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Abstract

In this paper we consider a piecewise linear collocation method for the solution of

strongly elliptic operator equations over closed curves. The trial space is a subspace

of the space of all piecewise linear functions de�ned over a uniform grid. This

space is spanned by an arbitrary subset of the biorthogonal wavelet basis. To the

subspace in the trial space there corresponds a natural subspace in the space of

test functionals. This subspace is spanned by certain linear combinations of the

Dirac delta functionals taken at the uniformly distributed grid points. For the

resulting wavelet collocation method and a strongly elliptic operator equation, we

prove stability and convergence. In particular, this general result applies to the

double layer equation over a polygonal curve. We show that the wavelet collocation

method with piecewise linear trial functions over a uniform grid converges with

order O(n�2), where n is the number of degrees of freedom. Note that the step

size of the underlying uniform partition is n��; � � 1. The sti�ness matrix for

the wavelet collocation method can be compressed to a matrix containing no more

than O(n log n) non-zero entries such that the asymptotic convergence order is not

e�ected.

1 Introduction

The stability and convergence of piecewise linear collocation for the numerical solution

of operator equations over curves has been established in the work by Pr�o�dorf, Schmidt

[27, 32, 33], Arnold, Wendland [2, 3], Saranen [31], Costabel, Stephan [12, 13], Amini,

Sloan [1], Chandler, Graham [7], and Elschner [20, 21] (cf. also the book by Pr�o�dorf and

Silbermann [28]). Wavelet algorithms for collocation methods have been considered by

Dahmen, Pr�o�dorf, Schneider [17, 18, 34], Harten, Yad-Shalom [22], and the author [29]

(compare also the fundamental paper on wavelet algorithms for the numerical solution of

integral equations by Beylkin, Coifman, and Rokhlin [5]). However, one of the problems

in designing e�ective wavelet algorithms is that the solutions of the operator equations

have a degree of smoothness which is local, i:e:, it depends on the point of the curve. One

way to take care of this locality is to introduce a transformation of the curve such that the

solution of the resulting equation has a uniform degree of smoothness. This approach has

been studied by the author in [29]. Though this transformation technique is very popular

in the numerical solution of integral equation, the natural approach of the wavelet theory

is a di�erent one. Specialists in wavelet compression suggest to take a spline space over a

uniform grid with a very small step size, but to restrict the wavelet basis of this space to

a subset of wavelet basis functions for which the wavelet coe�cients of the solution are

larger than a certain small threshold. In other words, the maximal level of the wavelet

basis should depend on the local degree of smoothness. For the Galerkin method and

several types of potential equations, this approach has been considered by v.Petersdor�

and Schwab [26]. Moreover, adaptive Galerkin methods in the same spirit have been

analyzed by Dahlke, Dahmen, Hochmuth, and Schneider [14, 23].

The main topic of the present paper is to analyze the stability for the collocation method

if the maximal level of the wavelet basis in the trial space depends on the local point of

the curve. To the subspace in the trial space there corresponds a natural subspace in the

space of test functionals. This subspace is spanned by certain linear combinations of the

Dirac delta functionals at the uniformly distributed grid points. If Ax = y is the operator
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equation over the one dimensional closed curve �, if @ denotes the operator of di�eren-

tiation with respect to the arc length parametrization, and if @�1 denotes the inverse of

@ over the space orthogonal to constant functions, then the strong ellipticity of @A@�1

implies the stability of the piecewise linear collocation method de�ned by the restricted

wavelet basis in the trial space and by the corresponding test space. In particular, the

stability result applies to the numerical solution of the double layer potential equation

over polygonal curves. It turns out that the wavelet collocation method with piecewise

linear trial functions over a uniform grid converges with order O(n�2), where n is the

number of degrees of freedom. Note that the step size of the underlying uniform partition

is n��; � � 1. The sti�ness matrix for the wavelet collocation method can be compressed

to a matrix containing no more than O(n log n) non-zero entries such that the asymp-

totic convergence order is not e�ected. Thus, if the entries of the matrix are computed

by analytic formulae and if the matrix equation is solved by a cascadic iterative method

(cf. e:g. the GMRes method by Saad and Schultz [30]), then only O(n log n) arithmetic

operations are required to solve the integral equation up to an error of O(n�2). Remark

that, using further compression techniques (cf. the compression of matrix entries with

overlapping supports of test and trial functions due to Schneider [34]), a reduction to

O(n) operations seems to be possible.

The plan of the paper is as follows: In Section 2 we will recall some facts on biorthogonal

wavelets. This general setting will be applied to the construction of a wavelet basis for

the piecewise linear trial space in Section 3 and to the de�nition of a wavelet basis for

the test space of Dirac delta distributions in Section 4. In Section 5 we will set up

the wavelet collocation method and prove its stability for the case of \strongly elliptic"

operators A, i:e:, of operators A such that @A@�1 is strongly elliptic. We will show in

Section 6 that the double layer operator de�ned over polygonal curves satis�es the stability

assumption. Moreover, we will de�ne a subspace of the wavelet basis in the trial space

which is convenient for the optimal approximation of the solution x. In Section 7 we will

introduce a compression algorithm for the sti�ness matrix and prove that the compressed

matrix contains no more than O(n log n) non-zero entries. Finally, we show the stability

of the compressed wavelet collocation and derive the asymptotic error estimate O(n�2) in

Section 8.

2 Biorthogonal Wavelets

Biorthogonal wavelets have been introduced in the fundamental paper [9] and, for addi-

tional properties, we refer to e:g. [15, 16, 34]. First we introduce the wavelets over the

real axis IR. We consider two hierarchical sequences of function spaces over IR

: : : � Vj�1 � Vj � Vj+1 : : : ; (2.1)

: : : � ~
Vj�1 � ~

Vj � ~
Vj+1 : : : (2.2)

such that f belongs to Vj if and only if t 7! f(2t) is contained in Vj+1 and similarly for the
~
Vj . In other words, the functions of Vj+1 can be obtained from those of Vj by a dilation

in the argument with scaling factor two. Moreover, we suppose that the spaces V0 and ~
V0

are spanned by the integer shifts t 7! '(t� k) and t 7! ~'(t� k) of the so called scaling

functions ' and ~', respectively. This means that V0 and ~
V0 are considered to be subspaces
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of L2 or of a Sobolev space Hs
; s 2 IR and that the set of �nite linear combinations of

the integer shifts is dense in V0 and ~
V0, respectively. Together with the dilation property

we arrive at

Vj := cl span f'j

k
: k 2 ZZg; '

j

k
(t) := 2j=2'(2jt� k); (2.3)

~
Vj := cl span f ~'j

k
: k 2 ZZg; ~'

j

k
(t) := 2j=2 ~'(2jt� k): (2.4)

The sequence (Vj)j2ZZ is called multi-resolution analysis if \j2ZZVj = f0g; [j2ZZVj =

L
2 and if f'j

k
: k 2 ZZg is a Riesz basis of Vj � L

2. Recall that f'j

k
: k 2 ZZg is called a

Riesz basis of Vj if the linear span of f'j

k
: k 2 ZZg is dense in Vj � L

2 and if there exists

a positive constant1 C with

1

C

sX
k2ZZ

j�kj2 �

X
k2ZZ

�k'
j

k


L2

� C

sX
k2ZZ

j�kj2: (2.5)

For the biorthogonal setting, we require that the spaces are dual with respect to the L2

scalar product and that2

h'j

k
; ~'

j

k0
i = �k;k0; k; k

0 2 ZZ (2.6)

holds for any integer j. The biorthogonal wavelets are de�ned as a special hierarchical

basis, i:e:, we introduce certain complement spaces Wj and ~
Wj such that Vj+1 = Vj �Wj

and ~
Vj+1 = ~

Vj � ~
Wj and that

Wj := cl span f j

k
: k 2 ZZg;  

j

k
(t) := 2j=2 (2jt� k); (2.7)

~
Wj := cl span f ~ j

k
: k 2 ZZg; ~

 

j

k
(t) := 2j=2 ~ (2jt� k); (2.8)

h j

k
;
~
 

j0

k0
i = �k;k0�j;j0; j; j

0
; k; k

0 2 ZZ: (2.9)

The basis functions  
j

k
and ~

 

j

k
are called wavelets and the generating functions  and ~

 

mother wavelets. We will always suppose that the scaling functions and mother wavelets

are real valued.

The starting point in the construction of biorthogonal wavelets is the de�nition of the

scaling functions by their mask coe�cients. Indeed, from (2.1) and (2.2), we observe that

the scaling functions satisfy the so called re�nement equations

'(t) =
X
k2ZZ

hk

p
2'(2t� k); (2.10)

~'(t) =
X
k2ZZ

~
hk

p
2 ~'(2t� k): (2.11)

The numbers hk and ~
hk are called mask coe�cients. For real valued ' and ~', the hk

and ~
hk are real. Under mild assumptions the scaling functions can be reconstructed from

1From now on we use the letter C to denote a general positive constant the value of which varies from

instance to instance.
2Throughout the present paper the bracket h�; �i stands for the L2 scalar product or for its extension

to a duality pairing between the Sobolev space Hs and its dual H�s.
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the coe�cients hk and ~
hk of their re�nement equations by the formulae

F'(�) =
1Y
l=1

"
1p
2
h(ei2��2

�l

)

#
; h(z) :=

X
k2ZZ

hkz
k
; (2.12)

F ~'(�) =
1Y
l=1

"
1p
2
~
h(ei2��2

�l

)

#
;

~
h(z) :=

X
k2ZZ

~
hkz

k
: (2.13)

Here F' stands for the Fourier transform

F'(�) :=
Z +1

�1

'(t)ei2�t�dt: (2.14)

Su�cient for the representations (2.12) and (2.13) is that the functions h and ~
h admit

factorizations

h(ei2��) =
p
2 [cos(��)]

L
F (�); � 2 IR; (2.15)

~
h(ei2��) =

p
2 [cos(��)]

~L ~
F (�); � 2 IR; (2.16)

where

BK := sup
�2IR

���F (�)F (2�) : : : F (2K�1�)���1=K < 2L�1=2; (2.17)

