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FSSH-2: Fewest Switches Surface Hopping with robust switching
probability

Leonardo Araujo, Caroline Lasser, Burkhard Schmidt

Abstract

This study introduces the FSSH-2 scheme, a redefined and numerically stable adiabatic Fewest
Switches Surface Hopping (FSSH) method. It reformulates the standard FSSH hopping probabil-
ity without non-adiabatic coupling vectors and allows for numerical time integration with larger step
sizes. The advantages of FSSH-2 are demonstrated by numerical experiments for five different
model systems in one and two spatial dimensions with up to three electronic states.

1 Introduction

The widely-used Fewest Switches Surface Hopping (FSSH) method is a cost-effective approach for
the numerical simulation of non-adiabatic quantum dynamics. Even though originally developed more
than 30 years ago [28], this concept is still very popular especially in the context of photochemitry
and excited-state molecluar dynamics [3, 14, 17, 7]. The FSSH scheme adopts a mixed quantum-
classical paradigm where typically nuclei are treated classically and electrons quantum-mechanically.
The method’s principal efficiency stems from its use of classical trajectories moving on adiabatic poten-
tial energy surfaces with the possibility of stochastic ’hopping’ between states according to calculated
probabilities. Because of this conceptual simplicity and the straightforward implementation, FSSH is
still among the most commonly used methods for non-adiabatic molecular dynamics.

Despite its efficiency, FSSH has the drawback that it relies on the notorious Non-Adiabatic Couplings
(NACs). While there are methods to compute NACs accurately and efficiently in regions of large gaps
between neighboring potential energy surfaces [12, 15, 17], they may become increasingly large near
energy crossings, if not divergent. For trajectories approaching genuine or avoided crossings, this ne-
cessitates the use of exceptionally small time step sizes to achieve numerical convergence, if at all
possible. Moreover, FSSH may become computationally intensive when combined with ön the flyëlec-
tronic structure calculations, in particular because of force and NAC calculations. This underscores
the necessity of robust time integration approaches that allow for large time steps.

The present study introduces FSSH-2, an improved numerical time integration scheme for the FSSH
method. FSSH-2 incorporates a modified fewest switches hopping probability that utilizes time-overlap
integrals for electronic amplitude propagation, a technique known as local diabatization [9]. An essen-
tial feature of this approach is its numerical stability, as it operates independently of the potentially
divergent NACs. It is similar to the global flux hopping method [29], but stands apart in both its deriva-
tion and its effective formulation.

We begin with a brief derivation of the conventional FSSH method in Sec. 2, highlighting its assump-
tions, numerical aspects, and established challenges. In Sec. 3, the FSSH-2 method is presented,
along with a discussion of its theoretical advantages over FSSH. In Sec. 4, we present numerical
experiments demonstrating the advantages of FSSH-2.

DOI 10.20347/WIAS.PREPRINT.3071 Berlin 2023



L. Araujo, C. Lasser, B. Schmidt 2

2 FSSH Method

The traditional FSSH method propagates swarms of classical trajectories, that represent the nuclei,
with associated electronic amplitudes that trigger hopping events to model non-adiabatic transitions.
We employ a fixed time step size denoted by ∆t > 0, with time steps represented as ts = s∆t for
s∈N0. We discuss the three fundamental tasks for advancing a given classical trajectory with position
q(t) ∈ Rdnuc and momentum p(t) ∈ Rdnuc one time step further: classical propagation, evolution of
the corresponding electronic amplitudes, and surface hopping.

2.1 Classical Dynamics

For each state, let the function θm(q,x) be the m-th adiabatic state, where q ∈ Rdnuc represents the
nuclear coordinates and x ∈ Rdel the electronic coordinates. Each adiabatic state is an eigenfunction
corresponding to the m-th eigenvalue of the self-adjoint electronic Hamiltonian Hel(q) parametrically
dependent on the coordinates q.. We assume that the adiabatic states are real-valued. The eigenvalue
equation for the electronic Hamiltonian can be written as

Hel(q)θm(q,x) = Em(q)θm(q,x),

where Em(q) defines the m-th adiabatic potential energy (hyper-)surface. The classical dynamics of a
trajectory occupying the adiabatic state θm is described by Hamilton’s equations of motion:

q̇(t) =
p(t)
M

ṗ(t) = Fm(q(t)).
(1)

Here, M > 0 stands for the nuclear mass and Fm(q) = −∇qEm(q) ∈ Rdnuc represents the m-th
adiabatic force which can be computed by means of the Hellmann–Feynman theorem [13, 6, 4],

Fm(q) =−〈θm(q, ·),∇qHel(q)θm(q, ·)〉 , (2)

where 〈·, ·〉 represents the inner product of the electronic Hilbert space.

