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A model framework for ion channels with selectivity filters based
on continuum non-equilibrium thermodynamics
Christine Keller, Jürgen Fuhrmann, Manuel Landstorfer, Barbara Wagner

Abstract

A mathematical model framework to describe ion transport in nanopores is presented. The
model is based on non-equilibrium thermodynamics and considers finite size effects, solvation
phenomena as well as the electrical charges of membrane surfaces and channel proteins. Par-
ticular emphasis is placed on the consistent modelling of the selectivity filter in the pore. It is
treated as an embedded domain in which the constituents can change their chemical properties.
The diffusion process through the filter is governed by an independent diffusion coefficient and
at the interfaces, de- and resolvation reactions are introduced as Neumann interface conditions.
The evolution of the molar densities is described by drift-diffusion equations, where the fluxes
depend on the gradient of the chemical potentials and the electric force. The chemical potentials
depend on the molar fractions and on the pressure in the electrolyte and accounts for solvation
effects. The framework allows the calculation of current-voltage relations for a variety of chan-
nel properties and ion concentrations. We compare our model framework to experimental results
for calcium-selective ion channels and show the general validity of our approach. Our parameter
studies show that calcium and sodium currents are proportional to the surface charge in the se-
lectivity filter and to the diffusion coefficients of the ions. Moreover, they show that the negative
charges inside the pore have a decisive influence on the selectivity of divalent over monovalent
ions.

1 Introduction

The intricate and fundamental processes governing cellular functions are orchestrated by a myriad
of biological ion channels that regulate the movement of ions across cell membranes. Among these
channels, calcium ion channels hold a prominent position due to their vital role in various physiological
functions [9,44]. Understanding the complex mechanisms underlying calcium ion channels is of great
importance, as they play a crucial role in cellular signaling, muscle contraction, neurotransmitter re-
lease, gene expression, and a myriad of other cellular processes [9,10,20,44]. Traditional experimental
techniques, such as electrophysiology and X-ray crystallography, have significantly contributed to our
understanding of ion channels [14,54]. However, studying ion channels using traditional experimental
techniques is a complex and challenging task.

As a result, the development of advanced modeling and simulation techniques has become essential
in unravelling the mysteries of ion channels and providing deeper insights into their structure-function
relationships and underlying mechanisms. This paper aims to explore the necessity of modeling and
simulating biological ion channels, with a specific focus on Ca2+ ion channels, to bridge the gap be-
tween experimental observations and theoretical predictions. Computational modeling offers a power-
ful approach to complement experimental studies by providing in-depth insights into the behavior of ion
channels at the molecular level. Molecular dynamics (MD) simulations, for example, can offer a very
detailed description of the problem by resolving the structure of the ion channel protein at the atomic
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level. This allows the study of individual ion channels in a controlled environment, capturing their con-
formational dynamics and interactions with ions and other molecules [21, 31]. MD simulations could,
for example, contribute to a better understanding of the selectivity mechanisms within ion channels,
especially in KcsA channels [13,46,47].

Understanding the molecular mechanisms of Ca2+ ion channels is not merely an academic pursuit; it
holds significant implications for human health and disease. Dysregulation of these channels has been
linked to a wide range of pathologies, including cardiac arrhythmias, neurodegenerative disorders,
and cancer [9, 30, 44, 52]. By gaining a comprehensive understanding of Ca2+ ion channels through
modeling and simulation, researchers can identify potential therapeutic targets for drug development
and design more efficient and targeted interventions.

However, the molecular description is often computationally intensive, which results, for instance, in a
limitation of the simulated time span. This on the other hand can lead to an incomplete depiction of
experimental observations, which often span several seconds [2, 3]. A formulation of the problem on
a coarse-grained macroscopic level can address this issue. Most such continuum models are based
on Poisson-Nernst-Planck (PNP) theory, which has been successfully used to simulate semiconduc-
tor devices [29,44,48] and can be derived by averaging a Poisson-Langevin model [49]. Although not
every atomistic detail is resolved, the PNP theory can make predictions about current-voltage (IV) rela-
tions and capture high variations in ion concentration, e.g. Ca2+ concentrations that range from 10−8

to 10−6 mol L−1 . However, several challenges persist, such as accurately representing ion-ion and
ion-protein interactions, capturing solvent effects, and developing reliable force fields for membrane
proteins. Great efforts have been made to overcome these problems and the Poisson-Nernst-Planck-
Bikerman (PNPB) theory has been developed. Modified chemical potential functions with steric effects
were formulated to account for finite size effects and to include water molecules [41]. For this purpose,
entropies are often derived based on thermodynamic principles, such as density functional theory
(DFT) [25,27] or mean spherical approximation (MSA) [4,41,45]. An alternative approach is to derive
a continuum formulation directly from a stochastic formulation such as hopping models [8]. As compu-
tational techniques continue to evolve, the integration of multi-scale simulations and machine learning
approaches holds the promise of unraveling even more complex behaviors of Ca2+ ion channels.
For example, MD simulations can be used to find stable ion configurations and calculate the channel
geometry which is then used to solve the continuum model [32].

In this work, we present a continuum framework for ion channels in a liquid electrolyte environment
based on non-equilibrium thermodynamics [12]. It provides a consistent coupling of diffusion and me-
chanics, so that the conservation of mass is fulfilled for the whole system. It couples of the momentum
balance to the Nernst-Planck system, which is used to determine the evolution of the solvent such
that it is not necessary to introduce additional voids [16, 35]. The model has already been verified
with fundamental experiments on single-crystal interfaces for the application of metal-electrolyte inter-
faces [35]. The material modeling is based on the derivation of the free energy density, which allows
different system properties within different phases, such as the intracellular or extracellular, to be taken
into account.

Our work puts a special emphasis on a consistent modeling of the selectivity filter within the ion
channel. The selectivity filter is a crucial structural element that governs the highly selective movement
of specific ions across the cell membrane [46,54]. Only certain ions are allowed to pass through the cell
membrane, which maintains ion homeostasis and regulates various cellular processes. A key feature
of the selectivity filter is its narrow pore region lined with specific amino acids or residues that form a
highly structured environment. The size and shape of the pore dictate which ions can pass through, as
it must accommodate the size and coordination requirements of the preferred ion. The selectivity filter
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Ion-channel model framework 3

is designed to coordinate and stabilize specific ions through electrostatic interactions and coordination
bonds. These interactions help to overcome the energetic barrier that ions encounter when moving
through the hydrophobic membrane. Each type of ion channel exhibits distinct ion selectivity, favoring
the passage of certain ions over others. For instance, Ca2+ ion channels will preferentially allow the
passage of calcium ions, while K+ ion channels will primarily facilitate the movement of potassium
ions. Notably, the amino acid residues that form the selectivity filter are often highly conserved among
members of the same ion channel family, highlighting their crucial functional role and evolutionary
significance. In some ion channels, the selectivity filter can also participate in the gating process,
regulating the opening and closing of the channel in response to various stimuli, such as changes in
membrane voltage or ligand binding. Overall, the selectivity filter in biological ion channels is a finely
tuned structure that ensures the precise regulation of ion flux, enabling cells to maintain electrical and
chemical gradients essential for cellular function and signaling.

