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Optimizing the economic dispatch of weakly-connected
mini-grids under uncertainty using joint chance constraints

Nesrine Ouanes, Tatiana González Grandón, Holger Heitsch, René Henrion

Abstract

In this paper, we deal with a renewable-powered mini-grid, connected to an unreliable main grid,
in a Joint Chance Constrained (JCC) programming setting. In several rural areas in Africa with
low energy access rates, grid-connected mini-grid system operators contend with four different
types of uncertainties: forecasting errors of solar power and load; frequency and outages duration
from the main-grid. These uncertainties pose new challenges to the classical power system’s
operation tasks. Three alternatives to the JCC problem are presented. In particular, we present
an Individual Chance Constraint (ICC), Expected-Value Model (EVM) and a so called regular
model that ignores outages and forecasting uncertainties. The JCC model has the capability to
guarantee a high probability of meeting the local demand throughout an outage event by keeping
appropriate reserves for Diesel generation and battery discharge. In contrast, the easier to handle
ICC model guarantees such probability only individually for different time steps, resulting in a
much less robust dispatch. The even simpler EVM focuses solely on average values of random
variables. We illustrate the four models through a comparison of outcomes attained from a real
mini-grid in Lake Victoria, Tanzania. The results show the dispatch modifications for battery and
Diesel reserve planning, with the JCC model providing the most robust results, albeit with a small
increase in costs.

1 Introduction

The United Nations’ Sustainable Development Goal 7 (SDG-7) urgently calls for universal access
to clean energy, a mission that faces challenges despite increased electrification efforts. Projections
by the international energy agency estimate that by 2030, around 650 million people might still lack
access, and 9 out of 10 will be in West, Central, and East Africa [13]. Electrification via centralized
grids is slow and expensive, prompting interest in decentralized mini-grid energy systems that offer
quicker deployment and enhanced cost competitiveness [1].

Renewable-powered mini-grids (MGs) as defined in [10, 14] are hybrid electricity supply systems com-
bining wind turbine or photovoltaic (PV) generation (from 10 kW to 10 MW), energy storage systems,
and (usually) a Diesel generator into low and medium voltage distribution networks. Classified by their
relationship with the main power grid, MGs come in two forms: islanded mini-grids which operate in-
dependently, detached from the national (main) network and grid-connected mini-grids which link with
the main grid and function as both backup systems for distribution as well as standalone units.

This article focuses on the operational intricacies of grid-connected mini-grids, situated within the
urban and peri-urban areas of Sub-Saharan African countries lacking in energy access. The para-
dox lies in the fact that, despite the presence of central-grid infrastructure, an alarming number of
households, numbering in the hundreds of millions, still grapple with the challenge of accessing less
than four hours of electricity per day [25]. To counter this issue, governments in these countries are

DOI 10.20347/WIAS.PREPRINT.3069 Berlin 2023



N. Ouanes, T. González Grandón, H. Heitsch, R. Henrion 2

progressively adopting grid-connected mini-grids in areas with unreliable main grid supply. Yet, tech-
nical uncertainties inherent to grid-connected mini-grids in this context stem from multiple sources:
stochastic solar power and demand forecast errors; absolute uncertain main grid outage onset times;
and outage durations subjected to statistical analysis. As operational decisions are taken prior to the
observation of the uncertainty, it becomes imperative to adopt suitable modeling methodologies that
can effectively incorporate all these diverse forms of uncertainty.

Thus, our primary research aim focuses on addressing the four mentioned uncertainties through mod-
eling and algorithmic approaches, utilizing Joint Chance Constraints. Additionally, the study aims to
assess the effectiveness of the proposed scheduling strategy by applying it to a case study example
of a mini-grid in Lake Victoria.

Introduced by Charnes and Cooper [5], chance constraints offer an appealing tool for dealing with
uncertainty in the constraints of an optimization problem. A classical and fundamental introduction to
the theory and numerical treatment of chance constraints can be found in Prékopa [22]. A modern
treatment is provided in [26]. Since their introduction, chance constraints have become common for
economic dispatch problems, notably in hydro reservoir management (see, e.g., [23, 3, 19, 29]) but
also in power dispatch (see, e.g., [12, 21]). For mini-grid or micro-grid dispatch, the approach has
predominantly involved the use of purely deterministic predictive models [10, 20]. There is increasing
interest, however, in applying probabilistic models in order to ensure sufficiently safe satisfaction of
demand in a highly stochastic environment, not only with respect to renewable energy but also with
respect to instabilities of the main grid. In [30] and [18], the interesting concepts of probability of
self-sufficiency and probability of successful islanding, respectively have been introduced, in order to
model the self-sufficiency of a mini-grid when isolated from the main grid by an outage. These concepts
rely on keeping reserves for Diesel employment and battery discharge such that an outage of the main
grid, to which the mini-grid is connected, can be survived based on these reserves with sufficiently high
probability. The shortcoming of the models in [30, 18] is that they use individual (separate for each time
in the given interval) chance constraints. While such a model is comfortable to handle since the chance
constraint can be transformed without effort into an explicit equivalent, it does not really reflect the wish
for robust self-sufficiency. Indeed, even if one may guarantee that self-sufficiency holds true at each
time individually with high probability, the probability of violating self-sufficiency at some time may be
high as well (or: the probability of guaranteeing self-sufficiency throughout a given period of time may
be small). This is why we will rather consider joint chance constraints in this paper which are, however,
more difficult to deal with. Indeed, they require the consideration of probabilities and their sensitivities
with respect to the decision vector under multivariate random distributions. For numerical solutions
related with joint chance constraints, we shall make use of the so-called spherical-radial decomposition
of Gaussian random vectors which efficiently applies to Gaussian, Gaussian-like (e.g. multivariate log-
normal, Gaussian mixture) or elliptically symmetric (e.g. multivariate Student) distributions and has
found a lot of applications both in operations research and optimal control under PDEs with random
coefficients, see, e.g., [7, 11, 8, 3]). The possibly striking difference between individual and joint chance
constraints has been highlighted, for instance, in [28, p. 547] and [3, p. 34].