For propagating Eq. (1), we used the Störmer–Verlet method [19] since it is an explicit, second-order,
symplectic integrator. Due to the singularity of the adiabatic force near eigenvalue crossings, we refrain
from using a higher order method.

2.2 Electronic Amplitudes

Let us denote by L ∈ N the total number of electronic states being considered. To compute hopping

probabilities, FSSH propagates adiabatic amplitudes, denoted as cadi(t) =
(
cadi

m (t)
)L

m=1 ∈C
L. These

amplitudes obey the following ordinary differential equation:

iċadi(t) = Hadi(t)cadi(t). (3)

In this equation, the elements of the Hamiltonian matrix Hadi(t)=
(
Hadi

m,n(t)
)L

m,n=1 ∈C
L×L are defined

as

Hadi
m,n(t) = δm,nEm(q(t))−

i
M

dm,n(q(t))T p(t),
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where dm,n(q) = 〈θm(q, ·),∇qθn(q, ·)〉 represents the non-adiabatic coupling (NAC) vector. Initially

normalized amplitudes stay normalized for all times,‖cadi(t)‖ = 1. Similarly to the adiabatic force in
Eq. (2), the (extended) Hellmann–Feynman theorem provides a straightforward formula for the com-
putation of the NAC vector for Em(q) 6= En(q):

dm,n(q) =−
〈θm(q, ·),∇qHel(q)θn(q, ·)〉

Em(q)−En(q)
. (4)

However, propagating the adiabatic electronic amplitudes is significantly hampered by the divergence
of the NAC vector, and the literature [10, 16] recommends to introduce a second, smaller time step
size for this task.

The direct propagation of Eq. (3) is typically carried out using the first term of the Magnus expansion
[21] [11, Chapter IV.7] in conjunction with the trapezoidal rule:

cadi(ts+1)≈ exp

−i

ts+1∫
ts

Hadi(t)dt

cadi(ts)≈ exp
(
−i∆t

Hadi(ts)+Hadi(ts+1)

2

)
cadi(ts). (5)

The utilization of the trapezoidal rule here is advantageous as it circumvents the need to calculate
adiabatic states at locations not associated with the defined time steps. As for the classical dynamics,
a higher order approximation could lead to faster divergences for larger time step sizes.

2.3 Surface Hopping

After propagating the electronic amplitudes, a trajectory may undergo a transition from its current
state m to a new state n. The FSSH hopping probability Pm,n(ts, ts+1) is derived by considering the

electronic densities ρ(t) = cadi(t)cadi(t)
T ∈ CL×L based on the electronic amplitudes. By means of

Eq. (3), the rate of change of these densities are characterized by

ρ̇m,m(t) =
2
M

L

∑
n=1
n6=m

Re(ρm,n(t)) dm,n(q(t))T p(t). (6)

The FSSH hopping probability is obtained by tracking the outflux from state m to all other states at
time t during a short time interval ∆t . Assuming no influx into state m during this brief period, the rate
of outflux is described as ρm,m(ts)−ρm,m(ts+1). The probabilities of staying at and leaving state m
are then given by:

Pm,stay(ts, ts+1) =
ρm,m(ts+1)

ρm,m(ts)
and Pm,out(ts, ts+1) =

ρm,m(ts)−ρm,m(ts+1)

ρm,m(ts)
. (7)

This is known as the fewest switches assumption after which the FSSH method is named. To compute
the probability of hopping from state m to another state n 6= m, we can express Pm,n by inserting Eq.
(6) into (7):

Pm,out(ts, ts+1) =−
∫ ts+1

ts ρ̇m,m(t)dt
ρm,m(ts)

=− 2
Mρm,m(ts)

L

∑
n=1
n6=m

∫ ts+1

ts
Re(ρm,n(t)) dm,n(q(t))T p(t)dt.
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The last equation formulates a hopping probability from state m to n as:

Pm,n(ts, ts+1) =−
2

Mρm,m(ts)

∫ ts+1

ts
Re(ρm,n(t)) dm,n(q(t))T p(t)dt. (8)

By applying an Euler approximation to the integral, the original FSSH formula [28] is reconstructed

Pm,n(ts, ts+1) =
2∆tRe(ρm,n(ts+1))

Mρm,m(ts)
dm,n(q(ts+1))

T p(ts+1), (9)

where negative values are treated as zeros. Note that Pm,n depends on the NAC, thus inheriting its
possible divergence issue.

