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Primal and dual optimal stopping with signatures
Christian Bayer, Luca Pelizzari, John G. M. Schoenmakers

Abstract

We propose two signature-based methods to solve the optimal stopping problem – that is, to
price American options – in non-Markovian frameworks. Both methods rely on a global approxi-
mation result for Lp−functionals on rough path-spaces, using linear functionals of robust, rough
path signatures. In the primal formulation, we present a non-Markovian generalization of the fa-
mous Longstaff-Schwartz algorithm, using linear functionals of the signature as regression basis.
For the dual formulation, we parametrize the space of square-integrable martingales using linear
functionals of the signature, and apply a sample average approximation. We prove convergence
for both methods and present first numerical examples in non-Markovian and non-semimartingale
regimes.

1 Introduction

Stochastic processes with memory play a more and more important role in the modelling of finan-
cial markets. In the modelling of equity markets, rough stochastic volatility models are now part of
the standard toolbox, see, e.g., [23, 3]. In the same area, path-dependent stochastic volatility models
[26] are a very powerful alternative for capturing memory-effects. Processes with memory are also
an essential tool for modelling the micro-structure of financial markets, driven by the market practice
of splitting large orders in many medium size ones, as well as by the reaction of algorithmic traders
to such orders. Seen from outside, this materializes as self-excitation of the order flow, and, conse-
quently, Hawkes processes are a fundamental tool for modelling order flows, see, e.g., [11]. Beyond
finance, processes with memory play an important role in the modelling of many natural phenomena
(e.g., earthquakes, see [31]) or social phenomena.

In this paper we study optimal stopping problems in non-Markovian frameworks, that is the under-
lying price is possibly a stochastic process with memory. For concreteness’ sake, let us introduce two
processes determining the optimal stopping problem: an underlying state-process X , together with its
natural filtration FX , and a reward-process Z , which is (FX

t )−adapted – think about X = (S, v)
for a stock price process S driven by a stochastic variance process v and Zt = ϕ(t, St). The optimal
stopping problem then consists of solving the following optimization problem

y0 = sup
τ∈S0

E[Zτ ], (1)

where S0 denotes the set of (FX
t )−stopping times on [0, T ], for some T > 0. We merely assume α-

Hölder continuity for X in our framework, see Section 3.1 below, in particular allowing non-Markovian
and non-semimartingale state-processes X .

The lack of Markov property leads to severe theoretical and computational challenges in the con-
text of optimal control problems, and thus in particular in the optimal stopping problem (1). Indeed,
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C. Bayer, L. Pelizzari, J.G.M. Schoenmakers 2

the primary analytical and numerical framework for stochastic optimal control problems arguably is the
associated Hamilton–Jacobi–Bellman (HJB) PDE, in the context of optimal stopping so-called free-
boundary problems, see [32]. When the state process is not a Markov process, such PDEs do not
exist a priori. BSDE methods may not be similarly restricted, in principle, but most numerical approxi-
mation methods crucially rely on the Markov property, as well.

It should be noted that, at least intuitively, all processes with memory can be turned into Markov
processes by adding the history to the current state – but see, e.g., [12] for a more sophisticated ap-
proach in the case of fractional Brownian motion. Hence, theoretical and numerical methods from the
Markovian world are, in principle, available, but at the cost of having to work in infinite-dimensional (of-
ten very carefully drafted, see. e.g., [17]) state spaces. On the other hand, Markovian approximations,
i.e., finite-dimensional Markov processes closely mimicking the process with memory, can sometimes
be a very efficient surrogate model, especially when high accuracy is achievable with low-dimensional
Markovian approximations, see, e.g., [2].

Inspired by many successful uses in machine learning (for time-series data), [27] introduced a model-
free method for numerically solving a stochastic optimal execution problem. The method is based on
the path signature, see, e.g., [22], and is applicable in non-Markovian settings. This approach was
extended to optimal stopping problems in [4], where stopping times were parameterized as first hitting
times of affine hyperplanes in the signature-space. A rigorous mathematical analysis of that method
was performed and numerical examples verifying its efficiency were provided.

The signature X<∞ of a path X : [0, T ] → Rd, is given (at least formally) as the infinite collec-
tion of iterated integrals, that is for 0 ≤ t ≤ s ≤ T

X<∞
s,t =

{∫ t

s

∫ tk

s

· · ·
∫ t2

s

dX i1
t1 · · · dX

ik
tk

: i1, . . . , ik ∈ {1, . . . , d}, k ≥ 0

}
.

The signature characterizes the history of the corresponding trajectory, and, hence, provides a sys-
tematic way of “lifting” a process with memory to a Markov process by adding the past to the state.
Relying only on minimal regularity assumptions, the corresponding encoding is efficient, and has nice
algebraic properties. In many ways, (linear functionals of) the path signature behaves like an analogue
of polynomials on path-space, and can be seen as a canonical choice of basis functions on path-
space. For example, a Stone-Weierstrass type of result shows that, restricted to compacts, continuous
functionals on path-spaces can be approximated by linear functionals of the signature, that is by linear
combinations of iterated integrals, see for instance [27, Lemma 3.4].

As a first contribution, in Section 2 we provide an abstract approximation result on α-Hölder rough
path spaces, by linear functionals of the robust signature, with respect to the Lp-norm, see Theorem
2.6 below. As a direct consequence, and under very mild assumptions, we can show that for any
(FX

t )−progressive process (ξt)t∈[0,T ], we can find a sequence (ln)n∈N of linear functionals on the
state-space of the signature, such that

E

[∫ T

0

(ξt − ⟨X<∞
0,t , ln⟩)2dt

]
n→∞−−−→ 0, (2)

see Corollary 2.7 below for the details. This result is in marked contrast to the standard universal ap-
proximation result for signatures as usually formulated, which only provides uniform convergence on
compact subsets of the path space.
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Primal and dual optimal stopping with signatures 3

Returning to the optimal stopping problem (1), in Section 3 we generalize two standard techniques
from the Markovian case to the non-Markovian case using signatures, namely the Longstaff–Schwartz
algorithm [29] and Rogers’ dual martingale method [33]. Denoting by Y the Snell envelope to the op-
timal stopping problem, see below for more details, the Longstaff–Schwartz algorithm is based on the
dynamic programming principle, that is

Yt = max
(
Zt, E[Yt+∆t|FX

t ]
)
.

If X is a Markov process, then the conditional expectation E[Yt+∆t|FX
t ] = E[Yt+∆t|Xt], which

can be efficiently computed using regression (least-squares Monte Carlo). In the non-Markovian case,
an application of the global approximation result Theorem 2.6, i.e. the convergence in (2), shows
that (under minimal assumptions) a Longstaff–Schwartz algorithm converges when the conditional
expectation is approximated by linear functionals of the signature, that is

t 7→ E[Yt+∆t|FX
t ] ≈ ⟨X<∞

0,t , l⟩,

see Proposition 3.2.

Regarding the dual method, we rely on Roger’s characterization that

y0 = inf
M∈M2

0

E

[
sup
t∈[0,T ]

(Zt −Mt)

]
,

where the inf is taken over all square-integrable martingalesM starting at 0. If the underlying filtration
is Brownian, such martingales can be written as stochastic integrals w.r.t. a Brownian motion W , that
is Mt =

∫ t
0
ξsdWs for some (FX

t )−progressive process ξ. The approximation result Theorem 2.6,
i.e. the convergence in (2), suggests to approximate the integrand by linear functionals of the signature

t 7→ ξt ≈ ⟨X<∞
0,t , l⟩,

and we prove convergence after taking the infimum over all linear functionals l, that is

y0 = inf
l
E

[
sup
t∈[0,T ]

(
Zt −

∫ t

0

⟨X<∞
0,s , l⟩dWs

)]
, (3)

see Proposition 3.6. For numerically solving the dual problem (3) we carry out a Sample Average
Approximation (SAA) with respect to the coefficients of the linear functional of the signature. For a
Markovian environment, a related SAA procedure was earlier proposed in [18] and recently refined in
[8] and [7] using a suitable randomization. An important feature of the SAA method is that it relies on
nonnested Monte Carlo simulation and thus is very fast in comparison to the classical nested Monte
Carlo method by Andersen & Broadie [1].

For both the Longstaff–Schwartz and the dual signature methods, we also prove convergence of the
finite sample approximations when the number of samples grows to infinity, see Proposition 3.3 and
Proposition 3.8. It is worth to notice that, after independent resimulations, the Longstaff–Schwartz al-
gorithm yields lower-biased, whereas the dual method gives upper-biased values to the optimal stop-
ping problem (1), and thus applying both methods produces confidence intervals for the true value of
y0.

Finally, in Section 4 we provide first numerical examples based on the primal and dual signature-based
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approaches, in two non-Markovian frameworks: First, in Section 4.1, we study the task of optimally
stopping fractional Brownian motion for a wide range of Hurst-parameter H ∈ (0, 1), representing
the canonical choice of a state-process leaving the Markov regime. The same problem was already
studied in [6], and later in [4], and we compare our lower, resp. upper bounds with the results therein.
Secondly, in Section 4.2 we consider the problem of computing American options prices in the rough
Bergomi model [3], and we compare our price intervals with [5], resp. [25], where lower-bounds were
computed in the same model.

1.1 Notation

For d,N ∈ N we define the so-called extended tensor-algebra, and the N -step truncation thereof by

T ((Rd)) =
∏
k≥0

(Rd)⊗k, T≤N(Rd) =
N∏
k=0

(Rd)⊗k,

where we use the convention (Rd)⊗0 = R. For more details, including natural operations such as sum
+ and product ⋆ on these spaces, see for instance [22, Section 7.2.1]. For any word w = i1 · · · in
for some n ∈ N with i1, . . . , in ∈ {1, . . . , d}, we define the degree of w as the length of the
word, that is deg(w) = n, and denote by ∅ the empty word with deg(∅) = 0. Moreover, for a ∈
T ((Rd)), we denote by ⟨a, w⟩ the element of a(n) ∈ (Rd)⊗n corresponding to the basis element
ei1 ⊗ · · · ⊗ ein . Denoting by Wd the linear span of words, the pairing above can be extended linearly
⟨·, ·⟩ : T ((Rd))×Wd → R. For an element l ∈ Wd, that is l = λ1w1+ · · ·+λnwn for some words
w1, . . . , wn and scalars λ1, . . . , λn ∈ R, we define the degree of l by deg(l) := max1≤i≤n deg(wi),
and for K ∈ N we denote by Wd

≤K ⊂ Wd the subset of elements l with deg(l) ≤ K . For two words
w and v we denote by� the shuffle-product

w� ∅ = ∅� w = w, wi� vj := (w� vj) i+ (wi� v) j, i, j ∈ {1, . . . , d}, (4)

which bi-linearly extends to the span of words Wd. We further define the free nilpotent Lie-group over
Rd by

G((Rd)) =
{
a ∈ T ((Rd)) \ {0} : ⟨a, w⟩⟨a, v⟩ = ⟨a, w� v⟩, ∀w, v ∈ Wd

}
,

see [22, Chapter 7.5] for details.