~
B ~K := sup

�2IR

��� ~F (�) ~F (2�) : : : ~F (2 ~K�1
�)
���1= ~K < 2

~L�1=2
; (2.18)

and K, ~
K are �xed positive integers. Moreover, it is not hard to see that even the

corresponding mother wavelets are determined by the mask coe�cients hk and ~
hk. If

the scaling functions satisfy (2.10) and (2.11), then the mother wavelets are necessarily

de�ned by

 (t) =
X
k2ZZ

(�1)k~h1�k
p
2'(2t� k); (2.19)

~
 (t) =

X
k2ZZ

(�1)kh1�k
p
2 ~'(2t� k): (2.20)

Of course, not every pair of mask sequences (hk)k and (~hk)k can be used for the con-

struction of biorthogonal wavelets. Indeed, the duality relation (2.6) and the two-scale

relations (2.10) and (2.11) imply the two equivalent relations

h(z)~h(z) + h(�z)~h(�z) = 2; (2.21)X
k2ZZ

hk
~
hk+2j = �j;0: (2.22)

These relations, however, are su�cient in the following sense (cf. [9]):

Theorem 2.1 Suppose we are given two real sequences (hk)k2ZZ and (~hk)k2ZZ which decay

faster for jkj �! 1 than the sequence (jkj�2)k2ZZ. Moreover, suppose these sequences
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satisfy (2.22) as well as (2.15)-(2.18) for certain positive integers L, K, ~L, and ~
K. Then

the functions F' and F ~' de�ned by (2.12) and (2.13), respectively, ful�l

jF'(�)j � C(1 + j�j)�1=2�"; " := L� 1

2
� logBK

log 2
> 0; (2.23)

jF ~'(�)j � C(1 + j�j)�1=2�~"; ~" := ~
L� 1

2
� log ~

B ~K

log 2
> 0; (2.24)

i:e:, the functions ' and ~' belong to the Lebesgue space L2. These functions satisfy the

re�nement equations (2.10) and (2.11), the duality relations (2.6), and, if the closures of

the linear spans of f'j

k
: k 2 ZZg and f ~'j

k
: k 2 ZZg are denoted by Vj and ~

Vj, respectively,

then we arrive at two multi-resolution analyses generated by the scaling functions ' and ~',

respectively. Finally, if we introduce the mother wavelets and the basis wavelet functions

by (2.19), (2.20), (2.7), and (2.8), then the duality relation (2.9) holds and the systems

f l

k
: l; k 2 ZZg and f ~ l

k
: l; k 2 ZZg are Riesz bases of the space L2.

Sometimes the mother wavelets  and ~
 have not the desired properties. Then one can

try to replace  and ~
 by a modi�ed mother wavelet which is a linear combination of

integer shifts:

 
+(t) :=

X
k2ZZ

gk k(t� k); (2.25)

~
 
+(t) :=

X
k2ZZ

~gk ~ k(t� k): (2.26)

We suppose that the coe�cients gk and ~gk are real. The representations (2.25) and (2.26)

lead to the new two-scale relations

 
+(t) =

X
k2ZZ

h
+
k

p
2'(2t� k); (2.27)

~
 
+(t) =

X
k2ZZ

~
h
+
k

p
2 ~'(2t� k); (2.28)

where the coe�cients are determined by

h
+(z) :=

X
k2ZZ

h
+
k
z
k = �z~h(�z�1)g(z2); g(z) :=

X
k2ZZ

gkz
k (2.29)

~
h
+(z) :=

X
k2ZZ

~
h
+
k
z
k = �zh(�z�1)~g(z2); ~g(z) :=

X
k2ZZ

~gkz
k
: (2.30)

Now the following criterion for the Riesz basis property is easy to prove.

Lemma 2.1 Suppose that the assumptions of Theorem 2.1 are satis�ed and that g is a

continuous function on TT := fz 2 CI : jzj = 1g. The new basis f( +)l
k
: l; k 2 ZZg is a

Riesz basis of L2 if and only if g does not vanish over TT . The bases f( +)l
k
g and f( ~ +)l

k
g

are dual in the sense of (2.9) if ~g(z) = 1=g(z�1).

Clearly, if f l

k
: l; k 2 ZZg is a Riesz basis, then also f'0

k
: k 2 ZZg [ f l

k
: l =

0; : : : ; j � 1; k 2 ZZg is a Riesz basis of L2. Since we will not use the wavelet functions  l

k
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for negative l, we introduce the notation  �1
k

:= '
0
k
and ~

 
�1
k

:= ~'0
k
. With this notation a

Riesz basis of L2 is given by f l

k
: k 2 ZZ; l = �1; : : : g and by f ~ l

k
: k 2 ZZ; l = �1; : : :g.

The projection Qj from L
2 onto Vj parallel to the space Wj �Wj+1 � : : : and its adjoint

is given by

Qjf =
X
k2ZZ

hf; ~'j

k
i'j

k
=

j�1X
l=�1

X
k2ZZ

hf; ~ l

k
i l

k
; (2.31)

Q
�

j
f =

X
k2ZZ

hf; 'j

k
i ~'j

k
=

j�1X
l=�1

X
k2ZZ

hf;  l

k
i ~ l

k
: (2.32)

Note that Q�

j
projects L2 onto ~

Vj parallel to the space ~
Wj � ~

Wj+1 � : : : . The projec-

tions Qj, Q
�

j
and the spaces Vj , ~Vj satisfy the following approximation

3
and inverse

4

properties.

Lemma 2.2 Approximation Property (Jackson type theorem): Suppose that the assump-

tions of Theorem 2.1 are satis�ed and that the l-th derivative of ' and ~
l-th derivative of

~' decay faster at in�nity than jtj�maxfL;~Lg�3 for any jlj �M and j~lj � ~
M , where M and

~
M are �xed positive integers less or equal to L and ~

L, respectively. Then there holds:

kf �QjfkHs � C

h
2�j

i
r�s kfkHr ; �~

L � s � r � L; s �M; � ~
M � r; (2.33)

kf �Q
�

j
fkHs � C

h
2�j

ir�s kfkHr ; �L � s � r � ~
L; s � ~

M; �M � r: (2.34)

Lemma 2.3 Inverse Property (Bernstein inequality): Suppose that the assumptions of

Theorem 2.1 are satis�ed. Then, for any vj 2 Vj and for any ~vj 2 ~
Vj , there holds

kvjkHr � C

h
2�j

is�r kvjkHs; s � r < "; s � L; (2.35)

k~vjkHr � C

h
2�j

is�r k~vjkHs; s � r < ~"; s � ~
L: (2.36)

The approximation and inverse property imply the following discrete norm equiva-

lences (cf. e:g. [15, 16, 34]).

Corollary 2.1 Suppose that the assumptions of Theorem 2.1 and Lemmas 2.1 and 2.2

are satis�ed. If �minf~"; ~Mg < s < minf";Mg and �minf";Mg < ~s < minf~"; ~Mg, then
there exists a positive constant C such that, for all sequences (�l

k
)k;l,

1

C

vuuut j�1X
l=�1

X
k2ZZ

22slj�l
k
j2 �


j�1X
l=�1

X
k2ZZ

�
l

k
 
l

k


Hs

� C

vuuut j�1X
l=�1

X
k2ZZ

22slj�l
k
j2; (2.37)

1

C

vuuut j�1X
l=�1

X
k2ZZ

22~slj�l
k
j2 �


j�1X
l=�1

X
k2ZZ

�
l

k
~
 
l

k


H~s

� C

vuuut j�1X
l=�1

X
k2ZZ

22~slj�l
k
j2: (2.38)

3Note that, in view of (2.12)-(2.16), the scaling functions satisfy the Strang-Fix conditions. The

approximation property follows in the usual way (cf. e:g. [8, 4, 25, 28]).
4Choosing the bases f'j

k
g and f ~'j

k
g and using the de�nition of the Sobolev norms via Fourier trans-

form, the inverse property is an easy consequence of (2.12)-(2.16), (2.23), and (2.24). For proofs in several

special cases, see e:g. [8, 25, 16, 28].
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In the next sections we have to approximate functions over a closed one-dimensional curve

�. Using a one periodic parametrization  : IR �! �, we identify the function f over �

with the one periodic function f = f �. To approximate the last by wavelet functions, we

need the periodic version of the wavelet setting. We denote the operator of periodization

by Per, i:e:,

Per f(t) :=
X
k2ZZ

f(t� k): (2.39)

Now the wavelet functions  l

k
and ~

 
l

k
can be replaced by Per  l

k
and Per ~

 
l

k
, respectively.

Since we will not use the original non-periodic wavelets anymore, we simply write  l

k
and

~
 
l

k
for Per  l

k
and Per

~
 
l

k
, respectively. Similarly, we consider the functions '

j

k
and ~'

j

k

to be periodized. Clearly, the periodic functions  l

k
and  l

k�2l coincide and the periodic

wavelet spaces take the form

Wl := spanf l

k
: k = 0; 1; : : : ; nlg; Vj := spanf'j

k
: k = 0; 1; : : : ; njg; (2.40)

~
Wl := spanf ~ l

k
: k = 0; 1; : : : ; nlg; ~

Vj := spanf ~'j

k
: k = 0; 1; : : : ; njg; (2.41)

where n�1 := 0 and nl := 2l � 1; l = 0; 1; : : : . In particular, it is not hard to see that

 
�1
0 = '

0
0 is constant and V0 = W�1 is the space of constant functions. All the results of

the present section formulated for the functions and spaces over IR remain valid for the

functions and spaces over the periodic interval if the summations over k 2 ZZ are replaced

by summations over k = 0; 1; : : : ; nl and if the spaces L2 and Hs over IR are replaced by

the corresponding spaces L2 and Hs over the periodic interval [0; 1].

3 A Piecewise Linear Wavelet Basis

In the present section we introduce the biorthogonal setting for the piecewise linear trial

space. To distinguish the spaces and wavelet functions from those de�ned for the space

of test functionals in the next section, we add a left upper index5 A to all the objects of

the trial space and a left upper index T to all objects from the test space.