We include the selectivity filter as a separate phase to ensure the consistency of the whole model.
The narrowest part of the filter is about the same size as the desolvated ions. Before the solvated
ions enter the selectivity filter, they strip off the hydration shell. This phenomenon is accounted for by
surface reactions at the interfaces between the outer (inner) region and the selectivity filter region. The
electrostatic forces are integrated by a backbone charge and a surface charge.

In section 2 the model framework is presented. The considered domain consists of different phases
such as the electrolyte, the lipid bilayer and the selectivity filter (section 2.1). Different species with dif-
ferent properties can be assigned to each phase (section 2.2). The derivation of the chemical potential
functions is explained in more detail in section 2.3. In section 2.4 the general system of equations is
discussed. We consider different classes of boundary conditions (section 2.5) and due to some equi-
librium assumptions the model can be reduced (section 2.6). Furthermore, the scaling of the system
is presented to identify important parameters that contribute to the dynamics (section 2.7). In section
3 present our results on the impact and function of the selectivity filter and discuss comparisons to
experimental data.

2 General model framework

Our model includes different important aspects of the ion channel and its microenvironment. An illus-
tration of the main features is given in Figure 1. In the extra- and intracellular fluids we find a mixture
of different species: anions, cations and solvent molecules. The ions are present in the electrolyte in
solvated form. The surface charges of the lipid bilayer and the channel protein lead to the formation
of electrical double layers (EDLs). The selectivity filter is located in the channel pore, where charge
transfer and desolvation reactions are expected at the interfaces. This leads to different chemical prop-
erties and mobilities of the ions in this area. Finally, we can calculate the current I flowing from one
bath to the other by

I = F
N∑

α=0

∫
S0

zαJα · n dA, (1)

where S0 ⊂ S j is a subset of the Dirichlet boundary, F is the Faraday constant, zα is the charge
number, and Jα is the flux. This becomes important when studying current-voltage (IV) relations for
different membrane potentials E

E = φin − φout, (2)
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with φout and φin being the potentials at the top and the bottom Dirichlet boundary condition, respec-
tively.

-
+

-
-

EDL

EDL
surface
charge

solvation mixture
of species extracellular

fluid

lipid
bilayer

ion movement
through channel

channel
protein

intracellular
fluid

selectivity
filter
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A
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Figure 1: Illustration of an ion channel.

2.1 Domains

We consider a cylindrical, rotationally symmetric domain Ω ∈ R3 that is separated into different
phases Ωj , j ∈ JΩ := {out, in,SF, lip}. At the top we have the outer bath Ωout and at the bottom the
inner bath Ωin, both are separated by an impermeable lipid bilayer Ωlip. Inside this membrane there is a
single pore, the ion channel, which allows the exchange of particles between the two baths. Within the
pore there is an additional domain which controls actual phyisco-chemical processes occuring inside
this ion channel, termed selecivity filter ΩSF. An illustration is given in Figure 2.

The domains Ωj , j ∈ JΩ share several common interfaces Sj,k, j, k ∈ JΩ, j ̸= k, e.g. the interface
Sout,SF between the outer domain and the selectivity filter. The evaluation of some quantity u at the
j-side of an interface Sj,k will, in general, be written as u|j,kj , for instance, u|out,SF

out . If the interface
is an actual boundary of a domain to the exterior, i.e. Sout, then u|out is the evaluation of u at Sout

approaching always from within the corresponding domain. In order to compactify the typeface, we will
also use the typeface u|j,kj = u|j,k+ and u|j,kk = u|j,k− . Hence we define the jump brackets [[u]]j,k :=

uj,k+ − uj,k− , j, k ∈ JΩ. If no index j,k is given for the interface, then it is assumed to be implicitly clear
from the context.
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Ωout

Ωin

ΩSF
Ωlip

S in,SF

S in

S in,lip

Sout,SF

SSF,lip

Sout

Sout,lip

Sout,bath

S in,bath

Figure 2: Illustration of the geometric domain. The top and the bottom bath (gray areas) are separated
by an impermeable membrane (cut out) that contains a single pore. Inside the pore is the selectivity
filter (SF) embedded as an additional domain (pink area). The full domain Ω is split into outer bath
Ωout, the inner bath Ωin, the lipid bilayer Ωlip, and the selectivity filter domain ΩSF.

2.2 Species

In each region (Ωj)j∈JΩ
we consider a mixture of anions, cations, solvent molecules and additional

species. Each mixture contains N j, j ∈ JΩ, different constituents Aj
α with α ∈ Ij ⊂ N+

0 . Quite
frequently, the solvent is denoted by A0, if present. The constituents have molar masses mj

α, molar
volumes vjα and carry a charge zjαe0, where e0 is the elementary charge. We emphasize that the
ionic species are subject to solvation effects, whereby mj

α and vjα denotes the mass and volume of
the solvated ions, respectively [34, 35]. Hence, the molar mass writes as mj

α = m̃α + κjαm
j
0 since

mass is conserved upon solvation, where m̃α is the mass of the central ion, κjα the number of solvent
molecules bound to the ion, and mj

0 the mass of the solvent molecule. For the partial molar volume
of the solvated ions, a similar relation expectably holds, but the volume is not necessarily conserved
upon solvation, whereby we have vjα ≈ ṽα + κjαv

j
0 with the molar volume ṽα of the central ion and vj0

of the solvent. A convenient, useful and meaningful approximation is for example mj
α

mj
0

= vjα
vj0

[35]. The

molar density for species Aj
α, α ∈ Ij is denoted as nα(x, t) for x ∈ Ωjwithj ∈ JΩ. Further, the

mass density ρj(x, t) and the charge density qj(x, t) are given by

ρj =
∑
α∈Ij

mj
αnα and qj = F

∑
α∈Ij

zjαnα .

2.3 Chemical potential functions

For each constituent Aj
α, we have a chemical potential µj

α, which is determined from the free energy
density ρψj of the mixture in the respective phase Ωj, j ∈ JΩ, i.e.,

µj
α :=

∂(ρψj)

∂nα

, ∀α ∈ Ij. (3)

DOI 10.20347/WIAS.PREPRINT.3072 Berlin 2023



C. Keller, J. Fuhrmann, M. Landstorfer, B. Wagner 6

(a) (b)

Figure 3: Illustration of the solvation effect for (a) a monovalent cation such as sodium Na+ and (b) a
monovalent anion such as Cl−.

Note, that the above syntax with superscript j allows to distinguish for a specific ion, e.g. Ca2+, its
actual state in the various phases of our system Ω. For example, the constituent Ca2+ is solvated in
the electrolytic domain Ωin but desolvated in ΩSF. To account for this, we have to denote Ca2+ in Ωin

as Ca2+,in and Ca2+ in ΩSF as Ca2+,SF, and consequently all the corresponding material functions
such as nα or µα. If, for a given species, the assignment is unique, we drop the index j .

