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On loss functionals for physics-informed neural networks for
convection-dominated convection-diffusion problems

Derk Frerichs-Mihov, Linus Henning, Volker John

Abstract

In the convection-dominated regime, solutions of convection-diffusion problems usually pos-
sesses layers, which are regions where the solution has a steep gradient. It is well known that many
classical numerical discretization techniques face difficulties when approximating the solution to
these problems. In recent years, physics-informed neural networks (PINNs) for approximating the
solution to (initial-)boundary value problems received a lot of interest. In this work, we study various
loss functionals for PINNs that are novel in the context of PINNs and are especially designed for
convection-dominated convection-diffusion problems. They are numerically compared to the vanilla
and a hp-variational loss functional from the literature based on two benchmark problems whose
solutions possess different types of layers. We observe that the best novel loss functionals reduce
the L2(Ω) error by 17.3% for the first and 5.5% for the second problem compared to the methods
from the literature.

1 Introduction

The distribution of a scalar quantity like temperature or concentration inside a flowing medium can be
modeled by convection-diffusion-reaction problems. In the steady-state case, which is considered in
this work, they are formulated as follows: Find a sufficiently smooth solution u : Ω→ R such that

−ε∆u+ b · ∇u+ cu = f in Ω, u = g along ∂Ω, (1)

where Ω ⊂ Rd, d ∈ { 2, 3 }, is a bounded domain with polyhedral Lipschitz boundary ∂Ω, 0 < ε ∈ R
is a positive diffusion coefficient, b ∈ [W 1,∞(Ω)]d models the convection field, c ∈ L∞(Ω) denotes
the reaction coefficient, f ∈ L2(Ω) describes external sources or sinks, and g ∈ H1/2(∂Ω) pre-
scribes the value of u at the boundary. For the sake of simplifying the presentation, we only assume
Dirichlet boundary conditions in this work. However, incorporating Neumann boundary conditions is
straightforward both in the continuous problem and the numerical algorithms.

In practical applications, often the convection is orders of magnitudes stronger than the diffusion. In
this so-called convection-dominated regime that is mathematically described by ε� L‖b‖[W 1,∞(Ω)]d

with a characteristic length scale of the problem 0 < L ∈ R, the solution usually possesses layers,
which are small subregions where the solution has a steep gradient. Usually the layers are so small
that they cannot be resolved on affordable meshes. Thus, one encounters the typical situation of a
multiscale problem, namely that (the most) important features of the solution cannot be resolved, they
are subgrid scales. Because of the multiscale character it is challenging for many numerical methods to
accurately approximate the solution in a vicinity of layers; see, e.g., [47, 28, 3, 26, 15]. Furthermore,
the construction and numerical analysis of improved methods is an active field of research, see [4].

Within the last two decades, deep learning techniques started to reveal their full potential, and they
have been already successfully applied to facilitate classical numerical methods; see, e.g., [46, 5, 50,
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41, 18]. Moreover, deep neural networks can also be deployed instead of classical methods to directly
approximate the solution of initial-boundary value problems (IBVPs). One of the earliest publications is
[12] and dates back to 1994. However, it has been only in recent times that their true potential was fully
grasped when they were rediscovered in a series of papers starting with [45]. Since then, numerous
contributions and enhancements have been made, leading to their application in a diverse range of
problems. For a comprehensive overview of PINNs and their variations, we refer to, e.g., [32, 7, 8] and
the references therein.

As previously mentioned, PINNs are an alternative numerical approach to approximate solutions to
IBVPs. The feasibility of this approach is based in the renowned universal approximation theorem,
which states that a feed-forward multilayer perceptron model, possessing a linear activation function in
the output layer and at least one hidden layer with any bounded non-polynomial activation function, can
achieve an arbitrary level of accuracy in approximating any Borel measurable function that maps from a
finite-dimensional space to another one if it has enough nodes in the hidden layer [22, p. 194]; see also
[44] for an overview. Moreover, the theorem’s scope is extended to encompass not only the function
itself but also its derivatives up to order m ∈ N, provided that the function is m times continuously
differentiable [44, Section 4]. Generalizations of the theorem include a broader class of activation
functions, incorporating the ReLU function, among others [22, p. 195]. However, it is noteworthy that
the ability of multilayer perceptron models to approximate functions does not necessarily imply that
typical algorithms will converge towards such a network.

In a nutshell, the main idea involves approximating the solution to (initial-)boundary value problems
using multilayer perceptron models by minimizing a loss functional that typically encompasses the
residual of the governing equations, the boundary, and initial conditions, and possibly other underlying
physical laws or measured data [32]. The computation of the loss functional involves the use of
so-called collocation points, which are points selected within the domain and on the (space-time-
)boundary where the loss functional is evaluated. Two key advantages of PINNs are their mesh-free
nature and their adaptability to various initial-boundary value problems. This versatility allows them
to handle different geometries and problem types [8]. Furthermore, they offer a seamless framework
for incorporating (noisy) data from measurements and can be employed to solve inverse problems
to uncover unknown terms in the governing equations [32]. An additional strength of PINNs lies in
their ability to handle the same initial-boundary value problem for different parameters, such as distinct
diffusion coefficients in convection-diffusion-reaction problems. Once a PINN is trained to represent
solutions for various parameters, it can efficiently provide solutions for previously unknown parameters
with minimal additional effort. This sets them apart from many classical methods that often struggle to
meet all these requirements [32].

