L2 + 1)

+ cq‖∇v0‖Lπ(‖w
q+1

2
L ‖Lσ + 1)‖w

q+1
2

L ‖H1

}
ds

≤
∫ t

0

{
− δ

2
‖w

q+1
2

L ‖
2
H1 + ĉq2σκT (‖w

q+1
2

L ‖
2
L1 + 1)

}
ds.

(5.34)

As in the estimate (5.28) in the proof of Lemma 5.6, we applied Hölder’s, Gagliardo-Nirenberg’s and

Young’s inequality, but now for the function w
q+1

2
L instead of w

q
2 .

5. Next, we calculate

‖w
q+1

2
L ‖

2
L1 ≤

(
‖w

q
4
L‖L2‖w

q+2
4

L ‖L2

) 4
q+1

= ‖w
q
2
L‖

2
q+1

L1 ‖w
q+1

2
L ‖

2(q+2)

(q+1)2

L
q+2
q+1

≤ c̃‖w
q
2
L‖

2
q+1

L1 ‖w
q+1

2
L ‖

2(q+2)

(q+1)2

H1

≤ c̃
(4δĉq2σκT

4δĉq2σκT

) q+2

(q+1)2 ‖w
q
2
L‖

2
q+1

L1 × ‖w
q+1

2
L ‖

2(q+2)

(q+1)2

H1

≤ δ

4

1

ĉq2σκT
‖w

q+1
2

L ‖
2
H1 + c̃

(q+1)2

q2+q−1

(4ĉq2σκT
δ

) q+2

q2+q−1‖w
w
2
L ‖

2(q+1)

q2+q−1

L1

≤ δ

4

1

ĉq2σκT
‖w

q+1
2

L ‖
2
H1 + c̃

(q+1)2

q2+q−1

(4ĉq2σκT
δ

) q+2

q2+q−1
(‖w

q
2
L‖

2
L1 + 1).

Inserting this estimate in (5.34) we find for a suitable cδ > 1 that

‖wL(t)‖qLq ≤
∫ t

0

{
− δ

4
‖w

q+1
2

L ‖
2
H1 + c̃

(q+1)2

q2+q−1

(4

δ

) q+2

q2+q−1
(
ĉq2σκT

)1+
(q+1)2

q2+q−1
(‖w

q
2
L‖

2
L1 + 1)

}
ds

≤
∫ t

0

{
− δ

4
‖w

q+1
2

L ‖
2
H1 + cδq

6σ(‖w
q
2
L‖

2
L1 + 1)

}
ds ∀t ∈ S. (5.35)

6. As in Step 2 of the proof of Lemma 5.6, we have for arbitrary θ ∈ R+ that θ ‖wL‖2
L1 ≤ δ

2
‖w3/2

L ‖2
H1+

c θ3. Inserting this in estimate (5.35) for q = 2 we establish that ‖wL(t)‖L2 ≤ c(T ) for all t ∈ S and
therefore also supt∈S ‖wL(t)‖L1 ≤ c(T ). Moreover, for arbitrary q ≥ 2, it follows from (5.35) that

‖wL(t)‖qLq ≤ cδq
6σ−1T

(
sup
s∈S
‖w

q
2
L(s)‖2

L1 + 1
)
. (5.36)

7. Defining
ωm = sup

s∈S
‖wL(s)‖2m

L2m + 1, m = 0, 1, 2, . . .

we find from (5.36) for q = 2m, m ≥ 1, and c := cδT 26σ that ωm ≤ cmω2
m−1 and repeated

application gives ωm ≤ (c ω0)2m which means ‖wL(t)‖L2m ≤ c (sups∈S ‖wL(s)‖L1 + 1), and
leads in the limit m→∞ to

‖wL(t)‖L∞ ≤ c (sup
s∈S
‖wL(s)‖L1 + 1) ∀t ∈ S. (5.37)

With supt∈S ‖wL(t)‖L1 ≤ c(T ) (see Step 6), (5.37) ensures that ‖wL(t)‖L∞ ≤ c∞(T ) for all t ∈ S.