Now the trial space is the space A
Vj of piecewise linear functions over the uniform grid

fk2�jg or a subspace of A
Vj . If the scaling function is the well-known hat function A

'

de�ned by A
'(t) := maxf0; 1�jtjg, then A

Vj is the span of fA'j

k
: k = 0; : : : ; njg. To �nd

a wavelet basis function, we seek a linear combination (2.19) of the shifts
p
2 A
'(2 � �k)

with a minimal support and two vanishing moments, i:e. orthogonal to linear functions.

Note that the minimal support is important for the fast computation of the sti�ness

matrix with respect to the wavelet basis and the vanishing moments are essential for the

compression of the sti�ness matrix. The solution is (cf. Figure 1)

A
 (t) :=

1

2
p
2

p
2 A
'(2t)� 1p

2

p
2 A
'(2t� 1) +

1

2
p
2

p
2 A
'(2t� 2) (3.1)

5A from the German word \Ansatzraum" for the English \trial space"!
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Figure 1: Mother wavelet A .

=

8>>>>>><
>>>>>>:

[t+ 1
2
] if � 1

2
� t � 0

�3[t� 0] + 1
2

if 0 � t � 1
2

3[t� 1
2
]� 1 if 1

2
� t � 1

�[t� 1] + 1
2

if 1 � t � 3
2

0 else .

This �ts into the biorthogonal setting of the previous section if

A
h(ei2��) :=

p
2[cos(��)]2; (3.2)

A~
h(ei2��) :=

p
2[cos(��)]2

4

3 + cos(4��)
; (3.3)

and if we apply Lemma 2.1 with A
g(ei2��) := [3 + cos(2��)]=4. Indeed, the hat function

satis�es the re�nement equation

A
'(t) :=

1

2
p
2

p
2 A
'(2t+ 1) +

1p
2

p
2 A
'(2t) +

1

2
p
2

p
2 A
'(2t� 1) (3.4)

which leads to the de�nition of Ah. The de�nition of A~h and A
g results in (3.1) (cf. (2.27)

and (2.29)). It is not hard to prove, that the assumptions of Theorem 2.1 are ful�lled with

L = ~
L = 2, K = 1, B1 = 1, ~

K = 2, and ~
B2 = 1:65767 : : : . Using the arguments of the

proof to Theorem 2.1, we even conclude that (2.24) holds in a strip around IR � CI. Hence,

the dual scaling function and by (2.20) also the dual mother wavelet decays exponentially

for t �! �1. This exponential decay remains true also for the dual mother wavelet A ~
 (t)

modi�ed according to Lemma 2.1 with A~g(z) := 1= A
g(z) since the Fourier coe�cients A~gk

of the analytic function A~g decay exponentially, too. In other words, the assumptions of

the Lemmas 2.2 and 2.3 are satis�ed and we conclude:

Lemma 3.1 The linear functions ful�l:

i) If the projection A
Qj is de�ned as

A
Qjf :=

njX
k=0

hf; A ~'j

k
i A'j

k
=

j�1X
l=�1

nlX
k=0

hf; A ~ l

k
i A l

k
(3.5)
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and if 6 �2 � s � r � 2; �0:7708 : : : < r; s < 3=2, then

kf � A
QjfkHs � C

h
2�j

i
r�s kfkHr : (3.6)

ii) For vj 2 A
Vj and ~vj 2 A ~

Vj, there holds:

kvjkHr � C

h
2�j

i
s�r kvjkHs; s � r < 3=2; (3.7)

k~vjkHr � C

h
2�j

i
s�r k~vjkHs; s � r < 0:7708 : : : : (3.8)

iii) If 7 �0:7708 : : : < s < 3=2, then there exists a positive constant C such that, for all

sequences (�l
k
)k;l,

1

C

vuuut j�1X
l=�1

nlX
k=0

22slj�l
k
j2 �


j�1X
l=�1

X
k2ZZ

�
l

k

A
 
l

k


Hs

� C

vuuut j�1X
l=�1

nlX
k=0

22slj�l
k
j2: (3.9)

iv) The wavelet functions A
 
l

k
, l � 0 have two vanishing moments, i:e. they are orthog-

onal to all linear functions.

Remark that the dual scaling function A ~' and the dual wavelet functions A ~
 
l

k
will not

appear in the implementation of the wavelet collocation algorithm. However, they will

play an important role in the theoretical analysis of the algorithm.

To de�ne the trial space, we choose a j0 � j and an arbitrary index set � such that

f(l; k) : l = �1; : : : ; j0 � 1; k = 0; : : : ; nlg � �; (3.10)

� � f(l; k) : l = �1; : : : ; j � 1; k = 0; : : : ; nlg: (3.11)

We introduce the trial space A
V as the span of all the functions A

 
l

k
with (l; k) 2 �.

Hence, we get A
Vj0

� A
V � A

Vj. The inclusion (3.10) will guarantee that smooth

functions can be approximated with high order, whereas (3.11) will enable us to approx-

imate functions with singularities if, for high level l and for a support of A
 
l

k
close to the

singularity points, we take (l; k) into �.

4 A Wavelet Basis in the Test Space

The space of test functionals is the space T ~
Vj of Dirac delta distributions (functionals of

function evaluation) at the points of the uniform grid fk2�jg or a subspace of T ~
Vj. Thus

the dual scaling function is the well-known Dirac delta distribution T ~' de�ned by T ~'(f) :=

h�0; fi = f(0) and the space T ~
Vj is the span of f T ~'j

k
= 2�j=2�k2�j : k = 0; : : : ; njg. Note

6From Lemma 2.2 we get the conditions s � 1 and 0 � r. However, in view of the well-known

approximation property for piecewise linear functions the bound s � 1 can easily be improved to s < 3=2.

Using special techniques for non-integer orders, the assumption 0 � r can be improved to �A~" =

�0:7708 : : : < r.
7From Lemma 2.2 and Corollary 2.1 we get the condition 0 � s < 1. Arguments similar to the last

footnote lead to �0:7708 : : : < s < 3=2.
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that the normalization factor 2�j=2 is in accordance with Section 2. Indeed, it corresponds

to D
T ~'

j

k
; f

E
= 2�j=2

Z
IR

f

�
[� + k]2�j

�
T ~'(� )d� (4.1)

which coincides with ~'
j

k
(t) := 2j=2 ~'(2jt� k) for integrable distributions ~'.

This time ~
 
�1
0 = ~'0

0 = �0 and the re�nement equation turns into T ~' =
p
2 2�1=2 ~', i:e:, the

function T~
h is equal to the constant

p
2. We choose the corresponding wavelet functions

as

T ~
 := � 1

16
�
�
1

2

+
1

4
�0 � 3

8
� 1

2

+
1

4
�1 � 1

16
� 3

2

; (4.2)

T ~
 
l

k
:= 2�l=2

�
� 1

16
�[k� 1

2 ]2�l
+
1

4
�k2�l �

3

8
�[k+ 1

2 ]2�l
+
1

4
�[k+1]2�l �

1

16
�[k+ 3

2 ]2�l

�
:(4.3)

The motivation for this choice is the following lemma which is a simple version of the

so-called Arnold-Wendland lemma (compare [2]) and which is fundamental for the

stability analysis in Section 5.

Lemma 4.1 Let @ stand for the operator of di�erentiation. For any continuously di�er-

entiable function f , we get

D
@f; @

A
 
l

k

E
=

Z 1

0

d

dt

f(t)
d

dt

[ A l

k
](t)dt = 16 � 22l �

D
T ~
 
l

k
; f

E
: (4.4)

Clearly, this kind of wavelet does not �t perfectly into the biorthogonal setting of Section

2. Nevertheless, the wavelet nature of these functionals is well known (cf. e:g. [17, 18, 22])

and we can use the techniques of Section 2 to establish the predual system. From (4.2)

and (2.28), we have T~
h
+(ei2��) = �

p
2ei2��[sin(��)]4. In view of (2.21), of Lemma 2.1,

and of the relation (2.30), we set

T
h(ei2��) :=

p
2[cos(��)]4

4

3 + cos(4��)
; (4.5)

T ~g(ei2��) :=
3 + cos(2��)

4
: (4.6)

Following the techniques of the proof to Theorem 2.1 (including L = 4, K = 2, B2 =

1:65767 : : : ), we observe that the scaling function corresponding to the mask coe�cients

generated by function T
h satis�es

jF T
'(�)j � C(1 + j�j)�3:27081::: : (4.7)

Hence, the second derivative of T
' is continuous. Again following the proof of Theorem

2.1, we get the orthogonality relations (2.6) and (2.9). Analogously to the Lemmas 2.2

and 2.3 we arrive at:

Lemma 4.2 The Dirac delta test functionals and their duals ful�l:

10



i) If the interpolation projection T
Qj is de�ned as

T
Qjf :=

njX
k=0

f

 
k

2j

!
2�j=2 T

'

j

k
=

njX
k=0

hf; T ~'j

k
i T'j

k
=

j�1X
l=�1

nlX
k=0

hf; T ~ l

k
i T l

k
(4.8)

and if 8 0 � s � r � 4; 1=2 < r; s < 2:7708 : : : , then

kf � T
QjfkHs � C

h
2�j

ir�s kfkHr : (4.9)

ii) For vj 2 T
Vj and ~vj 2 T ~

Vj, there holds:

kvjkHr � C

h
2�j

i
s�r kvjkHs; s � r < 2:7708 : : : ; (4.10)

k~vjkHr � C

h
2�j

i
s�r k~vjkHs; s � r < �1=2: (4.11)

iii) If 9 1=2 < s < 2:7708 : : : , then there exists a positive constant C such that, for all

sequences (�l
k
)k;l,

1

C

vuuut j�1X
l=�1

nlX
k=0

22slj�l
k
j2 �


j�1X
l=�1

X
k2ZZ

�
l

k

T
 
l

k


Hs

� C

vuuut j�1X
l=�1

nlX
k=0

22slj�l
k
j2: (4.12)

iv) The wavelet functionals T ~
 
l

k
, l � 0 have four vanishing moments, i:e. they are

orthogonal to all cubic functions.

Remark that the predual scaling function T
' and the predual wavelet functions T

 
l

k
will

not appear in the implementation of the wavelet collocation algorithm. However, they

will play an important role in the theoretical analysis of the algorithm.

