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Probabilistic maximization of time-dependent capacities
in a gas network

Holger Heitsch, René Henrion, Caren Tischendorf

Abstract

The determination of free technical capacities belongs to the core tasks of a gas network owner.
Since gas loads are uncertain by nature, it makes sense to understand this as a probabilistic prob-
lem as far as stochastic modeling of available historical data is possible. Future clients, however,
don’t have a history or they do not behave in a random way, as is the case, for instance, in gas
reservoir management. Therefore, capacity maximization turns into an optimization problem with
uncertainty-related constrained which are partially of probabilistic and partially of robust (worst
case) type. While previous attempts to solve this problem had be devoted to models with static
(time-independent) gas flow, we aim at considering here transient gas flow subordinate to a PDE
(Euler equations). The basic challenge here is two-fold: first, a proper way of joining probabilistic
constraints to the differential equations has to be found. This will be realized on the basis of the
so-called spherical-radial decomposition of Gaussian random vectors. Second, a suitable char-
acterization of the worst-case load behaviour of future customers has to be figured out. It will be
shown, that this is possible for quasi-static flow and can be transferred to the transient case. The
complexity of the problem forces us to constrain ourselves in this first analysis to simple pipes or to
a V-like structure of the network. Numerical solutions are presented and show that the differences
between quasi-static and transient solutions are small, at least in these elementary examples.

1 Introduction

This paper deals with the determination of time-dependent maximum free capacities in a gas network
under uncertain loads. For a recent review on the transport capacity management of oil and gas
pipeline networks we refer to [24]. The problem we are going to consider here is motivated by gas
transport in an entry-exit model as it has been introduced, for instance, in Germany in 2005. In such
a system, a gas transmission system operator (TSO) sells capacity rights (booking limits) to transport
customers. These rights allow the customers to inject or withdraw gas up to the given capacity to entry
or from exit points, respectively, in a completely independent manner under the condition that injections
and withdrawals are in balance. The TSO has to make sure that the required gas transport can be
technically realized for these arbitrary injections or withdrawals (nominations) within the given booking
limits. Here, technical realization refers to the existence of pressure and flow functions satisfying the
physical equations of gas transport such that the pressure in the pipes stays between given lower and
upper bounds. He is obliged to offer a maximum possible capacity which can be used for booking, the
so-called freely allocable capacity (FAC). On the other hand, the requirement to technically ensure the
resulting gas transport for all possible nominations is not understood in a perfectly strict sense but for
"likely and realisticßcenarios. For details of this model, we refer to the monograph [16, Chapters 3 and
14]. The term "likely and realisticälready alludes to some probabilistic way of thinking: the concrete
nominations vary from day to day depending on exterior conditions such as temperature. But even for
given temperature there are random effects that make the consumption of gas stochastic.
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It is clear that, in order to speak of a probability, one needs to have access to a statistical distribution
of nominations. Such distributions are multivariate in character due to the presence of multiple nodes
in the network but also due to time dependence. They can be estimated from historical gas load data
available to TSOs as it is presented in [16, Chapter 13], where several types of multivariate distributions
(e.g., Gaussian or log-normal) were found to be relevant for gas nomination data. However, contrary
to gas load data of the existing clients at the exits, uncertainty in gas networks is not completely of
stochastic nature. We list three such instances:

1 Gas injection at entries

2 Values of certain physical parameters

3 Gas load data of future clients which may benefit from FAC

As for 1., it has to be taken into account that the injection at different entry nodes is rather price-driven
than random and could be output of a market model as in [11]. Another approach to dealing with entry
nominations is assuming a worst case with respect to technical realization of the required gas flow
among all balanced nominations as in [1, Chapter 2]. To simplify this aspect, we shall assume in our
paper, similar to [10, 13] and [1, Chapter 3] that there is only a single entry node in the network feeding
all the exit nodes so that the injection at the only entry is already determined by the total load of all
exits and no uncertain splitting of this total load between several entries has to be considered.

Concerning 2., the most prominent unknown physical parameter is the roughness coefficient of a gas
pipe. This value may differ in an unknown way from the original value after a possibly long time of
aging and hardly be directly measured for pipes underground. Then, this value can be treated as
an uncertain parameter in the sense of robust optimization [2] or it can be endowed with statistical
information via uncertainty quantification and Markov chain Monte Carlo method [14]. In this paper,
we shall assume, all physical parameters to be known.

Most important for us is instance 3. While the gas load of existing clients maybe assumed to be
stochastic thanks to historical data, the same is not true for future clients to which the FAC is potentially
dedicated. One could assume, for simplicity, that they will follow the same statistical characteristics as
the existing clients, but this may not be justified for instance due to differing demographic factors. More
importantly, FAC might be used, for instance, by the owner of a gas reservoir whose load profile is
not random at all but might follow some optimization purposes which may be hard to predict. Then,
the network owner has to be prepared for the worst case load profile within the booking limits offered
to the new clients as an outcome of the determined FAC. Therefore, the uncertain total demand of
existing and potentially new clients (after exploiting FAC) exhibits a mixture of stochastic and worst
case character. This leads to the formulation of a probabilistic-robust (probust for short) constraint as
introduced in [8] in order to describe the technical feasibility of the determined FAC. In words, the
optimization problem we want to solve is the following:

Maximize FAC such that with a given probability the sum of random loads by existing clients and
arbitrary loads by future clients between zero and FAC can be technically satisfied.

We shall refer to this problem as the probabilistic capacity maximization problem. Note that FAC may
be different from one exit node to the other, so maximizing might refer to the sum of node-dependent
FACs or similar norms. In [13], the probabilistic capacity maximization problem has been investigated
without time-dependence for an algebraic model of stationary gas flow respecting mass balance, pres-
sure drop and pressure bounds at the (single) entry and the exits. However, gas loads at the exits may
strongly vary over time in the course of a day which also has a temporal impact on the free capacity
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Probabilistic maximization of time-dependent capacities in a gas network 3

FAC. We therefore intend to study here a probabilistic maximization of time-dependent capacities im-
plied by time-dependent loads. We shall investigate whether the time dependence of gas flow can be
assumed to be quasi-static, which drastically simplifies the model and, in particular, the probabilistic
treatment of technical feasibility or a PDE-based transient model has to be employed. As stated in
[12], for demand functions that change very slowly in time, it makes sense to consider a quasi-static
model, since at each moment the system state is very close to a steady state. In order to get realistic
results, we model time-dependent stochastic demands of existing clients based on historical data.

Mathematically, the problem formulated above verbally will lead to a so-called probabilistic constraint
embedded into a possibly PDE-constrained optimization problem. We note that probabilistic con-
straints in the context of control problems with transient gas flow have also been investigated in several
other works such as [1, 9, 20]. Our contribution differs from these first of all in the concrete prob-
lem of maximizing time-dependent free capacities but also in the numerical treatment of probabilistic
constraints (spherical-radial decomposition adapted to the discretization of the underlying PDE). As
mentioned above, a major challenge in our model is the integration of non-stochastic loads by future
clients into the probabilistic constraints. Formally, one would have to admit arbitrary load-functions
here, which is out of reach in an optimization context. Fortunately, in a quasi-static model, the worst-
case load profile of a new client, given a scenario for the stochastic load of an existing client can be
explicitly verified. The idea then is, to keep this information and use it as a constraint in a PDE-based
model as an approximate substitute for a general, unknown worst case.

The paper is organized as follows: In section 2, which is constrained to a single pipe, we introduce
first the concept of technical feasibility for transient and quasi-static gas flow. Then, taking into account
random loads of existing clients and completely uncertain (non-stochastic) loads of future clients, the
capacity maximization problem is presented along with an appropriate probabilistic constraint involv-
ing additional robust constraints inside. After describing the discretization of the PDE - which leads
to two coupled ODEs - a statistical model for historical gas load patterns is presented. Finally, it is
demonstrated, how the spherical radial decomposition of Gaussian random vectors can be employed
to numerically deal with the probabilistic constraint in the environment of ODEs with random coeffi-
cients. Section 3 demonstrates, how one can make the probabilistic constraint explicit in the case of
quasi-static gas flow by identifying the worst-case behaviour of future clients. This identification is then
taken as a basis for the case of transient gas flow too. A numerical comparison between both transport
models is provided. Section 33 generalizes the previous ideas conceptually from the consideration of
a single pipe to a network with tree structure. Numerical results are presented for a simple V-shaped
form of the network.

2 Probabilistic capacity maximization on a single pipe

In order to illustrate the main ideas of our approach and to keep the notation simple, we start consid-
ering the problem of probabilistic capacity maximization for a single pipe whose left end is an entry at
which gas is injected whereas the right end corresponds to an exit, where gas is withdrawn to meet a
certain (random) demand.

2.1 Transient and quasi-static transport models for a single pipe

In the following we consider the gas flow through a single pipe and make use of the following notation:
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as ... speed of sound,
A ... the cross section,
D ... the diameter of the pipe,
λ ... the friction coefficient of the pipe,
h ... length of the pipe.

We consider the isothermal Euler equations for gas pressure p(x, t) and gas flow q(x, t) during a
time horizon [0, T ] along a pipe [L,R], where the left end L will be identified with an entry where gas
is injected and the right end R with an exit where gas is consumed:

∂tp+ α ∂xq = 0

∂tq + β ∂xp+ γ
q|q|
p

= 0
(x, t) ∈ [L,R]× [0, T ] (1)

with constants

α :=
a2
s

A
, β := A, γ :=

λa2
s

2DA
.