For α ∈ (0, 1) we denote by Cα([0, T ],Rd) the space of α-Hölder continuous paths X , that is
X : [0, T ] → Rd such that

∥X∥α;[0,T ] = sup
0≤s<t≤T

∥Xt −Xs∥
|t− s|α

<∞,

where ∥ · ∥ denotes the Euclidean norm on Rd. Denote by ∆2
[0,T ] the simplex

∆2
[0,T ] := {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T} . For any two-parameter function on the truncated

tensor-algebra

∆2
[0,T ] ∋ (s, t) 7→ Xs,t =

(
1,X

(1)
s,t , . . . ,X

(N)
s,t

)
∈ T≤N(Rd),

we denote by |||·|||(α,N) the norm given by

|||X|||(α,N) := max
1≤k≤N

(
sup

0≤s<t≤T

∥X(k)
s,t ∥

|t− s|kα

)1/k

(5)
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We denote by C α
g ([0, T ],Rd) the space of geometric α−Hölder rough paths X on Rd, which is

the |||·|||(α,N)−closure of N -step signatures of Lipschitz continuous paths X : [0, T ] → Rd for

N = ⌊1/α⌋. More precisely, for every X ∈ C α
g there exists a sequence (Xn)n∈N ⊂ Lip([0, T ],Rd)

such that |||Xn −X|||(α,N)

n→∞−−−→ 0, where Xn is the N -step signature of Xn, that is

Xn
s,t :=

(∫
s<t1<···<tk<t

⊗dXn
t1
· · · ⊗ dXn

tk
: 0 ≤ k ≤ N

)
∈ G≤N(Rd),

where the integrals are defined in a Riemann-Stieljes sense. For any X ∈ C α
g we denote by X<∞ the

rough path signature, which is the unique (up to tree-like equivalence ∼t
1) path from Lyon’s extension

theorem [30, Theorem 3.7], that is

∆2
[s,t] : [0, T ] ∋ (s, t) 7→ X<∞

s,t = (1,X
(1)
s,t , . . . ,X

(N)
s,t ,X

(N+1)
s,t , . . . ) ∈ G(Rd), (6)

such that
∥X(k)∥kα <∞ ∀k ≥ 0, X<∞

s,t = X<∞
s,u ⋆X<∞

u,t s ≤ u ≤ t,

where the latter is called Chens relation. Finally, by considering time-augmented paths X̂t = (t,Xt),
and their geometric rough path lifts X̂, the signature maps becomes unique due to the strictly monoton
time component. We denote by Ĉ α

g ([0, T ],Rd+1) the space of geometric α-Hölder rough path lifts of

X̂t = (t,Xt), where X ∈ Cα([0, T ],Rd).

2 Global approximation with rough path signatures

In this section we present the theoretical foundation of this paper, which consists of a global approxi-
mation result based on robust rough path signatures.

2.1 The space of stopped rough paths

For α ∈ (0, 1), we consider an α-Hölder continuous path X : [0, T ] → Rd with X0 = x0 ∈ Rd, and

denote by X the geometric rough path lift of (t,Xt), that is X ∈ Ĉ α
g ([0, T ],Rd+1).

Definition 2.1 For any α ∈ (0, 1) and T > 0, the space of stopped Ĉ α
g −paths is defined by the

disjoint union
ΛαT :=

⋃
t∈[0,T ]

Ĉ α
g ([0, t],Rd+1).

Moreover, we equip the space ΛαT with the final topology2 induced by the map

ϕ : [0, T ]× Ĉ α
g ([0, T ],Rd+1) −→ ΛαT , ϕ(t,x) = x|[0,t].

The reason to work on this space is the following: If X is a stochastic process, and X denotes the
random geometric lift of (t,Xt), we define FX

t = σ(X0,s : s ≤ t) for 0 ≤ t ≤ T , i.e. the
natural filtration generated by X. In Lemma 2.4 below, we show that any (FX

t )−progressive process

1∼t is an equivalence class on path-spaces, including for example time-changes, see [9] for details.
2Recall that for a topological space Y and f : Y → X , the final topology on X , induced by f , consists of all sets

A ⊆ X s.t. f−1(A) is open.

DOI 10.20347/WIAS.PREPRINT.3068 Berlin 2023
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(At)t∈[0,T ] can be expressed as At = f(X|[0,t]), where f is a measurable function on ΛαT . Thus,
progressively measurable processes can be thought of measurable functionals on ΛαT , and we will
discuss approximation results for the latter below. Similar spaces have already been considered in
relation with functional Itô calculus in [19, 15], and for p-rough paths in [27], and more recently in
relation with optimal stopping in [4].

Remark 2.2 One can also introduce a metric dΛ on the space ΛαT , defined by

dΛ(x|[0,t],y|[0,s]) := |||x− ỹ|||(α,N):[0,t] + |t− s|, s ≤ t,

where ỹ is the rough path lift uf u 7→ (u, yu∧s) for u ∈ [0, t]. It has been proved in [4, Lemma A.1], in
the case of p-rough paths, the topology of the metric space (ΛpT , dΛ) coincides with the final topology,
and the space of stopped geometric rough paths is Polish. A similar argument can be done for the
α-Hölder case, by replacing the p-variation norm by the α-Hölder norm and using the fact that Ĉ α

g is
Polish, see [22, Proposition 8.27].

Remark 2.3 Let X be a stochastic process on Ĉ α
g ([0, T ],Rd+1) for all α < γ ∈ (0, 1). It is dis-

cussed in [22, Appendix A.1] that X can be regarded as Ĉ α
g ([0, T ],Rd+1)−valued random variable,

and its law µX is a Borel measure on the Borel σ-algebra Bα with respect to |||·|||(α,N). Moreover, de-

fine the product measure dµ := dt⊗ dµX. For the surjection ϕ : [0, T ]× Ĉ α
g ([0, T ],Rd+1) → ΛαT

defined above, we can define the pushforward measure µ̂ on ΛαT , in symbols µ̂ := ϕ#µ, which is
given by

µ̂(A) := µ(ϕ−1(A)) for all A ∈ B(ΛαT ). (7)

Consider the space H2 of (FX
t )−progressive processes A, such that

∥A∥2H2 := E

[∫ T

0

A2
sds

]
<∞. (8)

The following result justifies the consideration of the space ΛαT .

Lemma 2.4 For any A ∈ H2 and α < γ ∈ (0, 1), there exists a measurable function
f : (ΛαT ,B(ΛαT )) −→ (R,B(R)), such that At = f(X|[0,t]) almost everywhere.

Proof Consider the space of elementary, (FX
t )−progressive processes, that is processes of the form

Ant (ω) := ξn0 (ω)1{0}(t) +
mn−1∑
j=1

1(tnj ,tnj+1]
(t)ξntj(ω), (9)

where 0 ≤ tn0 < · · · < tnmn
≤ T , and ξntj is a (FX

tj
)−measurable, square integrable random

variable. A standard result for the construction of stochastic integrals, shows that this space is dense
in H2, this can be found in [28, Lemma 3.2.4] for instance. Thus, we can find An of the form (9), such
that An −→ A for almost every (t, ω). Notice that for all ξntj there exists a Borel measurable function

F n
j : Ĉ α

g ([0, tj],Rd+1) −→ R such that ξntj(ω) = F n
j (X|[0,tj ](ω)). Then the functions

[0, T ]× Ĉ α
g ∋ (t,x) 7→ 1(tnj ,tnj+1]

(t)F n
j (x|[0,tj ]) (10)

are
(
B([0, T ])⊗FX

T

)
−measurable, and therefore also the function

F n(t,x) := F n
0 (x0)1{0}(t) +

mn−1∑
j=1

1(tnj ,tnj+1]
(t)F n

j (x|[0,tj ]).
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Primal and dual optimal stopping with signatures 7

Finally, define the jointly measurable function F (t,x) := lim supn→∞ F n(t,x), and notice that for
almost every (t, ω), we have

F (t,X(ω)) = lim sup
n→∞

(
F n
0 (X0(ω))1{0}(t) +

mn−1∑
j=1

1(tnj ,tnj+1]
(t)F n

j (X|[0,tj ](ω))

)

= lim sup
n→∞

(
ξn0 (ω)1{0}(t) +

mn−1∑
j=1

1(tnj ,tnj+1]
(t)ξntj(ω)

)
= At(ω).

Next, for any element x|[0,t] ∈ ΛαT , we let (t, x̃) ∈ [0, T ] × Ĉ α
g ([0, T ],Rd+1), where x̃ is the

geometric rough path lift of [0, T ] ∋ u 7→ (u, xu∧t). The map Ξ : ΛαT −→ [0, T ] × Ĉ α
g with

Ξ(x|[0,t]) := (t, x̃) is continuous and thus especially measurable. Define the composition f := F ◦Ξ,
which is a measurable map f : ΛαT −→ R, such that

f(X|[0,t](ω)) = At(ω),

for almost every (t, ω), which is exactly what was claimed. 2

2.2 A Stone–Weierstrass result for robust signatures

The goal of this section is to present a Stone-Weierstrass type of result for continuous functionals
f : ΛαT −→ R, which will be the key ingredient for the main result in Section 2.3. To this end, consider
the set of linear functionals of the signature

Lsig(Λ
α
T ) =

{
ΛαT ∋ X|[0,t] 7→ ⟨X<∞

0,t , l⟩ : l ∈ Wd+1
}
⊆ C(ΛαT ,R),

where we recall that Wd+1 denotes the linear span of words, see Section 1.1. A similar set was con-
sidered in [27, Definition 3.3] with respect to p-rough paths, and the authors prove that restricted to a
compact set K on the space of time-augemented rough paths, the set Lsig is dense in C(K,R). In
words, restricted to compacts, continuous functionals on the path-space ΛαT can be approximated by
linear functionals of the signature. However, since such path-spaces are not even locally compact, it
is desirable to drop the need of a compact set K .

An elegant way to circumvent the requirement of a compact set, is to consider so-called robust signa-
tures, introduced in [13]. Loosely speaking, the authors construct a so-called tensor-normalization λ,
see [13, Proposition 14 and Example 4], on the state-space of the signature T ((Rd+1)), which is a
continuous and injective map

λ : T ((Rd+1)) −→ {a ∈ T ((Rd+1)) : ∥a∥ ≤ R}, R > 0,

and they call λ(X<∞) the robust signature. This motivates to define the set

Lλsig(Λ
α
T ) =

{
ΛαT ∋ X|[0,t] 7→ ⟨λ(X<∞

0,t ), l⟩ : l ∈ Wd+1
}
⊆ Cb(Λ

α
T ,R).

A general version of the Stone-Weierstrass result given in [24], leads to the following result, which was
stated already in [13, Theorem 26], and we present the proof here for completeness.
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C. Bayer, L. Pelizzari, J.G.M. Schoenmakers 8

Lemma 2.5 Let α ∈ (0, 1). Then the set Lλsig(Λ
α
T ) is dense in Cb(ΛαT ,R) with respect to the strict

topology. More precisely, for any f ∈ Cb(Λ
α
T ,R) we can find a sequence (fn)n∈N ⊆ Lλsig(Λ

α
T ), such

that
∥f − fn∥∞,ψ := sup

x∈Λα
T

|ψ(x)(f(x)− fn(x))|
n→∞−−−→ 0, ∀ψ ∈ B0(Λ

α
T ),

where B0(Λ
α
T ) denotes the set of functions ψ : ΛαT → R, such that for all ϵ > 0 there exists a

compact set K ⊆ ΛαT with supx∈Λα
T \K |ψ(x)| < ϵ.

Proof This result is a consequence of the general Stone-Weierstrass result proved in [24], see also
[13, Theorem 9]. From the latter, we only need to check that Lλsig ⊆ Cb(Λ

α
T ,R) is a subalgebra, such

that

1 Lλsig separates points, that is ∀x ̸= y there exists f ∈ Lλsig such that f(x) ̸= f(y).

2 Lλsig contains non-vanishing functions, that is ∀x there exists f ∈ Lλsig such that f(x) ̸= 0.

To see that Lλsig ⊆ Cb(Λ
α
T ,R) is a subalgebra, we fix ϕ1, ϕ2 ∈ Lλsig. By definition, there exist words

l1, l2 ∈ Wd+1 such that ϕi(X|[0,s]) = ⟨λ(X<∞
0,s ), li⟩. We clearly have

ϕ(X|[0,s]) := ϕ1(X|[0,s]) + ϕ2(X|[0,s]) = ⟨λ(X<∞
0,s ), l1 + l2⟩ ∈ Lλsig.