However, PINNs also come with certain drawbacks. One significant disadvantage is the scarcity of
theoretical understanding regarding their convergence towards the solution of the continuous problem;
see, e.g., [32, 8] and the related references. Consequently, unlike classical methods, there are only
few guarantees about the quality of the approximations. This limitation is partially due to the stochastic
nature of the training process, making it difficult to ensure convergence to a global minimum. Another
challenge is the selection of appropriate hyperparameters for the underlying multilayer perceptron
models (MLPs). Currently, determining these hyperparameters typically relies on (automated) trial-and-
error techniques, as finding optimal values remains an open problem. For insights on hyperparameter
optimization approaches, we refer to [52] and references therein.

Despite these unresolved challenges, PINNs have demonstrated successful applications in diverse
fields, especially when dealing with solutions that are in some sense smooth. However, they face
difficulties when approximating the solution to perturbed problems [38]. The following literature survey
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reveals that only a limited number of publications focus on PINNs for convection-dominated convection-
diffusion-reaction problems in more than one space dimension. One notable reference, [35], introduces
a variational form of the loss functional, which is tested on time-dependent one- and two-dimensional
convection-diffusion-reaction problems with diffusion coefficients ranging between 0.1 and 0.001. The
study examines various test cases, including one with an interior layer, and shows that the trained
PINNs can reasonably capture the solution behavior. Reference [23] explores PINNs in the context of
time-dependent advection-dispersion problems in one and two dimensions, particularly for moderate
Péclet numbers of order O(1), O(10), and O(100). The results demonstrate that the choice of
weights significantly influences the solution quality, with the PINN approximation being comparable
in accuracy to the SUPG method [23]. These findings are extended in [54], which examines sharply
perturbed initial conditions and proposes a normalized form of equations and PINNs, along with criteria
for choosing the weights of the loss functionals. For two-dimensional convection-diffusion problems,
[20, 21] report that PINNs can handle diffusion coefficients aroundO(10−1), but the accuracy of the
approximation significantly deteriorates for smaller magnitudes. Nonetheless, PINNs are well-suited for
approximating the parametrized solution with varying diffusion coefficients. In another approach [2],
the authors introduce boundary-layer PINNs, inspired by the expansion theory of singularly perturbed
boundary layer problems. This method generates two PINNs: one for the boundary layer and another
for the remaining domain, which are then combined. The boundary-layer PINNs exhibit superior
performance compared to standard PINNs when tested on one- and two-dimensional convection-
dominated convection-diffusion problems. However, their approach has a higher computational cost
since it needs to optimize two networks and requires a priori knowledge of the boundary layer’s position.
In the preprint [51], difficulties faced by traditional PINNs for convection-dominated convection-diffusion
problems in one, two, and three space dimensions are discussed. The authors propose an adaptive
approach for choosing weights for the interior loss and surprisingly find that selecting collocation points
away from layers yields better results than increasing the number of points within the layer. Other
related papers, including [11, 25, 48, 43, 39], typically focus on one-dimensional problems or mildly
convection-dominated convection-diffusion problems.

The goal of this contribution consists in expanding upon the knowledge presented in the aforementioned
references concerning PINNs for convection-dominated convection-diffusion-reaction problems. We
propose and study various loss functionals that are new in the context of PINNs and deploy them to
train hard-constrained PINNs for approximating the solution of two benchmark problems defined in [31].
These loss functionals are primarily based on cost functionals from [29, 27, 37], which are specifically
designed to tackle convection-dominated convection-diffusion-reaction problems. In two numerical
experiments, we compare them to PINNs trained with the classical loss functional and hp-variational
PINNs from [34]. The proposed loss functionals lead to errors, in the L2(Ω) norm, which are 17.3%
and 5.5%, resp., smaller than the methods from the literature when trained to approximate the solution
of the two benchmark problems. Furthermore, we observe that the problem with an interior layer can
be approximated an order of magnitude better than the problem with boundary layers which is in
agreement with the findings of the above-mentioned references. The code and the data used for this
contribution can also be found online [17].

The structure of this contribution is as follows: In Section 2, we give a brief introduction into training
deep neural networks, the loss functionals of vanilla PINNs and of hp-variational PINNs, and the idea
of hard-constrained PINNs. This is followed in Section 3 by a description of the novel loss functionals
for convection-dominated convection-diffusion equations proposed in this work. These ideas are
numerically investigated in Section 4 using two benchmark problems. Finally, in Section 5 a summary is
given and an outlook is provided.
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2 Hard-constrained physics-informed neural networks for con-
vection-diffusion problems

In a nutshell, physics-informed neural networks try to approximate the solution to initial-boundary value
problems by minimizing the residual of the governing equations, and of boundary and initial conditions
[32]. This section provides a short description of the basics of neural networks, two commonly known
loss functionals from the literature to train PINNs, and a way how to prescribe the Dirichlet boundary
conditions exactly.