2.3.1 Electrolyte domains

We consider the electrolyte domains Ωin and Ωout as liquid mixtures of several charged and uncharged
constituents. The charged ions are subject to the solvation effect, which is of major importance for the
electrolytic material models [34, 35]. The free energy density ρψj, j = {in, out} can then be written
as

ρψj (T, n0, . . . , nN ,E) = ρψj,pol + ρψj,mech + ρψj,mix + ρψj,ref, (4)

where

ρψj,pol = −1

2
ε0χ|E|2 (5)

is the contribution due to polarization of the mixture,

ρψj,mech =
(
Kj − pR

) (
1−Hj

)
+KjHj ln

(
Hj
)
, (6)

with Hj =
∑

α∈Ij vjαnα and the bulk modulus Kj , is the mechanical contribution,

ρψj,mix = RT
∑
α∈Ij

nαln (yα) , (7)

with yα := nα

n
is the free energy contribution due to the entropy of mixing, and

ρψj,ref =
∑
α∈Ij

gjα nα, (8)

with gjα = const. is the reference state contribution.

In the in-compressible limit Kj → ∞, this yields the chemical potential function

µj
α = gjα +RT ln (yα) + vjα p , (9)
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where vjα denotes the partial molar volume of the (solvated) constituent in the phase Ωj , p the material
pressure, R the gas constant and T the temperature. A detailed derivation of the chemical potential
is given in [15,16]. The in-compressible limit K → ∞ entails further the incompressibility constraint∑

α∈Ij

vjαnα = 1 , (10)

which allows us to express

n =
∑
α∈Ij

nα =
1

v0
+
∑

α∈Ij\0

(
1− vα

v0

)
nα = nref

0 +
∑

α∈Ij\0

(
1− nref

0 vα
)
nα , (11)

and

yα =
nα

nref
0 +

∑
β∈Ij\0(1− nref

0 vβ)nβ

, (12)

where nref
0 = const. is the reference molar density of the pure solvent, e.g. nref

0 = 55.5mol L−1 .

2.3.2 Selectivity filter

The selectivity filter is essentially considered as a solid or polymeric electrolyte. We focus here on
a rather simplistic material function for the free energy density ρψSF of the selectivity filter, since the
scope of this work is to show its general impact. In subsequent studies we will discuss various material
models for ρψSF and show its impact on the overall behavior of the ion channel.

We consider a free energy density ρψSF = ρψSF,ref + ρψSF,mix + ρψSF,mech with reference contribu-
tion of the pure substances ρψSF,ref, mixing entropy contribution ρψSF,mix and mechanical contribution
ρψSF,mech. Note that enthalpy or other chemical contributions arising in polymeric systems can be
included here.

The set of species ISF which are present in ΩSF decomposes into the mobile species Ipass which are
allowed to pass the filter, and the immobile Iscaf species which actually form the scaffold structure of
the filter and thus the lattice sites on which the mobile species may diffuse [35].

We consider thus a mixture of particles on a lattice which is formed by species Aα, α ∈ Iscaf and on
which the particles Aα, α ∈ Ipass may mix. Let Nα, α ∈ ISF denote particle numbers and Nℓ =∑

α∈Iscaf ωαNα the number of lattice sites, whereby ωα is the number of lattice sites each particle
Aα, α ∈ Iscaf provides. Further, we assume that each constituent Aα, α ∈ Ipass requires ωα sites on
the lattice, whereby the number of vacancies (free lattice sites) is

NV = Nℓ −
∑

α∈Ipass

ωαNα. (13)

The number of entropically exchangeable particles Ñ is hence

Ñ = NV +
∑

α∈Ipass

Nα . (14)

This leads to the number of possible configurations1

W =

(
Ñ

N1, . . . ,NN pass ,NV

)
(15)

1Note that this is the multi-nominal coefficient.
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where we assumed Ipass = {1, 2, . . . , N pass} for the sake of this derivation. The entropy of mixing is
then

S = kB

(
Ñ

N1, . . . ,NN pass ,NV

)
, (16)

which leads in the Stirling approximation to the configuration entropy

S = −kB

( ∑
α∈Ipass

Nα ln

(
Nα

Ñ

)
+NV ln

(
NV

Ñ

))
. (17)

Transition to particle molar densities nα = Nα

V NA
, α = ISF ∪ V , where V denotes the volume of the

mental box, leads to a configurational entropy contribution of the free energy as

ρψSF,mix =
∑

α∈Ipass

nαRT ln
(nα

ñ

)
+ nV RT ln

(nV

ñ

)
. (18)

with

ñ =
∑

α∈Ipass

nα + nV , the number of mixing particles on the lattice, (19)

nℓ =
∑

α∈Iscaf

ωαnα , the number of lattice sites, (20)

nV = nℓ −
∑

α∈Ipass

ωαnα , the number of vacancies, (21)

yα :=
nα

ñ
, α ∈ {Ipass,V}, the lattice fraction , (22)

where ωα, α ∈ Iscaf is the number of lattice sites each constituent Aα delivers and ωα, α ∈ Ipass is
the number of lattice sites each constituent Aα requires on the lattice. Note that for a single diffusive
species y = nα

ñ
requiring one lattice site, one obtains the simple lattice entropy of mixing

ρψSF,mix = nℓRT
(
yln (y) + (1− y)ln (1− y)

)
. (23)

The mechanical contribution is considered as

ρψSF,mech =
(
KSF − pR

) (
1−HSF

)
+KSFHSFln

(
HSF

)
, (24)

with HSF =
∑

α∈Iscaf vSF
α nα, whereby only the immobile species contribute to the mechanical energy.

The reference contribution is similar to the electrolyte considered as

ρψref =
∑
α∈ISF

gSF
α nα. (25)

In the incompressible limit KSF → ∞, we obtain the chemical potential functions

µSF
α =

∂ρψSF

∂nα

=

{
gSF
α +RT ωαln (yV) + vSF

α p+RT ωα

(
1− yν −

∑
β∈Ipass yβ

)
, α ∈ Iscaf

gSF
α +RT ln (yα)−RT ωαln (yV) +RT (1− ωα) (1− yα − yν) , α ∈ Ipass

(26)

where p denotes again the material pressure.
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Ion-channel model framework 9

For the sake of simplicity we consider in the following that the lattice is built by a single species ASF
0

whereby nℓ = ω0n
SF
0 . Further, we assume that all species which are allowed to pass require only a

single site, which employs ωα = 1, α ∈ Ipass. The lattice fraction of the vacancies can be rewritten as
yV = 1−

∑
β∈Ipass yβ , where ñ = nℓ =const.. Further, we assume that ASF

0 is in equilibrium whereby
∇µ0 = 0. Hence, we have for the diffusional flux µ̂SF

α = µSF
α with

µSF
α = gSF

α +RT ln (yα)−RT ln

(
1−

∑
β∈Ipass

yβ

)
, α ∈ Ipass (27)

Since µ̂α = µα((yβ)β∈Ipass), the Poisson equation and the momentum equation decouple, and only
the Poisson equation and the transport balance are needed. However, the momentum balance is yet
valid and serves to determine the pressure a posteriori.

Regarding the backbone charge of the scaffold structure, some cases have to be considered:

■ backbone is uncharged, whereby

qSF = F
∑

α∈Ipass

zSF
α nα (28)

■ backbone is fully charged, whereby

qSF = F
∑

α∈Ipass

zSF
α nα + Fznℓ

nℓ (29)

and znℓ
< 0. Note that qSF has then a constant backbone volume charge, similar like a solid

electrolyte. This has to satisfy then (integrate poisson equation, initial state is that there are no
Aα, α ∈ Ipass present within ΩSF)

Fznℓ
nℓ vol(ΩSF)

!
= q

s

SF,lip area(SSF,lip) , (30)

where q
s

SF,lip is the surface charge of the channel protein within the selectivity filter.