For a hopping event from state m to another state n, the process involves a uniformly distributed
random number r ∈ [0,1]. The state n is determined by the condition:

n−1

∑
k=1
k 6=m

Pm,k(ts, ts+1)≤ r <
n

∑
k=1
k 6=m

Pm,k(ts, ts+1).

If no such n satisfies this criterion, no hopping is performed and the trajectory remains in state m. This
random hopping criterion together with initial random sampling constitute the stochastic nature of the
FSSH method.

3 FSSH-2 Method

The above numerical issues have led us to explore alternative and more efficient approaches to refine
the FSSH method. The novel FSSH-2 presents two modifications to the original FSSH method: the
propagation of adiabatic amplitudes through local diabatization and the redefinition of FSSH hopping
probabilities.

3.1 Local Diabatization Method for Propagating Adiabatic Amplitudes

In the spirit of the local diabatization method [9], we use a diabatic representation, which often offers
smoother conditions. For the while being, we assume that a diabatic potential energy matrix V dia(q)∈
RL×L is given but below it will be shown that an adiabatic-to-diabatic transformation is not required.
Instead of considering the adiabatic amplitudes, we work in a diabatic representation with diabatic
amplitudes that evolve according to

iċdia(t) = Hdia(t)cdia(t), (10)

where the diabatic Hamiltonian consists solely of the diabatic potential energy matrix, Hdia(t) =
V dia(q(t)). The diabatic amplitudes are related to the adiabatic amplitudes through the diagonalization
of V dia(q)

V dia(q) =U(q)
T

E(q)U(q), (11)

where E(q) = diag(E1(q), ...,EL(q)) ∈ RL×L denotes the adiabatic potential energy matrix, which
is diagonal. Consequently, the unitary matrix U(q(t)) ∈ RL×L serves as the transformation matrix
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from diabatic to adiabatic representation. This implies that the electronic amplitudes in the diabatic
and adiabatic representations are related as follows:

cadi(t) =U(q(t))cdia(t). (12)

Note that we will show below that the transformation matrices U will not be used in the FSSH-2
scheme. Analogously to Eq. (5), we can propagate Eq. (10) using the first term of the Magnus expan-
sion but this time in conjunction with the Euler method

cdia(ts+1)≈ exp

−i

ts+1∫
ts

V dia(q(t))dt

cdia(ts)≈ exp
(
−i V dia(q(ts+1)) ∆t

)
cdia(ts).

The Euler method is beneficial here since the diagonalization of V dia(q(t)) is inherently involved in
the force calculation for classical dynamics when using a diabatic model. Together with Eq. (11), this
leads to:

cdia(ts+1)≈ exp
(
−i V dia(q(ts+1)) ∆t

)
cdia(ts)

=U(q(ts+1))
T

exp(−i E(q(ts+1)) ∆t)U(q(ts+1)) cdia(ts).

Transforming the diabatic amplitudes back into the adiabatic representation by using Eq. (12), we
obtain the following propagator for the adiabatic amplitudes:

cadi(ts+1)≈ exp(−i E(q(ts+1)) ∆t)Γ(ts, ts+1) cadi(ts) (13)

with Γ(ts, ts+1)=U(q(ts+1))U(q(ts))
T ∈RL×L. Evaluating the remaining matrix exponential is straight-

forward, as E(q) is a diagonal matrix. Interestingly, this propagator remains valid even in the absence
of a known diabatic framework. The matrix elements of Γ(ts, ts+1) are defined as