We introduce the test space T
V as the span of all the functions T ~

 
l

k
with (l; k) 2 �.

5 The Wavelet Collocation Algorithm

Now we consider the linear operator equation Ax = y with the operator A mapping the

Sobolev space Hr=2+1 over the one-periodic interval into the space H�r=2+1. Here r is the

order of the operator. The wavelet collocation method seeks an approximate solution

x� 2 A
V for the exact solution x of Ax = y such that

hAx�; T ~ l

k
i = hy; T ~ l

k
i; (l; k) 2 �: (5.1)

Note that the last system is equivalent to the classical collocation method Ax�(k2
�j) =

y(k2�j), k = 0; : : : ; 2j � 1 if in (3.11) the equality sign is true. We can write (5.1) in form

of the operator equation A�x� = T
Q�y with

A� := T
Q�AjAV : imA

Q� =
�
A
V; k � k

Hr=2+1

�
�! im T

Q� =
�
T
V; k � k

H�r=2+1

�
(5.2)

8Though Lemma 2.2 would suggest the condition s � 2, special techniques for non-integer orders lead

to s < T " = 2:7708 : : : .
9Similarly to the last footnote, the assumption 1=2 < s < 2 with an integer upper bound 2 can be

improved to 1=2 < s < 2:7708 : : : .
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and the projections

T
Q�f :=

X
(l0;k0)2�

D
f;

T ~
 
l
0

k0

E
T
 
l
0

k0
;

A
Q�f :=

X
(l;k)2�

D
f;

A ~
 
l

k

E
A
 
l

k
: (5.3)

Moreover, the system (5.1) is equivalent to the matrix equation

A� = �; (5.4)

where A is the matrix of A� with respect to the bases f A
 
l

k
g and f T

 
l

k
g,

A :=
�
�(l0;k0);(l;k)

�
(l0;k0);(l;k)2�

; �(l0;k0);(l;k) :=
D
A

A
 
l

k
;
T ~
 
l
0

k0

E
;

and the discretized right-hand side � as well as the unknown vector � is de�ned as

� := (�l
0

k0
)(l0;k0)2�; �

l
0

k0
:=

D
y;

T ~
 
l
0

k0

E
;

� := (�l
k
)(l;k)2�; x� =

X
(l;k)2�

�
l

k

A
 
l

k
:

In order to present a theorem on the convergence of the wavelet collocation, we recall

some de�nition. The wavelet collocation method is called stable if there exists a j00 such

that the approximate operators A� are invertible for any � with j0 � j
0

0 and if the norms

of their inverses are uniformly bounded. Note that, if the method is stable, then the

approximate solutions x� tend in Hr=2+1 to the exact solution x for any right-hand side

y 2 H
�r=2+1 (take into account (5.2), Lemmas 3.1 and 4.2 and cf. e:g. [28]). We call

an operator B : H
r=2 �! H

�r=2
strongly elliptic if there exists a compact operator

T : Hr=2 �! H
�r=2 such that the G�arding inequality

Re h(B � T )f; fi � 1

C

kfkHr=2 (5.5)

holds for any f 2 H
r=2. Finally, we denote the operator of di�erentiation by @ and its

one-sided inverse by @�1. For any k 2 ZZ, this operator @�1 maps the function t 7! e
i2�kt

to the function t 7! e
i2�kt

=[i2�k] if k 6= 0 and to the function t 7! 1 if k = 0.

Theorem 5.1 Suppose that the operator A : H
r=2+1 �! H

�r=2+1 is invertible, that the

order r satis�es �3:542 : : : < r < 1 and that B := @A@
�1 : H

r=2 �! H
�r=2 is strongly

elliptic. Then:

i) The wavelet collocation method is stable.

ii) For r=2 + 1 � s < 3=2, we get the error estimate (cf. Lemma 3.1 i) )

kx� x�kHs � C

�
2�j

�
r=2+1�s kx� A

Q�xkHr=2+1 + Ckx� A
Q�xkHs: (5.6)

iii) If r � s � r=2 + 1 and if A : Hs �! H
s�r is bounded and invertible, then

kx� x�kHs � C

�
2�j0

�
r=2+1�s kx� A

Q�xkHr=2+1 : (5.7)
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Proof. i) By assumption B := @A@
�1 is strongly elliptic. Hence, there exists T such that

(5.5) holds. We split A = A
0 + T

0, where A0 := � + [A � @
�1
T@](I � �), T 0 := �� +

A�+@�1T@(I��) and where � is the one-dimensional projection which maps a function

f to the constant function equal to the zero-th Fourier coe�cient f0 =
R
f . Clearly, T 0

is compact and, by well-known perturbation arguments from the theory of projection

methods (cf. e:g. [28]), it su�ces to prove stability for operator A0. However, the space of

constants im� = spanfA �10 g = spanfT �10 g is an invariant subspace of A0. Therefore,

we can restrict our stability analysis to the restriction of operator T
Q�A

0jAV to the spaces

spanf A
 
l

k
: (l; k) 2 �; (l; k) 6= (�1; 0)g and spanf T

 
l

k
: (l; k) 2 �; (l; k) 6= (�1; 0)g.

We introduce the l2- scalar product

[�; �] :=
X

(l;k)2�

�
l

k
�
l

k
:

The assumption �3:542 : : : < r < 1 is equivalent to �0:7708 : : : < r=2 + 1 < 3=2 and to

1=2 < �r=2+1 < 2:7708 : : : . In view of Lemma 3.1 iii) and Lemma 4.2 iii) we only have

to prove

Re
h
A0 (2�(r=2+1)l�l

k
)(l;k)2� ; (2

(�r=2+1)l0
�
l
0

k0
)(l0;k0)2�

i
� 1

C

vuut X
(l;k)2�

����l
k

���2 (5.8)

where A0 is de�ned for A0 as A for A and where ��10 = 0. Taking Lemma 4.1 into account

and using the de�nition of A0 and (5.5), we conclude

Re
h
A0 (2�(r=2+1)l�l

k
)(l;k)2� ; (2

(�r=2+1)l0
�
l0

k0
)(l0;k0)2�

i
(5.9)

= Re

*
A
0

8<
:
X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k

9=
; ;

8<
:

X
(l0;k0)2�

2(1�r=2)l0
�
l
0

k0
T ~
 
l
0

k0

9=
;
+

=
1

16
Re

*
@[A� @

�1
T@]

8<
:
X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k

9=
; ; @

8<
:

X
(l0;k0)2�

2�(r=2+1)l
0

�
l
0

k0
A ~
 
l
0

k0

9=
;
+

=
1

16
Re

*
[B � T ]@

8<
:
X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k

9=
; ; @

8<
:

X
(l0;k0)2�

2�(r=2+1)l
0

�
l
0

k0
A ~
 
l
0

k0

9=
;
+

� 1

C

@
8<
:
X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k

9=
;

2

Hr=2

:

Since the space spanf A
 
l

k
: (l; k) 2 �; (l; k) 6= (�1; 0)g is orthogonal to

spanf A ~
 
�1
0 g = spanf A

 
�1
0 g = spanf1g

and since @ is invertible on the orthogonal complement of this one-dimensional space, we

continue (5.9) by

1

C

@
8<
:
X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k

9=
;

2

Hr=2

� 1

C


X

(l;k)2�

2�(r=2+1)l�l
k

A
 
l

k


2

Hr=2+1

(5.10)

which together with (3.9) yields (5.8).
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ii) First we consider the case s = r=2 + 1 and conclude

x� x� = x� A
Q�x+A

�1
�

n
A�

A
Q�x�A�x�

o
(5.11)

= x� A
Q�x+A

�1
�

n
T
Q�A

A
Q�x� T

Q�Ax

o
;

kx� x�kHr=2+1 �
n
1 + kA�1

� kL(H�r=2+1;Hr=2+1)k T
Q�kL(H�r=2+1)kAkL(Hr=2+1;H�r=2+1)

o
�kx� A

Q�xkHr=2+1 : (5.12)

This, the stability, and the uniform boundedness of the projections (cf. Lemma 3.1 i))

prove the error estimate. The general case r=2+1 � s < 3=2 follows from the just treated

case and from the inverse property of Lemma 3.1 ii).

iii) The last estimate follows by the well-known Nitsche trick. For r � s < r=2 + 1, we

get

kx� x�kHs � C sup
kvk

H�s�1

jhx� x�; vij � C sup
kvk

Hr�s�1

jhx� x�; A
�
vij (5.13)

� C sup
kvkHr�s�1

jhy �Ax�; vij = C sup
kvkHr�s�1

���Dy �Ax�; v � T
Q
�

�v

E���
� C ky �Ax�kH�r=2+1 sup

kvk
Hr�s�1

kv � T
Q
�

�vkHr=2�1:

Using the invertibility of A : Hr=2+1 �! H
�r=2+1 and the approximation property Lemma

4.2 i) in its adjoint form, we arrive at the assertion iii) of our theorem.

�

Remark 5.1 Theorem 5.1 is a generalization of a result in [2]. In that paper only the

case with equality in (3.11) is treated. However, in [2] general non-uniform meshes are

allowed.

Remark 5.2 Theorem 5.1 remains true if we do not suppose the strong ellipticity of B :=

@A@
�1 : H

r=2 �! H
�r=2, but assume the strong ellipticity of B := @

2
A : H

r=2+1 �!
H
�r=2�1 or that of B := A@

�2 : Hr=2�1 �! H
�r=2+1. The proof is the same.