Now assume l1, l2 are words l1 = w and l2 = v. By definition of the tensor-normalization [13,
Definition 12], for some positive function Ψ : T ((Rd+1)) →]0,+∞[, we have

ϕ1(X|[0,s]) · ϕ2(X|[0,s]) = ⟨λ(X<∞
0,s ), w⟩⟨λ(X<∞

0,s ), v⟩
= Ψ(X<∞

0,s )|w|+|v|⟨X<∞
0,s , w⟩⟨X<∞

0,s , v⟩
= Ψ(X<∞

0,s )|w|+|v|⟨X<∞
0,s , w� v⟩,

where we used that X<∞ ∈ G(Rd) for the last equality. But by definition of the shuffle-product (4), it
follows that w� v =

∑
j uj , where uj are words with |uj| = |w|+ |v|, and hence

ϕ1(X|[0,s]) · ϕ2(X|[0,s]) =
∑
j

Ψ(X<∞
0,s )|w|+|v|⟨X<∞

0,s , uj⟩ = ⟨λ(X<∞
0,s ), w� v⟩ ∈ Lλsig.

The same reasoning can be extended to linear combination of words l1, l2, and thus the set Lλsig is
indeed a subalgebra in Cb(ΛαT ,R). Now let X,Y ∈ ΛαT , such that X ̸= Y. As remarked in Section
1.1, since we are working with rough path lifts of time-augmented paths (t,Xt), the signature map is
injective. Moreover, by definition [13, Definition 12], the map λ is also injective, therefore λ(X<∞) ̸=
λ(Y<∞) and thus Lλsig separates points. Finally, since 1 = ⟨λ(X<∞), ∅⟩ ∈ Lλsig, the claim follows.

2

2.3 Approximation with robust signatures

We are now ready to state and proof the main result of this section. For a fixed γ ∈ (0, 1), we consider
the Borel space (ΛαT ,B(ΛαT )) for α < γ, as described in Section 2.1. Suppose µ is a measure on
(ΛαT ,B(ΛαT )) such that

µ (ΛαT ) <∞ and µ
(
ΛαT \ ΛβT

)
= 0, ∀β ∈ (α, γ). (11)

The following theorem shows that under assumption (11), we can approximate any functional in
Lp(ΛαT , µ) by linear functionals of the robust signature with respect to the Lp-norm.
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Theorem 2.6 Let α < γ ∈ (0, 1) and consider the measure space (ΛαT ,B(ΛαT ), µ) such that (11)
holds true. Then for all f ∈ Lp(ΛαT , µ), 1 ≤ p < ∞, there exists a sequence (fn)n∈N ⊂ Lλsig(Λ

α
T )

such that ∥f − fn∥Lp
n→∞−−−→ 0.

Before proving this result, let us show the following immediate consequence for random geometric
rough paths, which will be of particular importance in Section 3.

Corollary 2.7 Let X be a stochastic process on Ĉ α
g for α < γ. Then for all A ∈ H2, see (8), there

exists a sequence (fn)n∈N ⊂ Lλsig(Λ
α
T ) such that ∥A− fn(X|[0,·])∥H2

n→∞−−−→ 0.

Proof Consider the measure µ̂ on ΛαT defined in Remark 2.3, that is the push-forward of the product

measure dt⊗dµX on [0, T ]×Ĉ α
g , which is a finite measure that assigns full measure to the subspaces

ΛβT for all β ∈ (α, γ). Thus (11) holds true, and by Lemma 2.4 we know that there exists a measurable
function f : ΛαT → R such that At = f(X|[0,t]). Applying a standard change of measure result for
the push-forward measure, see for example [10, Theorem 3.6.1], and denoting by ϕ the quotient map
given in Definition 2.1, we have

∥At − fn(X|[0,·])∥2H2 = E

[∫ T

0

(f(X|[0,t])− fn(X|[0,t]))2dt
]

=

∫
Ĉα
g

∫ T

0

(f ◦ ϕ− fn ◦ ϕ)(t,X)2dtdµX

=

∫
Λα
T

(f − fn)
2dµ̂ = ∥f − fn∥2L2

n→∞−−−→ 0,

where the convergence follows from Theorem 2.6 for p = 2. 2

The proof of Theorem 2.6 will make use of two lemmas. The first one is very elementary, and in the
language of probability theory, it states that for every random variable X in R+, we can find a strictly
increasing and integrable function η, that is E[η(X)] <∞.

Lemma 2.8 Let (E, E , µ) be a finite measure space, and ξ : (E, E) → (R+,B(R+)) a measurable
function. Then there exists a strictly increasing function η : R+ → R+, such that η(x)

x→∞−−−→ ∞ and∫
E
(η ◦ ξ)dµ <∞.

Proof Let ν be the push-foward of µ under ξ, that is ν(A) := µ(ξ−1(A)) for all A ∈ B(R+). Then
for any ϵ > 0 we can find R > 0 large enough, such that ν(]R,+∞[) ≤ ϵ. In particular, for any
strictly decreasing sequence (an)n≥0, such that an ↘ 0, we can find a strictly increasing sequence
(Rn)n∈N with R1 > 0, such that ν(]Rn,∞[) ≤ an

n2 . Now we can define a strictly increasing function
η as follows: Let η(0) = 0 and for all n ∈ N define η(Rn) = 1

an−1
, and linearly interpolate on the

intervals [Rn, Rn+1[. Then, setting R0 = 0, and using a change of measure [10, Theorem 3.6.1], we
have ∫

E

(η ◦ ξ)dµ =

∫ ∞

0

ηdν ≤
∑
n≥0

1

an
ν(]Rn,+∞[) ≤ 1

a0
+
∑
n≥1

1

n2
<∞.

2

The next lemma will be the key ingredient to apply the Stone-Weierstrass result Lemma 2.5 in the
main result.
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Lemma 2.9 Let α < β and define the function ψ̄(x) := 1Λβ
T
(x)
(

1
1+η(|||x̃|||(β,N))

)1/p
, where η :

R+ → R+ is strictly increasing such that η(x)
x→∞−−−→ ∞. Then ψ̄ ∈ B0(Λ

α
T ), that is for all ϵ > 0

there exists K ⊆ ΛαT compact, such that supx∈Kc ψ(x) ≤ ϵ.

Proof Recall that an element x ∈ ΛαT can be written as x = x|[0,t] ∈ Ĉ α
g ([0, t]), and x|[0,t] is the

rough path lift of some time-augmented, α-Hölder continuous path [0, t] ∋ u 7→ (u, ωu). Moreover,

recall that we define x̃ ∈ Ĉ α
g ([0, T ]) to be the geometric rough path lift of u 7→ (u, xt∧u). If we can

show that for any R > 0, the sets

BR = {x ∈ ΛβT : |||x̃|||(β,N) ≤ R} ⊆ ΛαT

are compact, then we are done. Indeed, in this case we have that for any ϵ ∈ (0, 1), we can choose
R̂ ≥ η−1(1−ϵ

p

ϵp
) and then

ψ(x) =

(
1

1 + η(|||x̃|||(β,N))

)1/p

≤ 1√
1 + R̂

≤ ϵ, ∀x ∈ ΛαT \BR̂,

and thereforeψ ∈ B0(Λ
α
T ). Now to prove compactness, we can notice that by definition of the quotient

map ϕ, see Definition 2.1, we have

BR ⊆ ϕ
(
[0, T ]×

{
x ∈ Ĉ β

g ([0, T ],Rd+1) : |||x|||(β,N) ≤ R
})

,

since for all x = x|[0,t] ∈ BR we have x = ϕ(t, x̃) by construction. Since ϕ is continuous, it is

enough the show that [0, T ] × {x ∈ Ĉ β
g : |||x|||(β,N) ≤ R} is compact in [0, T ] × Ĉ α

g , which by

Tychonoffs theorem is true if the sets {x ∈ Ĉ β
g : |||x|||(β,N) ≤ R} are compact in Ĉ α

g . But the
latter follows from the general fact that β-Hölder spaces are compactly embedded in α-Hölder spaces
for α < β. This can be proved by applying the Arzelà–Ascoli theorem together with an interpolation
argument for the equicontinuous and |||·|||(β,N)-bounded subsets of Ĉ α

g , which was carried out in [16,
Theorem A.3] for example. Thus we can conclude that BR ⊆ ΛαT is compact, which finishs the proof.

2

Finally, we are ready to proof the main result.

Proof of Theorem 2.6 Fix ϵ > 0. For anyK > 0, we can define the function fK(x) := 1{|f(x)|≤K}(x)f(x),
and notice that we have ∥f − fK∥Lp → 0 as K → ∞ by dominated convergence. Hence we
can find a Kϵ > 0 such that ∥f − fKϵ∥Lp ≤ ϵ/3. Since µ is a finite measure on ΛαT , by Lusin’s
theorem, we can find a closed set Cϵ ⊂ ΛαT , such that fKϵ restricted to Cϵ is continuous, and
µ(ΛαT \ Cϵ) ≤ ϵp/(6Kϵ)

p. By Tietze’s extension theorem, we can find a continuous extension

f̂ϵ ∈ Cb(Λ
α
T , [−Kϵ, Kϵ]) of fKϵ such that

∥fKϵ − f̂ϵ∥pLp =

∫
Λα
T \Cϵ

|fϵ − fKϵ |pdµ ≤ (2Kϵ)
pµ(ΛαT \ Cϵ) = (ϵ/3)p.

We are left with approximating f̂ϵ ∈ Cb(Λ
α
T ,R) by linear functionals of the robust signature, that is

applying Lemma 2.5. From Lemma 2.8 we know, for any β < γ we know there exists an increasing
function η : R+ → R+, such that η(x)

x→∞−−−→ ∞ and
∫
Λα
T
η(|||x̃|||(β,N))dµ(x) < ∞, where x̃ is

the extension of the stopped rough path from the interval [0, t] to [0, T ], see also Remark 2.2. Fix

β ∈ (α, γ) and define the function ψ : ΛβT → R+ by ψ(x|[0,t]) :=
(

1
1+η(|||x̃|||(β,N))

)1/p
. Defining
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Ξ :=
∫
Λβ
T

1
ψpdµ, it follows from Lemma 2.8 that Ξ < ∞. In Lemma 2.9 we saw that ψ̄(x) :=

1Λβ
T
(x)ψ(x) belongs to B0(Λ

α
T ), that is for all δ > 0 there exists a compact set K ⊆ ΛαT , such that

supx∈Kc ψ̄(x) ≤ δ. By Lemma 2.5, we can find fϵ ∈ Lλsig(Λ
α
T ), such that

∥f̂ϵ − fϵ∥p∞,ψ̄
≤ ϵp/(3pΞ).

Using that µ assigns full measure to the subspace ΛβT ⊆ ΛαT , we have

∥f̂ϵ − fϵ∥pLp =

∫
Λβ
T

|f̂ϵ − fϵ|pdµ ≤ sup
x∈Λβ

T

(
ψ(x)(f̂ϵ(x)− fϵ(x))

)p ∫
Λβ
T

1

ψp
dµ

≤ ∥f̂ϵ − fϵ∥p∞,ψ̄
Ξ ≤ (ϵ/3)p.

Finally, we can conclude by the triangle inequality

∥f − fϵ∥Lp ≤ ∥f − fKϵ∥Lp + ∥fKϵ − f̂ϵ∥Lp + ∥f̂ϵ − fϵ∥Lp ≤ ϵ.

2

3 Optimal stopping with signatures

In this section we exploit the signature approximation theory presented in Section 2.3, in order solve
the optimal stopping problem in a general setting.

3.1 Framework and problem formulation

Let T > 0 and consider a complete, filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) fulfilling the usual
conditions, and fix γ ∈ (0, 1). For any (Ft)−adapted and α-Hölder continuous stochastic process
(Xt)t∈[0,T ], α < γ, taking values in Rd with X0 = x0, we consider

◦ X ∈ Ĉ α
g the geometric α-Hölder rough path lift of (t,Xt) for α < γ,

◦ X<∞ the robust3 rough path signature introduced in Section 2.3,

◦ (Zt)t∈[0,T ] is a real-valued, (FX
t )−adapted stochastic process such that supt∈[0,T ] |Zt| ∈ L2.

The optimal stopping problem then reads

y0 = sup
τ∈S0

E[Zτ ], (12)

where S0 denotes the set of (FX
t )-stopping-times on [0, T ].