Γm,n(ts, ts+1) = 〈θm(q(ts+1), ·),θn(q(ts), ·)〉 ,

where the θ are the adiabatic states defined in Sec. 2.1. In Ref. [5], these matrix elements are referred
to as time-overlaps between adiabatic states. From the point of view of numerical calculations, they
have the advantage that their absolute value is bounded by one. Thus, Eq. (13) results in a propagator
of the adiabatic states that only depends on the adiabatic potential energies, E , and time-overlaps,
Γ, of adiabatic states. Hence, this propagator offers several advantages in addressing the numerical
challenges discussed for Eq. (5). First, it eliminates the need to consider the NAC vectors, thus en-
suring there are no divergent quantities in the calculations and computational costs do not scale with
O(L4), as demonstrated in our previous work [24]. In fact, the computational costs of Γ are compa-
rable to those of matrix multiplication, scaling with O(L2). Second, the implementation of FSSH-2 is
straightforward and all operations in Eq. (13) can be trivially parallelized across all trajectories. Thus,
the local diabatization propagator offers a simple, cost-effective, and parallelizable method for propa-
gating adiabatic amplitudes.

3.2 FSSH-2 Hopping Formula

Another challenge is to derive a hopping formula that can harness the advantages of the local diaba-
tization propagator fully. The traditional FSSH hopping formula exhibits the stability issues mentioned
in Sec. 2.2 and 2.3. To tackle this, we revisit the outflow probability in Eq. (7). By first considering
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the case of only two electronic states (L = 2), the outflow probability characterizes the hopping prob-
ability from state m to the other state n 6= m. Utilizing the normalization of our electronic densities,
ρm,m(t)+ρn,n(t) = 1, we can express the outflow probability in terms of state n:

Pm,out(ts, ts+1) =
ρm,m(ts)−ρm,m(ts+1)

ρm,m(ts)
=

ρn,n(ts+1)−ρn,n(ts)
ρm,m(ts)

. (14)

This hopping formula is straightforward to evaluate, given that all its elements are densities, bounded
by 1. Notably, this formula is not only more concise than the FSSH hopping formula in Eq. (9) but
it is also independent of NACs. Consequently, it provides a simple approach to circumvent potential
challenges of NACs.

We extend this approach to an arbitrary number of electronic states L∈N. The normalization condition
for electron densities can be expressed as

L

∑
n=1

ρn,n(t) = 1 ⇔ ρm,m(t) = 1−
L

∑
n=1
n 6=m

ρn,n(t).

Substituting this into Eq. (7), we obtain the expression

Pm,out(ts, ts+1) =
L

∑
n=1
n 6=m

ρn,n(ts+1)−ρn,n(ts)
ρm,m(ts)

.

The individual terms in this sum,
ρn,n(ts+1)−ρn,n(ts)

ρm,m(ts)
, indicate a hopping probability between state m

and n, analogous to Eq. (14) for the case of two electronic states. However, for L > 2, the physical
interpretation of these terms might be incorrect in certain scenarios. For instance, when ρn,n(ts+1)−
ρn,n(ts) > 0 and the outflow of state m is zero, it could incorrectly suggest a hopping from m to n.
Therefore, we introduce Pm,out as an upper bound and define the FSSH-2 hopping probability as

P̃m,n(ts, ts+1) = min
{

Pm,out(ts, ts+1),
ρn,n(ts+1)−ρn,n(ts)

ρm,m(ts)

}
. (15)

As mentioned for the case L = 2, it addresses some of the issues encountered with the traditional
FSSH hopping formula. Based solely on the densities derived from adiabatic amplitudes, P̃m,n circum-
vents the issues related to the divergent NAC vectors. Additionally, the computation of this refined
hopping formula is simple, enhancing its practicality. With the absence of approximations in its formu-
lation, the precision of P̃m,n is solely connected to the accuracy of the propagation of the adiabatic
amplitudes.

3.3 Limitations of the FSSH-2 hopping probability

The FSSH-2 hopping probability still presents certain shortcomings. Like FSSH, the probabilities do
not form a valid probability distribution. Another concern is that the upper bound in Eq. (15) may not
be sufficient to prevent incorrect transfers between states that are not coupled but have transfers at
the same time. Imagine a scenario with four states where the first and last two states cross each other
simultaneously, but there is a substantial gap between states 2 and 3. If there is population on all
states, it may occur that a hopping event from state 3 to 2 occurs.

DOI 10.20347/WIAS.PREPRINT.3071 Berlin 2023
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Model
Difference between quantum solution

and FSSH
Difference between quantum solution

and FSSH-2
Difference between FSSH

and FSSH-2

Tully 1 0.004 0.003 0.004
Tully 2 0.007 0.004 0.003

2D LVC 0.014 0.012 0.013
2D Well 0.023 0.021 0.003
Model X 0.007 0.010 0.005

Table 1: Comparison of the quantum reference solution to converged results of FSSH and FSSH-2
for each model, evaluated at our highest chosen (256) substep number. The numbers showcase the
mean absolute population differences of the second adiabatic state.