The equations (1) have to be completed by initial and boundary conditions:

p(L, t) = pentry(t); q(R, t) = qexit(t) ∀t ∈ [0, T ] and p(R, 0) = p0
R; q(L, 0) = q0

L. (2)

Later on, qexit will be modeled as a stochastic process based on historical data. The pressure at the
entry pentry is not given but is looked for within the optimization problem. This will become clearer from
the following

Definition 1. A load profile qexit for gas withdrawal at the exit will be said to be technically feasible
w.r.t. transient gas flow if there exists a pressure profile pentry at the entry and a solution (p, q) of the
PDE (1) satisfying boundary and initial conditions (2) and the constraints

pentry(t) ∈ [pmin
entry, p

max
entry]; p(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ], (3)

where pmin
entry ≤ pmax

entry and pmin
R ≤ pmax

R are given lower and upper pressure bounds at the entry and
exit, respectively.

The model drastically simplifies when assuming stationary gas flow, in which case pressure and flow
are constant in time (and as a consequence, flow is also constant in space) and are related by the
so-called Weymouth equation:

p2(L)− p2(x) = 2(x− L)
γ

β
q|q| (x ∈ [L,R]). (4)

The stationary case is not relevant by itself for our purposes, because we will deal with time-dependent
exit loads. However, the so-called quasi-static case will be of much interest. Here, it is assumed, that
the system is in steady state at each moment in time. Then, the time-dependent version of the steady
state relation (4) becomes

p2(L, t)− p2(x, t) = 2(x− L)
γ

β
q(t)|q(t)| (x ∈ [L,R], t ∈ [0, T ]).

Reducing this to x = R, which is essential in the pressure bound relations (3), taking into account the
boundary conditions (2), and identifying the space-independent flow q with qexit , one ends up at

p2
entry(t)− p2(R, t) = γ̃ qexit(t)|qexit(t)| (t ∈ [0, T ]) with γ̃ := 2h

γ

β
. (5)

Accordingly, we are led to

Definition 2. A load profile qexit for gas withdrawal at the exit will be said to be technically feasible w.r.t.
quasi-static gas flow if there exist pressure profiles pentry, p(R, ·) at the entry and exit, respectively,
satisfying (5) and the constraints (3).
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2.2 The optimization problem with implicit probabilistic constraint

We now want to formalize in the case of a single pipe the probabilistic capacity maximization problem
presented verbally in the introduction. To this aim, we introduce the sets

T trans :=
{
qexit : [0, T ]→ R | qexit is technically feasible w.r.t. transient gas flow

}
T qstat :=

{
qexit : [0, T ]→ R | qexit is technically feasible w.r.t. quasi-static gas flow

}
of technically feasible load profiles at the exit according to Definitions 1 and 2. We shall assume that
the time-dependent free capacity FAC we are aiming to maximize is offered as a constant for each
of the T = 24 hours of a day. On the one hand, this appears to be more practical in a real-life
implementation than capacities which are continuous in time. On the other hand, we get already a
canonical discretization of the control function as a finite-dimensional vector. Now, the probabilistic
capacity maximization problem for transient or quasi-static gas flow can be stated as follows:

max
(u1,...,u24)∈R24

+

{
24∑
i=1

ui

∣∣∣∣∣P
(
ξ + y ∈ T trans/qstat ∀y : [0, T ]→ R : 0 ≤ y ≤

24∑
i=1

uiχ(i−1,i]

)
≥p

}
.

(6)
Here, (u1, . . . , u24) refers to the time-dependent free capacity FAC and χA refers to the characteristic
function of a set A (taking value one if the argument belongs to that set and zero otherwise; for
notational simplicity the sum of them is formally defined on (0, T ] only but understood as function on
[0, T ] with value u1 at argument 0). The load profile at the exit is supposed to be the sum qexit = ξ+y
of the load ξ of existing clients, modeled as a stochastic process whose statistical characteristics are
supposed to be known from historical data, and of the load y of potentially new clients to which the
free capacity u is allocated. For the latter nothing is known apart from the fact that these loads must be
in between 0 and ui at each hour i. The threshold p ∈ (0, 1] is a pre-defined probability level at which
the probabilistic constraint inside (6) is required to hold. More precisely, this constraint expresses the
fact that, given a profile u of time-dependent FAC, the probability P of a total exit load composed from
existing clients (acting randomly) and potential new clients (acting unpredictably, hence, arbitrarily)
being technically feasible exceeds a given value p.

We already note at this point, that the form of the probabilistic constraint in (6) is implicit and does not
correspond yet to the standard form involving a random inequality system as presented in Section 2.5.

2.3 Discretization of the PDE

For the numerical treatment of transient gas flow along a pipe according to (1), we use a two-point
space discretization (left and right end of the pipe) and an implicit Euler discretization with respect
to time. We assume that the time interval [0, T ] is uniformly discretized in N subintervals of length
τ = T/N . The discretization scheme for the pressure p = p(R, ·) at the right end and the flow
q = q(L, ·) at the left end of the pipe is then given by

pk := pk−1 − a
(
zk − qk

)
qk := qk−1 + b

(
wk − pk

)
− c(qk)2

pk

(k = 1, . . . , N) (7)

with coefficients calculated from those introduced in (1) as

a := τ
α

h
; b := τ

β

h
; c := τγ.
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Here, wk := pentry(kτ) = p(L, kτ) is the time-dependent pressure profile at the entry (left end of
the pipe) and zk := qexit(kτ) = q(R, kτ) is the (random) load profile at the exit(right end of the
pipe). As far as the initial conditions p0 := p0

R and q0 := q0
L are concerned, they are not known in

general, in particular not for the historical load profiles used in Section 2.4 for the statistical modeling
of gas load data. A common remedy is to fall back on the stationary case (see 4) and to suppose that

q0 = z0 = qexit(0); p0 =
√
p2

entry(0)− γ̃ qexit(0)|qexit(0)|.

In any case, the dependence of the transient state on the concrete initial value can be observed only on
a very short time scale so that we will neglect it in the following. More precisely, we shall fix a common
’average’ value for p0

R, q
0
L and disregard any relation with or dependence on a concrete random load

scenario at the exit.

In order to find (pk, qk) from the implicit system (7), we solve the first linear relation for qk and then
insert it into the second relation. This yields a quadratic expression in terms of pk which is resolved as

pk =
1

r

(
u

2
+

√
u2

4
+ rv

)
and qk =

pk − pk−1

a
+ zk,

where the numbers r, u, v are given by

r := a2b+ a+ c

u := a2
(
bwk + qk−1 − zk

)
+ a

(
pk−1 − 2czk

)
+ 2cpk−1

v := c
(
2apk−1zk − (pk−1)2 − a2(zk)2

)
.

In our application it will be important also to keep track of the dependence of state variables p, q on an
exterior parameter e which will be mainly be represented by the random variable and by the decision
(control) variable. Therefore, we derive an analogous iteration scheme for the gradients of pk and qk

with respect to e by differentiation of (7):

∇pk := ∇pk−1 − a
(
∇zk −∇qk

)
∇qk := ∇qk−1 − b

(
∇wk −∇pk

)
− c2pkqk∇qk − (qk)2∇pk

(pk)2

(k = 1 . . . , N)

for given initial gradients∇p0 and∇q0. This represents a linear system of equations that, along with
the solutions pk, qk from above, is solved by:

∇pk =

(
(pk)2 + 2cpkqk

) (
a∇zk −∇pk−1

)
− a(pk)2(∇qk−1 + b∇wk)

ac(qk)2 − (ab+ 1)(pk)2 − 2cpkqk

∇qk =
∇pk −∇pk−1

a
+∇zk

(8)

We note that the described scheme can be extended to a finer space discretization if needed, for
instance by adding the mean point of the pipe in order to get a three-point discretization scheme.

2.4 Statistical model for gas load patterns

The treatment of the probabilistic constraint in our optimization problem(s) (6) requires to represent the
stochastic process ξ in a parametric form. More precisely, we shall assume a functional dependence
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Probabilistic maximization of time-dependent capacities in a gas network 7

ξ(t) = d(ξ̃, t) for all t ∈ [0, T ] where ξ̃ is some finite dimensional random vector. In order to get a
realistic statistical model of daily gas load profiles, we considered publicly available hourly load data
from Austria (EnergyMonitor.at). More precisely, the corresponding data were drawn from weak days
(in order to disregard different patterns on weekends) in the three winter months (in order to disregard
seasonal trends) from December 2013 to February 2014. This resulted in 65 historical scenarios for
24 hours each. They are plotted in Fig. 1 (left). It can be seen that the daily gas load typically exhibits
two peaks in the morning and in the afternoon, but the position, amplitudes and band widths of these
peaks vary in different scenarios. This leads us to formulate a statistical model for the gas load as

d(ξ̃1, . . . , ξ̃7, t) = ξ̃1 + ξ̃2e
−eξ̃3 (t−ξ̃4)2 + ξ̃5e

−eξ̃6 (t−ξ̃7)2 t ∈ [0, T ], (9)

where the random coefficients ξ̃i model the shapes of the two peaks for i = 2, . . . , 7 and ξ̃1 rep-
resents some base line for the load. We assume that the joint distribution of the random vector ξ̃ is
Gaussian according to ξ̃ ∼ N (µ,Σ) with mean vector µ and covariance matrix Σ. This means, in

particular, that the coefficients eξ̃3 , eξ̃6 modeling the band widths of the peaks are supposed to repre-
sent log-normal coefficients. The parameters µ and Σ were found from a statistical fit to the historical
data using the MATLAB built-in function nlinfit.
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Figure 1: Plot of historical gas load scenarios (left) and simulated scenarios from the estimated statis-
tical distribution (right, thick: mean value µ).

