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Numerical solution of an optimal control problem with
probabilistic and almost sure state constraints

Caroline Geiersbach, René Henrion, Pedro Pérez-Aros

Abstract

We consider the optimal control of a PDE with random source term subject to probabilistic or
almost sure state constraints. In the main theoretical result, we provide an exact formula for the
Clarke subdifferential of the probability function without a restrictive assumption made in an earlier
paper. The focus of the paper is on numerical solution algorithms. As for probabilistic constraints,
we apply the method of spherical radial decomposition. Almost sure constraints are dealt with a
Moreau–Yosida smoothing of the constraint function accompanied by Monte Carlo sampling of
the given distribution or its support or even just the boundary of its support. Moreover, one can
understand the almost sure constraint as a probabilistic constraint with safety level one which
offers yet another perspective. Finally, robust optimization can be applied efficiently when the
support is sufficiently simple. A comparative study of these five different methodologies is carried
out and illustrated.

1 Introduction

Many physics-based systems that can be described mathematically as optimization problems con-
tain inputs or parameters that are unknown. Ignoring an available model for the uncertain values,
for example a probability distribution, can result in severely sub-optimal solutions. In the context of
PDE-constrained optimization under uncertainty, the framework of stochastic optimization has proved
useful due to its rich theory and wealth of numerical methods [15]. The simplest ansatz is to optimize
with respect to a desired average outcome [15, 19, 25, 40] of the underlying random PDE, but robust
[3, 32] and risk-averse formulations have also been proposed for engineering applications [16, 43] with
theoretical investigations in [5, 22, 33, 34, 35].

In certain applications, additional constraints on the solution to the random PDE are also desirable,
leading to state constraints. Systems involving an almost sure or robust model for state constraints
have recently been investigated in [19, 21, 22, 25]. Probabilistic constraints offer the possibility to deal
with uncertain restrictions in a robust way that is interpretable with respect to probability. They have
been introduced by Charnes et al. [10]. Fundamental algorithmic and theoretical contributions are
due to Prékopa, see [42]. More recent presentations are provided in [45] or [47], respectively. In the
last years, one may observe a growing interest in probabilistic constraints as part of PDE-constrained
optimization, see e.g., [9, 17, 18, 26, 27, 37, 41, 44, 46]. These works include proposals for numerical
approaches as well as structural investigations.

A central challenge in optimization under uncertainty is in the numerical solution. Classical approaches
involve discretization of the stochastic space [7, 20], stochastic collocation [12, 13, 36, 55], or using
a sample average approximation [2, 28, 29, 40, 54]. Stochastic approximation, which dynamically
samples over the course of optimization, has also gained attention [23, 24, 25, 37, 38, 39]. Other
innovations include the use of surrogate functions constructed using Taylor approximations of the
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objective and constraint function [1, 11]. Very few approaches exist that can handle state constraints.
A Monte Carlo approximation was used in combination with a Moreau–Yosida penalty in [19]. In [37],
almost sure state constraints were relaxed to an expectation constraint and a stochastic approximation
approach was proposed. In [6], random fields are approximated by the tensor-train decomposition and
state constraints are handled using a Moreau–Yosida-type penalty with a softplus approximation for
the positive part function.

The current work is a follow up paper to [21], where optimality conditions on a risk-averse PDE-
constrained optimization problem with uncertain state constraint was considered. Risk aversion was
modeled by probabilistic and almost sure constraints. In the current paper, we pick up the same op-
timization problem (subject to Poisson’s equation with a distributed control and an additional random
source term on the right-hand side), but focus on its numerical solution. The paper is organized as
follows: after presenting the model in Section 2, we analyze the problem in Section 3. The main result
is an improvement of an exact formula for the Clarke subdifferential of the probability function provided
in [21] in that it omits a restrictive assumption on boundedness of the set of feasible realizations of
the random vector. Section 4 is then devoted to the numerical solution of the control problem under
probabilistic (uniform) state constraints in 1D and 2D. Our approach for dealing with probabilistic con-
straints is based on the well-studied spherical radial decomposition. In Section 5, we pass to almost
sure constraints. For their numerical treatment, we follow a different methodology than for probabilistic
constraints, namely sampling of the distribution (or its support) and applying a Moreau–Yosida ap-
proximation. Four different approaches are compared with a reference solution obtained by robust
optimization.

2 The model

In this paper, we discuss numerical approaches for solving the following risk-averse PDE-constrained
optimization problem under uncertainty:

min
u∈L2(D)

F (u) (1a)

s.t. −∆y(x, ω) = u(x) + f(x, ξ(ω)), x ∈ D P-a.s., (1b)

y(x, ω) = 0, x ∈ ∂D P-a.s., (1c)

P(y(x, ω) ≤ α ∀x ∈ D) ≥ p. (1d)

Here, D ⊆ Rd (d = 1, 2, 3) is an open and bounded set. Moreover, F : L2(D) → R is a convex,
Fréchet differentiable cost function, ξ ∼ N (0,Σ) is a centered m-dimensional Gaussian random
vector defined on the probability space (Ω,F ,P), p ∈ (0, 1] is some given probability level, and
α ∈ R is some upper threshold for the random state y(·, ω). The function f : Rd × Rm → R is
a random source term. Inequality (1d) is a probabilistic constraint expressing the condition that the
random state y stays below α uniformly onD with probability at least p. Throughout this paper, we will
make the following assumptions on the PDE (1b)–(1c). In the following, the notation meas(·) refers to
the d-dimensional Lebesgue measure.