In this paper we focus on the challenges arising from the model with joint chance constraints. There-
fore, we keep some other modeling aspects simple. In particular, we will not include binary decisions
(simplified model for Diesel generator), we will not adequately model realistic battery ageing by means
of differential equations and we will keep all decisions to be static with respect to the unfolding of
uncertainty over time (thus ignoring the gain of information based on random observations prior to
decision taking). The inclusion of all these aspects is subject of current and future work (e.g., [9]).

This article makes two key contributions, namely to the realm of applied joint chance constraint pro-
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gramming and to the advancement of SDG-7. More precisely, our analysis involves the following steps:

� We base our input data on real power measurement data obtained from an operating MG in Tan-
zania and use forecasts for the solar PV generation and the electricity demand of the connected
households.

� We propose a model for an economic scheduling strategy of an MG that is connected to a weak
main grid, while accounting for uncertainties of 1) forecasting the renewable power generation,
2) forecasting the demand profiles, as well as uncertainties of 3) the frequency and 4) duration
of an outage with a given (high) probability level using joint chance constraints.

� We compare the proposed JCC model with three alternatives. We contrast results with an Indi-
vidual Chance Constraint, Expected Value Model and a model ignoring outages and uncertain-
ties.

2 Mini-grid topology and modelling assumptions

Fig. 1 illustrates the grid-connected mini-grid configuration. This arrangement includes a solar PV
generation unit, one battery energy-storage system (BESS), one Diesel genset, and one connection
to an unreliable main-grid.

The PV and BESS are integrated into the system via two distinct inverters linked to the Alternating
Current (AC) bus. Interactions with the main grid occurs at the Point of Common Coupling (PCC). At
the PCC, a transformer modifies the voltages, translating them from the lower level of the mini-grid
to the higher-level of the primary grid (referred to hereafter as main grid or higher-level grid). In the
examined context of this paper, this connection to the main grid is unreliable, with outages occurring
frequently due to failures in the main grid. This could be an overloading of the main grid, an uncurtailed
excess generation or technical aspects due to failures of control strategies, physical components or
transmission lines overheating.

Lastly, the Diesel genset, acting as a supplementary component to bridge any electricity supply gaps,
generates AC current directly, injecting it into the AC bus.

Figure 1: Weakly Grid-connected Mini-grid Topology
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Since the MG is balanced through an AC bus, both active and reactive powers will flow to the loads.
In this paper, for simplicity purposes, we assume that the loads of all connected households maintain
a purely resistive nature. We, therefore, conduct all our modelling using only active power flow figures,
neglecting all reactive components.

Further on, we neglect any temperature effects on the MG components and operation, especially for
the battery storage system. The latter is modelled as one large synchronized unit that can either be
charged or discharged, thus neglecting specific dynamics between the battery packs. Additionally,
we model charging and discharging losses in the battery inverter as well as the battery’s internal
resistance as single, average efficiency parameters.

In terms of the flexibility of dispatch, we assume that the Diesel genset is able to run between 0 and a
maximal capacity, without any ramping constraints or restrictions on minimal resting and running times.
Moreover, we follow the premise that the MG operator always maintains a continuous fuel supply.

Additionally, we assume that the solar PV output can be controlled with the help of a Charge Controller
(CC). In case of an excess of PV generation and an outage preventing any export to the main grid, the
PV output can be curtailed fast enough such that the overall local power balance can be withheld.

To model the demand-side, we aggregate all electricity loads into one node, thus neglecting any line
losses that occur at the local distribution level.

Finally, we assume that the MG operator has access to time series forecasting of solar power genera-
tion and aggregate demand for the forthcoming 24 or 48-hour time interval. Furthermore, we assume
that, when an outage of the main grid occurs, the power exchange at the PCC drops to 0, thus pre-
venting any planned imports or exports. Outages can occur with a given probability at any arbitrary
moment, the precise timing of which remains uncertain. We further assume that there is statistical
evidence about the average duration of an outage from the main-grid [15].

Table 1 summarizes the uncertainties present at the examined MG and assumptions made about their
modeling.

Table 1: Mini-grid uncertainties

Source of uncertainty Assumptions

Aggregate demand access to a forecasting time series for the forthcoming 48 hours

Solar PV generation access to a forecasting time series for the forthcoming 48 hours

Timing of main grid outages unknown

Duration of main grid outages access to statistical evidence as an exogenous parameter [15]

3 Mathematical models

This section defines the mathematical model used for the above described MG topology. As mentioned
before, our aim is to find the optimal dispatch of a weakly-connected MG which allows one to survive
a failure of the main grid by means of local energy supply (battery, Diesel). In order to achieve this
goal, in addition to the planning of a regular dispatch for strongly connected MGs, reserves for Diesel
and battery are included into the model. These can then be employed in the islanded mode of the
MG in order to meet the local power demand. Since dispatch has to be planned prior to observing
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randomness in demand, solar radiation and outages, methods of stochastic optimization come into
play. Inspired by the work in [30, 18], we feel the application of probabilistic or chance constraints to
be most appropriate here. They provide the possibility to find an optimal dispatch including reserves
for Diesel and batteries such that the local demand in an islanded mode caused by an outage is
met with a given probability (typically close to one). However, as mentioned in the introduction, these
papers handle probability individually in time. While this approach eases drastically the computational
treatment of chance constraints, it does not guarantee robust demand satisfaction throughout the
critical time interval. Therefore, our main contribution is devoted to model the MG dispatch problem
with respect to joint chance constraints. This type of constraints cannot directly be converted into
explicit linear constraints as in the individual case, but requires to deal with probability functions and
their derivatives under multivariate distributions.