4 Simulations

The FSSH-2 method offers a straightforward yet promising redefinition of the traditional FSSH method,
showing potential for enhanced numerical efficiency, which needs further validation across various
scenarios. To assess the performance of the two methods, we explored a variety of diabatic models
of non-adiabatic dynamics in molecular systems: the Tully single and double crossing models [28],
the two-dimensional linear vibronic coupling (2D LVC) model [8], the two-dimensional well [26], and
Model X [27]. While the latter one incorporates three electronic states, the other models feature two
electronic states. This exhaustive approach is in line with the recommended test suite for non-adiabatic
algorithms by Nelson et al. [22].

Our simulations were carried out using the MATLAB version of the WavePacket software package
[25, 23, 24], which is designed to treat fully quantum-mechanical (grid based) and quantum-classical
(trajectory based) simulations on an equal footing. Given that the use of grid–based representations
of wave functions is restricted to low dimensional systems, its quantum-classical counterpart offers an
efficient alternative for simulations involving higher dimensional systems. Within WavePacket, the main
time steps can be divided into an arbitrary number of substeps, which are then used as our previously
defined (propagation) time steps ∆t . Therefore, by keeping the main time steps fixed for a model, we
can vary ∆t by varying the number of substeps. This also enables us to easily maintain consistency
across the models by selecting the same substep number. While we performed the simulations using
WavePacket, it is worth mentioning that FSSH-2 is also available in Libra package v5.5.0 [1].

In our simulations, we chose the simulation time such that the classical trajectories could traverse the
(avoided) crossings up to two times. The surface hopping methods used swarms of 10,000 trajectories.
Following each hopping event, the momentum was rescaled along the NAC vectors, the direction of
which can be efficiently computed without singularity issues by evaluating only the numerator in Eq.
(4). The main time step sizes were selected based on the limits of energy conservation of the classical
dynamics propagator. To compare our results to a full quantum solution, we also performed a wave
function simulation using a second-order Strang-Marchuk operator splitting scheme with the FFT grid
representation [2, 18, 20]. Further details for each simulation set-up can be found in the appendix.

4.1 Comparison between FSSH and FSSH-2

The primary aspect of our investigation involves the comparison of population transfers. In the case of
two electronic states and under the assumption of continuous adiabatic states, FSSH-2 and FSSH
exhibit a first-order approximation relationship. Consequently, for models featuring only two elec-
tronic states, we anticipate close accordance between FSSH and FSSH-2 results. The sole scenario
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Figure 1: Population of the second adiabatic state for the Tully 1 model using FSSH (left) and FSSH-2
(center) for different numbers of substeps. The right panel shows the absolute population error after
the initial hopping event for both methods.
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Figure 2: Same as Fig. 1 but for the Tully 2 model.

where qualitative discrepancies might emerge is Model X because it involves three electronic states.
Nonetheless, as shown in Tab. 1, across all models considered, the absolute differences in population
transfers averaged over the running time generated by these methods with their maximum substep
number of 256 were consistently below 0.025. This level of variance is acceptable for a stochastic
simulation method, considering the number of trajectories involved. Except for the 2D Well case which
displayed the largest deviations, no discernible advantages were observed when these results were
compared against the quantum reference solutions.

4.2 Toward larger time step sizes

Next, we assessed how FSSH and FSSH-2 responded to enlarged time step sizes by systematically
halving the substep number, starting from 256 and descending to 1. Obviously, each decrease in the
substep number directly cuts the total simulation time in half. Such a gain of efficiency has profound
implications for realistic system simulations, especially when surface hopping simulations are coupled
to large scale electronic structure calculations.

In Figs. 1 to 5, the left and center panels illustrate the population dynamics of the second adiabatic
state for both the traditional FSSH and our novel FSSH-2 method, respectively. For the traditional
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Figure 3: Same as Fig. 1 but for the 2D LVC model.
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Figure 4: Same as Fig. 1 but for the 2D Well model.