2.1 Basic about neural networks

Let us briefly recall the structure of MLPs that are the underlying type of neural networks used in this
work; see also [24] for a different presentation. MLPs consist of nL ∈ N so-called layers, and each
layer is build from ni ∈ N, i = 1, 2, . . . , nL, nodes often referred to as neurons that each represent a
real number. Let ŷi ∈ Rni , i = 1, 2, . . . , nL, be the vector of nodes of the i-th layer, i.e., each entry in
the vector corresponds to the value of a particular node in the layer. Then, for a given x ∈ Ω, the value
uN (x) is computed recursively by defining

ŷ1 := x, (2a)

ŷi := σi

(
Wiŷi−1 + b̂i

)
, i = 2, 3, . . . , nL, (2b)

uN (x) := ŷnL
, (2c)

where b̂i ∈ Rni is a vector called bias, the matrix Wi ∈ Rni × Rni−1 is the so-called weight matrix,
and σi : Rni → Rni is a component-wise defined (non-linear) mapping, usually denoted as activation
function. Note that by construction the regularity of the activation functions is transferred to the
neural network. Usually, the first and the final layer are called input and output layers, resp., and
their number of nodes is determined by the function they shall approximate, i.e., n1 := dim(Ω) and
nL := dim(Im(u)) in the case of PINNs. Since in this contribution we aim for PINNs that approximate
the exact solution u : Ω→ R to the boundary value problem (BVP) in (1), it is dim(Ω) = d and
dim(Im(u)) = 1. Furthermore, all intermediate layers are referred to as hidden layers. In Figure 1 an
example MLP that maps from R3 to R with two hidden layers is shown. Two examples of activation
functions are the hyperbolic tangent tanh and mish first mentioned in [42] that are, for a given x ∈ R,
defined as

tanh(x) :=
ex − e−x
ex + e−x

, mish(x) := x · tanh (ln (1 + ex)) , (3)

and which are depicted in Figure 2.

The collection of all entries of the weight matrices and the bias vectors are referred to as parameters
p ∈ Rdp , where dp :=

∑nL

i=2 (ni + ni · ni−1). All remaining user-chosen quantities needed to specify
a network, e.g., the number of layers nL, the number of nodes in each layer ni, i = 1, 2, . . . , nL,
the choice of the activation functions and more regarding the training, introduced below, are called
hyperparameters.

During the process that is denoted as training the parameters p are optimized to minimize a certain
loss L : Rdp → R that maps a neural network parametrized by its parameters to a non-negative real
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input layer
ŷ1 := x

hidden layer
ŷ2

hidden layer
ŷ3

output layer
ŷ4 =: uN (x)

Figure 1: Visualization of a multilayer perceptron model uN mapping from R3 to R with two hidden
layers. Each circle represents a node and arrows indicate which previous nodes are used to compute
the value of the node the arrow points to. For x ∈ R3, each vector of nodes ŷi, i = 1, 2, 3, 4, is
computed using equations (2a) to (2c).

number. In other words, during the training we are searching for the optimal parameters p∗ ∈ Rdp

such that

p∗ ∈ arg min
p∈Rdp

L(uN ;p), (4)

where we used uN ;p to encode that the neural network uN is parametrized by the parameters. For
the sake of brevity, in what follows we will write only uN and L(uN ) if no confusion can occur. From
a practical point of view, any optimization routine can be used to solve (4), but often a variant of the
stochastic gradient descent method is chosen [24].

2.2 Examples of loss functionals

To ensure that neural networks approximate a certain mapping, a loss functional has to be defined that
measures the difference to that mapping. In the context of PINNs, the neural network shall approximate
the solution u to a given IBVP, here the problem given in (1). The idea of Dissanayake and Phan-Thien
[12], which was recently rediscovered by Raissi, Perdikaris and Karniadakis [45], is to choose the
loss functional as the sum of the strong form of the residual of the governing equations and the initial
and boundary conditions of the problem; cf. [12, 45]. Let xi;I ∈ Ω, i = 1, 2, . . . NI ∈ N, be interior
collocation points, and xi;D ∈ ΓD(= ∂Ω here), i = 1, 2, . . . ND ∈ N, collocation points along the

−4 −3 −2 −1 1 2 3 4

−1

1

x

(a) tanh(x).

−5 −4 −3 −2 −1 1 2 3

1

2

3

−0.5
x

(b) mish(x).

Figure 2: Activation functions tanh(x) and mish(x) defined in (3).
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Dirichlet boundary. The standard loss functional Lst as defined in [12, 45] is then given by

Lst := αst
I Lst

I + αst
DLst

D, (5)

where αst
I , α

st
D ∈ R are two non-negative user-chosen constants, and, in the context of convection-

diffusion-reaction equations,

Lst
I (uN ) :=

|Ω|
NI

NI∑

i=1

((−ε∆uN + b · ∇uN + cuN − f) (xi,I))
2 ,

Lst
D (uN ) :=

|ΓD|
ND

ND∑

i=1

(uN (xi,D)− gD (xi,D))2 ,

in which we omitted the dependency of uN on its parameters p as stated above. For computing the
derivatives of uN in Lst

I it must be assumed that the activation functions are at least twice differentiable
in the collocation points. Note that if a Neumann term would be present in (1), a third term of the form
|ΓN|
NN

∑NN

i=1 (ε∇uN (xi,N) · n (xi,N)− gN (xi,N))2 would be added that is based on NN collocation
points xi;N ∈ ΓN, i = 1, 2, . . . NN, along the Neumann boundary.