■ an intermediate state, whereby

FzSF
0 nℓ vol(ΩSF)

!
= ζ q

s

SF,liparea(SSF,lip) , (31)

with some scaling parameter ζ .

Note that electroneutrality must also be ensured in the selectivity filter when charged species are
present and backbone and surface charges are considered.

2.3.3 Lipid bilayer

The lipid bilayer is a thin polar membrane composed of amphiphilic lipids. Especially in the gating
process of mechano-sensitive ion channels, the deformation of the lipid bilayer plays a crucial role.
For example, the opening probability responds to mechanical stimulation of the channel protein such
as cell-stretch [33].

However, within this work, the membrane is not explicitly modeled but is included through boundary
conditions. Its impermeability to ions is described by a no-flux boundary condition, and its surface
charge can be accounted for by a Neumann boundary condition (see section 2.5). The inclusion of an
elastic lipid bilayer is the subject of future work.
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Figure 4: Illustration of the selectivity filter domain. The immobile species form lattice sites on which
the mobile species may diffuse.

2.4 Balance equations

In the following, we assume that the process is isothermal, i.e., the temperature T is constant. The
evolution of the molar densities nα(x, t) for α ∈ (Ij)j∈JΩ

, the electrostatic potential φ(x, t) and the
barycentric velocity v(x, t) for x ∈ (Ωj)j∈JΩ

, are described by

∂tnα +∇ · (nαv + Jα) = 0 (32)

−∇ ·
[
ε0
(
1 + χj

)
∇φ
]
= qj, (33)

∂tρ
j +∇ ·

(
ρjv
)
= 0, (34)

∂t
(
ρjv
)
+∇ · (ρv ⊗ v − Σ) = 0. (35)

Note that diffusional fluxes Jα in (32) are subject to the constraint∑
α∈Ij

mj
αJα = 0 . (36)

If the species A0 is mobile, this condition can be exploited to show, based on nonequilibrium thermo-

dynamics [12], that the flow is driven by the diffusive chemical potential µ̂j
α = µj

α − mj
α

mj
0

µj
0, as well as

by the electrostatic potential φ, and is given by

Jα = −
∑
β∈Ij

M j
αβ

(
∇µ̂j

β + e0z
j
β∇φ

)
, ∀α ∈ Ij, j ∈ JΩ, (37)

where the mobility matrix M j
α,β must be positive definite. The total mass flux of a species Aα is

denoted by jα := nαv+ Jα. In the Poisson equation (33), we denote with ε0 the vacuum permittivity
and with χj the dielectric susceptibility, which is assumed to be constant throughout this work. Note,
however, that χj can itself be dependent on the (local) species densities as well as on the electric
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Ion-channel model framework 11

field [36]. The total stress Σ in the momentum balance equation (35) consits of the material stress
tensor σvisc and the Maxwell stress tensor, arising from the electromagnetic field, and is defined as

Σ = σvisc −
(
p+

1

2
ϵ0(1 + χ)|E|2

)
1+ ϵ0(1 + χ)E⊗ E, (38)

with the material pressure p, the electric field E = −∇φ, and the identity matrix 1. Note again that
additional terms arise in the Maxwell stress tensor when χj is concentration- or field-dependent [36].

Besides the Poisson equation (33), in some situations it is convenient to consider also the charge
balance equation

∂tq
j +∇ · (qjv + Jq) = 0 (39)

where Jq = e0
∑

α∈Ij zjαJα is the (diffusional) electric charge and jq := qjv + Jq the total charge
of the system.

2.5 Boundary conditions

We have to specify boundary conditions essentially at the interfaces Sout, S in, Sout,SF, S in,SF, SSF,lip,
Sout,lip and S in,lip. For the rest of ∂Ω we will assume homogeneous Neumann boundary conditions,
which arise essentially from the rotational symmetry of the problem.

Several classes of boundary conditions at an interface Sj can be defined. For the constituents Aj
α,

three types of boundary conditions arise:

1 prescribed concentrations in the bulk, i.e. nα|j = nj
α = const.2 Concentration-Dirichlet bound-

ary conditions (CD-BCs),

2 prescribed fluxes, i.e. jα · n|j = jjα = const., termed Concentration Flux boundary conditions
(CF-BCs), with the special case jα · n|j = 0 called No-Flux boundary condition (NF-BCs) or
homogeneous Neumann boundary condition,

3 surface reaction boundary conditions (SR-BCs) jα · n|j,k = R
s
((nj

β)β∈Ij , (nk
β)β∈Ik) .

For the electrostatic potential φ or the charge qj , we have the following three types of boundary
conditions:

1 prescribed electrostatic potential in the bulk, i.e. φ|j = φj = const.3, termed Potential Dirichlet
boundary conditions (PD-BCs),

2 continuity of the electrostatic potential, i.e. [[φ]]j = 0, termed potential continuity boundary
condition (PC-BC),

3 prescribed surface charge density, i.e. [[ε0(1+χ)∇φ]]n|j = q
s

j , called surface charge boundary

condition (SC-BCs) with the special case q
s

j = 0 termed no charge boundary condition (NC-

BCs),

4 a prescribed electrical current, i.e. jq · n|j = ijq
4, which we call electric current boundary

2Note that constant refers here to constant with respect to all other state-variables. However, nj
α could be, for instance,

time-dependent
3Note that constant refers here to constant with respect to all other state-variables. However, φ could be, for instance,

time-dependent
4similar to above, iq could be time-dependent
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condition (EC-BCs).

Briefly note that, even if we prescribe for some quantity u at a certain boundary Sj its value, i.e. u|j =
uj , we can still evaluate (a posteriori, e.g. by numerical simulations) its flux through the boundary,
e.g. ju · n|j . In order to distinguish this from prescribed values, we denote such an a posteriori by
ju · n|j = ǰju.

On the top bath Sout we consider throughout the whole work (CD-BCs) for all species and (PD-BCs),
i.e.

nα|out = nout
α ∀ α ∈ Iout , φ|out = φout . (40)

This models the outer region as an (infinite) bulk solution in which an idealized, non-interacting elec-
trode is placed.

At the bottom boundary S in we we consider essentially two cases,

1 (CD-BC) and (PD-BC), i.e.

nα|in = nin
α ∀ α ∈ I in , φ|in = φin , (41)

and thus also an (infinite) bulk solution with an idealized, non-interacting electrode is placed.

2 (NF-BC) and (NC-BC), which models Ωin as a closed interior domain, e.g. of a cell, whereby we
have

jα · n|in = 0 ∀α ∈ I in, ∇φ · n|in = 0. (42)

On the boundary S in,bath and Sout,bath (NF-BCs) and (NC-BCs). On the walls S in,lip and Sout,lip of the
lipid bilayer adjacent to the respective electrolyte domains Ωin and Ωout we consider throughout this
work (NF-BC) and (NC-BC), which accounts for electrostatic interactions between the surface charges
of the lipid and the ions of the electrolytic solutions, but prohibits chemical reactions of the electrolytic
species with the lipid. We have hence (j = {in, out})

jα · n|j,lip = 0 ∀α ∈ Ij, [[ε0(1 + χ)∇φ]] · n|j,lip = q
s

j,lip = 0 , (43)

where q
s

j,lip is the charge of the lipid bilayer. On the channel wall SSF,lip, we consider throughout this

work (NF-BC) for all constituents and (SC-BC), which again accounts only for electrostatic interactions.
To investigate pH effects on the ion channel, it might be necessary to switch to (SC-BC) for species
like H+ or OH−, but this is subject to a subsequent work. Hence we consider the following boundary
conditions,

jα · n|SF,lip = 0 ∀α ∈ ISF, [[ε0(1 + χ)∇φ]] · n|SF,lip = q
s

SF,lip, v = 0 (no slip), (44)

where q
s

lip,SF is the charge of the channel wall inside the selectivity filter ΩSF.