Assumption 2.1. The open and bounded set D ⊆ Rd (d = 1, 2, 3) is of class S 1, meaning that
there exist constants γ ∈ (0, 1) and r0 > 0 such that meas(Br(x)\D) ≥ γmeas(Br(x)) for all

1For the domain, we use the terminology from [31] and note that class S covers many cases, including Lipschitz or
convex domains.
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x ∈ ∂D and for all r < r0. Additionally, u ∈ L2(D) and the function f : Rd × Rm → R is defined
by

f(x, z) := f0(x) +
m∑
i=1

ziφi(x) (2)

for some given f0, φi ∈ L2(D).

Note that Ef(·, ξ) = f0 on account of ξ being centered. We emphasize that the basic structure of
the optimization problem introduced above is intentionally kept simple in order to focus the attention
on the aspect of probabilistic state constraints. It is, however, no problem to pass to more general
settings, such as: alternative multivariate distributions (Gaussian-like, elliptically symmetric), additional
simple control constraints, two-sided state constraints possibly with functional threshold α, etc. We will
occasionally pick up some of these aspects in subsequent sections.

3 Analytical properties of the problem

3.1 General statements on optimization problems with probabilistic constraints

We start by embedding problem (1) into a more general framework, which is given by

min
u∈U

F (u) s.t. ϕ(u) ≥ p (p ∈ (0, 1]). (3)

Here,U is a reflexive and separable Banach space,F : U → R is some convex, Fréchet differentiable
cost function, and ϕ : U → R denotes a probability function defined by ϕ(u) := P(ω | g(u, ξ(ω)) ≤
0). In this last expression, ξ is an m-dimensional Gaussian random vector defined on a probability
space (Ω,F ,P) and having a centered Gaussian distributionN (0,Σ) with covariance matrix Σ, and
g : U × Rm → R is some constraint function. We make the following general assumption on g:

g is locally Lipschitzian and g(u, ·) is convex for all u ∈ U. (GA)

We shall say that g satisfies the condition of moderate growth at ū ∈ U , if

∃l > 0 ∀d ∈ U : g◦(·, z)(u; d) ≤ l ‖z‖−m exp

(
‖z‖2

2‖Σ1/2‖2
)
‖d‖ (4)

∀u ∈ B1/l (ū) ,∀z : ‖z‖ ≥ l

Here, g◦(·, z)(u; d) refers to the Clarke directional derivative of the locally Lipschitzian (by (GA))
partial function g(·, z) at the argument u in direction d. Moreover, Σ1/2 denotes a root of Σ. As a
consequence of the spherical radial decomposition of Gaussian random vectors, the total probability
function ϕ can be represented as a spherical integral with respect to the uniform distribution µζ on
Sm−1

ϕ(u) =

∫
Sm−1

e(u, v) dµζ(v) (u ∈ U) (5)

over a one-dimensional radial probability function e : U × Sm−1 → R defined by

e(u, v) := µχ({r ≥ 0 | g(u, rΣ1/2v) ≤ 0}), (6)

where µχ is the one-dimensional Chi- distribution with m degrees of freedom. We refer to [30, 47, 48,
50, 51, 52] for more details and generalizations of such decomposition to other classes of distributions.
The following result on subdifferentiation under the integral sign holds true:
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Theorem 3.1 ([30], Theorem 5, Corollary 2 and Proposition 6). Under the basic assumptions (GA), let
ū ∈ U be given such that g(ū, 0) < 0 and (4) is satisfied. Then, ϕ and the e(·, v), (v ∈ Sm−1), are
locally Lipschitzian around ū and, with ∂C denoting the Clarke subdifferential, it holds that

∂Cϕ(ū) ⊆
∫

Sm−1

∂Cu e(ū, v) dµζ(v). (7)

∂Cϕ(ū) reduces to a singleton and equality holds in (7), if additionally, the condition

µζ({v ∈ Sm−1 | #∂Cu e(ū, v) ≥ 2}) = 0 (8)

is satisfied. As a consequence, ϕ is strictly differentiable at ū in the Hadamard sense [14, p. 30].

We note that differentiability of ϕ, and thus condition (8), may be violated in general (see [21, Example
2.15]). Therefore, the question arises if there are weaker conditions than those enforcing differentia-
bility as in (8), which still guarantee equality in (7). It was shown in [21, Theorem 2.3] that this holds
true under the additional assumptions that g is jointly (!) convex in both variables and that the set

{z ∈ Rm | g(ū, z) ≤ 0} (9)

is bounded. The condition (9) turns out to be quite restrictive (for instances where it is violated, see [21,
Examples 2.15 and 2.16]) and it is difficult to check, in general. Now, we are going to state a stronger
result, which allows us to avoid the aforementioned conditions at the price of a growth condition which,
however, turns out to be automatically satisfied in our control problem (1). We shift the rather lengthy
proof to the appendix.