More precisely, the concrete parameters

µ = (10.8679, 5.0149, −2.7452, 8.8464, 4.4975, −3.2350, 18.1880)

and

Σ =



1.5467 0.0350 0.0049 0.0915 0.1119 0.0037 −0.2588
0.0350 0.7836 −0.0309 0.0084 0.8738 −0.0940 −0.0553
0.0049 −0.0309 0.0646 −0.0598 0.0012 −0.0443 −0.0712
0.0915 0.0084 −0.0598 0.1205 0.0251 0.0397 0.0486
0.1119 0.8738 0.0012 0.0251 1.3963 −0.2593 −0.3194
0.0037 −0.0940 −0.0443 0.0397 −0.2593 0.1280 0.1640
−0.2588 −0.0553 −0.0712 0.0486 −0.3194 0.1640 0.3888


have been determined. Of course, these data representing gas loads of a big region will not be used
directly in our numerical computations for a single pipe. Rather, they will be downscaled by an appro-
priate factor. This means that we replace d in (9) by s · d for some s > 0 while keeping the derived
statistical distribution for the random vector.

DOI 10.20347/WIAS.PREPRINT.3066 Berlin 2023
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2.5 Spherical-Radial decomposition of Gaussian random vectors

Probabilistic constraints are constraints on a decision variable u which is affected by some finite-
dimensional random vector η inside an inequality system describing the constraint of an optimization
problem. More precisely, one requires that, given u, this random inequality system be satisfied with
some minimum probability p ∈ (0, 1]:

P
(
gk(u, η) ≤ 0 (k = 1, . . . ,M)

)
≥ p. (10)

Introduced in the fifties by Charnes, Cooper and Symonds [4], the basics of probabilistic constraints
have been intensively investigated starting with the seventies and the fundamental work by Prékopa.
Still, his later monograph is a classical reference for this domain [19]. For more recent presentations we
refer to [21, 22]. The algorithmic treatment of probabilistic constraints has seen a fresh impetus during
the last two decades (see e.g., [3, 5, 7, 15, 17, 18, 23] for a very incomplete selection). We shall make
use in this work of the so-called spherical-radial decomposition of Gaussian random vectors which
has been successfully applied to numerous optimization problems with probabilistic constraints (e.g.,
[3, 6, 8, 13]). The advantage of this approach over methods relying on generic sampling of an arbitrary
distribution consists in exploiting specific information about the Gaussian distribution which yields a
significant variance reduction in the estimation of probabilities.

In this section we show how to approximate efficiently values and gradients of a probability function

ϕ(u) := P
(
gk(u, η) ≤ 0 (k = 1, . . . ,M)

)
(11)

with u ∈ Rn and η ∼ N (µ,Σ) being an m-dimensional Gaussian random vector with expectation
µ and covariance matrix Σ. This will be the key for dealing with the inequality constraint ϕ(u) ≥ p
(corresponding to (10)) inside a nonlinear optimization solver, say some SQP method. The principle
of spherical-radial decomposition of the Gaussian random vector η expresses the fact that, for every
Borel measurable subset C ⊆ Rm one has the representation

P (η ∈ C) =

∫
w∈Sm−1

νchi ({r ≥ 0 | µ+ rLw ∈ C}) dνu (w) ,

where Sm−1 is the unit sphere in Rm, νchi is the one-dimensional Chi-distribution with m degrees of
freedom, νu is the uniform distribution on Sm−1 and L is a root of Σ (i.e., Σ = LLT ). Applied to (11),
this yields the expression

ϕ(u) =

∫
w∈Sm−1

νχ ({r ≥ 0 | gk (u, µ+ rLw) ≤ 0 (k = 1, . . . ,M)}) dνu (w) . (12)

Generically, the one-dimensional set whose Chi-probability has to be computed in the integrand above
can be represented as a finite union of disjoint intervals

N(u,w)⋃
j=1

[αj(u,w), βj(u,w)]

which depend on both, the argument u and the direction w. Note, that this set could be unbounded in
which case βN(u,w) =∞ (while always α1(u,w) ≥ 0). As a consequence,

ϕ(u) =

∫
w∈Sm−1

N(u,w)∑
j=1

(
Fchi(βj(u,w))− Fchi(αj(u,w))

)
dνu (w) ,

DOI 10.20347/WIAS.PREPRINT.3066 Berlin 2023



Probabilistic maximization of time-dependent capacities in a gas network 9

where Fchi refers to the cumulative distribution function of the one-dimensional Chi-distribution withm
degrees of freedom. For a numeric approximation of ϕ(u), one would replace the spherical integral by
a finite sum with respect to a sample {w1, . . . wK} of the uniform distribution on the sphere Sm−1:

ϕ(u) ≈ 1

K

K∑
l=1

N(u,wl)∑
j=1

(
Fchi(βj(u,w

l))− Fchi(αj(u,w
l))
)
. (13)

An efficient sample could be provided by a low discrepancy sequence on the sphere. A simple al-
ternative is a QMC sample of the m − dimensional standard Gaussian distribution normalized to
unit length. We note that numerically precise approximations of Fchi are part of standard statistical
modules. Hence, the main effort in the approximation of ϕ(u) consists in the determination of the
coefficients αj, βj . This is an easy task in case that the functions gk(u, η) are linear or quadratic in η
(the quadratic case occurs, for instance, in the random inequality system derived for the quasi-static
model in Section 3.1). Otherwise, an analytic derivation of these coefficients may become impossible
and has to be replaced by some one-dimensional root finding or a bisection approach. This will be the
case in our application because the nonlinearities arising from the statistical gas load model (9) as
well as from the discretized PDE in Section 2.3 are too complex.

In addition to evaluating the probability function ϕ itself, an efficient numerical treatment of the opti-
mization problem (e.g., using SQP methods) will also require its gradient ∇ϕ. If we look for instance
at (13), then an approximation of the gradient can be obtained as

∇ϕ(u) ≈ 1

K

K∑
l=1

N(u,wl)∑
j=1

(
∂(Fchi ◦ βj)

∂u
(u,wl)− ∂(Fchi ◦ αj)

∂u
(u,wl)

)
. (14)

Given that F ′chi = fchi with fchi being the density of the one-dimensional Chi-distribution with m
degrees of freedom, we obtain for j = 1, . . . , N(u,wl) and l = 1, . . . , K that

∂(Fchi ◦ βj)
∂u

(u,wl) = fchi(βj(u,w
l)) · ∂βj

∂u
(u,wl)

(the analogous expression holding true for αj). Observing that the coefficients, αj, βj are values of
r in (12) for which one of the inequalities gk (u, µ+ rLw) ≤ 0 is satisfied as an equality, one may
apply under some technical assumptions the Implicit Function Theorem to that equality in order to
obtain the derivatives

∂βj
∂u

(u,wk) =
−1

〈∇ηgk∗(u, µ+ βj(u,wl)Lwl), Lwl〉
∇ugk∗(u, µ+ βj(u,w

l)Lwl),

where

k∗ ∈ argmax
{
gk(u, µ+ βj(u,w

l)Lwl)) | k ∈ {1, . . . ,M}
}
.

The analogous expression holds true for the coefficients αj . In this way, a fully explicit representation
of the approximated∇ϕ(u) may be provided which just involves the initial data (partial derivatives of
the functions gi) of the problem. Observe, that the sample-dependent coefficients αj, βj needed for
the gradient ∇ϕ are the same already needed for the probability function ϕ itself. Hence, one may
update ϕ and ∇ϕ simultaneously with the same sample and the computational effort in determining
αj, βj occurs only once.
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3 Explicit probabilistic constraints for a single pipe

As already stated above, the probabilistic constraint in our capacity maximization problem (6) is not
explicit yet and thus not directly amenable to a numerical solution via some optimization solver. The
reason is that first, the definition of technical feasibility, hence the definition of the sets T trans/qstat

asks for the existence of some pressure profile pentry satisfying certain properties. One could resolve
this issue by understanding pentry as an additional decision variable in the optimization problem (6).
Then, however, the solution of the capacity maximization problem would not only fix the free capacities
but also the pressure profile at which gas is injected at the entry, independently of the concrete load
scenarios. Such approach would drastically decrease the free capacities one could actually allocate.
Understanding pentry as a function of loads instead would lead to the question of how to find this
function. It would be optimal to determine it in a way as to maximize the probability of satisfying the
pressure bounds (3). This, however, seems to be a hopeless task in the given context. A second,
even more important difficulty in the definition of technical feasibility, relies on the arbitrary choice of
loads y from new customers within the limits of free capacity in (6). This ambiguity makes it basically
impossible to deal with the probabilistic constraint as is in the context of an optimization algorithm.
Fortunately, as we shall see, these issues can be resolved in the quasi-static model by equivalently
describing the relation inside the probability in (6) as an explicit inequality system involving only the
random parameter ξ and the decision variable u but no more the undetermined variables pentry and
y. Therefore, our proposal for the transient model is to adapt from the quasi-static model the way of
making the probability explicit while keeping the description of dynamics via the PDE (1).

3.1 The quasi-static case

The aim of this Section is to provide an equivalent description of the implicit probabilistic constraint
inside (6) in an explicit standard form involving only the random and the decision variable as assumed
in Section 2.5.