In order to give another su�cient condition for the stability, we introduce several oper-

ators. The operator A
D : H

s �! H
s�1 for �0:7708 : : : < s � 1 < s < 3=2 is de�ned

by

A
Df :=

1X
l=�1

nlX
k=0

2maxf0;lg
D
f;

A ~
 
l

k

E
A
 
l

k
(5.14)

and the operator T
D : Hs �! H

s�1 for 1=2 < s� 1 < s < 2:7708 : : : similarly. Clearly,

these operators are invertible and

T
D
�1
f :=

1X
l=�1

nlX
k=0

2�maxf0;lg
D
f;

T ~
 
l

k

E
T
 
l

k
: (5.15)
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It is not hard to see that the compositions [@ T
D
�1] and [ AD@�1] take the form

[@ T
D
�1]f =

1X
l=0

nlX
k=0

D
f;

T ~
 
l

k

E
[@ T

 ]l
k
; (5.16)

[ AD@�1]f =
1X

l=�1

nlX
k=0

D
f; [@�1 A ~ ]l

k

E
A
 
l

k
; (5.17)

and that (cf. Lemma 4.1)

[ AD@�1][@ T
D
�1]� �1f =

1

16

1X
l=0

nlX
k=0

D
f;

T
 
l

k

E
A
 
l

k
; (5.18)

[ AD@�1][@ T
D
�1]� �1 : T ~

 
l

k
7! A

 
l

k
; l � 0: (5.19)

Remark 5.3 If the stability is considered for A : H
r=2 �! H

�r=2 and if �1:441 : : : <
r < 1, then Theorem 5.1 remains true if we replace the strong ellipticity of B := @A@

�1 :

H
r=2 �! H

�r=2 by that of B := [@ T
D
�1]A[ AD@�1] : H

r=2 �! H
�r=2 and if we replace

the threshold r=2+1 in the error estimates by r=2. The proof is the same. Unfortunately,

the strong ellipticity of B seems to be hard to verify. Note that B is strongly elliptic if

and only if A[ AD@�1][@ T
D
�1]� �1 is strongly elliptic.

The advantage of the the wavelet collocation in comparison to conventional piecewise

linear collocation is that, due to the moment conditions of the trial and test functionals,

the sti�ness matrix A contains a lot of very small entries. For special operators A, one

can give a set10 CA � �� � such that the compressed matrix

AC :=
�
�
C

(l0;k0);(l;k)

�
(l0;k0);(l;k)2�

; (5.20)

�
C

(l0;k0);(l;k) :=

(
�(l0;k0);(l;k) if ((l0; k0); (l; k)) 2 CA
0 else

is close toA. The replacement ofA byAC in (5.4) leads to an additional compression error

less than the expected asymptotic error O(n�2+r) of the piecewise linear collocation. Here

n stands for the number of degrees of freedom, i:e. for the cardinality of �. The number

of non-zero entries in AC, i:e:, the numbers of pairs of indices in CA, is11 O(n log n).

Hence, the following algorithm leads to an approximate solution of accuracyO(n�2+r) with

O(n log n) arithmetic operations and a storage requirement of about O(n log n) numbers.

Compressed Wavelet Algorithm:

i) Determine the sparsity pattern CA of the compressed sti�ness matrix.

ii) Set up the compressed sti�ness matrix (2(�r=2+1)l0
�
C

(l0;k0);(l;k)2
(�r=2�1)l) of operator A�

taken with respect to the bases f2(�r=2�1)l A
 
l

k
g and f2(r=2�1)l T l

k
g. Using analytic

formulas, for instance, each entry should be computed with a �nite amount of

operations.

10The letters CA stand for compression algorithm.
11Further reductions up to O(n) non-zero entries seem to be possible if the technique of [34] for the

compression of entries corresponding to overlapping trial and test functionals is adopted.
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iii) Compute the right-hand side of the equation, i:e:, the vector � = (hy; T ~ l
0

k0
i)(l0;k0).

iv) Solve the matrix equation�
2(�r=2+1)l0

�
C

(l0;k0);(l;k)2
(�r=2�1)l

�
(l0;k0);(l;k)2�

�
2(r=2+1)l�l

k

�
(l;k)

=
�
2(�r=2+1)l0

�
l
0

k0

�
(l0;k0)

by an iterative method (cf. e:g. [30]).

Note that the replacement of the sti�ness matrix AC by (2(�r=2+1)l0
�
C

(l0;k0);(l;k)2
(�r=2�1)l)

leads to a matrix with a a bounded condition number (cf. Theorem 5.1, Lemma 3.1

iii), and Lemma 4.2 iii)). For bounded condition numbers, the CG or GMRes solvers

require O(log n) iteration steps and O(n[log n]2) arithmetic operations. If a cascadic CG

or GMRes solver is used, i:e., if the wavelet method is considered over a sequence of grids

and if the initial solutions for the iteration on each level is just the �nal solution from

the coarser level, then the linear system can be solved with only O(n log n) arithmetic

operations.

6 The Algorithm for the Double Layer Equation

Now we turn to the double layer equation over the polygonal boundary and apply the

method of Section 5. Let 
 be a bounded simply connected polygon, and let � denote its

boundary. The Dirichlet problem for Laplace's equation

4U(t) = 0; t 2 
; (6.1)

U j� = g

with a smooth function g, can be reduced to the double layer potential equation (cf.

e:g. [24, 6])

(I � 2W )x = �2g =: y; (6.2)

(Wx)(t) := �1

2
�(t)x(t) +

1

2�

Z
�

�(s) � (t� s)

jt� sj2 x(s)ds�; t 2 �; (6.3)

where �(s) is the exterior normal of 
 at s 2 � = @
 and �(s) 2 (�1; 1) is chosen such

that [1+�(s)]� is the exterior angle between the tangents to � at t as t! s�. Especially,
�(s) = 0 if s is not a corner point of �.

As mentioned in Section 2 we take a one-periodic parametrization  : IR �! � (e:g. the

normalized arc-length parametrization) and identify the functions x, y, and � over � with

the one-periodic functions x � , y � , and � � , respectively. In this sense (6.2) takes

the form Ax = y, where

(Ax)(t) := [1 � �(t)]x(t) +

Z 1

0
K(t; � )x(� )d� = y(t); (6.4)

K(t; � ) :=
1

�

�((� )) � ((t)� (� ))

j(t)� (s)j2 j0(� )j: (6.5)

The operator A has an order r = 0. It mapsHs continuously into Hs for �1=2 < s < 3=2,

and is invertible at least for 0 � s � 1 (cf. e:g. [10]). We suppose that the right-hand side
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y is smooth, i:e:, that y is continuous and that y is in�nitely di�erentiable over each side

of the polygonal boundary �. Then, for t0 the parameter value of a corner point (t0),

the asymptotic behaviour of the solution x is given by (cf. e:g. [11, 19, 24])

x(t) � C0 + C1(t� t0)
�(t0) + : : : ; t �! t0; �(t0) :=

1

maxf1 + �(t0); 1� �(t0)g
: (6.6)

In particular, the exponent � := �(t0) is a number between 1=2 and 1, the solution x is

H�older continuous of order � in the neighbourhood of t0, and the m-th derivative of x

is bounded by Cjt � t0j��m. We get the following decay property for the wavelet

coe�cients of the solution x:

Lemma 6.1 Consider a wavelet function A
 
l

k
. By t0 we denote the parameter of the

corner which is the nearest to the support of A
 
l

k
. Then the coe�cient hx; A ~

 
l

k
i of A

 
l

k
in

the representation of x with respect to the basis fA l
0

k0
g satis�es

���Dx; A ~
 
l

k

E��� � C

8<
: 2�

5

2
l

���t0 � k

2l

����(t0)�2 if
���t0 � k

2l

��� > 0

2�(�(t0)+
1

2)l else :
(6.7)

Proof. Without loss of generality we suppose t0 = 0, l � 0, 0 � k < 2l=2, and that x

and the wavelets are given over the real axes. First we consider the case jt0 � k=2lj > 0,

i:e., k > 0. Using the fact that A ~
 
l

k
is orthogonal to linear functions (note that linear

functions belong to Vl�1), we get

D
x;

A ~
 
l

k

E
=

Z +1

�1

"
x(t)� x

 
k

2l

!
� x

0

 
k

2l

! 
t� k

2l

!#
A ~
 
l

k
(t)dt;

���Dx; A ~ l

k

E��� �
Z +1

�1

�����
"
x(t)� x

 
k

2l

!
� x

0

 
k

2l

! 
t� k

2l

!#
A ~
 
l

k
(t)

�����dt (6.8)

�
Z 2�l

�1

C

�����
 
t� k

2l

!
�

A ~
 
l

k
(t)

�����dt+
Z
�1

1=2
C

�����
 
t� k

2l

!
�

A ~
 
l

k
(t)

�����dt
+C

 
k

2l

!��1 (Z 2�l

�1

�����
 
t� k

2l

!
A ~
 
l

k
(t)

�����dt+
Z
�1

1=2

�����
 
t� k

2l

!
A ~
 
l

k
(t)

�����dt
)

+

Z 1=2

2�l

�����
"
x(t)� x

 
k

2l

!
� x

0

 
k

2l

! 
t� k

2l

!#
A ~
 
l

k
(t)

�����dt:

Now we observe that A ~
 decays exponentially, i:e:, for a suitable constant C and a small

� > 0, we have

jA ~ (t)j � Ce
��jtj

: (6.9)

ThusZ 2�l

�1

�����
 
t� k

2l

!
�

A ~
 
l

k
(t)

�����dt � C

Z (1�k)2�l

�1

jtj�2l=2e��jt2ljdt (6.10)

� C2�(
1

2
+�)l

Z (1�k)

�1

j� j�e��j� jd� � C2�(
1

2
+�)l

e
��k=2

;

Z
�1

1=2

�����
 
t� k

2l

!�

A ~
 
l

k
(t)

�����dt � C2�(
1

2
+�)l

e
��k=2

: (6.11)
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Similar arguments lead to 
k

2l

!
��1 (Z 2�l

�1

�����
 
t� k

2l

!
A ~
 
l

k
(t)

�����dt+
Z
�1

1=2

�����
 
t� k

2l

!
A ~
 
l

k
(t)

�����dt
)

(6.12)

� C2�(
1

2
+�)l

k
��1

e
��k=2

:

For the last term on the right-hand side of (6.8), we conclude from the integral expression

of the remainder term of the Taylor series expansion

Z 1=2

2�l

�����
"
x(t)� x

 
k

2l

!
� x

0

 
k

2l

! 
t� k

2l

!#
A ~
 
l

k
(t)

�����dt (6.13)