The interfaces Sout,SF and S in,SF between the electrolytic domain and the selectivity filter accounts for
the desolvation and resolvation of the ionic species, which is modeled via (SR-BCs), as well as for the
selection which ions are not allowed to pass, which is modeled by (NF-BCs). Further, the electrostatic
potential is assumed to be continuous across these interfaces, whereby we employ (PC-BCs) for φ.
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For a selection of species α ∈ Ipass ⊂ {Iout ∩ I in} we consider the (de-)solvation and transfer
reaction (j = {out, in})

Aj
α ⇌ ASF

α + καAj
0, (45)

with reaction rate r
s

pass,j
α . The corresponding surface affinity λ

s

pass,j for the reaction is

λ
s

pass,j
α := µAα

∣∣SF
+ καµA0

∣∣j − µAα

∣∣j, (46)

whereby we can write the reaction rate as [17,35,37]

r
s

pass,j
α = L

s

pass,j
α gα

(
λ
s

pass,j
α

RT

)
with gα(z) := eβα z − e−(1−βα) z . (47)

We assume throughout this work, that the solvent species A0 is not allowed to pass through the
selectivity filter, whereby 0 /∈ Ipass. This is not a necessary restriction of the overall model but a
simplification for the sake of this work and may be dropped in subsequent studies. Hence, we can
write the reaction boundary conditions as

jα · n|j,SF
j = −jα · n|j,SF

SF = r
s

pass,j
α ∀α ∈ Ipass, (48)

jα · n|j,SF
j = 0 ∀α ∈ {Iout ∪ I in}\{Ipass ∪ 0}, (49)

j0 · n|j,SF
j =

∑
α∈Ipass

κα r
s

pass,j
α . (50)

An illustration of the domain including the different boundaries is given in Figure 2. Figure 5 gives

Dirichlet
boundary condition

Neumann
boundary condition

stationary solution transient solution

time dependent
concentrations

current as
boundary condition
(membrane potential

as stopping criterion)

time dependent
membrane potential

(e.g. puls, cyclic

voltammetry)

fixed
membrane potential

(Diffusion/ Nernst poten-

tial, osmotic pressure;

current-voltage relations)

fixed concentrations
(current in dependency

of concentrations)

Figure 5: Overview of different boundary conditions that can be applied in the inner region and possible
experiments that can be performed.
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an overview of the different boundary conditions that can be applied on the exterior of the inner re-
gion on S in and their meaning in the context of different experiments. First of all, a distinction can
be made between Dirichlet and Neumann boundary conditions. Where (CD-BCs) and (PD-BCs) are
usually used to represent single-channel experiments in which two electrolyte buffers are separated
by a membrane. This allows the concentrations and the potential to be influenced in the inner and
outer domains. Stationary solutions can be obtained, e.g. to calculate currents as a function of con-
centrations or the membrane potential. It is also possible to calculate time-dependent solutions and,
for example, to vary the membrane potential over time, as it is done in voltage-clamp experiments. If
in the inner domain (NF-BCs) and (NC-BCs) are applied, one can imagine a scenario in which the
ions flow from the outer bath into a closed container (or a cell). Only the concentrations in the outer
domain can be varied. To generate a membrane potential, the container or cell must be punctured with
a microscopically fine electrode.

2.6 Equilibrium assumptions

In the following some assumptions are elaborated that can be applied in order to reduce the system.

Mechanical equilibrium

We assume that the system is in mechanical equilibrium, such that v = 0 in whole Ω. This reduces
the equations (34) and (35) to

∇p = −qj∇φ. (51)

Tanking the divergence of both sides yields [22]

∇ ·
[
∇p+ qj∇φ

]
= 0. (52)

Mobility matrix

The mobility matrices Mαβ are and can in general be functions of the thermodynamic state variables
(n0, . . . , nN). For the sake of this work, we consider a Nernst–Einstein-type relation for the diagonal
elements,

M j
αα =

Dj
α

RT
nα. (53)

The off-diagonal entries of the mobility matrix Mαβ are chosen to be zero for this work, i.e., M j
αβ = 0

for α ̸= β.

Note that other relations, such as M j
αα = Dj

α

RT
nα y0 for the diagonal entries, non-zero off-diagonal

entries, which leads to cross-diffusion effects, or general Maxwell-Stefan diffusion relations [7] are also
imaginable, thermodynamically consistent and strict forward with the presented model framework.
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2.7 Scaling of the equations

In order to express the model in dimensionless quantities we introduce the following substitutions

x → Lx̃, t→ τ t̃, nα → nRñα,

φ→ φRφ̃, p→ pRp̃, µ̂j
α → µRµ̃j

α,

q
s

j,lip → q
s

Rq̃
s

j,lip, L
s

pass,j
α → L

s

R
α L̃

s

pass,j

α
.

The space variable is scaled with the approximate channel width L = 1 nm , the time variable is
scaled with τ = 1 ns and the number densities are scaled with the molar concentration of water
[H2O] = 55.5mol L−1 . An overview is given in Table 1. All other scalings are chosen such that they
drop in the equations. The introduction of the dimensionless quantities in the equations generates

variable unit transformation scaling

x m x → Lx̃ L = 1 nm
t s t→ τ t̃ τ = 1 ns

nα mol L−1 nα → nRñα nR = 55.5mol L−1

φ V φ→ φRφ̃ φR = RT
F

V

p Pa p→ pRp̃ pR = nRRT Pa

q
s

j,lip C m−2 q
s

j,lip → q
s

Rq̃
s

j,lip q
s

R = LnRF C m−2

Lpass,j
α m−2 s−1 L

s

pass,j
α → L

s

R
α L̃

s

pass,j

α
L
s

R
α = DαnR

L
m2 s−1

µ̂j
α J µ̂j

α → µRµ̃j
α µR = RT J

Table 1: Variable substitutions for nondimensionalization.

three new constants

D̃α :=
Dατ

L2
, (54a)

λ2 :=
φRε0(1 + χ)

L2nRF
, (54b)

and

a2α :=
pR(vjα − mj

α

mj
0

vj0)

RT
. (54c)

Dimensionless system

Applying the before introduced properties and assumptions, as well as the scaling of the variables
leads to the following system of equations (omitting the tilde for ease of notation)

∂tnα +∇ · Jα = 0 ∀α ∈ (Ij)j∈JΩ
, (55a)
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−λ2∆φ = qj, (55b)

∇ ·
[
∇p+ qj∇φ

]
= 0. (55c)

The flux in equation (55a) varies within the different phases. For the outer and inner bath we have with
the chemical potential (9) (j = {out, in})