It is well known that strong solutions to (1) exist only under rather strong regularity assumptions on the
domain and the data of the problem. Therefore, it is questionable whether the strong form of the residual
is a good choice in (5). In [33, 35, 34] and [53, 10] loss functionals are introduced that are based on a
variational formulation of the residual. They differ in the choice of the test function(s), where the former
references use (piecewise) polynomial test functions and the latter use a single neural network-based
test function together with a reformulation of the problem to a min-max problem.

Since in the numerical examples below we use the hp-variational loss functional of [34], it will be
introduced next; cf. [34] for the original presentation. To this end, let Th be a triangulation of Ω into cells
K ∈ Th. It is assumed that these cells are, depending on the dimension, either lines, quadrilaterals,
or hexahedrons, and that they are the image of an affine or d-linear mapping FK : K̂ → K from the
reference cell K̂ := [−1, 1]d to K . Furthermore, for a given polynomial degree p ∈ N, let

Pp([−1, 1]1) := {ϕj(x) : ϕj ∈ Lp([−1, 1]), j = 1, 2, . . . , p− 1 },
Pp([−1, 1]2) := {ϕj(x)ϕk(y) : ϕj, ϕk ∈ Lp([−1, 1]), j, k = 1, 2, . . . , p− 1 }, (6)

Pp([−1, 1]3) := {ϕj(x)ϕk(y)ϕ`(z) : ϕj, ϕk, ϕ` ∈ Lp([−1, 1]), j, k, ` = 1, 2, . . . , p− 1 },
be the set of test functions on the d-dimensional reference cells, where, with φk denoting the Legendre
polynomial of order k, Lp([−1, 1]) := {φk+1(x)− φk−1(x) : k = 1, 2, . . . , p− 1 }. Consequently,
the set of test functions Pp(K) on a physical cell K ∈ Th is given by Pp(K) := { v : K → R : v =
v̂ ◦ F−1

K for a v̂ ∈ Pp([−1, 1]d) }, where F−1
K is the inverse of the reference transform. Last but not

least, the set of global polynomial test functions Pp(Th) is then defined as

Pp(Th) := { v ∈ C(Ω) : v|K ∈ Pp(K) for a K ∈ Th, v|Ω\K = 0 }.
Note that by construction all test functions v ∈ Pp(Th) have a compact support, and satisfy v|∂Ω = 0.

Finally, a loss functional for hp-variational PINNs is given as

LhpvP := αhpvP
I LhpvP

I + αhpvP
D Lst

D, (7)

where again αhpvP
I , αhpvP

D ∈ R are two non-negative user-chosen constants, and, in the context of
convection-diffusion-reaction equations,

LhpvP
I (uN ) :=

∑

K∈Th

1

|Pp(K)|
∑

v∈Pp(K)

(∫

K

(−ε∆uN + b · ∇uN + cuN − f) v dx

)2

, (8)
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where |Pp(K)| := dim (Pp(K)). Note that in [34] the authors defined two more loss functionals by
using integration by parts one and two times, respectively. However, in this work we restrict, for the
sake of brevity, to form (8). The integrals need to be approximated by some numerical quadrature rule.
In contrast to [34] in which the authors propose to exploit a Gauss–Lobatto integration rule, we apply a
Gauss–Legendre formula.

2.3 Hard-constrained PINNs

As seen in equations (5) and (7), the Dirichlet boundary conditions have to be learned by the neural
networks during the training. As a result, the boundary conditions are only satisfied approximately
after the training and in the worst case huge differences to the exact boundary conditions can occur.
Consequently, since the boundary conditions influence the shape of the solution also in the interior,
because the conditions on the inlet boundary are transported into the domain, wrong boundary
conditions may lead to a low quality of approximation of the solution by the neural networks. Furthermore,
learning the boundary conditions costs training time, which is unnecessary since this information is
known a-priori. Therefore, it seems to be reasonable to prescribe the Dirichlet boundary conditions
exactly as it is done in many standard finite element methods.

One way to do so, is to utilize so-called hard-constrained PINNs as described in [40]. In this publication,
the authors use

uN := g̃D + hindũN

as ansatz for the neural network, where g̃D : Ω → R is a continuous extension of the Dirichlet
boundary condition gD to Ω, hind : Ω→ R is an indicator function that satisfies, for given x ∈ Ω,

hind(x)

{
= 0, if x ∈ ΓD,

> 0, else,

and ũN is a neural network as described in Section 2.1. By construction, it holds that uN |ΓD
= gD,

which means that the Dirichlet boundary conditions are satisfied exactly. Consequently, the terms Lst
D

in equations (5) and (7) are exactly zero, and, hence, can be neglected during the training, which in
turn saves training time. Therefore, for a problem with a pure Dirichlet boundary, with this approach the
concrete values of the weight terms in front of the individual contributions of the loss functional do not
matter and no hyperparameter tuning with respect to these weights needs to be performed.

3 Novel proposals for loss functionals for physics-informed neu-
ral networks

In [29, 27, 37, 30], the authors optimize the SUPG parameters of a SUPG finite element method for
convection-dominated convection-diffusion equations. In these works, it was observed that the strong
form of the residual might not be the best choice as cost functional since inside layers already very
small deviations of the numerical solution from the solution of the continuous problem lead to very large
values of the strong residual. In this section, we are going to transfer these cost functionals to the PINN
setting, which is essentially based on the work of [16].