� C

Z
k2�l

2�l

Z
k2�l

t

j� � tj j� j��2d�
��� A ~
 
l

k
(t)
���dt+ C

Z 1=2

k2�l

Z
t

k2�l
jt� � j j� j��2d�

��� A ~
 
l

k
(t)
���dt:

Changing the order of integration and using (6.9), we get

Z
k2�l

2�l

Z
k2�l

t

j� � tj j� j��2d�
��� A ~ l

k
(t)
���dt (6.14)

= C

Z
k2�l

2�l

Z
�

2�l
j� � tj 2l=2e��j2lt�kjdtj� j��2d�

� C

Z
k2�l

2�l
2l=2

(Z maxf2�l;��(k2�l��)g

2�l
jk2�l � tj e��j2lt�kjdt +

jk2�l � � je��j2l��kj
Z

�

maxf2�l;��(k2�l��)g
dt

)
j� j��2d�

� C

Z
k2�l

2�l
2l=2

����k2�l � �

���2 e��j2l��kj� j� j��2d�:
This can be estimated by

C2�(�+1=2)l
Z

k�1

0
t
2
e
��tjt� kj��2dt (6.15)

� C2�(�+1=2)l
(Z

k=2

0
t
2
e
��tdtk��2 + k

2
e
��k

Z
k�1

k=2
jt� kj��2dt

)
� C2�(�+1=2)lk��2:

Analogously, we obtainZ 1=2

k2�l

Z
t

k2�l
jt� � j j� j��2d�

��� A ~
 
l

k
(t)
���dt � C2�(�+1=2)lk��2: (6.16)

The estimate (6.8) and (6.10)-(6.16) together prove (6.7) for jt0 � k=2lj > 0.

Now consider the case k = 0. Since A ~
 
l

k
is orthogonal to the constant functions, we get

D
x;

A ~
 
l

k

E
=

Z +1

�1

[x(t)� x (0)] A ~ l

0(t)dt: (6.17)

Using the exponential decay (6.9) and the H�older continuity, we arrive at

���Dx; A ~
 
l

k

E��� � C

Z +1

�1

jtj�2l=2e��j2ltjdt (6.18)

� C2�(�+
1

2)l
Z +1

�1

j� j�e��j� jd� = C2�(�+
1

2)l
:
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Thus (6.7) follows for k = 0, too.

�
From now on, by � we denote the minimum of the exponents �(t0) with t0 taken over

the �nite set �c of all t0 such that (t0) is a corner point of �. Lemma 6.1 enables us to

de�ne the set of indices � such that we get the usual order of approximation for the

solution x in the Sobolev space H1 (cf. the error estimates in Theorem 5.1).

Lemma 6.2 Fix a positive integer j0 and set j equal to the smallest integer greater or

equal to j0=(� � 1=2). By �0 denote a number � � " which is close to � and satis�es

1=2 < �
0
< �. Finally, choose � to be the set of all (l; k) with �1 � l � j � 1 and

min
t02�c

���k2�l � t0

��� � �l :=

8>><
>>:

1 if l < j0

2
�

l�j0
3=2��0 if j0 � l � j � 1

0 if j � l :

(6.19)

Then the number of index pairs in � is less than C 2j0 . If x is the solution of the double

layer equation (6.4) with a smooth right-hand side y. Then we get the approximation

order

kx� A
Q�xkH1 � C 2�j0 : (6.20)

Proof. Without loss of generality we suppose that �c = f0g. Then the number of index

pairs is less

2j0 + C

j�1X
l=j0

�l=2
�l � 2j0 + C2

j0
3=2��0

j�1X
l=j0

2

�
1� 1

3=2��0

�
l � C 2j0 : (6.21)

To estimate the approximation error we utilize the Lemmas 3.1 iii) and 6.1 and conclude

kx� A
Q�xkH1 � C

vuut 1X
l=�1

nlX
k=�l2

l

22l
���Dx; A ~ l

k

E���2

� C

vuut 1X
l=j0

22(1=2��)l
nlX

k=�l2
l

minf1; k2(��2)g

� C

vuut 1X
l=j0

22(1=2��)l(�l2l + 1)2(��3=2)

� C

vuuut2
�j02

3=2��

3=2��0

j�1X
l=j0

2
2l �0��

3=2��0 +
1X
l=j

22(1=2��)lC � C2�j0 :

�

Remark 6.1 If 1 � s < �+1=2 and if the assumptions of Lemma 6.2 are satis�ed, then

the same proof yields

kx� A
Q�xkHs � C 2j(s�1)�j0 = C2[(s�1)=(��1=2)�1]j0: (6.22)
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Theorem 6.1 Suppose that � is de�ned as in Lemma 6.2 and that the right-hand side y

of the double layer equation (6.4) is smooth. Then:

i) The wavelet collocation method (5.1) applied to the double layer equation is stable

in the space H1.

ii) For 1 � s < �+ 1=2, we get the error estimate

kx� x�kHs � C 2[(s�1)=(��1=2)�1]j0: (6.23)

iii) If 0 � s � 1, then

kx� x�kHs � C 2�(2�s)j0 : (6.24)

Proof. The theorem is a direct consequence of Theorem 5.1, Lemma 6.2, and Remark

6.1. The only thing to be checked is the strong ellipticity of B = @A@
�1 : L

2 �! L
2.

This, however, is done in Lemma 2.1 of [12].

�

Remark 6.2 Theorem 6.1 is a generalization of a result in [12]. In that paper only the

case with equality in (3.11) is treated. However, in [12] special non-uniform meshes are

allowed.

In the next section we will introduce a compression algorithm (5.20) for the double layer

equation. The �nal result on the sparsity, stability, and convergence of this compressed

wavelet collocation method will be collected in Theorem 8.1 in the end of Section 8.

7 The Compression Scheme

Now we shall see that the majority of the matrix entries �(l0;k0);(l;k) in the sti�ness matrix of

the double layer operator is very small. To formulate the corresponding decay estimate

for the matrix entries we need some notation. First we introduce the metric % over the

periodic interval [0; 1] by setting %(t; � ) := minfjt� � j; jt� �+1j; jt� � �1jg. We denote

the support of the wavelet A
 
l

k
by 	l

k
. Note that 	l0

k0
is roughly speaking the convex hull

of the support of T ~
 
l0

k0
. The distance of the two sets 	l

k
and 	l0

k0
is de�ned as

dist := dist
�
	l

k
; 	l

0

k0

�
:= inf

t2	l
k
; �2	l0

k0

j%(t; � )j: (7.1)

Lemma 7.1 For those entries �(l0;k0);(l;k) = hA A
 
l

k
;
T ~
 
l
0

k0
i in the sti�ness matrix of the

double layer operator A for which the supports 	l

k
and 	l0

k0
of the trial and test functionals

are disjoint to the set of parameters �c of corner points, we get the estimate

jhA A
 
l

k
;
T ~
 
l
0

k0
ij � C 2�(1=2+2)l 2�(1=2+4)l

0

dist
�7
: (7.2)
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A proof of this lemma can be found e:g. in [18, 34]. The essential assumptions leading to

(7.2) is the well-known Calder�on-Zygmund estimate for the kernel function (6.5)

j@m
t
@
m
0

�
K(t; � )j � C%(t; � )�1�m�m

0

; 0 � m 2 ZZ; 0 � m
0 2 ZZ (7.3)

and the vanishing moment conditions of Lemma 3.1 iv) and Lemma 4.2 iv).

In view of the decay property (7.2), we can neglect small entries in the sti�ness matrix

A. For �xed l and l
0, the large entries are located around the diagonal, i:e., the entries

�(l0;k0);(l;k) with small distance between 	l

k
and 	l

0

k0
cannot be neglected. Moreover, since

the wavelet coe�cients of the solution x for wavelets close to the corner points are large,

we must not neglect the matrix entries corresponding to trial and test functionals close

to the corners either. Hence, we introduce the compressed sti�ness matrix AC (cf.

(5.20)) as follows: De�ne di to be the distance between 	l
0

k0
and the corner set �c. Then

CA is de�ned as the set of all pairs ((l0; k0); (l; k)) 2 �� � such that one of the following

conditions is true

�c \ 	l
0

k0
6= ;;

dist
�
	l

k
; 	l0

k0

�
� max

�
2�l; 2�l

0

; a2�j0+�l(j0�l)+l0 (j0�l
0)
h
2�l

0

+ di

i
��
�
; (7.4)

dist
�
	l

k
;�c

�
� min

�
a2�j0+�l(j0�l)+l0 (j0�l

0)
h
2�l

0

+ di

i
��

;

h
a2�j0+�l(j0�l)+l0 (j0�l

0)
i1=� h

2�l
0

+ di

i
�1=�

�
:

Here a is a real constant greater or equal to one and, for a small " with 0 < " < 1=12, we

set

� :=
3=2 � �

6
+ " ; �l := l :=

(
�
+ := 

+ := 2=3 + " if l < j0

�
� := 

� := 1=2 � " if l � j0 ;
(7.5)

Recall that �0 = �� " (cf. the de�nition of � in Lemma 6.2).

Lemma 7.2 Suppose that the minimum � of the exponents of the corner singularities (cf.

(6.6)) satis�es 9=14 < � and that " is less than the minimum of 1=12 and � � 7=36� 1=8.

If � is chosen according to Lemma 6.2 and the compression algorithm is chosen according

to (7.4), then the number of non-zero entries in the compressed sti�ness matrix AC is

less than Caj02
j0 .

Proof. i) First we count the entries with dist � maxf2�l; 2�l0g. Without loss of generality

we suppose l0 � l. Clearly, the number of such entries for a �xed test functional T ~ l
0

k0
and

a �xed level l � l
0 is less than seven. Summing up over l0, k0, and k, we arrive at the

bound

j�1X
l0=�1

X
k0

l
0X

l=�1

7: (7.6)
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We observe that the maximal number of k0 is less than the number of corners times �l02
l
0

.