This section is organized as follows: after introducing the used nomenclature, we present the objective
function and the (common) deterministic constraints for the optimization problem. Then, we introduce
our additional joint chance constraints with respect to decisions on keeping reserves. We shall assume
that an outage may occur at most once a day with a given probability. Its initial time is supposed to be
uniformly distributed over the day. As for the duration of the outage, we either fix it (e.g., as a statistical
mean from available historical data) or consider it to be an exterior parameter which can be varied
in different computations. Next, we move on to a model with individual chance constraints as used in
[30, 18], in order to illustrate the gain in robustness by using joint chance constraints. Finally, for the
sake of completeness, we also mention two further simplifications of the model: first, the expected-
value model in which we replace all random parameters by their expected values, such that statistical
information is reduced to the first moment. Second, the regular model, which in addition to the previous
simplification, also completely ignores the possibility of outages.

3.1 Objective functions

In this subsection, we will introduce the objective function used across the mathematical models start-
ing with the cases of a strongly-connected and a weakly-connected mini-grid.

Strongly-connected mini-grid

We first present the objective function for a strongly-connected mini-grid, i.e., where outages do not
occur. In such a mini-grid, if the operator faces forecasting errors in solar and load predictions, the
impact is negligible from a physical standpoint. The system can be adapted by managing exports and
imports. However, economically, it’s important to note that instantaneous grid exchanges come with a
higher cost compared to day-ahead exchanges.

For such a problem, we want to maximize the profit of the MG dispatch, which is equivalent to mini-
mizing the net operational costs minus net revenue. The summation term in the objective (1) reflects
the negative profit of the MG over the nominal time horizon T , plus the duration of an outage κ, as the
outage could start at the end of the nominal time horizon.

f0(∆, b+, b−, g+, g−) := (1)
T+κ∑
t=1

c∆,t ·∆t + cb,t · (b+
t + b−t )− pd,t · dt + cg,tg

+
t − pg,tg−t + E[cγ,t(γt(ξt, δt))].

The aim is to maximize the profit of the MG dispatch, i.e., minimize the function f0, where revenues
from electricity sales are subtracted from the marginal costs of operation. The marginal costs con-
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sist of the fuel costs c∆,t for the Diesel genset, of the battery lifetime depreciation costs cb,t due to
the discharge-charge cycling, and of the costs cg,t for importing from the main grid. Solar power is
assumed to have zero marginal costs and therefore doesn’t appear in the objective function. Thus
far, maintenance costs are not explicitly considered. They could be levelized and included in the cost
coefficients of each technology. However, for this paper, further considerations about the maintenance
approach are omitted. The revenues are generated from selling the electricity at exogenous price of
pd,t to the connected households consuming electricity at the MG level, as well as from exporting
excess electricity at the exogenous price of pg,t to the main grid. The random variable

γt(ξt, δt) := dt + δt − st − ξt −∆t − b−t + b+
t − g+

t + g−t ∀t = 1, . . . , T + κ. (2)

is defined as the compensating action establishing the load balance after applying the decisions on the
employment ∆t, bt, gt of Diesel, battery and grid exchange on the day ahead market and observing
the random variables solar energy st + ξt and demand dt + δt (forecast plus random deviation in both
cases). A positive value of γt represents a lack of energy to be compensated by instantaneous import
from the main grid (at a price that may be substantially higher than for the import on the day ahead
market). A negative value of γt refers to an excess of energy which has to be instantaneously exported
to the grid, again at certain costs (so that, contrary to the day ahead market there is no reward for the
export). As γt and, hence, its associated costs, are random, we minimize the expectation of these
costs.

All costs and prices are defined as time-variable parameters, hence the index t for each of these
parameters.

Weakly-connected mini-grid

Here, we introduce the intricacies associated with a weakly-connected MG, i.e. with potential outages
in the main grid and adjust the objective function accordingly. Starting with the initial objective function
(1), we adapt the objective function f0 to account for the case of possible grid outages. We introduce
the following definition:

f1(∆, b+, b−, g+, g−, r∆, rb) := (3)
T+κ∑
t=1

c∆,t ·∆t + cb,t · (b+
t + b−t )− pd,t · dt

+
ω

T

T∑
τ=1

(∑T+κ
t=1,t6=τ,...τ+κ cg,tg

+
t − pg,tg−t + E[cγ,t(γt(ξt, δt))] +

τ+κ∑
t=τ

c∆,tr
∆
t + cb,tr

b−
t

)
+(1− ω)

T+κ∑
t=1

(
cg,tg

+
t − pg,tg−t

)
+ E[cγ,t(γt(ξt, δt))].

The first term is defined in analogy to (1) including again a summation over the Diesel and battery
cycling costs minus the revenues generated by selling the electricity to local customers at a given
price. Now, considering the possibility of grid outages, we delineate two scenarios for the costs and
revenues associated with grid exchange: one when an outage occurs and another when it does not.
These scenarios are articulated in the second and third terms of (3). We make the assumption that,
at most, one outage may occur during the designated day ahead, and the probability of its occurrence
is denoted as ω. In the absence of an outage during the specified day (probability equals 1− ω), the
sole additional costs stem from trading with the main grid (third term). Conversely, when an outage
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occurs, suppose at time τ , then in the interval [τ, . . . , τ +κ], representing the duration of the outage,
no trading costs with the main grid are incurred (due to the lost connection). However, additional costs
arise from utilizing reserve capacities r∆

t , r
b−
t for Diesel generation and battery discharge to meet the

local demand in the islanded mode (second term).

We assume that τ is uniformly distributed, indicating that an outage may initiate at any time with equal
probability. Consequently, in the second term of (3), we compute the average costs across all potential
starting times for the outage. In contrast, the duration κ of the outage is regarded as the statistical
mean derived from historical data or treated as an exogenous parameter of the problem, capable of
assuming multiple values.

3.2 Deterministic constraints

The physical constraints represent well-known formulations for mini-grid economic dispatch models,
consisting in capacity constraints of the MG components, a power balancing constraint for MG supply
and demand, inter-temporal constraints for the storage state of charge, as well as considerations of
conversion and distribution losses expressed through average efficiency parameters. These will be
discussed in more detail in the following.