Jα = −Dj
αnα

[
∇
{

ln
(nα

n

)
− mj

α

mj
0

ln
(n0

n

)}
+ a2α∇p+ zjα∇φ

]
∀α ∈ Ij. (56)

For the selectivity filter domain we find with the chemical potential (27)

Jα = −DSF
α nα

[
∇

{
ln

(
nα

nℓ

)
− ln

(
1−

∑
β∈Ipass

nβ

nℓ

)}
+ zSF

α ∇φ

]
∀α ∈ ISF. (57)

Scaled boundary conditions

For the scaled (CD-BCs) and (PD-BCs) on the top Sout and the bottom S in boundary we find (j =
{out, in})

nα|j =
nj
α

nR
∀ α ∈ Ij, φ|j = φj

φR
. (58)

The surface charge boundary conditions (SC-BC) on S j,lip, j = {in, out} become

[[ε0(1 + χ)∇φ]] · n|j,lip =
q
s

lip

q
s

Rλ2
, (59)

and on SSF,lip we get

[[ε0(1 + χ)∇φ]] · n|SF,lip =

q
s

SF,lip

q
s

Rλ2
. (60)

The dimensionless reaction boundary conditions on the interfaces Sout,SF and S in,SF are given by (j =
{out, in})

jα · n|j,SF
j = −jα · n|j,SF

SF = r
s

pass,j
α ∀α ∈ Ipass (61)

jα · n|j,SF
j = 0 ∀α ∈ {Iout ∪ I in}\{Ipass ∪ 0} (62)

j0 · n|j,SF
j =

∑
α∈Ipass

κα r
s

pass,j
α , (63)

with

r
s

pass,j
α = L

s

pass,j
α gα

(
λ
s

pass,j

RT

)
with gα(z) := eβα z − e−(1−βα) z . (64)
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Figure 6: Illustration of the simulation domain. The different phases (left colorbar) and boundaries are
marked by different colors (right colorbar). The mesh within the selectivity filter is refined in this area
where the surface charge is applied.

2.8 Numerical method

In order to solve the system we use Julia and the VORONOIFVM.JL package [23] which implements
the Voronoi cell based finite volume method. The boundary conforming Delaunay triangulation of the
domain Ω is generated with the help of the Triangle mesh generator [50]. The transport equation (55a)
is discretized using a backward Euler scheme in time. For the flux we use a Scharfetter–Gummel
inspired discretization [24,40]. To do so the excess chemical potential

να(n0, . . . , nN , p) := µ̂α(n0, . . . , nN , p)− ln (nα) (65)

is introduced to rewrite the flux term as

Jα = −Dα [∇nα + nα∇ (να + zαφ)] . (66)

The term να + zαφ then replaces the electrostatic potential in the classical Scharfetter-Gummel dis-
cretization ansatz. The Poisson equation (55b) and the momentum equation (55c) are discretized
using the classical two point flux approximation.

3 Results

In the following we perform different numerical simulations to elaborate the dynamics of the derived
model. Different boundary conditions are applied on the inner boundary to implement different experi-
ments. Depending on the application, the system is solved transient or in steady state.
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3.1 Calcium-selective ion channel

In order to compare the model with experimental data we assume that the system is in steady state,
such that the partial derivative with respect to time in (55a) vanishes. Furthermore, we assume that
the process inside the selectivity filter is diffusion dominant, such that the chemical reactions on the
interfaces Sout,SF and S in,SF are fast compared to the diffusion inside ΩSF and can be assumed to be
in equilibrium. This leads to continuous ion flow. In the inner and outer bath we consider a mixture
of sodium (A1 = ANa+), calcium (A2 = ACa2+) and chloride (A3 = ACl−) ions, as well as water
molecules (A0 = AH2O) as solvent. Within the selectivity filter domain we do not expect water, instead
we have the lattice forming species such as oxygen (A0 = AO−1/2 in ΩSF).

The dimensions of our simulation domain are based on those for calcium selective L-type channels
[6,40,43] and are given in Figure 6. For all simulations we use a cylindrically symmetric domain with a
radius of rdomain = 25Å and a length of ldomain = 40Å . The lipid bilayer has a thickness of dlip = 20Å .
In the center the membrane contains the pore with a radius of r = 4.5Å at the narrowest point. The
selectivity filter region within the channel has a length of l = 14Å . We do not apply the surface charge
on the whole selectivity filter but rather to a smaller part since the ions mainly interact with the negative
charged EEEE (Glu-Glu-Glu-Glu) locus. The length of the applied surface charge is lcharge = 8Å .

Note that if the parameter values are not explicitly mentioned in the text, they have been chosen as in
the table 2.

3.1.1 Comparison with experimental data

We compare our simulation results to an experimentally measured current by Almers et. al [2]. In their
work they studied the calcium selectivity of a single-file pore. They measured the total current through
the pore and observed, that the permeability of calcium channels depends on the Ca2+ concentration.

To compare the model to the data we calculate the ionic current for a fixed applied membrane potential
with (PD-BCs) φout = 0mV and φin = −20mV , s.t. E = −20 mV . On the boundaries Sout

and S in we use Dirichlet boundary conditions for the ion species (CD-BCs) with bulk concentrations
[NaCl]out = [NaCl]in = 32mM , [CaCl2]out = (5.13 · 10−7 − 13.18)mM and [CaCl2]in = 0mM .
For the pressure we apply Dirichlet boundary conditions pout = pin = 0Pa . Within the selectivity
filter a permanent surface charge is applied via (SC-BC) with q

s

lip,SF = −2 e0 C m−2 . For the pressure

and the ion species we define (NF-BCs). The number of lattice sites is calculated from relation (31)
with the assumption that our simulation domain is cylindrical symmetric. We find for znℓ

= −1 and
nℓ = 2mM that ζ = 0.13. However, we assume during the simulations that there is no backbone
charge, i.e., znℓ

= 0.

For the cations we derive different diffusion coefficient within the selectivity filter, with DSF
Ca2+ = 2.5 ·

10−4 ·Dj
Ca2+ and DSF

Na+ = 1.5 · 10−3 ·Dj
Na+ , with j = {out, in}. All other relevant parameter values

are given in Table 2.

The diffusion coefficients and the number of lattice sites within the selectivity filter domain were deter-
mined by fitting the model to the experimental data from Figure 11 in [2]. Figure 7 shows the compar-
ison of the total ionic current (circles) calculated from the simulation compared to the experimentally
measured total current (crosses) from Figure 11 in [2]. We find that the model is in agreement with the
data. The partial sodium (INa+) and calcium (ICa2+) currents are denoted by the blue and the red lines,
respectively. It illustrates that the channel is blocked to monovalent cations at a certain extracellular
Ca2+ concentration and that the current is then dominated by the Ca2+ current. The external calcium
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Figure 7: Total current for different calcium concentrations in the outer bath. Model simulation (circles)
compared to experimental data (crosses) from Almers et al. [2]. Sodium current (blue) and calcium
current (red) for different calcium cocentrations pCa = − log10([CaCl2]out) in the outer bath.

concentration is given in pCa = − log10([CaCl2]out).