Note that below we add again the term to approximate the Dirichlet boundary condition. However, if
hard-constrained PINNs as described in Section 2.3 are used, then the boundary conditions are exactly
satisfied, the term Lst

D is again exactly 0 and does not need to be considered during the optimization.
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(b) ξ(x).

Figure 3: Functions Φ(x) and ξ(x) used in the crosswind and the limited residual loss as defined in
equations (9) and (12), respectively.

3.1 Crosswind loss functional

The first functional that is novel in the context of PINNs is the so-called crosswind loss functional. In
[29, 27] it was observed that the strong form of the residual sometimes leads to a smearing of the
layers. Consequently, the idea of the authors was to penalize this smearing, and the authors could show
in their numerical studies that the crosswind loss functional leads to better results than considering only
the strong form of the residual [29, 27].

To state the loss functional, let Φ : R→ R be given, for any x ∈ R, by

Φ(x) :=

{√
x, if x ≥ 1,

0.5 (5x2 − 3x3) , else,
(9)

which is depicted for positive values in Figure 3a. Furthermore, for any x ∈ Ω, let us define a set of
(d− 1) mutually orthonormal vectors which are all perpendicular to b(x). In two dimensions, there is
only one vector in this set given by

b⊥(x) :=

{
(b2(x),−b1(x))T

‖b(x)‖2 , if b(x) 6= 0,

0, else,

where ‖ · ‖2 denotes the Euclidean norm of a vector.

The crosswind loss functional for PINNs is then defined as

Lcw := αcw
I Lcw

I + αcw
D Lst

D, (10)

where as above αcw
I , αcw

D ∈ R are two non-negative user-chosen constants, and

Lcw
I (uN ) := Lst

I +
|Ω|
NI

NI∑

i=1

∣∣Φ
(
|b⊥(xi,I) · ∇uN (xi,I)|

)∣∣ .

3.2 Limited residual loss functional

In order to mitigate the sensitivity of the strong residual on small differences of the analytic and
numerical solution, the authors of [37] proposed to restrict large values of the residual. Since their work
was done for finite element methods, their cost functional is based on cells collected in a triangulation.
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x1;I

x2;I

x3;I

x4;I

x5;I

K1

K2

K3

K4

K5

(a) Random points.

x1;I x2;I x3;I

x4;I x5;I x6;I

x7;I x8;I x9;I

K1 K2 K3

K4 K5 K6

K7 K8 K9

(b) Equally distanced points.

Figure 4: Voronoi tessellation of the unit square based on five random collocation points (left) and nine
equally distanced points (right).

To transfer their idea to the PINN framework, let xi;I ∈ Ω, i = 1, 2, . . . NI ∈ N, denote the interior
collocation points. Then, a triangulation Th of Ω can be constructed by computing a Voronoi tessellation
of these points, which is a standard procedure in a popular class of finite volume methods; see also
[14]. In other words, we define

Ki := {y ∈ Ω : |y − xi;I| ≤ |y − xj;I| for all j = 1, 2, . . . , NI }
and we set Th := {Ki : i = 1, 2, . . . , NI }; see also Figure 4 for two examples. By construction,
these cells contain only a single xi;I, and, hence, they can be uniquely identified by the corresponding
index i. Based on that triangulation, the ansatz

NI∑

i=1

ξ

(
1

t0
‖ − ε∆uN + b · ∇uN + cuN − f‖2

L2(Ki)

)
(11)

can be made, where t0 ∈ R is a positive user-chosen constant, and ξ : R→ R, for any given x ∈ R,
is defined as

ξ(x) :=

{
1
2
x4 − x3 − 1

2
x2 + 2x, if x ≤ 1,

1, else;
(12)

cf. also I limh in [37]. The function ξ is also depicted in Figure 3b. Approximating the integrals in
equation (11) by the midpoint rule, and exploiting |Ki| ≈ |Ω|/NI, which is exactly true if the points are
equally distanced, then leads to

(11) ≈
NI∑

i=1

ξ

( |Ki|
t0

((−ε∆uN + b · ∇uN + cuN − f) (xi;I))
2

)

≈
NI∑

i=1

ξ

( |Ω|
NI t0

((−ε∆uN + b · ∇uN + cuN − f) (xi;I))
2

)
.

Finally, setting

Llr
I (uN ) :=

NI∑

i=1

ξ

( |Ω|
NI t0

((−ε∆uN + b · ∇uN + cuN − f) (xi;I))
2

)

then gives the limited residual loss functional Llr defined as

Llr := αlr
I Llr

I + αlr
DLst

D, (13)

where once more αlr
I , α

lr
D ∈ R are two non-negative user-chosen constants.
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3.3 Limited residual with crosswind loss functional

The ideas of Sections 3.1 and 3.2 can also be combined to form what we call the limited residual with
crosswind term loss functional. This loss functional is given by

Llrcw := αlrcw
I Llrcw

I + αlrcw
D Lst

D, (14)

where as before αlrcw
I , αlrcw

D ∈ R are two non-negative user-chosen constants, and

Llrcw
I (uN ) :=

NI∑

i=1

ξ

( |Ω|
NI t0

((−ε∆uN + b · ∇uN + cuN − f) (xi;I))
2

)

+
|Ω|
NI

NI∑

i=1

∣∣Φ
(
|b⊥(xi,I) · ∇uN (xi,I)|

)∣∣ .

4 Numerical studies

In this section, we assess the quality of the PINN approximations based on the loss functionals
presented in Sections 2.2 and 3 numerically.