Remark 3.1 Notice that the framework described above is very general in two ways: First, we only
assume α-Hölder continuity for the state process X , including in particular non-Markovian and non-
semimartingale regimes, which one for instance encounters in rough volatility models, see Section 4.2.
Secondly, considering a projection onto the first coordinate X 7→ (t,Xt), for any payoff function
ϕ : [0, T ]×Rd → R our framework includes the more common form of the optimal stopping problem

y0 = sup
τ∈S0

E[ϕ(τ,Xτ )].

3Notice the small abuse of notation here, as the robust signature is given by λ(X<∞) for some tensor-normalization
λ. For the rest of this paper, we fix such an λ and write X<∞ for λ(X<∞).
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3.2 Primal optimal stopping with signatures

First we present a method to compute a lower-biased approximation yL0 ≤ y0 to the optimal stopping
problem (12). More precisely, we construct a regression-based approach, generalizing the famous al-
gorithm from Longstaff and Schwartz [29], returning a sub-optimal exercise strategy. Let us first quickly
describe the main idea of most regression-based approaches.

Replacing the interval [0, T ] by a finite grid {0 = t0 < t1 < · · · < tN = T}, the discrete opti-
mal stopping problem reads

yN0 = sup
τ∈SN

0

E[Zτ ],

where SN0 is the set of stopping times taking values in {t0, . . . , tN}, with respect to the discrete
filtration (FX

tn )n=0,...,N . We define the discrete Snell-envelope by

Y N
tn = ess sup

τ∈SN
n

E[Zτ |FX
tn ], 0 ≤ n ≤ N, (13)

and one can show that Y N satisfies the discrete dynamic programming principle (DPP)

Y N
tn = max

(
Ztn , E[Y

N
tn+1

|FX
tn ]
)
, n = 0, . . . , N − 1, (14)

see for instance [32, Theorem 1.2]. Now the key idea of most regression-based approaches, such as
for instance [29], is that assuming X is a Markov process, one can choose a suitable family of basis
functions (bk) and apply least-square regression to approximate

E[Y N
tn+1

|FX
tj
] ≈

D∑
k=0

αkb
k
n(Xtn), 0 ≤ n ≤ N − 1, αk ∈ R, ∀k ≤ D, (15)

and then make use of the DPP to recursively approximate Y N
0 = yN0 . Of course, the approximation of

the conditional expectations in (15) heavily relies on the Markov-property, and thus one cannot expect
such an approximation to converge in non-Markovian settings.

Returning to our framework, we need to replace (15) by a suitable approximation for the conditional
expectations

E[Y N
tn+1

|FX
tn ] = fn(X|[0,tn]), 0 ≤ n ≤ N − 1. (16)

The universality result Theorem 2.6 now suggests to approximate fn by a sequence of linear function-
als of the robust signature, that is

fn(X|[0,tn]) ≈ ⟨X<∞
0,tn , l⟩, l ∈ Wd+1, (17)

where Wd+1 is the linear span of words introduced in Section 1.1.

Longstaff-Schwartz with signatures

In this section we present a version of the Longstaff-Schwartz (LS) algorithm [29], using signature-
based least-square regression. A convergence analysis for the LS-algorithm was presented in [14],
and combining their techniques with the universality of the signature, allows us to recover a conver-
gent algorithm.
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The main idea of the LS-algorithm is to re-formulate the DPP (14) for stopping times, taking advantage
of the fact that optimal stopping times can be expressed in terms of the Snell-envelope. More precisely,
it is proved in [32, Theorem 1.2] that the stopping times τn := min{tm ≥ tn : Y N

tm = Ztm ,m =
n, . . . , N} are optimal in (13), and hence one recursively defines{

τN = tN

τn = tn1{Ztn≥E[Zτn+1 |F
X
tn ]} + τn+11{Ztn<E[Zτn+1 |F

X
tn ]}, n = 0, . . . , N − 1.

(18)

Now for any truncation level K ∈ N for the signature, we approximate the conditional expectations in
(18) by solving the following minimization problem

l∗ := l∗,n,K = argmin
l∈Wd+1

≤K

∥∥Zτn+1 − ⟨X≤K
0,tn , l⟩

∥∥
L2 , n = 0, . . . , N − 1. (19)

Setting ψn,K(x) = ⟨x≤K , l∗,n,K⟩ ∈ Lλsig, we can define the following approximating sequence of
stopping times{

τKN = tN

τKn = tn1{Ztn≥ψn,K(X|[0,tn])} + τKn+11{Ztn<ψ
n,K(X|[0,tn])}, n = 0, . . . , N − 1.

(20)

The following result shows convergence as the depth of the signature goes to infinity, and the proof is
discussed in Appendix A.1.

Proposition 3.2 For all n = 0, . . . , N we have

E[ZτKn |FX
tn ]

K→∞−−−→ E[Zτn|FX
tn ] in L2.

In particular, we have yK,N0 = max(Zt0 , E[ZτK1 ])
K→∞−−−→ yN0 .

Let us now describe how to numerically solve (19) using Monte-Carlo simulations. Besides the trunca-
tion of the signature at some levelK , we introduce two further approximations steps: First, we replace
the signature X<∞ by some discretized version4 X<∞(J) on some fine grid s0 = 0 < s1 < · · · <
sJ = T , such thatE[⟨X<∞

0,t (J), v⟩] J→∞−−−→ E[⟨X<∞
0,t , v⟩] for all words v and t ∈ [0, T ]. Secondly, for

i = 1, . . . ,M i.i.d sample paths of Z and the discretized and truncated signature X≤K = X≤K(J),
assuming that τK,Jn+1 is known, we estimate l∗ by solving (19) via linear least-square regression. This
yields an estimator l∗ = l∗,n,J,K,M . Defining ψn,J,K,M(x) = ⟨x≤K , l∗,n,J,K,M⟩ leads to a recursive
algorithm for stopping times, for i = 1, . . . ,M{

τ
K,J,(i)
N = tN

τ
K,J,(i)
n = tn1{Z(i)

tn
≥ψn,J,K,M (X(i)|[0,tn])

} + τ
K,J,(i)
n+1 1{

Z
(i)
tn
<ψn,J,K,M (X(i)|[0,tn])

}. (21)

Then the following law of large number type of result holds true, which almost directly follows from [14,
Theorem 3.2], see Appendix A.1.

Proposition 3.3 For all n = 0, . . . , N we have

1

M

M∑
i=1

Z
(i)

τ
K,J,(i)
n

M,J→∞−−−−−→ E[ZτKn ] a.s.

4For instance piecewise linear approximation of the iterated integrals.
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In particular, we have

yK,N,J,M0 := max

(
Zt0 ,

1

M

M∑
i=1

Z
(i)

τ
K,J,(i)
1

)
M,J→∞−−−−−→ yK,N0 a.s.,

and thus especially |yK,N,J,M0 − yN0 | M,J,K→∞−−−−−−→ 0.

Remark 3.4 The recursion of stopping times (21), resp. the resulting linear functionals of the signature
ψn,K,M , provide a stopping policy for each sample path of Z . By resimulating M̃ i.i.d samples of Z

and the signature X<∞, we can notice that the resulting estimator yK,N,J,M̃0 is lower-biased, that is

yK,N,J,M̃0 ≤ yN0 , since the latter is defined by taking the supremum over all possible stopping policies.

3.3 Dual optimal stopping with signatures

In this section, we approximate solutions to the optimal stopping problem in its dual formulation, leading
to upper bounds yU0 ≥ y0 for (12). The dual representation goes back to [33], where the author shows
that under the assumption sup0≤t≤T |Zt| ∈ L2, the optimal stopping problem (12) is equivalent to

y0 = inf
M∈M2

0

E

[
sup
t≤T

(Zt −Mt)

]
, (22)

where M2
0 denotes the space of (FX

t )-martingales in L2, starting from 0. Assuming that FX is
generated by a Brownian motion W , we can prove the following equivalent formulation of (22).

Theorem 3.5 Assume that FX is generated by a m-dimensional Brownian motion W . Then for all
M ∈ M2

0, there exist sequences li = (lin)n∈N ⊂ Wd+1 for i = 1, . . . ,m, such that∫ ·

0

⟨X<∞
0,s , ln⟩⊤dWs :=

m∑
i=1

∫ ·

0

⟨X<∞
0,s , l

i
n⟩dW i

s
n→∞−−−→M· ucp.

In particular, the minimization problem (22) can be equivalently formulated as

y0 = inf
l∈(Wd+1)m

E

[
sup
t≤T

(
Zt −

∫ t

0

⟨X<∞
0,s , l⟩⊤dWs

)]
= inf

l1,...,lm∈Wd+1
E

[
sup
t≤T

(
Zt −

m∑
i=1

∫ t

0

⟨X<∞
0,s , l

i⟩dW i
s

)]
.

(23)

Proof By the Martingale Representation Theorem, see for instance [28, Theorem 4.5], any (FX
t )−martingale

can be represented as

Mt =

∫ t

0

α⊤
s dWs =

m∑
i=1

∫ t

0

αisdW
i
s ,

where (αs)s∈[0,T ] is (FX
t )−adapted, measurable and square integrable. Moreover, since M ∈ M2

0,

it follows that E[M2
T ] = E

[∫ T
0
|αt|2dt

]
< ∞. From [28, Proposition 1.1.12], we know that any

adapted and measurable process has a progressively measurable modification, which we again de-
note by α. From Corollary 2.7, we know that there exist sequences li = (lin)n∈N ⊂ Wd+1 for
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i = 1, . . . ,m, such that for αi,nt := ⟨X<∞
0,t , l

i
n⟩, we have ∥αi,n − αi∥H2 −→ 0 as n → ∞. Using

Doobs inequality, we in particular have

E

[(
sup
t≤T

∫ t

0

(αns − αs)
⊤ dWs

)2
]
≲

m∑
i=1

E

[∫ T

0

|αi,ns − αis|2dt
]

=
m∑
i=1

∥αi,n − αi∥2H2 −→ 0.

But this readily implies the first claim, that is∫ ·

0

⟨X<∞
0,s , ln⟩⊤dWs −→

∫ ·

0

αsdWs =M· ucp.

In order to show (23), since
∫ ·
0
⟨X<∞

0,s , ln⟩⊤dWs are clearly (FX
t )-martingales, we can notice that

inf
l∈(Wd+1)m

E

[
sup
t≤T

(
Zt −

∫ t

0

⟨X<∞
0,s , l⟩⊤dWs

)]
≥ inf

M∈M2
0

E

[
sup
t≤T

(Zt −Mt)

]
= y0.

On the other hand, for any fixed martingaleM , we know there exist sequences li = (lin)n∈N ⊂ Wd+1

such that

sup
t≤T

(
Zt −

∫ t

0

⟨X<∞
0,s , ln⟩⊤dWs

)
n→∞−−−→ sup

t≤T
(Zt −Mt) in L2.

Therefore

E

[
sup
t≤T

(Zt −Mt)

]
= lim

n→∞
E

[
sup
t≤T

(
Zt −

∫ t

0

⟨X<∞
0,s , ln⟩⊤dWs

)]
≥ inf

l∈(Wd+1)m
E

[
sup
t≤T

(
Zt −

∫ t

0

⟨X<∞
0,s , l⟩⊤dWs

)]
.

Taking the infimum over all M ∈ M2
0 yields the claim. 2

Next, similar to the primal case, we translate the minimization problem (23) into a finite-dimensional
optimization problem, by discretizing the interval [0, T ] and truncating the signature to some level K .
More precisely, for 0 = t0 < · · · < tN = T and some K ∈ N, we reduce the minimization problem
(23) to

yK,N0 = inf
l∈(Wd+1

≤K )
m
E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
, (24)

where for any l = (l1, . . . , lm) ∈
(
Wd+1

≤K
)m

we define

M l
t =

∫ t

0

⟨X≤K
0,s , l⟩⊤dWs =

m∑
i=1

∫ t

0

⟨X≤K
0,s , l

i⟩dW i
s .