3.1.2 Current and the Na+ and Ca2+ permeability of the channel

In the following we show a numerical study, where the influence of different parameters on the current
and the Na+ and Ca2+ permeability of the channel was investigated. Figure 8a shows the sodium and
calcium currents for different surface charges. It can be found, that for a decreasing surface charge,
both INa+ and ICa2+ decrease. This indicates that the current is proportional to the surface charge,
i.e., decreasing the surface charge by a factor of 0.8 − 0.9 leads to an decrease of the current by a
factor of 0.8−0.9. In addition a shift towards higher Ca2+ concentrations can be observed. The curve
of the sodium current is shifted to the right towards higher calcium concentrations. However, this effect
needs to be investigated in more detail.

Enhancing the calcium diffusion within the selectivity filter domain by a factor of 1.5 leads to an in-
crease of the peak ICa2+ by a factor of 1.5. A decrease in the mobility by 0.5 leads to a decrease in the
peak calcium current by a factor of 0.5. This indicates that the current is proportional to the diffusion
coefficient of calcium within the selectivity filter. Furthermore, as can be seen in Figure 8b, this has no
effect on the sodium current.

As shown in Figure 8c also the sodium current is proportional to the diffusion coefficient of sodium. An
increase (decrease) in the sodium mobility within the selectivity filter leads to an increase (decrease)
in the peak INa+ and does not influence the permeation of calcium.

Applying a backbone charge with znℓ
= −1 in addition to the surface charge leads to a left shift of

sodium and calcium current towards smaller calcium concentrations. The curves now cross at pCa =
5.5 while when only applying the surface charge they cross at pCa= 4.8. This is illustrated in Figure
8d. Setting the surface charge to zero (q

s

SF,lip = 0) and applying only the backbone charge of znℓ
=

−3.7 (which is equivalent to a surface charge of q
s

SF,lip = −2e0) gives smaller peak currents and also

a right shift of sodium current towards higher Ca2+ concentrations. Figure 9 shows the calcium (left)
and sodium (right) currents plotted as a function of the surface charge within the selectivity filter for
different external calcium concentrations. The calcium current increases continuously for an increasing
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(a) (b)

(c) (d)

Figure 8: (a) Total current for different channel surface charges with qS = q
s

SF,lip. (b) and (c) Total cur-

rent for different diffusion coefficients of Ca2+ and Na+ within the selectivity filter domain, respectively.
(d) Total current for three cases: only surface charge, only backbone charge (b. c.) and both.

surface charge. The sodium current rises while the surface charge increases but starts to decrease
again for q

s

SF,lip ≤ −1.4e0. For higher calcium concentrations the sodium current decreases already

for smaller surface charges, compared to lower calcium concentrations.

3.2 Step depolarization

In the following we will apply time-dependent boundary conditions for the membrane potential to cal-
culate ion currents for step depolarisation. Therefore we solve the transient system. The simulation
was performed from an initial time t = 0 s to a final time of t = 0.3 s . The initial potential was
E = −60mV and was switched toE = −40mV (−20mV , −10mV ) after 0.1 s , with φout = 0, s.t.
φin = E. The simulations were carried out for two different external calcium concentrations pCa= 7.7
and pCa= 3.2. In Figure 10 calcium and sodium currents are plotted over time for pCa= 7.7. It can
be observed that the currents rise sharply after a potential switch. In the first few seconds after de-
polarization an outward current is measured until a steady inward current is established. The peak
calcium currents are over three orders of magnitude smaller and take approximately 0.1 s longer to
reach steady state. After approximately 0.175 s the Ca2+ current declines. When changing the ex-
ternal calcium concentration to pCa= 3.2 the peak sodium currents are still approximately two times
higher than the peak calcium currents. In that case the steady state sodium current is reached later
then the steady state calcium current. after 0.25 s the Na+ current declines. The difference in the
peak currents can be explained by the different concentrations of sodium and calcium in the intracellu-

DOI 10.20347/WIAS.PREPRINT.3072 Berlin 2023



Ion-channel model framework 21

(a) (b)

Figure 9: (a) Calcium current and (b) sodium current as a function of the surface charge inside the
selectivity filter for different external calcium concentrations.

lar domain. The initial Ca2+ concentration was set to zero, whereas the initial Na+ concentration was
32mM . The magnitudes of the different currents are the same as in the previous experiment.

3.3 Cyclic voltammetry

Similar to the previous section, we apply a time-dependent membrane potential. However, instead of a
pulse, the potential is now a waveform, i.e., it increases (decreases) linear in time. The applied potential
as a function of time is given by Figure 11a. The current was measured for a calcium concentration
in the outer and inner bath of pCa= 4.8. For this simulations we chose the calcium concentrations
equivalent in the intra- and extracellular. The scanning rate for the potential is vscan = 2596.5Vs −1.
The maximum potential is E = 50mV and the minimum potential is E = −50mV . We apply one
cycle that takes around t = 75µs . Figure 11b shows the voltammogram for calcium [11, 18]. The
scan starts in the direction of negative membrane potentials, resulting in an inward calcium current.
As the potential becomes more negative, the current continues to increase until the switching point
is reached. After reversing the scanning direction, a smaller inward current is measured, resulting in
a separation between the two curves. When a membrane potential of about 6 − 7mV is reached,
the current changes sign and an outward current is measured. After changing the scanning direction
again, the outward current starts to decrease. For positive membrane potentials, the span between
the two curves is not as large as for negative potentials. The sodium current shows a similar behavior,
with the exception that the current increases after switching the scanning direction (Figure 11c).

3.4 Current-voltage relations

It is possible to calculate current-voltage (IV) relations under different conditions such as different
calcium concentrations or different surface charges. The IV-relations for calcium and sodium are given
in Figure 12. The currents were calculated for different membrane potentials from E = −100mV to
E = 100mV . For each membrane potential the system was solved in steady state.

In a first experiment the IV-relation was calculated for different Ca2+ concentrations in the outer and
inner bath, namely pCa= 5.7, pCa= 4.8 and pCa= 4.2. As expected the calcium current increases
(Figure 12a) for higher Ca2+ concentrations while the sodium current decreases (Figure 12b). In a
second experiment the surface charge was varied. In that scenario the IV-relation was measured for
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(a) (b)

(c) (d)

Figure 10: (a) Calcium current and (b) sodium current as a function of time for different step depolar-
izations E = −40mV , E = −20mV and E = −00mV and an external calcium concentration
of pCa= 7.7. (c) Calcium current and (d) sodium current for an external calcium concentration of
pCa= 3.2.

pCa= 4.8 in the inner and outer domain and for q
s

SF,lip = qS = −1.5e0, qS = −1.7e0 and qS =

−2e0. As the surface charge increases also the calcium current increases (Figure 12c). However, the
sodium current decreases with increasing surface charge (Figure 12d). This coincides with the result
from section 3.1.2.

It is noteworthy that the currents change sign at a potential of around E = 6 − 7mV . If the surface
charge is reduced, the sign change shifts in the direction of the origin, i.e. at qS = 0 the currents
would change sign at a membrane potential of E = 0mV .

4 Discussion and outlook

This work focuses on the mathematical consistent modelling of the selectivity filter. Our approach is
to include the selectivity filter as an additional embedded domain and treat it as a polymeric or solid
electrolyte. The assumption is that the filter region is formed by immobile scaffold forming species that
mix and interact with the channel passing ions.