The implementation of the neural networks and the loss functionals is done in TensorFlow [1, 49].
The code for all experiments in this section is also publicly available at https://doi.org/10.
20347/wias.data.7 [17].

4.1 Set-up of experiments

To investigate the quality of the PINN approximations, we use two two-dimensional benchmark problems
with a known solution first defined in [31]; see also Problems 1 and 2 below. All experiments are
conducted in the convection-dominated regime, since for both problems we have ε = 10−8 and
‖b‖[L∞(Ω)]d = O(1). In this regime the solution to Problem 1 possesses an interior layer and to
Problem 2 two boundary layers, resp.; cf. Figure 6.

The networks are trained to minimize the loss functionals

L+
λwd

2

nbs

NI

∑

j

w2
j , (15)

where L is chosen to be Lst,LhpvP,Lcw,Llr, or Llrcw given in equations (5), (7), (10), (13) and (14),
resp., 0 ≤ λwd ∈ R is theL2-weight decay regularization hyperparameter, nbs is the batch size andNI

denotes the interior points, and wj are the components of the weight matrices but not the biases of the
networks. The regularization term is often used in neural network optimization to counteract overfitting;
see also [6], [22, pp. 116-119, 227-230] in general and [13] in the context of PINNs. With a slight
misuse of the notation, we denote the loss functionals from equation (15) still by Lst,LhpvP,Lcw,Llr,
and Llrcw directly, even though the weight-decay term is still present and must not be forgotten.
In the loss functionals Lst,LhpvP,Lcw,Llr, and Llrcw, the weight factors αm

I := 1 and αm
D := 0,

m ∈ { st, hpvP, cw, lr, lrcw }, are used. The factor for the Dirichlet boundary condition can be set to
0, since hard-constrained PINNs are used; see also below.

Furthermore, to train the networks, the minibatch stochastic gradient descent [22, 24, Section 8.1.3] is
used together with the Adam algorithm [36]. Except for the learning rate that is varied as described
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Figure 5: Indicator function hind for the unit square given in equation (16) with κ = 109.

below, TensorFlow’s default values are applied for the optimization. After the training is finished, the
network with the smallest loss value during the optimization is returned. Due to the stochastic gradient
descent, this is not necessarily the neural network after the final optimization step.

We train the networks with in total NI := 6, 400 equally distanced interior points and the batch size
nbs is set to 32 for all loss functionals except the hp-variational loss. For LhpvP, the unit square is
divided into 64 squares of equal size and in each square polynomials up to degree p = 6 are used.
This results in 5× 5× 64 = 1, 600 global basis functions, since we investigate two-dimensional test
problems; cf. equation (6). To compute the integrals for the hp-variational loss, a Gauss–Legendre
quadrature rule is deployed in each cell with 10× 10 points and weights in each coordinate direction
which leads to 6, 400 points for approximating the integrals; cf. equation (8). For this loss functional,
the batch size and the number of interior points, which is not used at all for hp-vPINNs, is chosen such
that nbs/NI equals one, since in contrast to the other functionals no loop over batches of interior points
needs to be performed.

The loss functionals Llr and Llrcw depend on the parameter t0. In accordance with [37], various param-
eter values are investigated, namely t0 ∈ { 101, 100, 10−1, 10−2, 10−3, 10−4 }. The corresponding
loss functionals are denoted by Llr

t0
and Llrcw

t0
. However, for the sake of brevity, below only one result

for these loss functionals is shown, which is the one with the t0 that leads to the smallest error after the
training.

What is left is to specify the architecture of the networks and how we measure the error. We deploy
hard-constrained neural networks as described in Section 2.3. To this end, for both examples we use
g̃D := 0 and

hind(x, y) :=
(
1− e−κx

) (
1− e−κy

) (
1− e−κ(1−x)

) (
1− e−κ(1−y)

)
, (16)

where κ is a scaling factor, since both examples are defined on the unit square with homogeneous
Dirichlet boundary conditions. The factor κ := 10/ε is chosen, because it is well known that the
thickness of exponential layers of the exact solution is O(ε) [28]. Choosing the aforementioned κ
ensures that boundary layers of the resulting PINN approximations are not smeared as a result of the
choice of hind. The function hind is also visualized in Figure 5.

Since the optimal hyperparameters of the neural networks are not known a-priori, we train networks
with various combinations of hyperparameters, namely all 630 possible combinations of parameters
given in Table 1. Note that the choice of the hyperparameters is guided by the practical advises from [6].
The input layer and the output layer consist of n1 := 2 and n9 := 1 nodes, resp., since the networks
approximate a mapping from a subset of R2 to R. While in the output layer a linear activation function is
used, in all intermediate layers one of the activation functions tanh or mish defined in (3) are deployed.
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Table 1: Set of hyperparameters resulting in 630 different combinations. In the first column, the values
7× x, x ∈ { 20, 30, 40 }, means seven hidden layers with x nodes in each layer.

hidden layers × nodes 7× 20, 7× 30, 7× 40
activation function tanh, mish
learning rate 0.01 · 3−0, 0.01 · 3−1, 0.01 · 3−2, 0.01 · 3−3, 0.01 · 3−4, 0.01 · 3−5,

0.01 · 3−6

initialization seed 42, 43, 44
weight decay λwd 10−1, 10−2, 10−3, 10−4, 10−5

In the beginning, the values of the weights are initialized based on Glorot initialization [19] with the
seeds given in Table 1 and the initial biases are set to zero. These values are then optimized for 10, 000
epochs during the training. Afterwards, we measure the error e := u− uN between the exact solution
u and the PINN approximation uN as stated below, average over the initialization seeds, and train the
best ten networks resulting from each interior loss functional for all three seeds for another 90, 000
epochs. To get the final result, the error is measured again and the average over the seeds is computed.