Capacity constraints of the Diesel genset : it is assumed that the Diesel genset can operate between
0 and its maximal capacity ∆max. Therefore, the sum of the decision variables for the Diesel genset
dispatch ∆t and the Diesel genset reserve r∆

t have to be within these bounds at all time (4).

0 ≤ ∆t + r∆
t ≤ ∆max, ∀t = 1, . . . , T + κ. (4)

Capacity constraints of the battery charge and discharge: similarly to the Diesel genset, the battery
charge and discharge rates are also bound by a lower level of 0 and an upper level bmax. In the case
of discharging the battery, we define the discharge rate as the sum of the actual dispatch decision
b−t and the planned reserve rbt (5). Since we assume that the reserves are used to compensate an
electricity shortage and that any excess generation from solar PV can be curtailed fast enough, we
omit the definition of a reserve for the battery charging, thus obtaining the constraint (6) for the decision
variable of battery charging b+

t .

0 ≤ b−t + rbt ≤ bmax, ∀t = 1, . . . , T + κ. (5)

0 ≤ b+
t ≤ bmax, ∀t = 1, . . . , T + κ. (6)

Capacity constraint for the grid exchange: the connection to the main grid at the PCC is also con-
strained by a certain capacity limit over time. Thus, the decision variables for the grid export g−t and
the grid import g+

t are also bound by an upper value of gmaxt :

0 ≤ g+
t ≤ gmaxt , ∀t = 1, . . . , T + κ. (7)

0 ≤ g−t ≤ gmaxt , ∀t = 1, . . . , T + κ. (8)

Power balancing constraint : as in any power system, to maintain the system frequency and prevent
any voltage surge or sag that would lead to a grid failure, the supply and demand of electricity must be
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equal at any time. As mentioned in Section 3.1, this balance is established by means of the compen-
sating action γt defined in (2), where any current excess or deficit in the load balance is rectified by
instantaneous (potentially costly) grid exchange. In an attempt to keep this compensating action small,
it is often required in addition, that the unit commitment guarantees the load balance to be satisfied
with respect to the forecasts st, dt of uncertain solar energy and demand profiles:

st + ∆t + g+
t + b−t − b+

t − g−t = dt, ∀t = 1, . . . , T + κ. (9)

Substituting this additional relation into (2), one obtains the consequence, that the compensating in-
stantaneous trading with the grid is nothing but the difference between forecasting errors for solar
energy and demand:

γt = δt − ξt, ∀t = 1, . . . , T + κ. (10)

Capacity, cycling and inter-temporal constraints for the battery energy-storage system: in addition to
the constraints on the battery discharge and charge rates defined in constraints (5) and (6), we need
to defined additional constraints on the battery energy fill level, also called State Of Charge (SOC),
and defined in the following constraints as SOCt. The first constraint concerns the upper and lower
bounds of the SOC which are defined by both physical constraints of the actual battery size, as well
battery protection measures that set tighter conditions on these bounds (SOCmin and SOCmax in
the constraint (11)) in order to protect the battery from overheating and extend its lifetime.

SOCmin ≤ SOCt ≤ SOCmax, ∀t = 1, . . . , T + κ. (11)

In the second constraint for the battery energy-storage system, we set a condition to the cycling of
the battery over the nominal time horizon T , which guarantees that battery’s SOC at the the end
of each time horizon T is equal to the SOC at the beginning of the time horizon as defined in the
constraint (12). With this, we make sure that the dispatch is optimized with the ulterior operation of the
MG, beyond the nominal time horizon, is considered and the SOC at the end of the time horizon is
not exhausted for subsequent operational time steps. This constraint is optional, since, in practice, the
optimization of the MG operation is usually conducted in a rolling horizon approach, preventing such
exhaustion of the SOC at the end of an optimization horizon.

SOCT = SOC0. (12)

In the next constraint for the battery energy-storage system, we look into the inter-temporality of the
battery discharge and charge processes, which translates into an increase or a decrease of the SOC
over time. For this, we define the constraint (13), which relates the SOC at time t to the SOC at time
t− 1, with the initial value SOC0 given. The relation between SOCt and SOCt−1 takes into account
the battery discharge b−t and charge b+

t multiplied by their respective average efficiency coefficients
η+ and η−. Since b−t and b+

t are power figures, expressed in kW or W and the SOC is an energy
figure expressed in kWh or Wh, the net charge and discharge rate must be multiplied with the nominal
time-step ∆t.

SOCt = SOCt−1 + (η+b+
t − η−b−t )∆t, ∀t = 1, . . . , T + κ. (13)

Finally, we define the constraint (14) to describe the potential discharge of the battery, and therefore
the potential SOC, in case of an employment of the battery reserves because of an outage. This poten-
tial SOC is defined as the SOC at time t (SOCt) minus the cumulative reserves rbs that are planned
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in the κ previous time steps, multiplied by the average discharging efficiency η− and the nominal time-
step ∆s. Since rbs is a non-negative decision variable, the constraint (14) entails the definition of the
lower bound presented in the constraint (11).

For t = 1, . . . , T + κ:

SOCmin ≤ SOCt −
min{τ+κ,t}∑

s=τ

η−rbs∆s, τ = 1, . . . ,max{t− κ, 1}. (14)

Since we consider a battery reserve only for the discharging, we do not need to define an adjusted
constraint for the upper bound of the potential SOC. Therefore, the definition of the upper bound in the
constraint (11) remains unchanged.

3.3 Random parameters

In this section, we describe how the random parameters, namely solar energy and demand are dealt
with in our model.

Time series analysis

Apart from the fixed data, two data sets are used in this study: solar data in dry season and rural load
data. In this study, we implement linear ARIMA modelling [4] to forecast the next 48 hours (such that
we can vary κ to explore different scenarios). We used the auto.arima() function implemented in the
R software [24] to select the best parameters. We then refined the model by manually increasing the
autoregressive (AR) and moving average (MA) components from significant lags in the autocorrelation
function (ACF) and partial autocorrelation function (PACF) plots. Model performance was evaluated
using Root Mean Square Errors (RMSEs) and coefficient of determination R2.