8. Since the constant c∞(T ) does not depend on the choice of L, we can pass to the limit L→∞ in

this estimate and derive ‖
(
evi −K

)+
(t)‖L∞ ≤ c∞(T ) and evi(t) ≤ K + c∞(T ),

vi(t) ≤ ln
(
K + c∞(T )

)
,

ui(t)

Ni

≤ ei
(

ln(K + c∞(T ))
)

=: c2(T ) < 1 ∀t ∈ S. �
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5.3 Solvability of Problem (P)

Theorem 5.1 We assume (A1) – (A4). Then, for all T > 0, S = [0, T ], there exists a solution to
Problem (PS).

Proof. For arbitrarily chosen T > 0, S = [0, T ] Problem (PM) has a solution, see Lemma 5.2. The
a priori estimates for solutions to (PM) in Lemma 5.3, Lemma 5.5, Lemma 5.6 and Lemma 5.7 ensure
that for M ≥ max{M∗,maxi∈I0 |zi|c∗(1 + 2c0(T )|Ω|1/2} (with M∗ as in (5.1), c∗ from Lemma 5.3
and c0(T ) from Lemma 5.5) being sufficiently large (compare Remark 5.1, depending on T ) namely

M ≥ max
{

max
i∈I
|zi|c∗(1 + 2c0(T )|Ω|1/2), 2 max

i=n,p

∣∣e−1
i

( c1(T )

N

)∣∣, 2 max
i=n,p

∣∣e−1
i

( c0(T )
N

)∣∣,
max
i∈I0

∣∣e−1
i

(
c1(T )

N

)∣∣,max
i∈I0

∣∣e−1
i

(
c2(T )

)∣∣}
every solution (u, v) to (PM) satisfies the equalities dM(vi) = vi for i ∈ I , dM(ziv0) = ziv0 for
i ∈ I0. Since ρM(v) = 1, the reaction terms in AM(v, v) and A(v, v) coincide. Moreover, the
regularization terms ziϕi − dM(ziv0) − dM(vi) in the equations for the ionic vacancies disappear,
and we have EM(v) = E(v), AM(v, v) = A(v, v) and the pair (u, v) is a solution to Problem (PS),
too. �

5.4 Bounds for solutions to (PS)

Theorem 5.2 We assume (A1) – (A4). Then, for all T > 0, S = [0, T ] there exist c0(T ), c1(T ),
c2(T ) > 0 with c2(T ) < 1 such that for any solution (u, v) to Problem (PS) and for all t ∈ S

c1(T )≤ui(t)≤c0(T ) a.e. in Ω, i = n, p, c1(T )≤ui(t)≤c2(T )Ni a.e. in Ω0, i ∈ I0.

Proof. Let (u, v) be a solution to (PS). Theorem 4.1 and (4.7) ensure ‖v0(t)− vD0 ‖2
H1(Ω), ‖ui(t)‖L1(Ωi)

≤ c(T ) for all t ∈ S, i ∈ I . The estimates in the second line of Lemma 5.3 and the result of
Lemma 5.4 remain also true for solutions (u, v) to (PS). For the upper bounds of un and up we argue
exactly as in the proof of Lemma 5.5. Note that the estimate of the reaction term in Step 2 there works
also in the non-regularized setting for (PS) without the factor ρM . Especially we again work with κT
defined in (5.21) and do the Moser iteration technique.

To establish the positive lower bounds of ui we proceed as in Lemma 5.6 and use also in the non-
regularized setting for (PS) the inequality (5.24). Since in Step 4 of the proof of Lemma 5.6 the part
stemming from the regularization term ziϕi − dM(ziv0)− dM(vi), i ∈ I0, is only neglected and not
explicitly used in the estimates, we can for (PS) exactly argue as in the proof of Lemma 5.6 to get the
lower bound of ui.

Finally, the upper bound for ui, i ∈ I0, is obtained following the lines of the proof of Lemma 5.7. Note
that again, the part with the regularization term for (PM) is only neglected and not explicitly used in the
estimates. �

Remark 5.2 Using the global positive lower bounds for the charge carrier densities of solutions to (PS)
established in Theorem 5.2 and the energy estimates performed in (4.8) in the proof of Theorem 4.1
we obtain the estimates ‖ϕi‖L2(S,H1(Ωi)) ≤ c(T ), i ∈ I , and ‖v0‖L2(S,H1(Ω)) ≤ c(T ). The relations
of ϕi and vi ensure the estimates ‖vi‖L2(S,H1(Ωi)) ≤ c(T ), i ∈ I . Furthermore, the bounds of ui
from Theorem 5.2 and ui = Niei(vi) guarantee L∞ bounds for vi, i ∈ I , which lead to the estimates
for the whole vectors