Proposition 3.1. For a given exit load profile qexit ≥ 0 the following equivalence holds true:

qexit ∈ T qstat ⇐⇒
(
pmin

entry

)2 − (pmax
R )2 ≤ γ̃q2

exit(t) ≤
(
pmax

entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]. (15)

Proof. (=⇒): Let qexit ≥ 0 with qexit ∈ T qstat be arbitrarily given. Then, by definition of T qstat,
there exist pressure profiles pentry, p(R, ·) satisfying the relations (5) and (3). Taking into account that
qexit ≥ 0 and substituting for pR in (5), the (squared) second pressure bound relations in (3) read as(

pmin
R

)2 ≤ p2
entry(t)− γ̃q2

exit(t) ≤ (pmax
R )2 ∀t ∈ [0, T ].

Using the (squared) first pressure bound relations in (3), we may continue to estimate these relations
in order to derive the right-hand side relations of the asserted equivalence (15).

(⇐=): Let qexit ≥ 0 be given such that the the right-hand side inequalities of (15) are satisfied.
Define, for t ∈ [0, T ],

pentry(t) := min

{
pmax

entry,

√
γ̃q2

exit(t) + (pmax
R )2

}
, p(R, t) :=

√
p2

entry(t)− γ̃q2
exit(t). (16)

Then, by definition, pentry, p(R, ·) satisfy (5) and it holds that pentry(t) ≤ pmax
entry. Moreover, pentry(t) ≥

pmin
entry thanks to the first inequality on the right-hand side of (15). Hence, the pressure bound conditions
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Probabilistic maximization of time-dependent capacities in a gas network 11

for pentry(t) in (3) are fulfilled. Finally, for each t ∈ [0, T ],

p(R, t) =


√(

pmax
entry

)2 − γ̃q2
exit(t) if pmax

entry ≤
√
γ̃q2

exit(t) + (pmax
R )2

pmax
R else

.

In the second case, the pressure bound conditions for p(R, t) in (3) are trivially satisfied. In the first
case, p(R, t) ≥ pmin

R thanks to the second inequality on the right-hand side of (15). Combining the
inequality which defines the first case with the formula for p(R, t) arising in that case yields the missing
relation p(R, t) ≤ pmax

R . Summarizing, qexit ∈ T qstat.

Corollary 3.1. For a given exit load profile qexit ≥ 0 and a given profile u ≥ 0 of time-dependent free
capacities the following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ]→ R : 0 ≤ y ≤ u

⇐⇒ (17)(
pmin

entry

)2 − (pmax
R )2 ≤ γ̃q2

exit(t) and γ̃ (qexit(t) + u(t))2 ≤
(
pmax

entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]

Proof. Replacing qexit in Proposition 3.1 by qexit + y, we observe that the left part of our asserted
equivalence (17) is equivalent with the relation(

pmin
entry

)2 − (pmax
R )2 ≤ γ̃ (qexit(t) + y(t))2 ≤

(
pmax

entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]

holding true for all y : [0, T ] → R : 0 ≤ y ≤ u. Now, fixing an arbitrary t ∈ [0, T ], it is clear
from y(t) ≥ 0 that the first inequality will be satisfied for all indicated functions y if and only if it is
satisfied for y := 0. Likewise, it follows from y(t) ≤ u that the second inequality will be satisfied for
all indicated functions y if and only if it is satisfied for y := u. This yields the equivalence with the
relations in the right part of (17).

According to Corollary 3.1, the relation

ξ + y ∈ T qstat ∀y : [0, T ]→ R : 0 ≤ y ≤ u

for a random exit load profile ξ and some time-dependent function u of free capacities can be equiva-
lently described by the inequalities

hi(u, ξ, t) ≤ 0 ∀t ∈ [0, T ] (i = 1, 2),

where, for t ∈ [0, T ],

h1(u, ξ, t) :=
(
pmin

entry

)2 − (pmax
R )2 − γ̃ξ2(t),

h2(u, ξ, t) := γ̃ (ξ(t) + u(t))2 −
(
pmax

entry

)2
+
(
pmin
R

)2
.

We now take into account 1.) our statistical model (9), 2.) the time discretization of pressure and flow
variables into N subintervals of [0, T ] of equal length with T = 24 and 3.) the hourly discretization
of the free capacities in (6). Then, the inequalities above turn into the finite random inequality system
gk(u, ξ̃) ≤ 0 for k = 1, . . . , 2N , where

gk(u, ξ̃) :=
(
pmin

entry

)2 − (pmax
R )2 − γ̃d2(ξ̃, tk) (k = 1, . . . , N),

gN+k(u, ξ̃) := γ̃

(
d(ξ̃, tk) +

24∑
i=1

uiχ(i−1,i](tk)

)2

−
(
pmax

entry

)2
+
(
pmin
R

)2
(k = 1, . . . , N),
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and tk := k ∗ T/N and u = (u1, . . . , u24). In this way, our originally implicit probabilistic constraint
in (6) turns into a standard one as in (11) upon puttingM := 2N and η := ξ̃, where the latter random
vector is Gaussian (see Section 2.4). Hence, the method of spherical-radial decomposition described
in Section 2.5 can be employed in order to compute values and gradients for the probability function
ϕ and, thus, numerically to solve problem (6). All that remains to do is to identify the partial gradients
of the gi with respect to u and ξ as described in Section 10. This is easily accomplished with the help
of the formulae above.

3.2 Numerical results

For numerical illustration of the previous section, we choose the following data and parameters for our
problem:

α = 147 437.68; β = 0.785398; γ = 777.073; h = 50 000; N = 96;

pmin
entry = 5 800 000; pmax

entry = 6 000 000; pmin
R = 5 300 000; pmax

R = 5 700 000;

s = 0.012; p = 0.9

Here, the first group of quantities relates to physical coefficients as introduced in the beginning of
Section 2.1 (see (1) and (7)). The relevant value for γ̃, needed in the representation of the quasi-static
case, is obtained by the formula given in (5). The second group of quantities provides the required
pressure bounds in (3), p refers to the probability level chosen in problem (6) and s is the factor
scaling down the demand modeled in (9) to a single pipe (see end of Section 2.4).
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Figure 2: Solution of the probabilistic capacity maximization problem with probability level p = 0.9 in
the case of quasi-static gas transport.

The solution of the probabilistic capacity maximization problem in the case of quasi-static gas transport
is displayed in Fig. 2. For nicer visualization, the optimal time-dependent free capacities are plotted
as linear interpolations of the original piece-wise (hourly) constant function. The probability level was
chosen as p = 0.9. Not surprisingly, the profile of free capacity is somehow complementary to the
typical profiles of demands of existing clients shown in Fig. 1: there is more free capacity at night
time and a shallow peek is also observed around noon. In addition to the solution of the optimization
problem itself, Fig. 2 shows twenty so-called complete scenarios the meaning of which will be made
precise in Section 3.3. These scenarios are composed of a stochastic load scenario ξ for the demand
of gas by existing clients plus an associated worst case scenario y∗ for the uncertain gas load of future
clients which removes the ambiguity of y with 0 ≤ y ≤ u in (6).
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Probabilistic maximization of time-dependent capacities in a gas network 13

We obtain that the complete scenarios partially look smooth much like the original stochastic demand
scenarios from Fig. 1 and partially exhibit chaotic jumps. The latter are hardly observed in this ex-
treme form in reality, they are just a result of reflecting the worst case behaviour of a future client.
These scenarios can be used for a posterior check of the obtained solution: given the probability 0.9,
for approximately 18 out of these 20 scenarios there should exist pressure profiles pentry, p(R, ·) at
the entry and exit, respectively, satisfying the pressure bound (3) as well as the quasi-static relation
(5). These required pressure profiles associated with the twenty complete scenarios are displayed in
Figure 3.

 6  12  18  24

5800K

6000K

E
n
tr

y
 p

re
s
s
u
re

 [
b
a
r]

Time [hours]

feasible entry pressure profiles
infeasible entry pressure profile

 6  12  18  24

5300K

5700K

E
x
it
 p

re
s
s
u
re

 [
b
a
r]

Time [hours]

feasible exit pressure profiles
infeasible exit pressure profile

Figure 3: Pressure profiles at the entry (left) and exit (right) for the 20 complete load scenarios at the
exit displayed in Fig. 2.

We note that the construction of scenario-dependent pressure profiles is not unique. The concrete
construction presented in Section 3.3 below is chosen in a way that the upper pressure bounds
pmax

entry, p
max
R at the entry and exit are always satisfied, hence violations can only be observed with

respect to the lower pressure bounds. According to Fig. 3, there is one profile for the entry and one
profile for the exit that violates the imposed lower pressure bounds. Since they correspond to two
different complete load scenarios visualized in Fig. 2, the empirical probability for technical feasibility
according to our posterior check equals 18/20 which coincides with the chosen probability level of 0.9
(in general, by repeating simulations for the posterior check, slight deviations of the empirical from the
theoretical one may be expected).