The discrete version of the dual formulation (22) is given by

yN0 = inf
M∈M2,N

0

E

[
max

0≤n≤N
(Ztn −Mtn)

]
, (25)

where M2,N
0 denotes the space of discrete (FX

tn )
N
n=0−martingales. The following result shows that

the minimization problem (24) has a solution and the optimal value converges to yN0 as the level of the
signature goes to infinity, the proof can be found in Appendix A.2.
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Proposition 3.6 There exists a minimizer l⋆ to (24) and

|yN0 − yK,N0 | −→ 0 as K → ∞.

Remark 3.7 In a financial context, Proposition 3.2 and 3.6 tell us that yK,N0 converges to the Bermudda
option price as K → ∞. Moreover, we can use the triangle inequality to find

|y0 − yK,N0 | ≤ |y0 − yN0 |+ |yN0 − yK,N0 |, (26)

and hence the finite-dimensional approximations converge to y0 as K,N → ∞, whenever the
Bermuddan price converges to the American price. For our numerical examples, we will always ap-
proximate yN0 for some fixed N , and therefore we do not further investigate in the latter convergence
here.

Sample average approximation (SAA)

We now present a method to approximate the value yK,N0 in (24), using Monte-Carlo simulations. This
procedure is called sample average approximation (SAA) and we refer to [34, Chapter 6] for a general
and extensive study of this method. Similar to the dual case, we introduce two further approximation
steps: First, let 0 = s0 < · · · < sJ = T be a finer discretization of [0, T ] and denote by M l,J , resp.
X<∞(J), an approximation of the stochastic integral

∫
⟨X<∞

0,s , l⟩dWs, resp. the signature X<∞,

using an Euler-scheme. Secondly, we consider i = 1, . . . ,M i.i.d. sample paths Z(i),M (i),l,J , and
replace the expectation in (24) by a sample average, leading to the following empirical minimization
problem

yK,N,J,M0 = inf
l∈(Wd+1

≤K )
m

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −M

(i),l,J
tn

)
. (27)

The following result can be deduced from [34, Chapter 6 Theorem 4], combined with Proposition 3.6,
we refer to Appendix A.2 for the details.

Proposition 3.8 For M large enough there exists a minimizer β⋆ to (27) and

|yK,N,J,M0 − yN0 | −→ 0 as K, J,M −→ ∞.

Remark 3.9 Let us quickly describe how we will solve (27) numerically: Consider the number D :=∑K
k=0(d + 1)k, which corresponds to the number of entries of the K-step signature. Notice that we

can write any word l ∈ Wd+1
≤K as l = λ1w1+ · · ·+λDwD, where w1, . . . , wD are all possible words

of length at most K . Since ⟨X≤K
0,t , l⟩ =

∑D
r=1 λr⟨X

≤K
0,t , wr⟩, the minimization (27) has equivalent

formulation

yK,N,J,M0 = inf
λ∈(RD)m

1

M

M∑
i=1

max
0≤n≤N

(
Z

(i)
tn −

D∑
r=1

λrM
(i),wr,J
tn

)
.

As described in [18], the latter minimization problem is equivalent to the following linear program

min
x∈RM+D

1

M

M∑
j=1

xj, subject toAx ≥ b, (28)

where A ∈ RM(N+1)×(M+D) with A = [A1, . . . , AM ]T and Ax ≥ b represents the constraints

xi ≥ Z
(i)
tn −

D∑
r=1

M
(i),wr,J
tn ,

i = 1, . . . ,M

n = 0, . . . , N
.
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Remark 3.10 A solution l⋆ to (27) yields the (FX
tn )−martingale M l⋆ , and by resimulating M̃ i.i.d

samples of Z , the Brownian motion W and the signature X<∞, we can notice that the resulting

estimator yK,N,J,M̃0 is upper-biased, that is yK,N,J,M̃0 ≥ yN0 , since the latter is defined by taking the
infimum over all (FX

tn )−martingales.

4 Numerical examples

In this section we study two non-Markovian optimal stopping problems and test our methods to ap-
proximate lower and upper bounds for the optimal stopping value.

4.1 Optimal stopping of fractional Brownian motion

We start with the task of optimally stopping a fractional Brownian motion (fBm), which represents the
canonical choice of a framework leaving the Markov and semimartingale regimes. Recall that the fBm
with Hurst parameter H ∈ (0, 1) is the unique, continuous Gaussian process (XH

t )t∈[0,T ], with

E[XH
t ] = 0, ∀t ≥ 0,

E[XH
s X

H
t ] =

1

2

(
|s|2H + |t|2H − |t− s|2H

)
, ∀s, t ≥ 0.

see for instace [21, Chapter 9] for more details. We wish to approximate the value

yH0 = sup
τ∈S0

E[XH
τ ], H ∈ (0, 1), (29)

from below and above. This example has already been studied in [6, Section 4.3] as well as in [4,
Section 8.1], and we compare the results below.

Since XH is one-dimensional and α-Hölder continuous for any α < H , its (scalar) rough path lift
is given by (

1, XH
s,t,

1

2
(XH

s,t)
2, . . . ,

1

N !
(XH

s,t)
N

)
∈ C α

g ([0, T ],R),

and we can extend it to a geometric rough path lift XH ∈ Ĉ α
g ([0, T ],R2) of the time-augmentation

(t,XH
t ), as for instance described in [4, Example 2.4]. To numerically solve (29), we replace the

interval [0, T ] by some grid 0 = t0 < t1 < · · · < tN = T . Below we compare our results with
[6, Section 4.3], where the authors chose N = 100. Before doing so, an important remark about the
difference of our problem formulation is in order.

Remark 4.1 In [6] the authors lift XH to a 100-dimensional Markov process of the form X̂tk =

(XH
tk
, . . . , XH

t1
, 0, . . . , 0) ∈ R100, and they consider the corresponding discrete (!) filtration F̂k =

σ(XH
tk
, . . . , XH

t1
), k = 0, . . . , 100. Notice that this differs from our setting, as we consider the bigger

filtration Fk = σ(XH
s : s ≤ tk), see Section 3.2 and 3.3, that contains the whole past ofXH , not only

the information at the past exercise-dates. Thus, in general yH0 dominates the lower-bounds from [6],
simply because our filtration contains more stopping-times. Similarly, the (very sharp) upper-bounds
in [6] were obtained using a nested Monte-Carlo approach, which constructs (F̂k)-martingales that
are not martingales in our filtration, and thus their upper-bounds are not necessarily upper-bounds for
(29).
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H J = 100 J = 500 Becker et al. [6]

0.01 [1.518,1.645] [1.545,1.631] [1.517,1.52]

0.05 [1.293,1.396] [1.318,1.382] [1.292,1.294]

0.1 [1.045,1.129] [1.065,1.117] [1.048,1.05]

0.15 [0.83,0.901] [0.847,0.895] [0.838,0.84]

0.2 [0.654,0.706] [0.663,0.698] [0.657,0.659]

0.25 [0.507,0.538] [0.510,0.533] [0.501,0.505]

0.3 [0.363,0.396] [0.371,0.392] [0.368,0.371]

0.35 [0.248,0.272] [0.255,0.270] [0.254,0.257]

0.4 [0.153,0.168] [0.155,0.165] [0.154,0.158]

0.45 [0.069,0.077] [0.068,0.076] [0.066,0.075]

0.5 [-0.001,0] [-0.002,0] [0,0.005]

0.55 [0.061,0.071] [0.060,0.066] [0.057,0.065]

0.6 [0.112,0.133] [0.112,0.124] [0.115,0.119]

0.65 [0.163,0.187] [0.163,0.175] [0.163,0.166]

0.7 [0.203,0.234] [0.205,0.220] [0.206,0.208]

0.75 [0.242,0.273] [0.240,0.260] [0,242,0.245]

0.8 [0.275,0.306] [0.281,0.298] [0.276,0.279]

0.85 [0.306,0.335] [0.301,0.324] [0.307,0.31]

0.9 [0.331,0.357] [0.337,0.356] [0.335,0.339]

0.95 [0.367,0.381] [0.366,0.381] [0.365,0.367]

Table 1: Intervals for optimal stopping of fBm H 7→ yH0 with N = 100 exercise-dates, and discretiza-
tion J = 100 (left column), J = 500 (middle column), and intervals from [6] (right column). Overall
Monte-Carlo error is below 0.003.

DOI 10.20347/WIAS.PREPRINT.3068 Berlin 2023



Primal and dual optimal stopping with signatures 19

In Table 1 we present intervals for the optimal stopping values yH0 for H ∈ {0.01, 0.05, . . . , 0.95},
where the lower-bounds, resp. the upper-bounds, were approximated using Longstaff-Schwartz with
signatures, resp. the SAA approach described in Section 3. We truncate the signature at levelK = 6,
and apply the primal approach using M = 106 samples for both the regression and the resimulation,
and for the dual approach we choose M = 15000 to solve the linear programm from Remark 3.9,
and resimulate with M = 105 samples. In the first column, we choose the time-discretization for the
signature equal to the number of exercise-dates, by J = N = 100. While the lower-bounds are very
close, our upper-bounds exceed the ones from [6]. This observation matches with the comments made
in Remark 4.1, as we consider the filtration F̂ in this case for the lower-bounds, but our upper-bounds
are by construction upper-bounds for the continuous problem with filtration F , and the continuous
martingale is approximated only at the exercise-dates. By increasing the discretization to J = 500,
and thereby adding information to the filtration in-between exercise-dates, for small H (≤ 0.2), one
can see that the lower-bounds exceed the intervals from [6], showing that even for N = 100 points in
[0, 1], the information in-between exercise-dates is relevant for optimally stopping the fBm.

4.2 American options in rough volatility models

The second example we present is the problem of pricing American options in rough volatility models.
More precisely, we consider the one-dimensional asset-price model

X0 = x0, dXt = rXtdt+Xtvt

(
ρdWr +

√
1− ρ2dBt

)
, 0 < t ≤ T, (30)

whereW andB are two independent Brownian motions, the volatility (vt)t∈[0,T ] is an (FW
t )−adapted,

continuous process, ρ ∈ [−1, 1] and r > 0 the interest rate. Now for any payoff function ϕ :
[0, T ]× R → R, we want to approximate the optimal stopping problem

y0 = sup
τ∈S0

E[e−rτϕ(τ,Xτ )], (31)

where S0 is the set of (Ft) := (FW
t ∨ FB

t )−stopping times on [0, T ]. It is worth to note that our
method does not depend on the specification of v, and as soon as we can sample from (X, v), we
can apply it to approximate values of American options.

In the following numerical experiments, we will consider two different signatures. First, since X is
one-dimensional, we already saw in Section 4.1 how to construct the rough path signature X<∞ for
the time-augemented path (t,Xt). Since FX = FX, and Zt = e−rtϕ(t,Xt) = f(X0,t), we are in
the setting described in the last section, see also Remark 3.1. Secondly, we do not change the latter
framework when adding elements to the path, that is lifting (t,Xt, Qt) for some path Q, as long as its
rough path signature is well-defined. Indeed, numerical experiments suggest to add the payoff process
Q = Z in the dual-problem. Since (t,Xt, Zt) is a semimartingale, the signature Z<∞ is given as the
sequence of iterated Stratonovich integrals as explained in [20]. Finally, we add polynomials of the
states (Xt, vt) to the family of basis-functions in both the primal and dual approach, which of course
does not change the convergence. To summarize, for the least squares regression (19), resp. for the
SAA minimization problem in (24), we use basis functions of the form

(P)
{
Li(Xt, vt), ⟨X<∞

0,t , l⟩ : i = 1, . . . ,mp, l ∈ Wd+1
≤Kp

}
, mp, Kp ∈ N,

(D)
{
Li(Xt, vt), ⟨Z<∞

0,t , l⟩ : i = 1, . . . ,md, l ∈ Wd+1
≤Kd

}
, md, Kd ∈ N,

(32)
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K Lower-bound Upper-bound Bayer et. al [5] Goudenege et. al [25]

70 1.85 (±0.007) 2.04 (±0.022) 1.88 1.88

80 3.18 (±0.009) 3.44 (±0.028) 3.22 3.25

90 5.25 (±0.011) 5.68(±0.060) 5.30 5.34

100 8.44 (±0.013) 9.13 (±0.014) 8.50 8.53

110 13.18 (±0.014) 14.18 (±0.022) 13.23 13.28

120 20.22 (±0.012) 21.40 (±0.018) 20 20.20

Table 2: Put option prices with J = 48 and H = 0.07.

where (Lk)k≥0 are Laguerre polynomials.