Establishing the stationarity of the time series is a fundamental prerequisite for ARIMA. To deter-
mine the necessary number of differences to attain stationarity, we employed the Kwiatkowski-Phillips-
Schmidt-Shin test (KPSS test).

For the rural load data the best model we obtain (with the lowest Akaike Information Criterion) is an
ARIMA(24, 1, 27). The comparison between the actual value and the forecasting value for the 48
points out-of-sample is given in Figure 2.

Similarly, the best model we got for the solar power production during the dry season was an
ARIMA(12, 0, 13) and the forecasted values for a 48 hours test set are shown in Figure 3.

We conducted a comprehensive statistical residual analysis on the ARIMA models to evaluate the
appropriateness of the model fit. Our investigation revealed that the residuals from rural load, denoted
as δt, from solar forecasts, denoted as ξt, conform to a normal distribution with zero mean. The
Shapiro test resulted in a p-value of 3.2× 10−3 for load and of 6.4× 10−5 for solar.

These observations hold particular significance as one of the crucial theoretical and numerical aspects
concerning our joint chance constraint problem pertains to the convexity of the set of decision variables
satisfying (3.4).

It is a well-established result ([22], Theorem 10.2.1) that this set exhibits convexity under the condition
that the law of δ + ξ constitutes a log-concave probability measure on RT+κ. This finding aligns with
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Figure 2: Actual and Forecasted ARIMA(24, 1, 27) Load model

Figure 3: Actual and Forecasted ARIMA(12, 0, 13) Solar Power model

Prékopa’s theorem, which asserts that the law of δ + ξ is log-concave whenever δ + ξ possesses
a log-concave density, as is the case for the multivariate normal distribution. Leveraging the insights
from our residual analysis and the combination of these theorems, we are able to confirm the convex
nature of our joint chance constraint problem.

Expectation of the costs for instantaneous grid exchange

The above-mentioned fact that both ξt and δt are centered normally distributed random variables
implies that so is γt by (2). We shall assume in this paper that the cost function for instantaneous grid
exchange has the concrete form

cγ,t(z) =

{
c∗γz for z ≥ 0 (c∗γ > 0)
0 else

.

This means that costs for importing unsatisfied energy grow linearly with the amount, whereas excess
energy can be got rid off at no costs. From here, exploiting that γt is normally distributed with mean
zero and some standard deviation σ (which follows from the standard deviations of ξt and δt), it is
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easily derived that

E[cγ,t(γt(ξt, δt))] = c∗γ
σ√
2π
.

Consequently, this constant term in the objective functions (1) and (3) does not influence the solutions
of the according optimization problems but just their objective value.

3.4 Probabilistic and expected-value constraints for considering outages

In this section we present different constraints on reserves for Diesel and battery in the case of weakly-
connected mini-grids affected by occasional outages of the main grid. The presentation is top down
according to the quality of models. We start with a model for joint chance constraints, which is at the
core of this paper.

Joint chance constraints (JCC)

As explained before, in the case of a weakly connected mini-grid we expect an outage of the main
grid at any initial time τ with a given duration κ. The aim of the dispatch in such case is to retain
reserves for Diesel and battery in addition to their regular employment such that the mini-grid can
survive in an islanded mode without exchange with the main grid. Since all operational decisions are
taken prior to observing uncertainty, successful islanding cannot be guaranteed deterministically but
only with a given (possibly high) probability. Satisfying at some fixed time t the true demand dt+δt (as
opposed to the forecasted demand dt) under the true solar power st + ξt with the help of scheduled
local dispatches of Diesel and battery and additional employment of reserves retained for Diesel and
battery, but without having access to the main grid, amounts to the inequality

st + ξt + ∆t + b−t − b+
t + rbt + r∆

t ≥ dt + δt

Note that we cannot formulate an equality for the load balance here because of the present random-
ness of some of the parameters which is revealed only after taking the dispatch decisions. Substituting
dt from (9) leads to the equivalent inequality

δt − ξt + g+
t − g−t ≤ rbt + r∆

t (15)

As mentioned above, we want to satisfy with some high probability p this inequality throughout the time
window of an outage starting at time τ and ending at time τ + κ. Since the initial time is supposed to
be unknown, we formulate a corresponding probabilistic constraint for each τ . Altogether, we obtain
the following system of constraints:

P(δt − ξt + g+
t − g−t ≤ rbt + r∆

t ∀t ∈ {τ, ..., τ + κ}) ≥ p, ∀τ ∈ {1, ..., T}. (16)

Each single of these constraints is called a joint probabilistic constraint because it involves a system
(not just one) of random constraints inside in order to guarantee successful islanding uniformly for the
whole time window of an outage. As a consequence, one deals with probabilities under multivariate
(not just univariate) normal distributions. This is a particular challenge because no explicit formulae
for probabilities are available in this case. Moreover, apart from simply approximating the probabilities
themselves (which could be done by some Monte Carlo or Quasi-Monte Carlo sampling), the efficient
numerical solution of the arising optimization problems based on solvers from nonlinear programming
requires sensitivities of these probabilities with respect to decision variables. Efficiently implementable
gradient formulae in the case of Gaussian or related distributions are presented in the form of spherical
integrals, e.g., in [27].
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Individual chance constraints (ICC)

To contrast the JCC model with other more common implementations found in the literature, we intro-
duce in the following the Individual-Chance-Constraints (ICC), which drastically reduce the computa-
tional effort but can only ensure the p-level reliability for single time steps and not for the whole outage
duration κ.

More precisely, we replace the introduced joint chance constraint system by the following individual
chance constraint system:

P(δt + ξt + g+
t − g−t ≤ rb

−

t + r∆
t ) ≥ p, ∀t = 1, . . . , T + κ, (17)

Observe that, in contrast with (3.4), the probability of successful islanding is considered individually
for each time step but no longer uniformly over the time window of an outage. As a consequence, the
obtained probability function is univariate normal and can be easily inverted using its p-quantile qp:

rb
−

t + r∆
t − g+

t + g−t ≥ qp, ∀t = 1, . . . , T + κ. (18)

In this way, the system (3.4) of nonlinear, non-explicit and potentially difficult to handle joint chance
constraints is reduced to a simple system of explicit linear constraints in the decision variables which
is easy to handle numerically. The drawbacks of this model will be illustrated in the numerical results
below.