3.3 Worst case scenarios and recovery of scenario-dependent pressure pro-
files

In this section we show how to recover the scenario-dependent profiles for the pressures pentry,
p(R, ·) at the entry and exit, given a function of free capacities and a (random) load scenario at the
exit. While this construction is not needed in the solution of the optimization problem itself thanks to
Corollary 3.1 (which reduces the feasibility issue to an inequality system not involving these pressure
profiles), it is useful for several other reasons: first, our posterior check of the computed solution relied
on these pressure profiles (see Fig. 3); second, the identification of the pressure profile at the entry
for a given function of free capacities and a given (say forecasted) random load of the existing clients
is actually what the TSO has to provide in the daily operation of gas injection; third, this construction
of the pressure profile at the entry in the quasi-static case will be crucial as an approximate substitute
for dealing with the worst case behaviour of future clients in the transient model of gas transport (see
Section 3.4).
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Proposition 3.2. The following equivalence holds true:

qexit + y ∈ T qstat ∀y : [0, T ]→ R : 0 ≤ y ≤ u ⇐⇒ qexit + y∗(qexit, u) ∈ T qstat,

where, for t ∈ [0, T ],

y∗(qexit, u)(t) :={
u(t) if

(
pmin

entry

)2 − (pmax
R )2 − γ̃q2

exit(t) ≤ γ̃ (qexit(t) + u(t))2 −
(
pmax

entry

)2
+
(
pmin
R

)2
,

0 else.
(18)

Proof. Replacing qexit in Proposition 3.1 by qexit + y∗(qexit, u), we get that

qexit + y∗(qexit, u) ∈ T qstat

⇐⇒(
pmin

entry

)2 − (pmax
R )2 ≤ γ̃(qexit(t) + y∗(qexit, u)(t))2 ≤

(
pmax

entry

)2 −
(
pmin
R

)2 ∀t ∈ [0, T ]. (19)

Hence, by Corollary 3.1, the equivalence claimed in our Proposition will be proven once we have
shown the equivalence of the inequality systems in (19) and (17). Since y∗(qexit, u)(t) is equal to 0
or to u(t), it is easily seen that the inequalities in (17) imply those in (19). Conversely, let inequalities
(19) hold true. If t ∈ [0, T ] is such that the first case of (18) applies, then y∗(qexit, u)(t) = u(t) and
the second inequality in (17) follows from the second inequality in (19). In particular,

γ̃ (qexit(t) + u(t))2 −
(
pmax

entry

)2
+
(
pmin
R

)2 ≤ 0,

whence the first inequality in (17) follows along with the inequality defining the first case in (18). An
analogous argumentation applies if the second case in (18) holds true.

Clearly, the discrimination between the two cases in (18) is characterized by the equality(
pmin

entry

)2 − (pmax
R )2 − γ̃q2

exit(t) = γ̃ (qexit(t) + u(t))2 −
(
pmax

entry

)2
+
(
pmin
R

)2
.

Resolving this equation for qexit(t) and calling the solution ∆ yields

∆(t) = −u(t)

2
+

√(
pmin

entry

)2
+
(
pmax

entry

)2 − (pmin
R )

2 − (pmax
R )2

2γ̃
− u2(t)

4

(the negative sign in front of the square root being excluded because otherwise the solution would be
negative). We shall call ∆ the discriminant, because it decides on the case distinction in (18). More
precisely, we may write now

y∗(qexit, u)(t) :=

{
u(t) if qexit(t) ≥ ∆(t),

0 else,
(t ∈ [0, T ]). (20)

The construction of the worst case scenario according to (20) is illustrated in Fig. 4: whenever the
demand scenario qexit is smaller than the discriminant ∆, then the worst case scenario y is defined to
be zero, otherwise it is put equal to the capacity function u. We note that contrary to Fig. 2, where the
profile of free capacities has been plotted as a linear interpolation for nicer visualization, the function
is represented in Fig. 4 in its original piece-wise constant shape. This explains the jumps also in the
other functions.
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Figure 4: Illustration of the construction of worst case and complete scenarios based on a demand
scenario and a given function of free capacities.

We will define a complete scenario to be the sum of a given demand scenario and the associated
worst case scenario (for an illustration, see Fig. 4):

c(qexit, u) := qexit + y∗(qexit, u). (21)

The importance of this concept relies on the possibility to remove the ambiguity of the load scenario y
for potential future clients in (6). Indeed, thanks to Proposition 3.2, we may simplify the probability in
(6) as

P(ξ + y ∈ T qstat ∀y : [0, T ]→ R : 0 ≤ y ≤ u) = P
(
c(ξ, u) ∈ T qstat

)
for u :=

24∑
i=1

uiχ(i−1,i].

This observation justifies our posterior check for the numerical solution of our optimization problem
in Section 3.2: one may simulate a number of K samples for the Gaussian random vector ξ̃ which
yields K samples for the demand process ξ = d(ξ̃, (·)) according to (9). These, in turn, generate K
complete scenarios c(ξ, u) := ξ + y∗(ξ, u) as illustrated in Fig. 2. Now, one may count the number
K̃ of complete scenarios belonging to the set T qstat by checking the constructed pressure profiles
at the exit and entry as in Fig. 3. Then, the ratio K̃/K is an empirical approximation of the true
probability inside (6) and should be close to the desired value p if the computed optimal function u of
free capacities is feasible.

It remains to recover the scenario-dependent profiles for the pressures pentry(·), p(R, ·) at the entry
and exit, given a function of free capacities and a (random) load scenario at the exit. The formulae
for pressure recovery have actually been derived already in (16) for a general feasible load profile
qexit at the exit. Here, we have to apply them to a complete scenario of the form (21), where qexit just
represents a (random) load scenario for the existing clients which is complemented by a worst-case
scenario for future clients. According to (16), we obtain that

pentry(t) := min

{
pmax

entry,

√
γ̃(qexit(t) + y∗(qexit, u)(t))2 + (pmax

R )2

}
, (22)

p(R, t) :=
√
p2

entry(t)− γ̃(qexit(t) + y∗(qexit, u)(t))2. (23)

Using the representation of the worst-case scenario y∗(qexit, u) from (18) or, equivalently, (20), one
may recover now the pressure profiles at the entry and exit from a load profile at the exit and from
a given function of free capacities as was done in Fig. 3. As it is shown in the proof of Proposition
3.1, the two pressure profiles in (22),(23) satisfy the pressure bounds (3) whenever the underlying
complete scenario is technically feasible (c(ξ, u) ∈ T qstat).
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3.4 The transient case

As mentioned in the introduction to Section (3), it is hopeless in the transient case to derive a similar
equivalent description of the family of inclusions

qexit + y ∈ T trans ∀y : [0, T ]→ R : 0 ≤ y ≤ u

(
u :=

24∑
i=1

uiχ(i−1,i]

)
(24)

in (6) by means of explicit inequalities as was done in Corollary 3.1. In particular, deriving a worst-case
scenario equivalently representing (24) as in the quasi-static case (see Proposition 3.2) is out of reach.
In order to cope with this issue, we shall assume that the quasi-static model is sufficiently close to the
transient one, in order to justify the assumption that the worst-case function constructed in (18) could
analogously represent the family of inclusions (24) by the single one

c(qexit, u) := qexit + y∗(qexit, u) ∈ T trans,

where we used the definition of a complete scenario from (21). Then, the probabilistic constraint in
problem (6) turns into the simpler expression

P
(
c(ξ, u) ∈ T trans

)
≥ p. (25)

Still, the random constraint inside the probability is not explicit yet and has to be resolved as an
inequality system. By definition, the relation c(ξ, u) ∈ T trans is equivalent to the existence of a
pressure profile pentry at the entry and a solution (p, q) of the PDE (1) satisfying boundary and initial
conditions

p(L, t) = pentry(t); q(R, t) = c(ξ, u)(t) ∀t ∈ [0, T ], p(R, 0) = p0
R; q(L, 0) = q0

L

as well as the constraints (3). Denote by F (pL, qR, p
0
R, q

0
L) the pressure function p associated with

the unique solution (p, q) of the PDE (1) under boundary and initial conditions

p(L, t) = pL(t); q(R, t) = qR(t) ∀t ∈ [0, T ], p(R, 0) = p0
R; q(L, 0) = q0

L.

Then, the probability in (25) can be written as

P
(
c(ξ, u) ∈ T trans

)
= P

(
∃ pentry : [0, T ]→ R : pentry(t) ∈ [pmin

entry, p
max
entry];

F
(
pentry, c(ξ, u), p0

R, q
0
L

)
(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ]

) (26)

The remaining problem with this representation of the probability for feasible transport is the ambigu-
ity of the pressure profile pentry at the entry. Plugging an arbitrary function here which satisfies the
pressure bounds at the entry will yield a probability which is smaller than that on the left-hand side. To
increase this smaller probability, pentry should not just be a fixed function of time but also depend on
the random load c(ξ, u). Moreover, this functional dependence should be chosen as to maximize the
probability on the right-hand side (thus making it coincide with that on the left-hand side). To find this
functional dependence, which should moreover be given as an explicit formula in order to deal with the
probability analytically in the framework of an optimization algorithm, appears to be hardly possible.
Once more, we find a remedy in the quasi-static model where it was possible to recover pressure
functions at the entry and exits from a given complete scenario such that the quasi-static transport
model and the corresponding pressure bounds are satisfied whenever the underlying stochastic sce-
nario ξ was technically feasible (see (22),(23)). The idea for the transient case is now to use the entry
profile from (22) as a boundary condition in the transient model, thus removing the ambiguity in (26)
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by selecting a concrete function. Since pentry in (22) may violate the lower pressure bound pmin
entry

(while satisfying pmax
entry by construction) we additionally raise it up to the lower bound then, so that the

scenario-dependent pentry automatically satisfies the pressure bounds. Given the definition (21), (22)
can be adapted to define the profile

p∗entry(c(ξ, u)) := max

{
pmin

entry,min

{
pmax

entry,

√
γ̃c2(ξ, u) + (pmax

R )2

}}
. (27)

After having fixed a profile p∗entry satisfying the pressure bounds, we may approximate the probability
P (c(ξ, u) ∈ T trans) in (26) by the probability

P
(
F
(
p∗entry(c(ξ, u)), c(ξ, u), p0

R, q
0
L

)
(R, t) ∈ [pmin

R , pmax
R ] ∀t ∈ [0, T ]

)
(28)

which just relates to the pressure at the exit given the initial and boundary conditions. Here, the random
constraints are still continuous in time. Next, we want to subordinate the random constraint inside the
probability to the time discretization and the implicit Euler scheme of (7) for numerically identifying the
state variables of the PDE (1). We observe first that for k = 1, . . . , N the values of the mapping F
at tk := kT/N correspond to the pressures pk in (7). In this discretization scheme, the pressures
(and flows) are associated with the discretized load z at the exit and pressure w at the entry. Our
time-discrete version of (28) therefore becomes

P
(
F̃ k
(
w(ξ, u), z(ξ, u), p0

R, q
0
L

)
∈ [pmin

R , pmax
R ] k = 1, . . . , N

)
, (29)

where F̃ k (w(ξ, u), z(ξ, u), p0
R, q

0
L) refers to the value pk in the scheme (7) obtained with initial con-

ditions p0 := p0
R and q0 := q0

L and boundary values w, z defined by

zk(ξ, u) := c(ξ, u)(tk) wk(ξ, u) := p∗entry(c(ξ, u))(tk) k = 1, . . . , N.