In the following we focus on the rough Bergomi model [3], that is we specify the volatility as

vt = ξ0E
(
η

∫ t

0

(t− s)H− 1
2dWs

)
,

where E denotes the stochastic exponential, and we will consider the parameters x0 = 100, r =
0.05, η = 1.9, ρ = −0.9, ξ0 = 0.09. Moreover, we consider put options ψ(t, x) = (K − x)+ for
different strikes K ∈ {70, 80, . . . , 120}, with maturity T = 1 and N = 12 exercise-dates. Thus we
write (31) as discrete optimal stopping problem

yN0 = sup
τ∈S0

E[e−rτ (K −Xτ )
+], (33)

where SN0 is described in the beginning of Section 3.2. Moreover, for some finer grid s0 = 0 < s1 <
· · · < sJ = 1, J ∈ N and fixed signature level K and sample size M , we denote by yLS

0 the value
yK,N,J,M0 defined in Proposition 3.3, resp. by ySAA

0 the value yK,N,J,M0 defined in (27). We compare our
results with the lower-bounds obtained in [5] forH = 0.07, resp. in [25] withH = 0.07 andH = 0.8.

In Table 2-3 we compare their lower bounds with our price intervals [yLS
0 , y

SAA
0 ] together with the Monte-

Carlo errors for H = 0.07, and different discretizations J . For the lower bound, we fix K = 3 for
the truncated signature and add polynomials of degree up to 3, that is mp = 15 in (P), and apply
the algorithm described in Section 3.2 for M = 106 samples. For the obtained stopping policies,
we resimulate with again M = 106 samples to obtain true-lower bounds yLS

0 . For the upper-bounds,
we consider again K = 4, and polynomials up to degree 5, that is md = 405, and solve the linear
programm in the (SAA) approach described in Section 3.3 forM = 104 samples, and then resimulate
with M = 105 samples to obtain true upper-bounds ySAA

0 . We can observe that similar as in Section
4.1, the discretization plays an important role for small values of H , and the price intervals shrink as
we increase the number of discretization points between the exercise-dates. Our lower-bounds exceed
the reference values for J = 600, and the upper-bounds are 2%− 3% higher than the lower-bounds.
We expect these margins to shrink more when further increasing all the parameters, but we reached
the limit of our computational possiblities in Table 3. In Table 4 we consider the same problem for
H = 0.8 for J = 600.

5Recall that we consider the lift of (t,Xt, Zt) for the dual-problem, therefore the number of signature entries is higher
compared to the primal case.
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K Lower-bound Upper-bound Bayer et. al [5] Goudenege et. al [25]

70 1.92 (±0.006) 1.99 (±0.012) 1.88 1.88

80 3.27 (±0.008) 3.37 (±0.010) 3.22 3.25

90 5.37 (±0.011) 5.49 (±0.012) 5.30 5.34

100 8.57 (±0.013) 8.77 (±0.014) 8.50 8.53

110 13.29 (±0.015) 13.59 (±0.012) 13.23 13.28

120 20.24 (±0.013) 20.66 (±0.010) 20 20.20

Table 3: Put option prices with J = 600 and H = 0.07.

K Lower-bound Upper-bound Goudenege et. al [25]

70 1.83 (±0.008) 1.90 (±0.012) 1.84

80 3.08 (±0.011) 3.19 (±0.014) 3.10

90 5.07 (±0.012) 5.17 (±0.015) 5.08

100 8.15 (±0.013) 8.27 (±0.013) 8.19

110 12.97 (±0.013) 13.09 (±0.013) 13.00

120 20.21 (±0.013) 20.51 (±0.016) 20.28

Table 4: Put option prices J = 600 and H = 0.8.
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A Technical details Section 3

A.1 Proofs in Section 3.2

Proof of Proposition 3.2 The proof is based on the same ideas as the proof in [14, Theorem 3.1].
We can proceed by induction over n. For n = N the claim trivially holds true, and assume it holds for
0 ≤ n+ 1 ≤ N − 1. Define the events

A(n) :=
{
Ztn ≥ E

[
Zτn+1|FX

tn

]}
and A(n,K) :=

{
Ztn ≥ ψn,K(X|[0,tn])

}
.

By definition we can write

τKn = tn1A(n,K) + τKn+11A(n,K)C , τn = tn1A(n) + τn+11A(n)C .

Using this, it is possible to check that

E[ZτKn − Zτn|FX
tn ] = (Ztn−E[Zτn+1 |FX

tn ])(1A(n,K) − 1A(n))

+ E[ZτKn+1
− Zτn+1|FX

tn ]1A(n,K)C .

The second term converges by induction hypothesis, and we only need to show

LKn := (Ztn − E[Zτn+1|FX
tn ])(1A(n,K) − 1A(n))

K→∞−−−→ 0, in L2.

Now on A(n,K) ∩ A(n) and A(n,K)c ∩ A(n)c we clearly have LKn = 0. Moreover

1A(n,K)c∩A(n)|LKn | ≤ 1A(n,K)c∩A(n)|ψn,K(X|[0,tn])− E[Zτn+1|FX
tn ]|,

since ψn,K(X|[0,tn]) > Ztn ≥ E[Zτn+1|FX
tn ] on A(n,K)c ∩ A(n). Similarly, one can show

1A(n,K)∩A(n)c|LKn | ≤ 1A(n,K)∩A(n)c |ψn,K(X|[0,tn])− E[Zτn+1|FX
tn ]|,

and thus
|LKn | ≤ |ψn,K(X|[0,tn])− E[Zτn+1|FX

tn ]|. (34)

Notice that ψn,K is the orthogonal projection of the L2 random variable ZτKn+1
onto the subspace

{⟨X≤K
0,tn , l⟩ : l ∈ Wd+1}, and similarly denote by ψ̂n,K the orthogonal projection of Zτn+1 to the

same space. Then we have

∥LKn ∥L2 ≤ ∥ψn,K(X|[0,tn])− ψ̂n,K(X|[0,tn])∥L2 + ∥ψ̂n,K(X|[0,tn])− E[Zτn+1|FX
tn ]∥L2

≤ ∥E[ZτKn+1
|FX

tn ]− E[Zτn+1|FX
tn ]∥L2 + ∥ψ̂n,K(X|[0,tn])− E[Zτn+1|FX

tn ]∥L2 .

Now the first term converges by the induction hypothesis. For the second term, the conditional ex-
pectation of the L2 random variable Zτn+1 is nothing else than the orthogonal projection onto the
space L2(FX

tn ). But by Theorem 2.6, for any ϵ > 0 we can find ϕ ∈ LλSig, such that ∥ϕ(X|[0,tn]) −
Zτn+1∥L2 ≤ ϵ. For K large enough we have ϕ(X|[0,tn]) ∈ {⟨X≤K

0,tn , l⟩ : l ∈ Wd+1}, and thus

∥ψ̂n,K(X|[0,tn])− E[Zτn+1 |FX
tn ]∥L2 ≤ ∥ψ̂n,K(X|[0,tn])− Zτn+1∥L2 ≤ ϵ,

since ψ̂n,K is such that the distance is minimal. 2

Proof of Proposition 3.3 First, we can consider the sequence of stopping times (τK,Jn ) as defined
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in (21). One can then rewrite exactly the same proof of Proposition 3.2 for ZτK,J
n

instead, and at the
equation (39), we get

LKn ≤ |ψn,K(X|[0,tn](J))− E[Zτn+1|FX
tn ]|

≤ |ψn,K(X|[0,tn])− E[Zτn+1|FX
tn ]|+ |ψn,K(X|[0,tn](J))− ψn,K(X|[0,tn])|,

where then the first term converges in L2 due to the same argument as in the proof of Proposition 3.2,
and the latter converges by assumption, as J → ∞. It therefore suffices to show that

1

M

M∑
i=1

Z
(i)

τ
K,J,(i)
n

M→∞−−−−→ E[ZτK,J
n

] a.s.

Now for any l ∈ Wd+1, we can write l = λ1w1+ · · ·+λDwD, whereD =
∑K

k=0(d+1)k, that is we
sum over all possible words of length at most K . One can therefore notice that minimizing ⟨X≤K , l⟩
over l ∈ Wd+1

≤K , is equivalent to minimizing
∑D

i=1 λi⟨X≤K , wi⟩ over all vectors λ ∈ RD. Defining
ek(x) := ⟨x≤K , wk⟩ for k = 1, . . . , D, and setting Xn := X|[0,tn], we are exactly in framework of
[14, Chapter 3], and the result follows from [14, Theorem 3.2], under the following remark. The authors
make the following assumption, denoted by (A2)∑

j

αjej(Xt) = 0 almost surely implies α = 0,∀t (35)

for the set of basis-functions, which allows an explicit representation of the coefficient l⋆ in (19). Of
course, in our framework, such an assumption cannot hold true, as this would correspond to

D∑
l=1

αl⟨X<∞
0,t , wl⟩ = 0 a.s. =⇒ αl = 0,∀l = 1, . . . , D.

Since we consider the signature of the time-augmented path (t,Xt), the purely deterministic com-
ponents of the signature contradict this assumption. However, for a fixed signature level K , we can
always discard linear-dependent (in the sense of (40)) components of the signature, that is minimize
over the basis-functions

{ẽ1, . . . , ẽD̃} ⊂ {e1, . . . , eD} s.t. (A2) holds ,

for the largest possible D̃ ≤ D. The resulting least-square problem (19) over RD̃, with respect to
{ẽ1, . . . , ẽD̃}, has an explicit representation of the solution, and since the two sets of basis-functions
generate the same subspace of L2, the explicit solution is also optimal for the original problem. Thus,
for a fixed level K , we can proceed with the reduced set of basis-functions, for which the assumption
(A2) holds by definition, and we can apply [14, Theorem 3.2]. 2

A.2 Proofs in Section 3.3

Proof of Proposition 3.6 The existence of a minimizer is proved in Lemma A.1. We can find the
discrete Doob-martingale M⋆,N and write

yN0 = E

[
max

0≤n≤N

(
Ztn −M⋆,N

tn

)]
.
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Define the continuous-time, (FX
t )−martingale Mt := E[M⋆,N

T |FX
t ], and notice that Mtn = M⋆,N

tn .
An application of the martingale approximation in Theorem 3.5 shows that for all ϵ > 0, there exist

lϵ = (li,ϵ)mi=1 in
(
Wd+1

)m
, such that E

[
max0≤n≤N

(
M⋆,N

tn −M lϵ

tn

)]
≤ ϵ. Thus we have

yN0 = E

[
max

0≤n≤N

(
Ztn −M⋆,N

tn

)]
≥ E

[
max

0≤n≤N

(
Ztn −M lϵ

tn

)]
− ϵ.

Now since yK,N0 ≥ yN0 , we can find K large enough, such that

0 ≤ yK,N0 − yN0 ≤ inf
l∈(Wd+1

≤K )
m
E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
− E

[
max

0≤n≤N

(
Ztn −M lϵ

tn

)]
+ ϵ

≤ ϵ,

where the last inequality follows from that fact that lϵ ∈
(
Wd+1

≤K
)m

for K large enough. 2

Lemma A.1 The minimization problem

yK,N0 = inf
l∈(Wd+1

≤K )
m
E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
has a solution.