FSSH method, results with 1, 2, and 4 substeps often significantly deviate from the converged out-
comes, sometimes even presenting qualitatively incorrect results. In contrast, the FSSH-2 method
demonstrates a consistently much better performance - in most cases, the results with just a single
substep per main time step align closely with the converged outcomes. However, the 2D LVC model
is an exception. Initially, after the first hopping event, the FSSH-2 scheme yields nearly perfect re-
sults, but following the second hopping event, 16 substeps are required to approach the converged
population results. For fewer timsteps, significant issues with the conservation of energy were found in
addition to the discrepancies of the population dynamics. To further investigate this anomaly, we re-ran
the simulations for the 2D LVC model, this time rescaling the momenta along the previous momenta
after each hopping event. While the results for the traditional FSSH method remain largely unaffected,
the FSSH-2 method demonstrates enhanced accuracy: with as few as 4 substeps, convergence is
reached, similarly as observed for the other models. This observation highlights the importance of
smaller time step sizes for precise handling of NACs in FSSH, particularly in multidimensional models.

To quantitatively support our observations, we assessed the maximum substep number at which the
population deviation of the second state exceeds a threshold of 0.025, compared to the converged
results. This threshold indicates the beginning of significant divergence. The traditional FSSH method
typically surpassed this threshold only at relatively high substep numbers, typically between 10 and
100, see Tab. 2. In marked contrast, the FSSH-2 method demonstrated superior performance: it ex-
ceeded the threshold already for a single substep in Tully models and the 2D Well model. For the other
models, the FSSH-2 method surpassed this threshold only when the number of substeps was fewer
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Figure 5: Same as Fig. 1 but for Model X.

Model FSSH FSSH-2

Tully 1 11 1
Tully 2 16 1

2D LVC 91 11
2D Well 11 1
Model X 64 6

Table 2: Comparison of the FSSH and FSSH-2 methods at different substep numbers. The second
and third columns specify the maximum substep number where the FSSH and FSSH-2 methods start
to display population divergences exceeding 0.025.

than 11 (2D LVC) or 6 (Model X). Hence, the FSSH-2 method showed a relative improvement over the
traditional FSSH method by a factor ranging from approximately 8 to 23. This substantial increase in
efficiency suggests a potential reduction in running time by a similar factor.

The superior stability of FSSH-2 comes to the forefront especially during the first hopping event. This
is underscored by the graphs in the right panels of Figs. 1 to 5 which show the population after the
first passage of the crossings or intersections of the lowest two potential energy curves or surfaces.
Especially for the 2D LVC model and Model X, the FSSH-2 method offers significant advantages,
allowing for time step sizes that are around 50 times greater than what FSSH requires.

Overall, these results demonstrate the superior numerical efficiency of our FSSH-2 method compared
to the traditional FSSH method.

5 Conclusions

We presented the FSSH-2 scheme, an enhanced numerical time integration variant of the FSSH
method. The main advantage of FSSH-2 is that it is tailored to operate independently of the notorious
NAC which may become (nearly) divergent at (avoided) intersections of adiabatic potential energy sur-
faces. This is known to be one of the main causes for the numerical problems hampering the original
FSSH scheme, in particular the restriction to rather small time steps. Even though our theoretical anal-
ysis indicates that the two methods do not necessarily produce identical outcomes, our simulations –
primarily based on the test suite for non–adiabatic algorithms by Nelson et al. [22] – revealed congru-
ent results between the FSSH and FSSH-2 methods when using very small time steps. However, the
most important finding in our analysis is that the FSSH-2 scheme exhibits swifter convergence with
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respect to the number of time steps, which makes it approximately 1 to 2 orders of magnitude faster
than conventional FSSH, especially during the initial hopping event.

A Simulation Details

Throughout all of our simulations, the initial state is modeled as a Gaussian wave packet parameterized
as follows

g(q) = (det(WG))
− 1

2

(
2
π

) dnuc
4

exp
(
−1

4
(q−qG)

TW−2
G (q−qG)+ ipT

G(q−qG)

)
,

where WG ∈Rdnuc×dnuc
>0 is a positive diagonal width matrix, determining the spread of the wave packet

in each dimension. The packet is centered at position qG ∈ Rdnuc , with a momentum pG ∈ Rdnuc .
The initial conditions for the trajectories are derived from the Wigner transform of the Gaussian wave
packet, as expressed by

Wg(q, p) = exp
(
−2(q−qG)

TW−2
G (q−qG)−

1
2
(p− pG)

TW 2
G(p− pG)

)
,

implying that the sampling follows a normal distribution in q and p.