In order to remove the functional character of the right-hand side expressions, we recall from (18) that

y∗(qexit, u)(t) = ψ1(qexit(t), u(t)) ∀t ∈ [0, T ],

where

ψ1(α, β) :=

{
β if

(
pmin

entry

)2 − (pmax
R )2 − γ̃α2 ≤ γ̃ (α + β)2 −

(
pmax

entry

)2
+
(
pmin
R

)2

0 else
.

Accordingly, (21) yields that
c(ξ, u)(t) = ξ(t) + ψ1(ξ(t), u(t))

Similarly, we derive from (27) that

p∗entry(c(ξ, u))(t) = ψ2(c(ξ, u)(t)); ψ2(τ) := max

{
pmin

entry,min

{
pmax

entry,

√
γ̃τ 2 + (pmax

R )2

}}
.

Summarizing, we have that

zk(ξ, u) = ξ(tk) +ψ1(ξ(tk), u(tk)); wk(ξ, u) := ψ2(ξ(tk) +ψ1(ξ(tk), u(tk))) k = 1, . . . , N.

In the last step, we take into account the concrete representation ξ = d(ξ̃, ·) of our random process
according to (9), so that randomness enters via the finite-dimensional Gaussian random vector ξ̃. This
leads us to define for k = 1, . . . , N :

ẑk(ξ̃, u) := zk(ξ, u) = d(ξ̃, tk) + ψ1(d(ξ̃, tk), u(tk)) (30)

ŵk(ξ̃, u) := wk(ξ, u) = ψ2(d(ξ̃, tk) + ψ1(d(ξ̃, tk), u(tk))) (31)
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Figure 5: Comparison of the maximum capacities in a single pipe computed for the quasi-static and
transient model, respectively. The transient computations are related to a two-point and three-point
(advanced) space discretization.

In this way, the probability in (29) can be written in the form of (11) amenable to spherical-radial
decomposition upon setting η := ξ̃,M := 2N, u := (u1, . . . , u24) and, for k = 1, . . . , N :

gk(u, ξ̃) := pmin
R − F̃ k

(
ŵ

(
ξ̃,

24∑
i=1

uiχ(i−1,i]

)
, ẑ

(
ξ̃,

24∑
i=1

uiχ(i−1,i]

)
, p0

R, q
0
L)

)

gN+k(u, ξ̃) := F̃ k

(
ŵ

(
ξ̃,

24∑
i=1

uiχ(i−1,i]

)
, ẑ

(
ξ̃,

24∑
i=1

uiχ(i−1,i]

)
, p0

R, q
0
L)

)
− pmax

R .

Observe that the functions gk are fully explicit via (30), (31) upon taking into account that in these
formulae

u(tk) =
24∑
i=1

uiχ(i−1,i](tk) k = 1, . . . N.

We may therefore apply the method of spherical-radial decomposition presented in Section 2.5 in
order to calculate the probabilistic constraint inside the optimization problem (6). As pointed out in
Section 2.5, an efficient numerical treatment of the optimization problem will also require the gradient
of this probability as a function of the decision vector u. This can be done with the aid of formula (14).
As described below this formula, it will be necessary to calculate the partial gradients with respect
to u and η = ξ̃ of the constraint functions gk. This can be realized using the explicit formulae for
these functions provided above. More precisely, the gradients for ẑ and ŵ follow from (30) and (31),
respectively, whereas the gradient of F̃ k (playing the role of pk in the implicit Euler scheme (7)) can
be computed via the updating formula (8).

Figure 5 illustrates the solution of the probabilistic capacity maximization problem in the case of tran-
sient gas flow. It can be seen that a small deviation of the solution based on the two-point discretization
scheme (7) from the solution of the quasi-static model of gas transport (the same as in Fig. 2) appears.
However, when passing to a finer three-point discretization in space, this small gap is further reduced
such that the deviation is widely neglactable. This confirms the fact that the solutions in the transient
and quasi-static models almost coincide.
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4 Probabilistic capacity maximization in a network with tree
structure

In this section we want to generalize the ideas related with a single pipe and presented in the pre-
vious section to a general network. As before, we shall first deal with the quasi-static model of gas
transport. We shall keep the assumption of dealing with a single entry only at which gas is injected,
whereas there may be several exits now at which gas is withdrawn for consumption. We shall further
assume that the network is a tree. This would not be necessary for a generalization of Proposition
(3.1) which addresses the reformulation of technical feasibility of exit-loads ξ by means of an explicit
inequality system. Indeed, such inequality system would have to be complemented by certain equa-
tions in additional variables corresponding to fundamental cycles in the network (see, [10, Theorem
1]). A corresponding result incorporating unknown loads y of potentially new customers along the lines
of Corollary 3.1 appears to be hardly possible in the presence of cycles. Therefore, we restrict our pre-
sentation to networks with tree structure from the very beginning, in which case the generalization of
Proposition 3.1 too can be given in the form of an inequality system only.

4.1 Transport model for a tree

We shall assume that our gas network is a directed and contains G + 1 nodes, where the root node
’0’ is identified with the (single) entry and nodes ’1’ to ’G’ correspond to the exits. We denote the set of
arcs in the tree by E and the arc-dependent coefficients γ̃ from (4) by γ̃k,l (for (k, l) ∈ E ). Moreover,
we assume that all arcs in E are directed away from the root. To describe the network topology we
introduce the (reduced) node-arc incidence matrices AL, AR ∈ RG×|E| defined by (AL)ke := −1 if
node k is left node of arc e and (AL)ke := 0 otherwise, and, (AR)ke := +1 if node k is right node of
arc e and (AR)ke := 0 otherwise (k = 1, . . . , G; e ∈ E ). When dealing with the transient gas flow in
a tree network we are going to apply a priori the two-point space discretization of the isothermal Euler
equations (1) for each pipe of the given network.

Before starting the analysis, the meaning of ’technical feasibility’ from Definitions 1 and 2 have to be
generalized from a single pipe to the network.

Definition 3. A vector of load profiles qexit = (qexit
1 , . . . , qexit

G ) for gas withdrawal at the exits will
be said to be technically feasible w.r.t. transient gas flow if there exist vectors of pressure and flow
profiles pL, pR and qL, qR along the directed arcs of E , where each component is either the left/right
pressure or the left/right flow of a certain pipe, respectively; solving component-wise (for each arc
e ∈ E )

∂tpR +
α

h
(qR − qL) = 0

∂tqL +
β

h
(pR − pL) + γ

qL|qL|
pR

= 0
∀t× [0, T ], (32)

satisfying the flow balance equation

ALqL + ARpR = qexit ∀t ∈ [0, T ].

Moreover, there exist a vector of pressure profiles p = (p0, . . . , pG) at the entry and all exit nodes,
respectively, satisfying the coupling constraints

p
(k,l)
L = p

(m,k)
R = pk ∀t ∈ [0, T ]; k = 0, . . . , G; ∀(m, k), (k, l) ∈ E ,
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and the pressure bounds

pk(t) ∈ [pmin
k , pmax

k ] ∀t ∈ [0, T ]; k = 0, . . . , G.

Definition 4. A vector of load profiles qexit = (qexit
1 , . . . , qexit

G ) for gas withdrawal at the exits will be
said to be technically feasible w.r.t. quasi-static gas flow if there exist a vector of pressure profiles
p = (p0, . . . pG) at the entry and all the exits, respectively, and a vector f = (fk,l) of flow profiles
along the directed arcs (k, l) ∈ E satisfying the pressure drop equations

p2
k(t)− p2

l (t) = γ̃k,l fk,l(t)|fk,l(t)| (t ∈ [0, T ]; (k, l) ∈ E),

the Kirchhoff law ∑
{l:(l,k)∈E}

fl,k −
∑

{l:(k,l)∈E}

fk,l = qexit
k ∀t ∈ [0, T ]; k = 0, . . . , G,

as well as the pressure bounds

pk(t) ∈ [pmin
k , pmax

k ] ∀t ∈ [0, T ]; k = 0, . . . , G.

The definitions of the sets T trans, T qstat will remain the same as in the case of a single pipe except
that they now refer to Definitions 3 and 4 in the context of a network.

4.2 The quasi-static case

In this section we are going to generalize the results of Sections 3.1 from a single pipe to a tree-like
network as introduced above. Our probabilistic capacity maximization problem with quasi-static gas
transport along a tree with an entry as root node ’0’ and exit nodes ’1’ to ’G’ now reads as

max
(uik)i,k∈R24×G

+

G∑
k=1

24∑
i=1

uik subject to

P

(
ξ + y ∈ T qstat ∀y : [0, T ]→ RG : 0 ≤ yk ≤

24∑
i=1

uikχ(i−1,i] (k = 1, . . . , G)

)
≥ p .