Proof First notice that l 7→ E
[
max0≤n≤N

(
Ztn −M l

tn

)]
is convex. Then we have

E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
≥ E

[
max

(
ZT −M l

T , 0
)]

=
1

2
E
[
ZT −M l

T +
∣∣M l

T − ZT
∣∣]

≥ 1

2
E
[∣∣M l

T

∣∣]+ E[max(−ZT , 0)],

where the equality in the middle uses max(A − B, 0) = 1
2
(A−B + |B − A|). Now for any word

l = λ1w1 + · · ·+ λnwn, we set |l| =
∑n

i=1 |λi|, and notice that

1

2
E [|MT |] =

1

2
|l|E[|M l/|l|

T |] ≥ |l|
2

inf
l̂∈(Wd+1

≤K )
m
,|l̂|=1

E[|M l̂
T |]. (36)

Since l̂ 7→ E[|M l̂
T |] is continuous and the set {l̂ ∈

(
Wd+1

≤K
)m

: |l̂| = 1} is compact, the minimum

on the right hand-side of (41) is attained. Assume now that inf l̂∈(Wd+1
≤K )

m
,|l̂|=1E[|M

l̂
T |] = 0. Then

there exists an l̂⋆ with |l̂⋆| = 1 and |M l̂⋆

T | = 0 almost surely. But this in particular implies that

⟨X<∞
0,s , l̂

⋆⟩ = 0, for almost every s ∈ [0, T ] almost surely.

But this is only possible if l̂⋆ = 0, contradicting the fact that |l̂⋆| = 1. Hence the infimum (41) is
positive and we can conclude that the function

l 7→ E

[
max

0≤n≤N

(
Ztn −M l

tn

)] |l|→∞−−−→ ∞,
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which implies the existence of the minimizer. 2

Finally, in order to prove Proposition 3.8, we quickly introduce the general idea of sample average
approximation (SAA), for which we refer to [34, Chapter 6] for details. Assume X is a closed and
convex subset of RN and ξ is a random vector in Rd for some d,N ∈ N, and F is some function
F : RN × Rd → R. We are interested in approximating the stochastic programming problem

y0 = min
x∈X

E[F (x, ξ)]. (37)

Define the sample average function FM(x) = 1
M

∑M
j=1 F (x, ξ

j), where ξj, j = 1, . . . ,M are i.i.d
samples of the random vector ξ. The sample average approximation of y0 is then given by

yM0 = min
x∈X

FM(x). (38)

The following result provides sufficient conditions for the convergence yM0
M→∞−−−−→ y0, and a more

general version can be found in [34, Chapter 6 Theorem 4].

Theorem A.2 Suppose that

(1) F is measurable and x 7→ F (x, ξ) is lower semicontinuous for all ξ ∈ Rd,

(2) x 7→ F (x, ξ) is convex for almost every ξ,

(3) X is closed and convex,

(4) f(x) := E[F (x, ξ)] is lower semicontinuous and f(x) <∞ for all x ∈ X ,

(5) the set S of optimal solutions to (42) is non-empty and bounded.

Then yM0
M→∞−−−−→ y0.

Using the notation of Section 3.3, for some fixed dimension m of the Brownian motion W , number of
exercise dates N , number discretization points J and signature truncation level K , we can define the
random vector

ξ := (Zt0 , . . . , ZtN , M̃
1
t0
, . . . , M̃1

tN
, . . . , M̃D

t0
, . . . , M̃D

tN
) ∈ R(D+1)·(N+1)·m,

where D denotes the number of entries of the signature up to level K . Using the notation Mβ,J
t =∑D

j=1 βjM
wj ,J
t for any β ∈ RD, we can consider the minimization problem

yK,J,N0 = inf
β∈RD·m

E

[
max

0≤n≤N

(
Ztn − M̃β,J

tn

)]
= min

x∈X
E[F (x, ξ)],

where X = RD·m and d = (D + 1)(N + 1)m.
Proof of Proposition 3.8 First, it is possible to rewrite the proof of Lemma A.1 for FM instead of
the expectation when M is large enough, to show that there exists a minimizer l⋆ to (27). Moreover,
the minimization problem yK,N,J0 is nothing else than (24), where the continuous martingales Mβ

are replaced by the Euler approximations M l,J on the grid (sj)
J
j=0. By the same reasoning as in
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Proposition 3.6 we can see that 0 ≤ yK,N,J0 − yN0 −→ 0 as K, J → ∞. Applying the triangle
inequality yields

|yK,N,J,M0 − yN0 | ≤ |yK,N,J0 − yN0 |+ |yK,N,J,M0 − yK,N,J0 |,

and thus we are left with the convergence of the second term. But this can be deduced from the last
Theorem, if we can show that (1)-(5) hold true for our F . Clearly F is measurable and it is easy to see
that x → F (x, ξ) is continuous and convex, thus (1) and (2) readily follow. Moreover (3) holds true,
and for x1, x2 ∈ X we have

|f(x1)− f(x2)| ≲ |x1 − x2|E[|M̃ (1,...,1)
T |2]

using Doobs-inequality. Since M l ∈ L2 for all l and ∥Z∥∞ ∈ L1, (4) follows. Finally, non-emptyness

of S follows from Lemma A.1, and the proof of the latter reveals that E[F (x, ξ)]
|x|→∞−−−−→ ∞, and thus

S must be bounded, which finishs the proof. 2

A Technical details Section 3

A.1 Proofs in Section 3.2

Proof of Proposition 3.2 The proof is based on the same ideas as the proof in [14, Theorem 3.1].
We can proceed by induction over n. For n = N the claim trivially holds true, and assume it holds for
0 ≤ n+ 1 ≤ N − 1. Define the events

A(n) :=
{
Ztn ≥ E

[
Zτn+1|FX

tn

]}
and A(n,K) :=

{
Ztn ≥ ψn,K(X|[0,tn])

}
.

By definition we can write

τKn = tn1A(n,K) + τKn+11A(n,K)C , τn = tn1A(n) + τn+11A(n)C .

Using this, it is possible to check that

E[ZτKn − Zτn|FX
tn ] = (Ztn−E[Zτn+1 |FX

tn ])(1A(n,K) − 1A(n))

+ E[ZτKn+1
− Zτn+1|FX

tn ]1A(n,K)C .

The second term converges by induction hypothesis, and we only need to show

LKn := (Ztn − E[Zτn+1 |FX
tn ])(1A(n,K) − 1A(n))

K→∞−−−→ 0, in L2.

Now on A(n,K) ∩ A(n) and A(n,K)c ∩ A(n)c we clearly have LKn = 0. Moreover

1A(n,K)c∩A(n)|LKn | ≤ 1A(n,K)c∩A(n)|ψn,K(X|[0,tn])− E[Zτn+1 |FX
tn ]|,

since ψn,K(X|[0,tn]) > Ztn ≥ E[Zτn+1|FX
tn ] on A(n,K)c ∩ A(n). Similarly, one can show

1A(n,K)∩A(n)c|LKn | ≤ 1A(n,K)∩A(n)c |ψn,K(X|[0,tn])− E[Zτn+1|FX
tn ]|,

and thus
|LKn | ≤ |ψn,K(X|[0,tn])− E[Zτn+1|FX

tn ]|. (39)
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Notice that ψn,K is the orthogonal projection of the L2 random variable ZτKn+1
onto the subspace

{⟨X≤K
0,tn , l⟩ : l ∈ Wd+1}, and similarly denote by ψ̂n,K the orthogonal projection of Zτn+1 to the

same space. Then we have

∥LKn ∥L2 ≤ ∥ψn,K(X|[0,tn])− ψ̂n,K(X|[0,tn])∥L2 + ∥ψ̂n,K(X|[0,tn])− E[Zτn+1|FX
tn ]∥L2

≤ ∥E[ZτKn+1
|FX

tn ]− E[Zτn+1 |FX
tn ]∥L2 + ∥ψ̂n,K(X|[0,tn])− E[Zτn+1|FX

tn ]∥L2 .

Now the first term converges by the induction hypothesis. For the second term, the conditional ex-
pectation of the L2 random variable Zτn+1 is nothing else than the orthogonal projection onto the
space L2(FX

tn ). But by Theorem 2.6, for any ϵ > 0 we can find ϕ ∈ LλSig, such that ∥ϕ(X|[0,tn]) −
Zτn+1∥L2 ≤ ϵ. For K large enough we have ϕ(X|[0,tn]) ∈ {⟨X≤K

0,tn , l⟩ : l ∈ Wd+1}, and thus

∥ψ̂n,K(X|[0,tn])− E[Zτn+1|FX
tn ]∥L2 ≤ ∥ψ̂n,K(X|[0,tn])− Zτn+1∥L2 ≤ ϵ,

since ψ̂n,K is such that the distance is minimal. 2

Proof of Proposition 3.3 First, we can consider the sequence of stopping times (τK,Jn ) as defined
in (21). One can then rewrite exactly the same proof of Proposition 3.2 for ZτK,J

n
instead, and at the

equation (39), we get

LKn ≤ |ψn,K(X|[0,tn](J))− E[Zτn+1|FX
tn ]|

≤ |ψn,K(X|[0,tn])− E[Zτn+1|FX
tn ]|+ |ψn,K(X|[0,tn](J))− ψn,K(X|[0,tn])|,

where then the first term converges in L2 due to the same argument as in the proof of Proposition 3.2,
and the latter converges by assumption, as J → ∞. It therefore suffices to show that

1

M

M∑
i=1

Z
(i)

τ
K,J,(i)
n

M→∞−−−−→ E[ZτK,J
n

] a.s.

Now for any l ∈ Wd+1, we can write l = λ1w1+ · · ·+λDwD, whereD =
∑K

k=0(d+1)k, that is we
sum over all possible words of length at most K . One can therefore notice that minimizing ⟨X≤K , l⟩
over l ∈ Wd+1

≤K , is equivalent to minimizing
∑D

i=1 λi⟨X≤K , wi⟩ over all vectors λ ∈ RD. Defining
ek(x) := ⟨x≤K , wk⟩ for k = 1, . . . , D, and setting Xn := X|[0,tn], we are exactly in framework of
[14, Chapter 3], and the result follows from [14, Theorem 3.2], under the following remark. The authors
make the following assumption, denoted by (A2)∑

j

αjej(Xt) = 0 almost surely implies α = 0,∀t (40)

for the set of basis-functions, which allows an explicit representation of the coefficient l⋆ in (19). Of
course, in our framework, such an assumption cannot hold true, as this would correspond to

D∑
l=1

αl⟨X<∞
0,t , wl⟩ = 0 a.s. =⇒ αl = 0,∀l = 1, . . . , D.

Since we consider the signature of the time-augmented path (t,Xt), the purely deterministic com-
ponents of the signature contradict this assumption. However, for a fixed signature level K , we can
always discard linear-dependent (in the sense of (40)) components of the signature, that is minimize
over the basis-functions

{ẽ1, . . . , ẽD̃} ⊂ {e1, . . . , eD} s.t. (A2) holds ,
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for the largest possible D̃ ≤ D. The resulting least-square problem (19) over RD̃, with respect to
{ẽ1, . . . , ẽD̃}, has an explicit representation of the solution, and since the two sets of basis-functions
generate the same subspace of L2, the explicit solution is also optimal for the original problem. Thus,
for a fixed level K , we can proceed with the reduced set of basis-functions, for which the assumption
(A2) holds by definition, and we can apply [14, Theorem 3.2]. 2

A.2 Proofs in Section 3.3

Proof of Proposition 3.6 The existence of a minimizer is proved in Lemma A.1. We can find the
discrete Doob-martingale M⋆,N and write

yN0 = E

[
max

0≤n≤N

(
Ztn −M⋆,N

tn

)]
.

Define the continuous-time, (FX
t )−martingale Mt := E[M⋆,N

T |FX
t ], and notice that Mtn = M⋆,N

tn .
An application of the martingale approximation in Theorem 3.5 shows that for all ϵ > 0, there exist

lϵ = (li,ϵ)mi=1 in
(
Wd+1

)m
, such that E

[
max0≤n≤N

(
M⋆,N

tn −M lϵ

tn

)]
≤ ϵ. Thus we have

yN0 = E

[
max

0≤n≤N

(
Ztn −M⋆,N

tn

)]
≥ E

[
max

0≤n≤N

(
Ztn −M lϵ

tn

)]
− ϵ.