Thus the last bound can further be estimated by

C

j�1X
l0=�1

�l02
l
0

l
0X

l=�1

1 � C

8<
:

j0�1X
l0=�1

2l
0

l
0 + 2

1

3=2��0
j0

j�1X
l0=j0

2

�
1� 1

3=2��0

�
l
0

l
0

9=
; � Cj02

j0
: (7.7)

ii) From now on, for the sake of simplicity, we suppose �c = f0g and, without loss of

generality, we restrict our consideration to entries �(l0;k0);(l;k) with k � 2l=2 and k0 � 2l
0
=2.

Next we consider the non-zero entries such that l0 � l and maxf2�l; 2�l0g < dist � G with

(cf. (7.1) and (7.4))

G := a2�j0+�l(j0�l)+l0 (j0�l
0)
h
2�l

0

+ di

i
��

: (7.8)

For the number of these entries, we get the upper bound

C

j�1X
l0=�1

X
k0

l
0X

l=�1

G=2�l (7.9)

�
X
l0;k0

a2�j0+l0(j0�l
0)
h
2�l

0

+ di

i
��

8<
:2�+j0

j0�1X
l=�1

2(1��
+)l + 2�

�j0

l
0X

l=j0

2(1��
�)l

9=
;

� Ca2�j0

8><
>:2j0

j�1X
l0=�1

2l0 j02(1�l0 )l
0

2�l
0

�l02
l0X

k0=0

h
2�l

0

+ di

i
��

+2j0�
�

j�1X
l0=�1

2l0 j02(2�l0��
�)l02�l

0

�l02
l0X

k0=0

h
2�l

0

+ di

i
��

9>=
>; :

Using

2�l
0

�l02
l0X

k0=0

h
2�l

0

+ di

i
�� �

Z
�l0

2�l
0

t
��dt � C�

1��
l0

(7.10)

and (6.19), we continue the estimation from (7.9) by

Ca2�j0

8<
:2(1++)j0

j0�1X
l0=�1

2(1�
+)l0 + 2

�
1+�+ 1��

3=2��0

�
j0

j�1X
l0=j0

2

�
1��� 1��

3=2��0

�
l0

+ (7.11)

2(�
�++)j0

j0�1X
l0=�1

2(2�
+
��

�)l0 + 2

�
��+�+ 1��

3=2��0

�
j0

j�1X
l0=j0

2

�
2������ 1��

3=2��0

�
l0

9=
;

� Ca2j0:

Note that we have used 1�+ > 0 , 2�+��� > 0 as well as 1���(1��)=(3=2��0) < 0

and 2� �� � 
� � (1� �)=(3=2� �

0) < 0. The last relation leads us to the assumptions

on � and ".

iii) Now we count the non-zero entries such that l > l
0 and maxf2�l; 2�l0g < dist � G.

Analogously to (7.9), we get the bound

C

j�1X
l=�1

X
k

lX
l0=�1

H=2�l0 ; (7.12)
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where H is the measure of the set�
t 2 [0; 1] : 2�l < dist(	l

k
; t) � a2�j0+�l(j0�l)+l0 (j0�l

0)
h
2�l

0

+ dist(t;�c)
i
��
�
: (7.13)

In part iv) of the present proof we will show

H � a2�j0+�l(j0�l)+l0 (j0�l
0)
h
dist(k2�l;�c)

i
��

: (7.14)

If this is done, then (7.12) can be estimated by

C

j�1X
l=�1

X
k

lX
l0=�1

G0=2�l0 + C

j�1X
l=�1

X
k: �c\	l

k
6=;

X
(l0;k0)

C (7.15)

with

G0 := a2�j0+�l(j0�l)+l0 (j0�l
0)
h
2�l + dist(k2�l;�c)

i
��

: (7.16)

Now the �rst sum in (7.15) can be treated as (7.9) and is less than Ca2j0. The second

sum is less than the product of the number of trial functions A
 
l

k
with �c \	l

k
6= ; times

the number of indices in �. Thus the upper bound in (7.15) is less than Ca2j0 + Cj02
j0 .

iv) It remains to prove (7.14). More general, we only have to prove that, for positive

constants D and � < 1, the measure of the set (recall the simplicity assumption �c = f0g)

M :=
n
t 2 [0; 1] : jt� � j � Dt

��

o
(7.17)

is less than CD���. We split M into M = M1 [M2 [M3 with M1 := M\ [0; �=2),

M2 :=M\ [�=2; 2� ], and M3 :=M\ [2�; 1].

For t 2 M2, we get �=2 � t � 2� and jt� � j � 2�D���. Consequently, M2 is contained

in the interval [� � 2�D���; � +2�D���]. Thus the measure ofM2 is less than 2 � 2�D���.
For t 2 M3, we get Dt

�� � jt� � j = t� � � t=2 and

t � 2Dt�� ; (7.18)

t � 2
1

1+�
D

1

1+� � 2
1

1+�
D

h
D

1

1+�

i
��

:

Using � < t=2 < 21=(1+�)�1D1=(1+�), we arrive at

t � 2
1

1+�
D

h
�21�

1

1+�

i
�� � CD�

��
: (7.19)

For t 2 M1, we get jt� � j = � � t � �=2 and

� � 2jt� � j � 2Dt��;

t � 21=�D1=�
�
�1=�

: (7.20)

We distinguish two cases. First suppose the last bound in (7.20) is less than �=2. Then

2D1=(1+�)
< � and (7.20) implies

t � 21=�D1=�
�
��1=�

�
�� � 21=�D1=�

h
2D

1

1+�

i��1=�
�
�� � CD�

��
: (7.21)

23



In the case that 21=�D1=�
�
�1=� is greater or equal to �=2, we have 2D1=(1+�) � � and

t � �=2 � 2�1� 1+���� � 2�1
h
2D

1

1+�

i1+�
�
�� � CD�

��
: (7.22)

v) Now we count the entries for which l
0 � l and for which the last condition of (7.4)

holds. Obviously, (7.9) is an upper bound for the number of these entries, too. Hence,

the arguments of part ii) prove that the number is less than Ca2j0. Finally, we consider

the entries for which l0 < l and for which the last condition of (7.4) holds. Then (7.12) is

an upper bound for the number of these entries if H is the measure of the set�
t 2 [0; 1] : dist(	l

k
; f0g) �

h
a2�j0+�l(j0�l)+l0 (j0�l

0)
i1=� h

2�l
0

+ dist(t; f0g)
i
�1=�

�

�
�
t 2 [0; 1] : t � a2�j0+�l(j0�l)+l0 (j0�l

0)
h
dist(	l

k
; f0g)

i
��
�
: (7.23)

Clearly, H ful�lls (7.14) and, analogously to part iii), we conclude that the number of

entries is less than Ca2j0 + Cj02
j0 .

�

Remark 7.1 The condition 9=14 < � is equivalent to the requirement that the angle

�(1 + �(t0)) of the polygon at the corner (t0) satis�es �4=9 < �(1 + �(t0)) < �14=9.

In particular, the condition is satis�ed for rectangular polygons. For smaller or larger

angles, the moment conditions must be improved. Indeed, if the mother wavelet A
 has

d > 0 vanishing moments instead of two (cf. Lemma 3.1 iv) ), then T ~
 has d+2 vanishing

moments and the condition 9=14 < � turns into (2d+ 5)=(4d + 6) < �.

8 Stability and Error Estimates for the Compressed

Wavelet Collocation

Recall (cf. (5.2)) that A� is the operator

A� := T
Q�AjAV :

�
A
V; k � kH1

�
�!

�
T
V; k � kH1

�
(8.1)

and its matrix with respect to the bases f A
 
l

k
g and f T

 
l
0

k0
g is A. We denote the operator

mapping in the same spaces as A� but corresponding to the matrix AC by AC

� . This is

the approximate operator of the compressed wavelet collocation applied to A. To prove

the stability of AC

� , we need a variant of the well-known Schur lemma.

Lemma 8.1 The norm of A�, i:e. the Euclidean matrix norm of (2l
0

�(l0;k0);(l;k)2
�l)(l0;k0);(l;k)

(cf. the discrete norm equivalences in Lemma 3.1 iii) and Lemma 4.1 iii) ), is less than

C

p
�1

p
�2, where

�1 := sup
l0;k0

������ 2l
0
=2
X
l;k

h
2l

0

�(l0;k0);(l;k)2
�l

i
2�l=2

������ ; (8.2)

�2 := sup
l;k

������ 2l=2
X
l0;k0

2�l
0
=2
h
2l

0

�(l0;k0);(l;k)2
�l

i ������ :
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Lemma 8.2 If � is as in Lemma 6.2 and if AC

� is de�ned by (7.4), then the compressed

wavelet collocation applied to the double layer operator A is stable for su�ciently large a

(cf. (7.4)).

Proof. Since the operator sequence A� is stable by Theorem 5.1, we only need to prove

that the di�erence AC

� � A� is small in norm for su�ciently large a. To show this we

apply Lemma 8.1 to the di�erence AC

� �A�. Using Lemma 7.1, (7.4), and (7.8), we get

�1 � C sup
l0;k0

������ 2l
0
=2

X
l;k: dist>maxf2�l;Gg

h
2l

0

2�(1=2+4)l
0

dist
�72�(1=2+2)l2�l

i
2�l=2

������ (8.3)

� C sup
l0;k0

2�3l
0
X
l

2�3l 2�l
X

k: dist>maxf2�l;Gg

dist
�7
:

We observe

2�l
X

k: dist>maxf2�l;Gg

dist
�7 � C

Z 1

G

�
�7d� � CG�6 (8.4)

and continue

�1 � C sup
l0;k0

2�3l
0
X
l

2�3l
h
a2�j02�l(j0�l)2l0 (j0�l

0)
i
�6

(8.5)

� C sup
l0

a
�62(6�6l0)j02(�3+6l0)l

0

8<
:2�6�+j0

j0�1X
l=�1

2(�3+6�
+)l + 2�6�

�
j0

j�1X
l=j0

2(�3+6�
�)l

9=
;

� C sup
l0

a
�62(3�6l0)j02(�3+6l0)l

0 � Ca
�6
:

Note that we have used �3+6�+ > 0, �3+6�� < 0, �3+6+ > 0, and �3+6� < 0.

Similarly, we obtain �2 � Ca
�6. By Lemma 8.1 we conclude kAC

� �A�k � Ca
�6.