Expected-value constraints

Next, we further simplify the model by keeping the assumption of a weakly-connected mini-grid but
avoiding probabilistic constraints at all and requiring the constraints for successful islanding to hold
just on average. We denote this model in the following as expected-value dispatch model. In this case,
by passing to expectations in (15) and taking into account that the expectations of forecast errors are
zero, one ends up at the following system of constraints describing successful islanding:

g+
t − g−t ≤ rbt + r∆

t , ∀t = 1, . . . , T + κ. (19)

Observe that (19) represents the same linear inequality system as (18) but with different right-hand
side.

Regular dispatch ignoring outages and forecasting errors

The final model we introduce is the most primitive one in that it ignores both forecasting errors and
outage occurrence. It shall be denoted in the following as the regular model due to the prevalent
trend in the literature, where the operation or economic dispatch of mini-grids typically overlooks un-
certainties [2, 6, 16, 17, 10]. These models predominantly adopt a deterministic approach, focusing
only on the expected value of the forecasting time series, disregarding their random errors and disre-
garding blackout uncertainty. The first simplification eliminates the last term of the objective function
f0 presented in (3) that accounts for the random instantaneous exchange with the grid. The second
simplification concerns the assumption of a strongly connected mini-grid (outages not present). Under
these simplifications, we obtain the minimization objective function presented in (20).

f2(∆, b+, b−, g+, g−) =
T+κ∑
t=1

(
c∆,t ·∆t + cb,t · (b+

t + b−t )− pd,t · dt + cg,tg
+
t − pg,tg−t

)
. (20)
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Furthermore, since the regular model doesn’t include any reserve considerations, we adjust the box
deterministic constraints for the Diesel and battery discharge variables as shown in (21)-(22), and
remove the constraint for the potential state of charge presented in (14). Meanwhile, the constraints
(7)-(13) remain unchanged.

Capacity constraints of the Diesel genset

0 ≤ ∆t ≤ ∆max, ∀t = 1, . . . , T + κ. (21)

Capacity constraints of the battery discharge

0 ≤ b−t ≤ bmax, ∀t = 1, . . . , T + κ. (22)

4 Case study

Our case study is centered around an operational mini-grid in Chifule, an island of Lake Victoria, Tan-
zania. Currently, the MG remains isolated, lacking any linkage to the main-grid. However, considering
the research question at hand and anticipating a future where many MGs in sub-Saharan Africa will
be connected to weakly-connected main grids, we assume that the MG, for the purposes of this study,
is connected to a main grid characterized by unreliability and frequent outages.

Physical parameters

The physical parameters pertinent to this context are detailed in Table 2, while the price and cost
parameters are presented in Table 3. In conjunction with the parameters listed in these tables, it is
assumed that the nominal time horizon is 24 hours, and the time step is set at one hour.

All parameters, excluding those pertaining to the main grid connection, are defined based on data
from the MG operator in Tanzania. For the parameters related to the grid connection, we use heuristic
and model-informed values. For instance, for the maximum available grid capacity gmax, we assume a
high value meaning that in case of grid availability, the grid can always guarantee the satisfaction of the
local electricity demand. For the average duration of an outage κ, we initially set its value to 3 hours,
based on empirical values collected from main-grids in similar geographies [15]. The κ parameter will
be varied, further on, to examine its effect on the obtained solutions. For the probability of an outage ω,
we assume that outages occur daily, i.e., ω = 1 to magnify the effect of outages on the daily planning
of the dispatch.

Monetary parameters

The monetary parameters, presented in Table 3 are also based on indications by the MG operator for
the marginal costs of the fuel, of the battery aging and the electricity sale price to local customers. For
the cost of importing from the grid and the price of exporting to it, we use values derived from expert
interviews with weakly-connected MGs in sub-Saharan Africa. Thereby, we assume that prices and
costs differ between night and day, reflecting market conditions, i.e., that importing from the grid costs
more during the night than during the day, since at night, the main grid is overall more stressed due
o the absence of (cheap) renewable-energy generation (e.g., solar), and that selling to the grid during
the day is more valuable due to the higher demand.
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Table 2: Physical parameters

Parameter Unit Value Description

Battery system η+ % 95 average battery charging efficiency
η− % 95 average battery discharging

efficiency
σ % 0 battery self-discharge rate

bmax kW 10 maximal battery charging/dis-
charging rate

bcap kWh 100 maximal battery capacity

SOCmax % 90 maximal battery state of charge
SOCmin % 20 minimal battery state of charge
SOC(t = 0) % 35 initial battery state of charge

Diesel genset ∆max kW 5 rated Diesel genset capacity

Main grid connection gmax kW 100 maximum available grid capacity
κ - 3 average duration of outages
ω - 1 probability of an outage occurring

during one day

Solar input Smaxt kW see Fig. 4 forecasting of maximum solar
production

Meta-parameters p % 90 probability of successful islanding
dt kW see Fig. 4 forecasted electricity load

Table 3: Cost & price parameters

Parameter Unit Values Description

c∆,t C/kWh 0.35 marginal cost of Diesel

cb,t C/kWh 0.0055 marginal cost of battery

cg,t C/kWh 0.55 (night), 0.15 (day) marginal cost of grid import

cγ,t C/kWh 0.85 (night), 0.45 (day) cost for instantaneous grid exchange

pg,t C/kWh 0.08 (night), 0.13 (day) price for grid export

pd,t C/kWh 0.55 price for electricity sales to customers

5 Results

In this section, we present the results of the optimization problem of the purely deterministic, ICC
and JCC models and compare them to investigate the effects achieved due to the different formula-
tions and ways of handling the uncertainties. For these results, we use the previously presented input
parameters and time series.
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Figure 4: Economic dispatch in the regular model

Figure 5: Economic dispatch for the expected-value model

Optimal dispatch

First, we look into the optimal dispatch of each component, in order to meet the fixed electricity demand
profile (Figures 4, 5). For the regular model and the expected-value model, the figures show similar
patterns of discharging the battery, employing the Diesel genset and to some extent importing from
the main grid during the night, while using the solar PV generation during the day with a peak around
3 p.m. The solar power is used to meet the electricity demand directly and to charge the battery or
export to the main grid with any excess generation.