To measure the error e := u− uN between the exact solution u and the PINN approximation uN a
suitable norm has to be used, which seems to be a non-trivial question. We could observe that the
networks with the smallest error measured in the H1-semi norm might have a good shape but can
be shifted by a non-negligible constant. When the results are evaluated in the L∞ norm, the norm
returned acceptable solutions for Problem 1 but not for Problem 2. The exact solution to Problem 2
has two boundary layers and the width of the boundary layers of the discrete solution uN is essentially
determined by the choice of hind; see equation (16). Since only a single point determines the quality
of the solution in the L∞ norm, a non-optimal choice of hind can significantly influence the value of
the error. Finally, we decided to use the L2 norm that, in the convection-dominated regime, is the

dominating term in the energy norm |||e||| :=
(
ε‖∇e‖2

L2(Ω) + µ0‖e‖2
L2(Ω)

)1/2

naturally associated

with the problem at hand. In the energy norm it is µ0 ∈ R such that c− div(b)/2 ≥ µ0 > 0, and for
the examples below, we have ε = 10−8, and µ0 = 2 and µ0 = 1, respectively. We can report that
the L2 norm returns acceptable solutions and hence below we present the results with respect to this
norm. To approximate the error by numerical quadrature, the domain is divided into 10, 000 squares
of equal size and a Gauss–Legendre quadrature rule with ten points in each coordinate direction is

0.00
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0.80

0.97

(a) Exact solution to Problem 1.
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0.40

0.60

0.80

1.00

(b) Exact solution to Problem 2.

Figure 6: Exact solutions to the problems used in Sections 4.2 and 4.3. The left one is a solution with
an interior layer and the right solution possesses two boundary layers at the outflow boundaries.
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Table 2: Minimal value of the error ‖u− uN‖L2 after 100, 000 epochs of the best PINNs that approxi-
mate the solution to Problem 1. The smallest value is marked with bold font.

Lst Lcw Llr
0.1 Llrcw

0.1 LhpvP

min 1.560 · 10−3 6.096 · 10−3 1.923 · 10−3 1.330 · 10−3 7.573 · 10−2

deployed. This leads in total to 1, 000, 000 weights and points.

4.2 Circular interior layer

We begin with Example 2 of [31] which is a problem whose solution possesses an interior layer.

Problem 1 (Circular internal layer). Let Ω := (0, 1)2 be the unit square, and ε := 10−8, b := (2, 3)T ,
c := 2 be given. The right-hand side and the boundary conditions of the problem are chosen in
correspondence with the analytic solution that is defined to be

u(x, y) := 16x(1− x)y(1− y)

(
1

2
+

arctan (200(r2
0 − (x− x0)2 − (y − y0)2))

π

)
,

where r0 := 0.25 and x0 := y0 := 0.5. A visualization of the exact solution can be seen in Figure 6a.

The results after training the networks with the different interior loss functionals for 100, 000 epochs
are given in Table 2. It can be seen that the limited residual with crosswind loss with t0 = 0.1 produced
the smallest error followed by the standard loss and the limited residual loss with t0 = 0.1 which are
approximately 17.3% and 44.6%, resp., larger than the overall best error. The smallest errors achieved
with the crosswind loss and the hp-variational loss are roughly four and a half times and 57 times, resp.,
as large as the error obtained with Llrcw

0.1 .

The PINN approximation that has overall the smallest error is shown in Figure 7 together with its
pointwise error compared to the exact solution. We observe that the solution has the same shape as the
exact solution and also it’s largest and smallest value coincide up to two decimal digits. The pointwise
error lies between 0 at the boundary as expected by exactly prescribing the boundary conditions and
O(10−3) at the circle with radius 0.25 where the layer is located.

In total, we conclude that the limited residual with crosswind loss works significantly better than all other
methods for the problem with an interior layer and leads to an acceptable solution.

0.00

0.20

0.40

0.60

0.80

0.98

(a) PINN solution uN .

0.00 · 100
1.38 · 10−3

2.76 · 10−3

4.15 · 10−3

5.53 · 10−3

6.91 · 10−3

(b) Pointwise error |u− uN |.

Figure 7: PINN approximation uN of the solution u to Problem 1 (left) and point wise error |u− uN |
(right). The solution is trained with the limited residual with crosswind loss with t0 = 0.1.
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Table 3: Minimal value of the error ‖u− uN‖L2 after 100, 000 epochs of the best PINNs that approxi-
mate the solution to Problem 2. The smallest value is marked with bold font.

Lst Lcw Llr
10.0 Llrcw

10.0 LhpvP

min 6.457 · 10−2 4.180 · 10−2 3.419 · 10−2 3.459 · 10−2 3.619 · 10−2

4.3 Outflow layers

Next, we study a problem whose solution has outflow boundary layers. It was first defined in Example 3
in [31].