�
Now we turn to the error estimates.

Lemma 8.3 If � is as in Lemma 6.2, if the compressed wavelet collocation de�ned by

(7.4) and applied to the double layer operator A is stable, and if the right-hand side y is

smooth, then the estimate (6.23) holds for the compressed wavelet collocation, too.

Proof. As in the proof to Theorem 5.1 ii) we may suppose s = 1. Moreover, for the

sake of simplicity, we suppose �c = f0g and x � 0 on [1=2; 1]. Analogously to (5.11) and

(5.12), we get

x� x� = x� A
Q�x+

h
A
C

�

i
�1 n

T
Q�A

A
Q�x� T

Q�Ax (8.6)

+
h
A
C

� �A�

i
A
Q�x

o
;

kx� x�kH1 � C

x� A
Q�x


H1

+ C

hAC

� �A�

i
A
Q�x


H1
: (8.7)
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In view of Lemma 6.2 it remains to estimate the second term on the right-hand side. We

writehAC

� �A�

i
A
Q�x


H1

�
X
l;l0

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
A
Q�x


H1
(8.8)

and, from Lemma 4.2 iii) and the Lemmas 6.1 and 7.1 we conclude

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
A
Q�x

2
H1

(8.9)

� C

X
k0

"X
k

2l
0

2(�1=2�4)l
0

dist
�72(�1=2�2)l2�5=2 l(2�l + jk2�lj)��2

#2

� C

X
k0

"
2�3:5l

0

2�4l2�l
X
k

dist
�7(2�l + jk2�lj)��2

#2
:

Here the summation over k runs for all k = 0; 1; : : : ; 2l� 1 such that the second and third

condition of (7.4) are violated. Setting � = k
02�l

0

and

M :=
n
t 2 [0; 1] : jt� � j > maxfG; 2�l; 2�l0g; t > minfG; G1=�[2�l

0

+ � ]1�1=�g
o
; (8.10)

we observe

2�l
X
k

dist
�7(2�l + jk2�lj)��2 � C

Z
M

jt� � j�7 jt+ 2�lj��2dt (8.11)

� C�
�7

Z
M\[0;�=2]

jt+ 2�lj��2dt

+C

Z
M\[�=2;2� ]

jt� � j�7dt j� + 2�l
0 j��2

+C

Z
M\[2�;1=2]

t
�7
t
��2dt

� C�
�7min

n
G; G1=�[2�l

0

+ � ]1�1=�
o��1

+C
h
2�l

0

+ �

i
��2 G�6:

Note that the �rst term on the right-hand side appears only if M\ [0; �=2] 6= ;, i:e., if
� �maxf2�l; 2�l0 ; Gg > 0. This implies � > 2�l

0

and � > G. We get

2�l
X
k

dist
�7(2�l + jk2�lj)��2 � C

h
2�l

0

+ �

i��2 G�6: (8.12)

Substituting the last result into (8.9) and using 2(6� + �� 2) > �1, we arrive at
h TQl0+1 � T

Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
A
Q�x

2
H1

(8.13)

�
�
C2�3l

0

2�4l
h
a2�j02�l(j0�l)2l0 (j0�l

0)
i
�6
�2
2�l

0
X
k0

h
2�l

0

+ di

i2(6�+��2)

�
�
: : :

�2 Z 1

0
t
2(6�+��2)dt �

�
: : :

�2
C

�
h
Ca

�626j02�6�lj02�6l0 j02(�4+6�l)l2(�3+6l0 )l
0
i2
:
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This together with (8.8) yields

hAC

� �A�

i
A
Q�x


H1

� Ca
�626j0

8<
:

j�1X
l=�1

2�6�lj02(�4+6�l)l

9=
;
8<
:

j�1X
l0=�1

2�6l0 j02(�3+6l0 )l
0

9=
;

� Ca
�626j02�4j02�3j0 � Ca

�62�j0 : (8.14)

Note that we have used �4+6�+ > 0, �4+6�� < 0, �3+6+ > 0, and �3+6� < 0.

�

Lemma 8.4 If � is as in Lemma 6.2, if the compressed wavelet collocation de�ned by

(7.4) and applied to the double layer operator A is stable, and if the right-hand side y is

smooth, then the estimate (6.24) holds for the compressed wavelet collocation, too.

Proof. Again, for the sake of simplicity, we suppose �c = f0g and that x � 0 on [1=2; 1].

Analogously to (5.13), we get

kx� x�kHs � C sup
kvkH�s�1

jhy �Ax�; vij (8.15)

= C sup
kvkH�s�1

���Dy �Ax�; v � T
Q
�

�v

E���+ C sup
kvkH�s�1

���Dy �Ax�;
T
Q
�

�v

E��� :

The �rst term on the right-hand side can be estimated as in the proof to Theorem 5.1

iii). The second can be written as

sup
kvkH�s�1

���DhAC

� �A�

i
x�;

T
Q
�

�v

E��� = T1 + T2; (8.16)

T1 := sup
kvk

H�s�1

���DhAC

� �A�

i h
x� � A

Q�x

i
;
T
Q
�

�v

E��� ;
T2 := sup

kvk
H�s�1

���DhAC

� �A�

i
A
Q�x;

T
Q
�

�v

E��� :

For the second term, we get

jT2j � sup
kvkH�s�1

X
l0

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i
A
Q�x


H1

h TQ�

l0+1 � T
Q
�

l0

i
T
Q
�

�v


H�1

� sup
kvk

H�s�1

X
l0

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i
A
Q�x


H1
C

�
2�l

0
�
�s�[�1] kvk

H�s

� C

X
l0

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i
A
Q�x


H1

2�(1�s)l
0

(8.17)

� C

X
l0;l

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
A
Q�x


H1

2�(1�s)l
0

:

If we treat the last bound analogously to the estimation of the right-hand side in (8.8) and

if we use �4 + s+ 6+ > 0, �4 + s+ 6� < 0 instead of �3 + 6+ > 0, �3 + 6� < 0,

then we obtain jT2j � Ca
�62�(2�s)j0 . For the term T1, we conclude

jT1j � sup
kvkH�s�1

X
l0;l

( h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
H1
� (8.18)

27



h AQl+1 � A
Ql

i h
x� � A

Q�x

i
H1

h TQ�

l0+1 � T
Q
�

l0

i
T
Q
�

�v


H�1

)

�
X
l0;l

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i
H1

2�j02�(1�s)l
0

;

where we have used (cf. Lemma 8.3)

h AQl+1 � A
Ql

i h
x� � A

Q�x

i
H1

�
hx� � A

Q�x

i
H1

� C2�j0 : (8.19)

Now we estimate the H1 operator norms on the right-hand side of (8.18) by the norm

of the corresponding matrices. Using the discrete norm equivalences (cf. Lemma 3.1 iii)

and Lemma 4.2 iii)), the norms can be reduced to Euclidean matrix norms. They can be

estimated by a Schur lemma argument similar to Lemma 8.1, where the weight factors

2�l=2 and 2�l
0
=2 are dropped. From Lemma 7.1, (7.4), and (7.8), we infer

�1 � C sup
k0

X
k: dist>G

2l
0

2�(1=2+4)l
0

dist
�72�(1=2+2)l2�l (8.20)

� C sup
k0

2�3:5l
0

2�2:5l2�l
X

k: dist>G

dist
�7 � C sup

k0

2�3:5l
0

2�2:5lG�6

� Ca
�626j02�3:5l

0

2�2:5l2�6�l(j0�l)2�6l0 (j0�l
0)
:

Analogous arguments lead to

�2 � Ca
�626j02�2:5l

0

2�3:5l2�6�l(j0�l)2�6l0 (j0�l
0)
; (8.21)

and (8.20) and (8.20) together imply

h TQl0+1 � T
Ql0

i h
A
C

� �A�

i h
A
Ql+1 � A

Ql

i � C

q
�1�2 (8.22)

� Ca
�626j02�3l

0

2�3l2�6�l(j0�l)2�6l0 (j0�l
0)
:

Thus (8.18) can be continued as

jT1j �
X
l0;l

Ca
�626j02�3l

0

2�3l2�6�l(j0�l)2�6l0 (j0�l
0)2�j02�(1�s)l

0

;

� Ca
�625j0

8<
:2�6�+j0

j0�1X
l=�1

2(�3+6�
+)l + 2�6�

�
j0

j�1X
l=j0

2(�3+6�
�)l

9=
;

�
8<
:2�6+j0

j0�1X
l=�1

2(�4+s+6
+)l0 + 2�6

�
j0

j�1X
l=j0

2(�4+s+6
�)l0

9=
;

� Ca
�62�(2�s)j0 : (8.23)

Note that we have used �3+6�+ > 0, �3+6�� < 0, s�4+6+ > 0, and s�4+6� < 0.

�
Collecting the results of the Lemmas 7.2, 8.2-8.4 together, we get
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Theorem 8.1 Consider the double layer equation (6.4) for a right-hand side y which

is continuous on � and in�nitely di�erentiable over each side of the polygonal boundary.

Suppose that the minimum � of the exponents of the corner singularities satis�es 9=14 < �

(cf. (6.6) and compare Remark 7.1). Choose " less than the minimum of 1=12 and

� � 7=36 � 1=8. For this ", we suppose that � is chosen according to Lemma 6.2 and that

the compression algorithm is chosen according to (7.4). Then:

i) The compressed wavelet collocation method (cf. the end of Section 5) applied to

the double layer equation (6.4) is stable in the space H1 for su�ciently large a (cf.

(7.4) ).

ii) For 1 � s < � + 1=2 and the approximate solution x� of the compressed wavelet

collocation method, we get the error estimate

kx� x�kHs � C 2[(s�1)=(��1=2)�1]j0: (8.24)

iii) If 0 � s � 1, then

kx� x�kHs � C 2�(2�s)j0 : (8.25)

iv) The number of degrees of freedom is less than C2j0 and the number of non-zero

entries in the compressed sti�ness matrix AC is less than Caj02
j0 . Consequently,

the compressed wavelet collocation algorithm (cf. the end of Section 5) requires

O(j02
j0) arithmetic operations and a storage capacity for O(j02

j0) real numbers.
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