The figures also show that the battery is used in the early evening hours after sunset, Diesel in the early
morning hours and then around sunrise electricity is imported from the main grid, as it starts getting
cheaper (see Table 3). The excess generation from the solar PV system is mostly sold to the main
grid for additional revenue generation, while some of it is used to charge the battery in preparation for
the night hours. This optimal dispatch leads to expected profits of 84.46 C for the optimization horizon
T + κ, i.e., 27 hours.
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Figure 6: Economic dispatch for the ICC model

Figure 7: Economic dispatch for the JCC model

Looking into the results of the ICC model, we identify a similar dispatch, with only minor differences
from the regular model, mostly occurring during the day in the way that the excess solar PV gener-
ation is used (see Fig. 6). In fact, with the individual chance constraints introduced to the model, the
optimizer hedges against possible forecasting errors and main grid outages. Thus, the charging of the
battery starts sooner than in the dispatch of the model disregarding all uncertainties and, overall, more
of the excess electricity is used to charge the battery than to export to the main grid, leading to less
electricity quantities sold and thus to less generated revenues. The expected profits drop however by
only a few cents, i.e., are about 84.24 C, all while ensuring a high probability of successfully meeting
the local demand in an islanded mode and compensating for forecasting errors of 90%.

Still, as explained in earlier sections, the ICC model guarantees the present islanding probability only
for the single time step when an outage starts and doesn’t cover the entire duration of the outage. For
this, we look into the dispatch results of the JCC model, shown in Fig. 7. The figure showcases larger
differences than both previous models, mainly in the dispatch from the battery discharging during the
early morning hours. During the hours 1-7, more Diesel is deployed, while the battery discharging is
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Figure 8: Battery cycle for the regular model (left) and for the expected-value model (right)

Figure 9: Battery cycle for the ICC model (left) and for the JCC model (right)

significantly reduced and kept as a reserve. Additionally, a lot more excess PV electricity is used during
the peak hours to charge the battery, resulting in significantly less quantities exported to the main grid.
The expected profit drops to 83.18 C for a probability of p = 90% and an outage duration of κ = 3.
We present the influence of these two parameters on the profits and dispatch schedule further on in
this section.

Optimal battery cycle

The presented differences in dispatch can also be examined in terms of optimal battery cycling strat-
egy, shown in Figures 8, 9 as charging and discharging powers (in different shades of green) and
SOC development (as a continuous black line).

While the battery from the regular model, the expected-value model and the ICC model is discharged
in the first hours of the day more abruptly, the results from the JCC model showcase a smoother
discharging strategy. In addition, larger charging rates are fed into the battery during the peak solar
generation in the JCC case than in the ICC case and both are even larger than the purely deterministic
case.
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Figure 10: Reserves for the expected-value dispatch model

Optimal reserves

Finally, we take a look at the reserves planned for the entire optimization horizon.

Starting with the reserves in the case of the expected-value model shown in Fig. 10, the reserves
match exactly, as expected, the planned net grid exchange at each time step. This is explained by
the formulation of the inequality constraints on the minimal reserves. Since the goal is to minimize the
cost associated with the deployment of the reserves, the optimizer sets these decision variables to
their lower bound values as defined in (19), i.e., the net grid exchange g+

t − g−t .

Fig. 11 presents the planned optimal reserves for the case of an ICC model. Mainly battery discharge
capacities are planned as reserves, with the highest levels occurring at times when there is grid ex-
change in the actual optimal dispatch, for instance, in timesteps 9 and 10. Diesel reserves are more
expensive (see Table 3) and are therefore less significant, and are only deployed once the battery dis-
charge rate or state of charge limits are exhausted. During the peak of solar generation in the hours
12-19, where excess electricity is recorded, no reserves are planned.

For the case of a JCC model, Fig. 12 shows that more battery and Diesel reserves are planned in all
timesteps and even in more hours of the day than in the ICC case, i.e., only in timesteps 13-18, no
reserves are present. These additional possible profits are held back explaining the worsening of the
objective function value for the JCC case. However, in the following, we prove the increased reliability of
the MG operation that is achieved by the JCC model, justifying the small drop in profitability showcased
so far.

Increased reliability

With the ICC and JCC model, we are capable of handling many uncertainties in the MG operation, as
explained in Section 2, thus increasing the reliability of meeting the local electricity demand. Thereby,
we handle different types of uncertainty: on the one hand, the uncertainties about the forecasting of the
solar PV generation and the electricity demand, on the other hand, the uncertainties about an outage
of the main grid. The uncertainties about when and how long a grid outage could occur enlarges the
uncertainties about the forecasting errors: Provided that the grid is reliable and doesn’t experience
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Figure 11: Reserves for the ICC dispatch model

Figure 12: Reserves for the JCC dispatch model

any outages during one day, the main grid could level up any forecasting errors and ensure that the
power balance is always met. However, with an unreliable grid, not only are forecasting errors more
noticeable, but also any planned grid exchange in the optimal dispatch could be risky and lead to load
shedding and an unmet power balance in the MG.

In the previous figures, we prove that at times of a planned exchange with the main grid, enough
reserves from the battery and Diesel are kept in the MG and, therefore, the reliability of meeting the
local demand in the case of an outage is increased depending on the preset reliability level (compare
Fig. 6 and 7 with Fig. 11 and 9, respectively). In the following figures, we show the effect of the
forecasting errors and how the additionally planned reserves can also compensate them.