(33)

Here, the array (uik)i=1,...,24;k=1,...,G represents the hourly discretized free capacities at the exit nodes
k = 1, . . . , G corresponding at node k to the function of time

uk(t) =
24∑
i=1

uikχ(i−1,i](t).

To start with, Proposition 3.1 generalizes as

Proposition 4.1. For a given vector qexit = (qexit
1 , . . . , qexit

G ) ≥ 0 of exit load profiles, the following
equivalence holds true:

qexit ∈ T qstat ⇐⇒ hk(q
exit(t))+(pmax

k )2−hl(qexit(t))−(pmin
l )2 ≥ 0 ∀k, l = 0, . . . , G ∀t ∈ [0, T ],

where

hk(z) :=
∑
e∈Π(k)

γ̃e

 ∑
m�H(e)

zm

2

Here, Π(k) denotes the unique directed path from the root to node k, where for the root itself we put
Π(0) := ∅. In particular, h0 ≡ 0. The relation k � l for k, l ∈ {0, . . . , G} means that Π(k) passes
through l. H(e) refers to the head of the (directed) arc e ∈ E .
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Proof. This result has been shown for a stationary flow model (no time involved) in [10, Corollary 1].
In the quasi-static model considered here, stationarity is assumed at each time t ∈ [0, T ], hence the
result is just applied point-wise in time.

The proposition shows how to equivalently reformulate in the quasi-static network model the technical
feasibility of a vector of general load profiles as an explicit system of inequalities. The incorporation of
unknown loads y in the limits of free capacities cannot be derived as easily as in Corollary 3.1 for a
single pipe. Nonetheless, we have the following

Proposition 4.2. For a given vector qexit = (qexit
1 , . . . , qexit

G ) ≥ 0 of exit load profiles and a given
vector u = (u1, . . . , uG) ≥ 0 of time-dependent free capacities at the exits the following equivalence
holds true:

qexit + y ∈ T qstat ∀y : [0, T ]→ RG : 0 ≤ y ≤ u

⇐⇒
αk,l(q

exit, u, t) ≥ 0 ∀k, l = 0, . . . , G ∀t ∈ [0, T ],

where, for k, l = 0, . . . , G and t ∈ [0, T ],

αk,l(q
exit, u, t) :=∑

e∈Π(k)\Π(l)

γ̃e

( ∑
s�H(e)

qexit
s (t)

)2

+ (pmax
k )2 −

∑
e∈Π(l)\Π(k)

γ̃e

( ∑
s�H(e)

qexit
s (t) + us(t)

)2

− (pmin
l )2.

Proof. Again, the corresponding result has been proven in [13, Section 3.2] for a stationary flow model
and it follows in the quasi-static case by applying it pointwise in time.

Equipped with the result of the previous proposition and passing to a time discretization of the form
tj := j ∗ T/N for j = 1, . . . , N as in the case of a single pipe, we may rewrite the probabilistic
constraint in our optimization problem (33) again in the standard form of (11). To this aim, we exploit a
statistical model

ξk(t) = d(ξ̃k, t) ∀t ∈ [0, T ] (34)

for the random load at each exit node k = 1, . . . , G of the tree much like we did in Section 2.4 for a
single exit. Here, ξ̃ = (ξ̃k)

G
k=1 is a Gaussian random vector. Now, we put

gk,l,j(u, ξ̃) :=
∑

e∈Π(l)\Π(k)

γ̃e

( ∑
s�H(e)

d(ξ̃s, tj) +
24∑
i=1

uisχ(i−1,i](tj)
)2

+ (pmin
l )2

−
∑

e∈Π(k)\Π(l)

γ̃e

( ∑
s�H(e)

d(ξ̃s, tj)
)2

− (pmax
k )2 (k, l = 0, . . . G; j = 1, . . . N),

and, observe that indeed the probabilistic constraint in (33) is in the standard form of (11) with η := ξ̃
and M := (G+ 1)2N . As in the case of a single pipe, the method of spherical-radial decomposition
described in Section 2.5 can be employed in order to compute values and gradients for the probability
function ϕ and, thus, numerically to solve problem (33).

Fig. 6 shows the solution of the capacity maximization according to problem (33) for a small tree
example (v-net) with two exit nodes G = {1, 2} involving two arcs that origin from the single entry
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Figure 6: Solution of the capacity problem (33) computed by the quasi-static model obtained for exit 1
(left) and exit 2 (right) for a small v-net containing a single entry and two exit nodes.

node, i.e. the set of edges is given by E = {(0, 1), (0, 2)}. For the exit demands we used the same
fitting as given in Section 2.4 but with slightly varying scaling between exit node one and two. Moreover,
a randomly obtain small correlation between both exits is considered in the numerical example. The
results are comparable two that of the single pipe before. Due to the different scaling of the demand
curves, the capacity at exit one turns out to be a bit smaller than the capacity at exit two. This could
be expected because the average demand at exit one is assumed to be higher along the overall time
horizon in this example.

4.3 Worst case scenarios and recovery of scenario-dependent pressure
profiles

In this section we generalize the results of Section 3.3 to a network with tree structure.

Proposition 4.3. For a given vector qexit = (qexit
1 , . . . , qexit

G ) ≥ 0 of exit load profiles and a given
vector u = (u1, . . . , uG) ≥ 0 of time-dependent free capacities at the exits the following equivalence
holds true:

qexit + y ∈ T qstat ∀y : [0, T ]→ RG : 0 ≤ y ≤ u⇐⇒ qexit + y∗(qexit, u) ∈ T qstat,

where, for s = 1, . . . , G and t ∈ [0, T ],

[y∗(qexit, u)]s(t) :=

{
us(t) if s � H(e) for some e ∈ Π(l∗(qexit, u, t)) \ Π(k∗(qexit, u, t))

0 otherwise
.

and l∗(qexit, u, t), k∗(qexit, u, t) ∈ {0, . . . , G} are chosen such that

αk∗(qexit,u,t),l∗(qexit,u,t)(q
exit, u, t) ≤ αk,l(q

exit, u, t) ∀k, l ∈ {0, . . . , G}

holds true for the functions αk,l defined in Proposition 4.2.

Proof. (=⇒) This direction is obvious, by construction y∗(qexit, u) satisfies 0 ≤ y∗(qexit, u) ≤ u.

(⇐=) By assumption and by Proposition 4.1 (applied to qexit + y∗(qexit, u) rather than qexit) we have
that, for all k, l = 0, . . . , G and t ∈ [0, T ],

hk(q
exit(t) + y∗(qexit, u)(t)) + (pmax

k )2 − hl(qexit(t) + y∗(qexit, u)(t)))− (pmin
l )2 ≥ 0. (35)
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The definition of hk implies that, for k = 0, . . . , G and t ∈ [0, T ],

hk(q
exit(t) + y∗(qexit, u)(t)) =

∑
e∈Π(k)

γ̃e

 ∑
s�H(e)

qexit
s (t) + [y∗(qexit, u)]s(t)

2

. (36)

We fix an arbitrary t ∈ [0, T ] and put shortly k∗ := k∗(qexit, u, t) and l∗ := l∗(qexit, u, t) for the
indices introduced in the statement of this Proposition. Then, (35) and (36) along with the definition of
the paths Π(k) yield that

0 ≤ (pmax
k∗ )2 + hk∗(qexit(t) + y∗(qexit, u)(t))− hl∗(qexit(t) + y∗(qexit, u)(t)))− (pmin

l∗ )2

= (pmax
k∗ )2 +

∑
e∈Π(k∗)\Π(l∗)

γ̃e

 ∑
s�H(e)

qexit
s (t) + [y∗(qexit, u)]s(t)

2

−
∑

e∈Π(l∗)\Π(k∗)

γ̃e

 ∑
s�H(e)

qexit
s (t) + [y∗(qexit, u)]s(t)

2

− (pmin
l∗ )2 .

We claim the following two relations:[
y∗(qexit, u)

]
s
(t) = 0 ∀s � H(e) ∀e ∈ Π(k∗) \ Π(l∗),[

y∗(qexit, u)
]
s
(t) = us(t) ∀s � H(e) ∀e ∈ Π(l∗) \ Π(k∗).

Indeed, the second relation follows immediately from the definition of y∗(qexit, u). As for the first one,
let e∗ ∈ Π(k∗) \ Π(l∗) and s � H(e∗) be arbitrarily given. Then, the path Π(s) leading to node s
contains the edge e∗. Assume that also there exists some edge e′ ∈ Π(l∗) \ Π(k∗) with s � H(e′).
Then, the path Π(s) leading to node s also contains the edge e′. This implies that within the path
Π(s) the edge e′ cannot precede or be identical with the edge e∗ (because then the contradiction
e′ ∈ Π(k∗) would arise). For the same reason, the edge e∗ cannot precede or be identical with the
edge e′ within Π(s). This, is a contradiction. Hence, there cannot exist any e ∈ Π(l∗) \ Π(k∗) with
s � H(e). From the definition of y∗(qexit, u) we derive the first relation.

Now, with the proven two relations and exploiting the definitions of the indices k∗, l∗ in the statement
of this proposition, we may continue the estimation above by

0 ≤ (pmax
k∗ )2 +

∑
e∈Π(k∗)\Π(l∗)

γ̃e

 ∑
s�H(e)

qexit
s (t)

2

−
∑

e∈Π(l∗)\Π(k∗)

γ̃e

 ∑
s�H(e)

qexit
s (t) + us(t)

2

− (pmin
l∗ )2

= αk∗,l∗(qexit, u, t) ≤ αk,l(q
exit, u, t) ∀k, l ∈ {0, . . . , G}.