‖A(v, v)‖L2(S,V ∗), ‖u′‖L2(S,V ∗) ≤ c(T ).
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6 Concluding remarks

We examined the drift-diffusion model introduced in [2] for the charge transport in perovskite solar
cells, which includes the dynamics of multiple mobile ionic vacancies. We started by conducting sim-
ulations to underline the importance of including additional migrating vacancies from an application
perspective. Furthermore, we demonstrated the existence of weak solutions to the problem and es-
tablished positive lower and upper bounds for the densities depending on the length of the time interval
S = [0, T ]. The question of uniqueness of the solution to Problem (P) is still under consideration and
rests upon higher regularity properties of the possible solutions.

In case of organic transport layer materials such as fullerene C60 (see [28]), Gauss-Fermi integrals
have to be used for the statistical relation. According to [17, Subsec. 2.1], the Gauss-Fermi integrals
satisfy similar essential properties as Blakemore statistics FB,γ for γ = 1 (cf. (2.5)) used in the
presentation here. The methodologies for establishing positive lower and upper bounds on the number
of transport states for charge carrier densities in organic semiconductor materials are elucidated in
[17, proofs of Lemma 4.3, Thm. 5.2]. Note that Gauss-Fermi integrals can also be approximated by
Blakemore statistics FB,γ for γ = 0.27.

In our model, we considered not only the movement of electrons and holes throughout the entire
domain Ω but also accounted for the migration of ionic vacancies within a specific subdomain Ω0,
representing the perovskite material. It is noteworthy that the methods employed in our existence proof
are versatile enough to accommodate scenarios involving distinct mobile ionic vacancies residing in
various subdomains Ωi ⊂ Ω, where i ∈ I0. Furthermore, the scenario with Ωi = Ω for i ∈ I0 is
a valid configuration and encompasses the conditions observed in the study of memristive devices
detailed in [19]. Therein, only one type of ionic species is considered, which is crucial for the analytical
treatment of the model. The assumption includes applying Boltzmann statistics uniformly to all species,
without the inclusion of generation/recombination terms and a photo-generation rate. The drift-diffusion
system is analyzed in three spatial dimensions. Moreover, the model considers the distinct time scales
associated with the motion of electrons/holes and ions, and it incorporates the fast-relaxation limit in
two spatial dimensions.

A Properties of the statistics functions

Fermi–Dirac statistic F1/2: The last two estimates in (2.4) follow from the inequalities

F1/2(z)

ez
=

2√
π

∫ ∞
0

ξ1/2

eξ + ez
dξ <

∫ ∞
0

ξ1/2e−ξ dξ = 1,

(F1/2)′(z) =
2√
π

∫ ∞
0

ξ1/2 exp(ξ − z)

(exp(ξ − z) + 1)2
dξ ≤ 2√

π

∫ ∞
0

ξ1/2

exp(ξ − z) + 1
dξ = F1/2(z).

For the limit z → −∞, the value F1/2(z) decreases as ez. In turn, for the limit z → +∞, the value
F1/2(z) then increases as 4

3
√
π
z3/2, see [4].

Fermi–Dirac statistic F−1: To verify (ii) of (2.6), we estimate

F ′−1(z) =
[ 1

e−z + 1

]′
=

e−z

(e−z + 1)2
=

e−z

e−2z + 2e−z + 1

<
e−z

e−2z + 2e−z
=

1

e−z + 2
<

1

e−z + 1
= F−1(z) =

ez

1 + ez
< ez.
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[20] A. Jüngel. Entropy methods for diffusive partial differential equations. Vol. 804. Springer, 2016.

[21] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their appli-
cations. New York, 1980.

[22] M. Koopmans, V. M. Le Corre, and L. J. A. Koster. “SIMsalabim: An open-source drift-diffusion
simulator for semiconductor devices”. In: Journal of Open Source Software 7.70 (2022), p. 3727.

[23] J. A. Kress, C. Quarti, Q. An, S. Bitton, N. Tessler, D. Beljonne, and Y. Vaynzof. “Persistent ion
accumulation at interfaces improves the performance of perovskite solar cells”. In: ACS Energy
Letters 7.10 (2022), pp. 3302–3310.

[24] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva. Linear and quasilinear equations
of parabolic type. Russian. Moscow: Nauka, 1967.
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