In previous modeling approaches, the structural charges of the selectivity filter were included by in-
troducing confined oxygen ions. These ions were assumed to move freely within the selectivity filter
but not to enter the two baths. The confinement was modeled by a hard-wall potential [27, 39, 43].
Different approaches, such as DFT [25, 27] or MSA [38], were used to derive the chemical potential
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(a)

(b) (c)

Figure 11: (a) Membrane potential as a function of time for one cycle. (b) Voltammogramm for calcium.
(c) Voltammogram for sodium.

for the species within the selectivity filter and the binding selectivity. Solvation effects are described
implicitly by different dielectric properties within the different phases [26, 43]. Therefore, the dielectric
constant is often treated as a function of space [32]. In addition, the different mobilities of the ions
within the selectivity filter are modeled with location-dependent diffusion coefficients, which are also
described as continuously differentiable functions of space [27, 40]. Liu and Eisenberg [39, 41] devel-
oped a model were they treated the free moving oxygen ions as multiple additional binding domains.
Algebraic equations must therefore be solved to calculate the electrostatic potential and the steric
potential within these domains. The resulting electrostatic potential is then coupled with the PNPB
system through a Dirichlet boundary condition. The underlying idea is that within the selectivity filter
region multiple binding sites exists and that the permeating ions hop from one site to the other [26].

We account for binding sites and the hoping of ions by assuming that the immobile species form lattice
sites on which channel passing species can move, i.e., ions can thus only move from one lattice site
to another. This idea is incorporated in the model within the free energy density by the mixing entropy.
Furthermore, we take into account solvation and desolvation effects within the free energy density
of the system and by chemical reactions on interfaces. Treating the selectivity filter as a separate
region allows a consistent derivation of different chemical potential functions within different phases
for the species based on non-equilibrium thermodynamics. Charges of the protein are incorporated by
a backbone charge and by surface charges.

A first numerical example illustrates that the model is able to fit experimental results. It reproduces
the measured total current in a calcium channel for varying Ca2+ concentrations in the extracellular
bath. The simulations show, that for low calcium concentrations the channel is conductive for sodium.

DOI 10.20347/WIAS.PREPRINT.3072 Berlin 2023



C. Keller, J. Fuhrmann, M. Landstorfer, B. Wagner 24

(a) (b)

(c) (d)

Figure 12: (a) Current voltage relation for calcium current and (b) sodium current for different external
calcium concentrations. (c) Current voltage relation for calcium and (d) for sodium for different surface
charges within the selectivity filter.

However, the determined diffusion coefficients within the selectivity filter are around one order of mag-
nitude smaller than those proposed by MD simulations and other continuum models. Here, diffusion
coefficients were determined that are 5-10 times smaller than in the bulk [1, 28, 40, 42, 51]. Never-
theless, one has to be careful when comparing these results, for example, Allen et al. [1] study KcsA
potassium channels with a length of 40 Å while our channel has a lenght of 20 Å . Mamonov et al. study
the diffusion of K+ in Gramacidin A channel and vary the dielectric constant within the selectivity filter,
while we keep the dielectric properties constant throughout the whole domain.

The parameter study depicts that mobility and electrostatic forces do influence the ion current. Fur-
thermore, we find that the current is proportional to the diffusion coefficients and the surface charge
within the channel. The investigation of the currents as a function of the surface charge shows that
the selectivity between divalent calcium and monovalent sodium ions depends on the electric field
within the selectivity filter. This is consistent with the statement that the selectivity depends on both
finite volume effects and on the electrostatic forces [5, 43]. Another example of calcium selective ion
channels are ryanodine receptors (RyRs). Wei et al. [53] and Gillespie et al. [28] found that the selec-
tivity in RyR1, for example, also depends mainly on the electric field formed by the negatively charged
residues rather than on the desolvation of the ions or other physical phenomena.

Other proposed models provide similar qualitative results as our model. Nevertheless, our approach
provides a consistent description of the selectivity filter within the continuum formulation without the
need to solve additional equations. This allows for a straightforward numerical implementation of the
system. Furthermore, many models do not explicitly take dehydration of ions into account when they
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enter the selectivity filter. Throughout the simulations we assumed that interface reactions are fast
compared to the diffusion such that the ion flow is continuous. In a future study we want to include
interface reactions and investigate their influence on ion flux and selectivity of the channel. The selec-
tivity of nanopores also plays an important role in technological applications such as water treatment
and desalination [19]. Here, the knowledge of biological ion channels is used to design artificial pores.
It has been shown that the following characteristics have an influence on selectivity: dielectric exclu-
sion, pore length, pore size, and the binding sites [19]. These are further aspects that could be taken
into account in a parameter study by varying the dielectric constant in the channel, changing the length
of the selectivity filter, varying length and position of the surface charge, or by changing the diameter
of the pore.

The presented model framework allows the study of ion movement through nanopores under different
conditions such as different channel properties and bulk concentrations. It enables to easily change
constituents within the electrolyte and it is possible to include backbone and surface charges within
the channel or on the lipid bilayer. Furthermore, different chemical properties of the ions can be taken
into account by including different chemical potentials. Through a consistent coupling of diffusion and
the incompressibility of the electrolyte it is possible to include ions of different sizes in the model. Our
model provides a tool for the analytical and numerical investigation of parameter dependencies. By
applying different types of boundary conditions a variety of different numerical experiments can be
performed.
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A Parameter values used to simulate an calcium-selective ion
channel

Symbol Meaning Value Unit

T temperature 298.15 K

e0 elementary charge 1.602×10−19 C

kB Boltzman constant 1.380×10−23 J K−1

NA Avogadro constant 6.022×1023 mol−1

F = e0NA Faraday constant 9.648×104 C mol−1

R = kBNA Gas constant 8.314 J mol−1 K−1

ε0 vacuum permittivity 8.854×10−12 F m−1

χ = εr − 1 dielectric susceptibility 86.9 -

εr relativ permittivity water 87.9 -

Dj
Ca2+ , Dj

Na+ , Dj
Cl− diffusion coefficients [0.79, 1.334, 2.032]× 10−9 m2 s−1

DSF
Ca2+ , DSF

Na+ in ΩSF diffusion coefficients [0.25Dj
Ca2+ , 1.5Dj

Na+ ]× 10−3 m2 s−1

zH2O, zCa2+ , zNa+ , zCl− charge number of ions 0, 2, 1, -1 -

MH2O, MCa2+ , MNa+ , MCl− molar weights 18.0, 40.1, 23.0, 35.5 g mol−1

vH2O, vCa2+ , vNa+ , vCl− molar volumes [55.4, 26.20, 23.78, 17.39]×10−6 m3 mol−1

q
s

SF,lip = qS charge channel wall −2e0 C nm−2

q
s

out,lip, q
s

in,lip charge lipid bilayer 0 C nm−2

[CaCl2]in, [CaCl2]out bulk concentrations 0, 10 mM

[NaCl]in, [NaCl]out bulk concentrations 32, 32 mM

φin, φout bulk potential -20, 0 mV

κCa2+ , κNa+ , κCl− solvation numbers 30, 60, 30 -

r channel radius 4.5 Å

l length of ΩSF 14 Å

lcharge length of SSF,lip 8 Å

nℓ scaffold forming species 2 mol L−1

Table 2: Parameter values used to simulate an calcium-selective ion channel.
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