Starting with the ICC case, Fig. 13 showcases, on the left, 10 realizations of the forecasting errors
(according to the determined distributions), and on the right, how these errors are compensated using
the reserves planned for them. Given that the individual chance constraints are defined as follows and
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Figure 13: Forecasting errors of solar PV generation and electricity demand without (right) any planned
reserves and with reserves (left) in the ICC model

as explained in Section 3.4)

P(rb
−

τ + r∆
τ + g−τ − g+

τ − (ξτ + δτ ) ≥ 0) ≥ p, ∀τ ∈ {1, ..., 27},

any curves that are below the zero line represent a violation of the probabilistic constraint, and thus
unmet demand translating into lost revenues. Hence, with 10 simulations and a probability p = 90%,
an empirical approximate of only one curve in each single timestep should be below zero once the
chance constraints are applied, which is confirmed in Fig. 13. If we look, however, at windows of
outages, we find that several different lines violate the reliability constraint in each time step, hence
the probability of reliability over one outage window is less than 90%. This is precisely the reason
behind introducing joint chance constraints which will be discussed next.

In the JCC case, we apply the same logic of verifying the reliability of the MG operation, i.e., the
capability of the planned reserves to compensate forecasting errors up to a given probability level. We
define the chance constraints as follows (also see Section 3):

P(rb
−

t + r∆
t + g−t − g+

t − (ξt + δt) ≥ 0 ∀t ∈ {τ, . . . , τ + κ}) ≥ p, ∀τ = 1, ..., 24,

which means that with joint chance constraints, we look into windows of reliability that range between τ
... τ + κ, with τ = 1 . . . T to verify that the probability level is withheld throughout the entire window,
and that, therefore, only one and the same realization curve is below the zero line for each of the
windows. This is proven for all possible starting times of an outage τ = 1 . . . T , as shown in Fig. 14
with the outage starting times τ = 1, 5, 24, for example.

Table 4 summarizes some key indicators of solving each of the optimization models, i.e., the optimal
profit, the type of model and the required solve time. The values are for an optimization model solved
with the input parameters presented in Section 4, i.e., a nominal time horizon T = 24 and an outage
duration κ = 3 (optimization horizon of 27 steps) and a probability level p = 90% for ICC and JCC.

On the one hand, the purely deterministic and the ICC models represent linear formulations that are
solved by the linear solver GLPK. The ICC includes T + κ = 27 linear chance constraints. The JCC
model, on the other hand, includes T = 24 nonlinear chance constraints with multivariate probability
functions of dimension κ + 1 = 4. The JCC optimization problem is solved with the local nonlinear
solver IPOPT, using two methods to compute the probability functions and their gradients: Quasi-
Monte-Carlo with the Genz algorithm and Spherical Radial Decomposition [27]. Both computation
methods yield the same optimal solution with different solve times, presented in Table 4.
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Figure 14: Forecasting errors of solar PV generation and electricity demand (left) and without (right)
planned reserves for τ = 1 (top), τ = 5 (middle) and τ = 24 (bottom) in the JCC model with κ = 3
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Table 4: Comparison of the four models

Modelling approach Profit Type Solve time

Regular 84.46 C Linear < 1 millisecond

Expected-value 78.00 C Linear < 1 millisecond

ICC (p = 90%) 71.84 C Linear 3-5 milliseconds

JCC (p = 90%, κ = 3) 68.73 C Nonlinear 30-60 seconds 1

Finally, we investigate the effect of changing probability levels p and changing outage duration κ on
the optimal results.

Fig. 15 presents the variation of the optimal expected profits depending on the set probability level.
The latter was varied from a value close to 0% up to the maximum probability level above which the
problem becomes infeasible. For the present case study, the maximum probability is around 92%. In
general, the variation of this parameter, as well as the tendency of the curves depend on the system
sizing and the input parameters to the optimization problem.

As shown in the figure, the trend is such that higher p-levels lead to a worse objective function value,
since this means an increase of the reliability and, therefore, more hedging against the uncertainty
leading to an overall decrease in profits.

Furthermore, compared to the value of the optimal expected profit of the regular model which is around
84.46 C, the ICC and JCC models always lead to less profits, 71.84 C and 68.73 C respectively, since
they add additional constraints to the feasible set and therefore lead to a worse objective function
value. In addition, due to its tighter constraints and the need for increased planning of reserves in
order to survive the whole duration of an outage, the JCC model formulation always has a worse
objective function value than the ICC.

Figure 15: Variation of the objective function for the ICC (green) and the JCC (blue) model formulation
depending on the probability level

To investigate the effect of varying κ, we look into the maximal reliability level (referred to hereafter as
p-max problem) that is feasible given the sizing of the studied MG as well as the boundary conditions.
Formulating the p-max problem requires changing the objective function to a maximization of the
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probability level p, which is changed from being an input parameter to being a decision variable.

Fig. 16 presents the maximal reliability level for values of the outage duration κ between one and
ten. It shows that the higher the outage duration, the lower is the maximal reliability to be achieved.
Already with an outage lasting κ = 5 hours, the probability of successful islanding drops below 60%.
For κ = 10 hours, the probability level is below 5%.

We do not include in the figure values of κ that are above ten hours, as the p-max problem yields
probabilities close to 0%. This means that, with outages longer than 10 hours and with the given MG
sizing, the reserves are not enough to achieve a non-zero probability of successful islanding.

Figure 16: Variation of the maximum probability of successful islanding of the JCC model formulation
depending on the outage duration

Overall, we prove that, through using joint chance constraints, a level of successful islanding probability
can be preset and guaranteed, increasing the robustness of the optimal MG operation strategy under
uncertainty, in exchange with a small drop in profitability. This trade-off is quickly compensated for,
given the high reliability level that is achieved.

Practically, when applying dispatch models to the real-time operation of mini-grids, operators imple-
ment the dispatch algorithms in a rolling horizon method, typically of 15 minutes, thus updating the
operation at each new run with new input data and forecast values. This method should also be ap-
plied when using the presented JCC model, as this increases the practical dispatch’s adaptability to
new boundary conditions.
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