Problem 2 (Outflow layers). Let again Ω := (0, 1)2 be the unit square, and ε := 10−8, b := (2, 3)T ,
c := 1 be defined. The right-hand side and the boundary conditions of the problem are derived from
the exact solution which is defined to be

u(x, y) := xy2 − y2 exp

(
2(x− 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+

exp

(
2(x− 1) + 3(y − 1)

ε

)
.

This solution is shown in Figure 6b.

The smallest occurring error and the average error of the networks trained for 100, 000 epochs with the
various interior loss functionals are presented in Table 3. It can be observed that the limited residual
loss with t0 = 10.0 leads to the smallest error followed by the limited residual with crosswind loss
with the same t0 and the hp-variational loss which are slightly worse than the limited residual loss.
Moreover, the two novel loss functionals lead to errors that are roughly 47.0% and 46.4% better than
the best result obtained with the standard loss which works the worst for this problem. The crosswind
loss is somewhat in between the standard and the hp-variational loss.

A visualization of the PINN solution with the overall smallest error and its pointwise error compared to
the exact solution is presented in Figure 8. The solution follows roughly the shape that we expect, but
is not as close to the exact solution as for Problem 1. Both the largest and the smallest value of the
discrete solution are 0.09 and 0.03 off the corresponding values of the exact solution. Moreover, the
solution has even negative values which the exact solution does not have. Hence, the PINN solution
does not satisfy a discrete maximum principle. The pointwise error is again 0 at the boundary and
roughly 0.184 at the upper left corner of the domain. The reason for this might be that the boundary
conditions at the inflow boundary are not propagated correctly to the interior due to the small value
scaling factor κ in hind. This phenomenon was also identified as a typical reason why PINNs might
converge to trivial solutions as reported in [9]. Compared to the previous experiment, the absolute
values of |u − uN | and the smallest L2(Ω) error are two and one order of magnitude larger, resp.,
indicating that solutions with outflow boundary layers are more difficult to approximate than solutions
with interior layers. The obtained results are in agreement with the expectation that the outflow boundary
layer problem is more difficult to solve than Problem 1, since the layers are considerably steeper, as
well as with results from the literature; cf. [35, 2].

For the problem with outflow layers we conclude that the limited residual loss is a significantly better
choice than the standard loss functional. Taking into account the huge dominance of convection and
the smallness of the layers, the obtained numerical solution provides at least an acceptable qualitative
approximation of the exact solution. But from the quantitative point of view, the numerical solution is still
somewhat unsatisfactory and needs to be improved in future works.
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(a) PINN solution uN .

0.00 · 100
3.68 · 10−2

7.35 · 10−2

1.10 · 10−1

1.47 · 10−1

1.84 · 10−1

(b) Pointwise error |u− uN |.

Figure 8: PINN approximation uN of the solution u to Problem 2 (left) and point wise error |u− uN |
(right).

5 Conclusions and outlook

In this work we proposed several novel loss functionals for physics-informed neural networks for
convection-dominated convection-diffusion equations, which are based on corresponding objective
functionals from the literature. We tested them numerically on two benchmark problems, where the
dominance of convection is considerably larger than in the available literature for PINNs applied to
convection-diffusion problems, and compared them to PINN approximations obtained with the vanilla
loss functional and a hp-variational loss functional.

We observed that for both problems two of the three novel loss functionals significantly reduced the
L2(Ω) error compared to the standard and the hp-variational loss from the literature and, hence, they
are promising alternatives in the case of convection-dominated convection-diffusion problems. The
approaches led to reasonable solutions for both type of problems. Nevertheless, the tested PINNs could
approximate the solution with an interior layer much better than the solution with boundary layers both
when looking at the solution and comparing the L2(Ω) errors. In the latter case, the L2(Ω) error of the
PINN solution was one order of magnitude larger than for the former problem.

This work can be seen as a first step towards a systematic investigation of PINNs for convection-
dominated convection-diffusion equations. Since the benchmark problems used in our numerical
studies are both driven by source terms, the next step might be to study problems where the solution is
driven by boundary conditions. In that case, it might be more challenging for PINNs to approximate
solutions with boundary layers since the interior loss functional and the boundary term might have
counteracting roles.

Furthermore, as seen in the numerical experiments PINNs do not necessarily preserve maximums
principle by default, which might be problematic in real-word scenarios. A systematic investigation with
respect to discrete maximum principles and how to guarantee them will be studied in the future.

Moreover, how to choose a suitable set of collocation points is still an open problem and this holds true
especially for problems with layers. Is it more useful to choose points in the vicinity of layers or apart
from them? It might be intuitive to choose a large amount of points close to the layer regions, but the
experiments of [51] indicate that this is not necessarily the case. This behavior will be studied in future
works.

Last but not least, choosing an appropriate norm to measure the error for selecting good networks is
an open question. In the current work, the L2(Ω) norm was used because it turned out to be the best
choice among the norms reported in Section 4.1. However, modern finite element error analysis does
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neither use the energy norm nor the L2(Ω) norm for proving error estimates, since these norms are
too weak for obtaining so-called robust estimates, which are estimates where the constants in the error
bound do not blow up for very small diffusion coefficients. Norms for which robust estimates can be
proved contain terms from so-called stabilized finite element methods. The transfer of this concept for
choosing appropriate norms to PINNs is open.
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