A.1 Tully 1

A single crossing model consisting of two electronic states with diabatic potential matrix given by [28]

V dia(q) =
(

sign(q)A(1− exp(−sign(q)Bq)) C exp(−Dq2)
C exp(−Dq2) −sign(q)A(1− exp(−sign(q)Bq))

)
with A = 0.01, B = 1.6, C = 0.005, D = 1.0, and mass M = 2000. The initial Gaussian wave packet
has the parameters WG = 0.75, qG =−6, pG = 15. Initially, the electronic system occupies the lower
adiabatic state. The main time step size is 200 a.u. for a total of 9 main time steps. The main time
step size is 100 a.u. for a total of 10 main time steps. The grid for the quantum solution consisted of
28 equally spaced points in the range [−10,10].

A.2 Tully 2

A double crossing model consisting of two electronic states with diabatic potential matrix given by [28]

V dia(q) =
(

0 C exp(−Dq2)
C exp(−Dq2) −Aexp(−Bq2)+E0

)
with A = 0.1, B = 0.28, C = 0.015, D = 0.06, E = 0.05, and mass M = 2000. The initial Gaussian
wave packet has the parameters WG = 0.75, qG = −7, pG = 30. Initially, the electronic system
occupies the lower adiabatic state. The main time step size is 100 a.u. for a total of 10 main time
steps. The grid for the quantum solution consisted of 29 equally spaced points in the range [−12,12].
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A.3 2D LVC

A conical intersection model consisting of two electronic states with diabatic potential matrix given by
[8]

V dia(q1,q2) =
1
2

(
ω2

1 (q1 +
a
2)

2 +ω2
2 q2

2 +σ 2cq2
2cq2 ω2

1 (q1− a
2)

2 +ω2
2 q2

2−σ

)
with the parameters used for bis(methylene) adamantyl cation: ω1 = 7.743 ·10−3, ω2 = 6.680 ·10−3,
a = 31.05, c = 8.092 · 10−5, σ = 0, and mass M = 1. The initial Gaussian wave packet has the
parameters WG = diag(2ω1,2ω2)

− 1
2 , qG = (a/2,0)T , pG = (0,0)T . Initially, the electronic system

occupies the upper adiabatic state. The main time step size is 100 a.u. for a total of 11 main time
steps. The grid for the quantum solution consisted of 28× 27 equally spaced points in the range
[−80,80]× [−40,40].

A.4 2D Well

A 2D extension of the dual avoided crossing model (Tully 2, see above) consisting of two electronic
states with diabatic potential matrix given by [26]

V dia(q1,q2) =

(
−E0 C exp(−D(0.25(q1+q2)

2+0.75(q1−q2)
2))

C exp(−D(0.25(q1+q2)
2+0.75(q1−q2)

2)) −Aexp(−B(0.75(q1+q2)
2+0.25(q1−q2)

2))

)
with A = 0.15, B = 0.14, C = 0.015, D = 0.06, E0 = 0.05, and mass M = 2000. The initial Gaus-
sian wave packet has the parameters WG = 1√

2
Id2×2, qG = (−8,0)T , pG = (20,0)T . Initially, the

electronic system occupies the lower adiabatic state. The main time step size is 100 a.u. for a total of
13 main time steps. The grid for the quantum solution consisted of 28× 27 equally spaced points in
the range [−15,15]× [−10,10].

A.5 Model X

A triple avoided crossing model consisting of three electronic states with diabatic potential matrix given
by [27]

V dia(q) =

A(tanh(Bq)+tanh(B(q+7))) C exp(−q2) C exp(−(q+7)2)
C exp(−q2) −A(tanh(Bq)+tanh(B(q−7))) C exp(−(q−7)2)

C exp(−(q+7)2) C exp(−(q−7)2) −A(tanh(B(q+7))−tanh(B(q−7)))


with A = 0.03, B = 1.6, C = 0.005, and mass M = 2000. The initial Gaussian wave packet has
the parameters WG = 0.75, qG =−12, pG = 15. Initially, the electronic system occupies the central
adiabatic state. The main time step size is 125 a.u. for a total of 20 main time steps. The grid for the
quantum solution consisted of 29 equally spaced points in the range [−15,25].
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