Now since yK,N0 ≥ yN0 , we can find K large enough, such that

0 ≤ yK,N0 − yN0 ≤ inf
l∈(Wd+1

≤K )
m
E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
− E

[
max

0≤n≤N

(
Ztn −M lϵ

tn

)]
+ ϵ

≤ ϵ,

where the last inequality follows from that fact that lϵ ∈
(
Wd+1

≤K
)m

for K large enough. 2

Lemma A.1 The minimization problem

yK,N0 = inf
l∈(Wd+1

≤K )
m
E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
has a solution.

Proof First notice that l 7→ E
[
max0≤n≤N

(
Ztn −M l

tn

)]
is convex. Then we have

E

[
max

0≤n≤N

(
Ztn −M l

tn

)]
≥ E

[
max

(
ZT −M l

T , 0
)]

=
1

2
E
[
ZT −M l

T +
∣∣M l

T − ZT
∣∣]

≥ 1

2
E
[∣∣M l

T

∣∣]+ E[max(−ZT , 0)],

where the equality in the middle uses max(A − B, 0) = 1
2
(A−B + |B − A|). Now for any word

l = λ1w1 + · · ·+ λnwn, we set |l| =
∑n

i=1 |λi|, and notice that

1

2
E [|MT |] =

1

2
|l|E[|M l/|l|

T |] ≥ |l|
2

inf
l̂∈(Wd+1

≤K )
m
,|l̂|=1

E[|M l̂
T |]. (41)
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Since l̂ 7→ E[|M l̂
T |] is continuous and the set {l̂ ∈

(
Wd+1

≤K
)m

: |l̂| = 1} is compact, the minimum

on the right hand-side of (41) is attained. Assume now that inf l̂∈(Wd+1
≤K )

m
,|l̂|=1E[|M

l̂
T |] = 0. Then

there exists an l̂⋆ with |l̂⋆| = 1 and |M l̂⋆

T | = 0 almost surely. But this in particular implies that

⟨X<∞
0,s , l̂

⋆⟩ = 0, for almost every s ∈ [0, T ] almost surely.

But this is only possible if l̂⋆ = 0, contradicting the fact that |l̂⋆| = 1. Hence the infimum (41) is
positive and we can conclude that the function

l 7→ E

[
max

0≤n≤N

(
Ztn −M l

tn

)] |l|→∞−−−→ ∞,

which implies the existence of the minimizer. 2

Finally, in order to prove Proposition 3.8, we quickly introduce the general idea of sample average
approximation (SAA), for which we refer to [34, Chapter 6] for details. Assume X is a closed and
convex subset of RN and ξ is a random vector in Rd for some d,N ∈ N, and F is some function
F : RN × Rd → R. We are interested in approximating the stochastic programming problem

y0 = min
x∈X

E[F (x, ξ)]. (42)

Define the sample average function FM(x) = 1
M

∑M
j=1 F (x, ξ

j), where ξj, j = 1, . . . ,M are i.i.d
samples of the random vector ξ. The sample average approximation of y0 is then given by

yM0 = min
x∈X

FM(x). (43)

The following result provides sufficient conditions for the convergence yM0
M→∞−−−−→ y0, and a more

general version can be found in [34, Chapter 6 Theorem 4].

Theorem A.2 Suppose that

(1) F is measurable and x 7→ F (x, ξ) is lower semicontinuous for all ξ ∈ Rd,

(2) x 7→ F (x, ξ) is convex for almost every ξ,

(3) X is closed and convex,

(4) f(x) := E[F (x, ξ)] is lower semicontinuous and f(x) <∞ for all x ∈ X ,

(5) the set S of optimal solutions to (42) is non-empty and bounded.

Then yM0
M→∞−−−−→ y0.

Using the notation of Section 3.3, for some fixed dimension m of the Brownian motion W , number of
exercise dates N , number discretization points J and signature truncation level K , we can define the
random vector

ξ := (Zt0 , . . . , ZtN , M̃
1
t0
, . . . , M̃1

tN
, . . . , M̃D

t0
, . . . , M̃D

tN
) ∈ R(D+1)·(N+1)·m,
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where D denotes the number of entries of the signature up to level K . Using the notation Mβ,J
t =∑D

j=1 βjM
wj ,J
t for any β ∈ RD, we can consider the minimization problem

yK,J,N0 = inf
β∈RD·m

E

[
max

0≤n≤N

(
Ztn − M̃β,J

tn

)]
= min

x∈X
E[F (x, ξ)],

where X = RD·m and d = (D + 1)(N + 1)m.
Proof of Proposition 3.8 First, it is possible to rewrite the proof of Lemma A.1 for FM instead of
the expectation when M is large enough, to show that there exists a minimizer l⋆ to (27). Moreover,
the minimization problem yK,N,J0 is nothing else than (24), where the continuous martingales Mβ

are replaced by the Euler approximations M l,J on the grid (sj)
J
j=0. By the same reasoning as in

Proposition 3.6 we can see that 0 ≤ yK,N,J0 − yN0 −→ 0 as K, J → ∞. Applying the triangle
inequality yields

|yK,N,J,M0 − yN0 | ≤ |yK,N,J0 − yN0 |+ |yK,N,J,M0 − yK,N,J0 |,

and thus we are left with the convergence of the second term. But this can be deduced from the last
Theorem, if we can show that (1)-(5) hold true for our F . Clearly F is measurable and it is easy to see
that x → F (x, ξ) is continuous and convex, thus (1) and (2) readily follow. Moreover (3) holds true,
and for x1, x2 ∈ X we have

|f(x1)− f(x2)| ≲ |x1 − x2|E[|M̃ (1,...,1)
T |2]

using Doobs-inequality. Since M l ∈ L2 for all l and ∥Z∥∞ ∈ L1, (4) follows. Finally, non-emptyness

of S follows from Lemma A.1, and the proof of the latter reveals that E[F (x, ξ)]
|x|→∞−−−−→ ∞, and thus

S must be bounded, which finishs the proof. 2

References

[1] Leif Andersen and Mark Broadie. Primal-dual simulation algorithm for pricing multidimensional
American options. Management Science, 50(9):1222–1234, 2004.

[2] Christian Bayer and Simon Breneis. Efficient option pricing in the rough Heston model using
weak simulation schemes. arXiv preprint arXiv:2310.04146, 2023.

[3] Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility. Quantitative Finance,
16(6):887–904, 2016.

[4] Christian Bayer, Paul P Hager, Sebastian Riedel, and John Schoenmakers. Optimal stopping
with signatures. The Annals of Applied Probability, 33(1):238–273, 2023.

[5] Christian Bayer, Raúl Tempone, and Sören Wolfers. Pricing American options by exercise rate
optimization. Quantitative Finance, 20(11):1749–1760, 2020.

[6] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping. The Journal of
Machine Learning Research, 20(1):2712–2736, 2019.

[7] Denis Belomestny, Christian Bender, and John Schoenmakers. Solving optimal stopping prob-
lems via randomization and empirical dual optimization. Mathematics of Operations Research,
48(3):1454–1480, 2023.

DOI 10.20347/WIAS.PREPRINT.3068 Berlin 2023



Primal and dual optimal stopping with signatures 31

[8] Denis Belomestny and John Schoenmakers. From optimal martingales to randomized dual opti-
mal stopping. Quantitative Finance, 23(7-8):1099–1113, 2023.

[9] Horatio Boedihardjo, Xi Geng, Terry Lyons, and Danyu Yang. The signature of a rough path:
uniqueness. Advances in Mathematics, 293:720–737, 2016.

[10] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1.
Springer, 2007.

[11] Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, quotes and
prices: financial markets under the microscope. Cambridge University Press, 2018.

[12] Philippe Carmona and Laure Coutin. Fractional Brownian motion and the Markov property. Elec-
tronic Communications in Probability [electronic only], 3:95–107, 1998.

[13] Ilya Chevyrev and Harald Oberhauser. Signature moments to characterize laws of stochastic
processes. The Journal of Machine Learning Research, 23(1):7928–7969, 2022.

[14] Emmanuelle Clément, Damien Lamberton, and Philip Protter. An analysis of a least squares
regression method for American option pricing. Finance and stochastics, 6(4):449, 2002.

[15] Rama Cont and David-Antoine Fournié. Functional Itô calculus and stochastic integral represen-
tation of martingales. The Annals of Applied Probability, 41(1):109–133, 2013.

[16] Christa Cuchiero, Philipp Schmocker, and Josef Teichmann. Global universal approximation of
functional input maps on weighted spaces. arXiv preprint arXiv:2306.03303, 2023.

[17] Christa Cuchiero and Josef Teichmann. Generalized Feller processes and Markovian lifts of
stochastic Volterra processes: the affine case. Journal of evolution equations, 20(4):1301–1348,
2020.

[18] Vijay V Desai, Vivek F Farias, and Ciamac C Moallemi. Pathwise optimization for optimal stopping
problems. Management Science, 58(12):2292–2308, 2012.

[19] Bruno Dupire. Functional Itô calculus. Quantitative Finance, 19(5):721–729, 2019.

[20] Peter K Friz, Paul P Hager, and Nikolas Tapia. Unified signature cumulants and generalized
Magnus expansions. In Forum of Mathematics, Sigma, volume 10. Cambridge University Press,
2022.

[21] Peter K Friz and Martin Hairer. A course on rough paths. Springer, 2020.

[22] Peter K Friz and Nicolas B Victoir. Multidimensional stochastic processes as rough paths: theory
and applications, volume 120. Cambridge University Press, 2010.

[23] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantitative Fi-
nance, 18(6):933–949, 2018.

[24] Robin Giles. A generalization of the strict topology. Transactions of the American Mathematical
Society, 161:467–474, 1971.

[25] Ludovic Goudenege, Andrea Molent, and Antonino Zanette. Machine learning for pricing Amer-
ican options in high-dimensional Markovian and non-Markovian models. Quantitative Finance,
20(4):573–591, 2020.

DOI 10.20347/WIAS.PREPRINT.3068 Berlin 2023



C. Bayer, L. Pelizzari, J.G.M. Schoenmakers 32

[26] Julien Guyon and Jordan Lekeufack. Volatility is (mostly) path-dependent. Quantitative Finance,
23(9):1221–1258, 2023.

[27] Jasdeep Kalsi, Terry Lyons, and Imanol Perez Arribas. Optimal execution with rough path signa-
tures. SIAM Journal on Financial Mathematics, 11(2):470–493, 2020.

[28] Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113.
Springer Science & Business Media, 1991.

[29] Francis A Longstaff and Eduardo S Schwartz. Valuing American options by simulation: a simple
least-squares approach. The review of financial studies, 14(1):113–147, 2001.

[30] Terry J Lyons. Differential equations driven by rough signals. Revista Matemática Iberoameri-
cana, 14(2):215–310, 1998.

[31] Yosihiko Ogata. Statistical models for earthquake occurrences and residual analysis for point
processes. Journal of the American Statistical association, 83(401):9–27, 1988.

[32] Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer,
2006.

[33] Leonard CG Rogers. Monte carlo valuation of American options. Mathematical Finance,
12(3):271–286, 2002.

[34] Alexander Shapiro. Monte carlo sampling methods. Handbooks in operations research and
management science, 10:353–425, 2003.

DOI 10.20347/WIAS.PREPRINT.3068 Berlin 2023


	Introduction
	Notation

	Global approximation with rough path signatures
	The space of stopped rough paths
	A Stone–Weierstrass result for robust signatures
	Approximation with robust signatures

	Optimal stopping with signatures
	Framework and problem formulation
	Primal optimal stopping with signatures
	Dual optimal stopping with signatures 

	Numerical examples
	Optimal stopping of fractional Brownian motion
	American options in rough volatility models

	Technical details Section 3
	Proofs in Section 3.2
	Proofs in Section 3.3
	Technical details Section 3
	Proofs in Section 3.2
	Proofs in Section 3.3