Since t ∈ [0, T ] has been arbitrarily fixed, the assertion now follows from Proposition 4.2.

Next, we follow the concept relying on the possibility to remove the ambiguity of the load scenario y
for potential future clients in (33), similarly as in the single pipe implementation before. Therefore, we
define the complete scenario again to be the sum of a given demand scenario and the associated
worst case scenario:

c(qexit, u) := qexit + y∗(qexit, u). (37)
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Thanks to Proposition 4.3, we may simplify the probability in (33) as

P
(
ξ + y ∈ T qstat ∀y : [0,T ]→ RG : 0 ≤ yk ≤ uk, k = 1, . . . , G

)
= P

(
c(ξ, u) ∈ T qstat

)
for uk :=

24∑
i=1

uikχ(i−1,i], k = 1, . . . , G.

It remains to recover the scenario-dependent profiles for the pressures p0(·), pk(R, ·) at the entry and
exits (k = 1, . . . , G), given a function of free capacities and a (random) load scenario at the exit.

Proposition 4.4. Let qexit = (qexit
1 , . . . , qexit

G ) ≥ 0 be a technically feasible vector of exit load profiles
qexit ∈ T qstat. Then, the vectors of pressure and flow profiles defined as

p0(t) := min
k∈{0,...,G}

(
hk(q

exit(t)) + (pmax
k )2

) 1
2

pk(t) :=
(
(p0(t))2 − hk(qexit(t))

) 1
2 (k = 1, . . . , G)

fk,l(t) :=
∑
m�l

qexit
m (t) ((k, l) ∈ E)

are satisfying the pressure drop equations, the Kirchhoff law and the pressure bounds given in Defini-
tion 4; hk(·) is as given in Proposition 4.1.

Proof. The result follows from the more general proof of [10, Theorem 1] applied for a tree network,
and, applied point-wise in time for each t ∈ [0, T ].

The formulae for pressure recovery for a general feasible load profile qexit at the exits, given by the
proposition, have to apply to a complete scenario of the form (37) again. Accordingly, we obtain that

p0(t) :=
√

min
k∈{0,...,G}

hk
(
qexit(t) + y∗(qexit, u)(t)

)
+ (pmax

k )2, (38)

pk(t) :=
√

(p0(t))2 − hk
(
qexit(t) + y∗(qexit, u)(t)

)
(k = 1, . . . , G). (39)

The formulae (38) and (39) for the pressures at the entry and exits generalize formulae (22) and
(23) obtained for a single pipe before. By applying the representation of the worst-case scenario
y∗(qexit, u) from Proposition 4.3, a recovering of the pressure profiles at the entry and exits from
a given load profile at the exits and from a given function of free capacities is possible in a a tree
network situation as well.

4.4 The transient case

The probabilistic capacity maximization problem with transient gas transport along a tree is formulated
as in (33), where T qstat is replaced by T trans. The probabilistic constraint in the transient case reads

P

(
qexit + y ∈ T trans ∀y : [0, T ]→ RG : 0 ≤ yk ≤

24∑
i=1

uikχ(i−1,i] (k = 1, . . . , G)

)
≥ p .

(40)
As already stated for the single pipe, to derive a description of the conditions inside the probabilistic
constraint in terms of a family of inclusions, as in the quasi-static case, is hopeless in the transient
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case even more when considering a tree network. Instead of that, we assume that the quasi-static
model is sufficiently close to the transient model for more complex network structures than a single
pipe as well. In particular, under this assumption the worst-case function introduced in Proposition 4.3
may represent the system of inclusions in (40) by the single condition

c(qexit, u) := qexit + y∗(qexit, u) ∈ T trans,

where we apply the tree version of the complete scenario definition from (37). Therefore, for a tree
network the probabilistic capacity problem in the transient case is formulated as follows:

max
(uik)i,k∈R24×G

+

G∑
k=1

24∑
i=1

uik subject to P
(
c(ξ, u) ∈ T trans

)
≥ p . (41)

We want to resolve the still non-explicit random constraint inside the probability as an inequality system
similar as done for the single pipe in Section 3.4 before. By definition, the relation c(ξ, u) ∈ T trans is
now equivalent to the existence of vectors of profiles pL, pR and qL, qR solving component-wise the
PDE (32) and the existence of a vector of profiles p satisfying the boundary conditions

ALqL + ARpR = c(ξ, u) ∀t ∈ [0, T ]

p
(k,l)
L = p

(m,k)
R = pk ∀k = 0, . . . , G; ∀(m, k), (k, l) ∈ E .

According to the degree of freedom, under these boundary conditions the PDE (32) has a unique
solution if we consider the additional boundary and initial conditions

p0(t) = pentry(t) ∀t ∈ [0, T ]; pk(0) = p0
k, k = 1, . . . , G; qL(0) = q0

L.

When denoting byF (p0, c(ξ, u), p0, q0
L) the pressure function (p1, . . . , pG) associated with the unique

solution, then the probability in (41) can be written as

P
(
c(ξ, u) ∈T trans

)
= P

(
∃ p0 : [0, T ]→ R : p0(t) ∈ [pmin

0 , pmax
0 ];[

F
(
p0, c(ξ, u), p0, q0

L

)
(t)
]
k
∈ [pmin

k , pmax
k ] ∀t ∈ [0, T ]; k = 1, . . . , G

)
.

(42)

Just like in the single pipe problem, also in the tree formulation the probability is affected by the
choice of the pressure profile p0(·) at the entry. We are aiming to maximize the probability level on
the right-hand side. Instead of determining the profile p0(·) inside the optimization framework (which
is hardly possible) the idea once more is to make use of the opportunity to recover pressure functions
at the entry and exits in the quasi-static model. This suggests to use the entry profile from (38) for the
complete scenario as boundary condition in the transient model. To make sure to satisfy the pressure
bounds the pressure profile at the entry is eventually cut at the lower bound (the upper bound is
satisfied automatically). According to (38) we define the profile

p∗0(c(ξ, u)) := max

{
pmin

0 ,
√

min
k∈{0,...,G}

hk
(
qexit(t) + y∗(qexit, u)(t)

)
+ (pmax

k )2

}
. (43)

By the fixed entry pressure profile p∗0 the probability P
(
c(ξ, u) ∈ T trans

)
in (42) is approximated by

the probability

P
([
F
(
p∗0(c(ξ, u)), c(ξ, u), p0, q0

L

)
(t)
]
l
∈ [pmin

l , pmax
l ] ∀t ∈ [0, T ]; l = 1, . . . , G

)
(44)

that relates to the pressure bound conditions at the exits for the given initial and boundary conditions.
In order to transform the random constraints in (44) from continuous in time to time discrete we may
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apply the implicit Euler scheme (7) for solving the system of PDEs (32) (for each pipe). Based on
some time discretization tk := kT/N with k = 1, . . . , N the solution mapping F is replaced by the
mappings F̃ k

l (p∗0(c(ξ, u)), c(ξ, u), p0, q0
L) which denote the l-th component of the numerical solution

vector (pk1, . . . , p
k
G) of exit pressures at time steps k = 1, . . . , N , given the corresponding initial and

boundary values. The analog formula to (29) reads now:

P
(
F̃ k
l

(
p∗0(c(ξ, u)), c(ξ, u), p0, q0

L

)
∈ [pmin

l , pmax
l ] k = 1, . . . , N ; l = 1, . . . , G

)
. (45)

Now we can proceed as shown in Section 3.4 in details for the example of a single pipe, in order to
reformulate the condition within the probability (45) in terms of a finite system of well-defined explicit
inequalities. The inequalities are obtained formally as system with a number of 2NG inequalities

gkl (u, ξ̃) := pmin
l − F̃ k

l (p∗0(c(ξ, u)), c(ξ, u), p0, q0
L) ≤ 0

gN+k
l (u, ξ̃) := F̃ k

l (p∗0(c(ξ, u)), c(ξ, u), p0, q0
L)− pmax

l ≤ 0

for k = 1, . . . , N and l = 1, . . . , G. Plugging in the formula (34) for the demand ξ, formula (37) for
the complete scenario c(ξ, u) (applying the definition of the worst case y∗ in Proposition 4.3), and,
formula (43) for the worst case entry pressure p∗0; the above inequality system becomes fully explicit.
By doing so, we are able to apply the method of spheric-radial decomposition presented in Section 2.5
in order to compute the probabilistic constraint inside the optimization problem (41) related to the
general transient case.
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Figure 7: Comparison of the numerical solutions of the capacity maximization for the quasi-static and
transient model using the v-net tree example. Displayed are the results for exit 1 (left) and exit 2 (right).
The yellow curves refer to an advanced space discretization by subdividing the two pipes of the v-net
into two segments each.

We want to conclude this section by the comparison of the numerical solutions of the problem of maxi-
mizing the free capacity which are obtained by the quasi-static and by the transient model, respectively.
In the single pipe example we have already made the observation that the difference between the two
solutions is reasonable small (see Fig. 5), in particular, if the length of the pipe is not too large (oth-
erwise just subdivide the pipe into a couple of smaller ones). As supposed, this observation can be
validated for more involved network structures as well. To confirm this result we have solved the v-net
example given in Section 4.2 even for the transient model. Fig. 7 compares the computed free capacity
profiles for the two exits of the v-net obtained for the two models, the quasi-static and the transient
one. The shown pictures are very similar to the picture of Fig. 5 that is related to the single pipe.
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