Theorem 3.2. Let some ū ∈ U be given. For (u, z) ∈ U × Rm, assume that

g(u, z) = sup
w∈K

h(u, z, w),

where K ⊆ Rl is compact and h : U × Rm ×K → R satisfies the conditions

1 h is continuous, Fréchet differentiable in its first two arguments, and convex in its second argu-
ment;

2 the mapping (u, z, w) 7→ (Duh(u, z, w), Dzh(u, z, w)) is continuous;

3 h(ū, 0, w) < 0 ∀w ∈ K ;

4 ∃c > 0 : ‖Duh(u, z, w)‖ ≤ c exp (‖z‖) ∀u : ‖u− ū‖ ≤ c−1 ∀z : ‖z‖ ≥ c ∀w ∈ K .

Then, −ϕ is regular at ū in the sense of Clarke and equality holds in (7).

3.2 (Sub-)differential of the probability function in the concrete optimal con-
trol problem

We now want to calculate the exact subdifferential of the probability function associated with prob-
lem (1). A corresponding result has been previously obtained in [21, Theorem 2.13]. However, the
restrictive condition requiring the set (9) to be bounded was imposed there. The results of the pre-
vious section allow us to get rid of this assumption, which we will now show. To this end, denote by
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S : L2(D)×Rm → C(D̄) the parameterized control-to-state operator assigning to each u ∈ L2(D)
and each z ∈ Rm the solution y of the PDE (1b)-(1c) with right-hand side u + f(·, z). Due to
Assumption 2.1 and [21, Lemma 1.2], the operator S is well-defined and bounded. Then the con-
trol problem (1) may be recast in the general form of (3) upon defining the function g(u, z) :=
supx∈D[S(u, z)](x)− α. Since S maps into C(D̄), we may write

g(u, z) := max
x∈D̄

[S(u, z)](x)− α. (10)

Due to linearity, one has the decomposition

S(u, z) = ȳ(u) +
m∑
i=1

ziy
(i) (u ∈ L2(D), z ∈ Rm) (11)

where ȳ(u) is the solution of the PDE

−∆y(x) = u(x) + f0(x) x ∈ D; y(x) = 0, x ∈ ∂D (12)

and the y(i) are the solutions of the PDEs

−∆y(x) = φi(x) x ∈ D; y(x) = 0, x ∈ ∂D (i = 1, . . . ,m). (13)

We shall refer to ȳ(u) as the mean state associated with the control u (because it relates to the mean
value f0 of the random source term) and to the y(i) as the basic states (because they relate to the
basic functions φi in the random source term with no control in action). Moreover, to each x ∈ D
we assign a dual element ux ∈ (L2(D))∗ by ux(h) := yh(x) for all h ∈ L2(D), where yh is the
solution of the control-only PDE

−∆y(x) = h(x) x ∈ D; y(x) = 0, x ∈ ∂D. (14)

Theorem 3.3. In the control problem (1), fix some point of interest ū ∈ L2(D). Assume that the mean
state ȳ(ū) associated with ū satisfies the condition

ȳ(ū)(x) < α ∀x ∈ D̄. (15)

Then, the probability function ϕ associated with our control problem is locally Lipschitzian at ū and
has the exact Clarke subdifferential

∂Cϕ(ū) = −
∫

{v∈Sm−1:ρ(v)<∞}

clco

{
fχ(ρ(v))

κ(v, x)
· ux | x ∈M∗(v)

}
dµζ(v),

where “clco” means the closed convex hull and for each v ∈ Sm−1 and x ∈ D̄,

κ(v, x) :=
m∑
i=1

(Σ1/2v)iy
(i)(x),

ρ(v) := max{r ≥ 0 | ȳ(ū)(x) + rκ(v, x) ≤ α ∀x ∈ D̄},
M∗(v) := {x ∈ D̄ | κ(v, x) > 0, ȳ(ū)(x) + ρ(v)κ(v, x) = α}.

Proof. It has been shown in [21, Lemma 2.11, Lemma 2.12] that the integral∫
Sm−1

∂Cu e(ū, v) dµζ(v)
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coincides with the right-hand side of the identity in the statement of this theorem. Therefore, it will be
sufficient to apply Theorem 3.2 to our control problem (1) in order to use (7) as an equality. Clearly, this
would yield the asserted exact formula. Hence, we only have to check the assumptions of Theorem 3.2.
Given the definition (10), we set K := D̄, w := x, h(u, z, x) := [S(u, z)](x)− α and observe that
we are in the setting of Theorem 3.2. We check the assumptions of that theorem: as for assumption
1., let us first verify the continuity of h by considering a sequence (un, zn, xn)→ (u, z, x) in the set
L2(D)× Rm × D̄. As shown as part of the proof in [21, Lemma 2.7], there exists a constant C > 0
such that for all (u1, z1), (u2, z2) ∈ L2(D)× Rm,

‖[S(u1, z1)]− [S(u2, z2)]‖C(D̄) ≤ C(‖u1 − u2‖L2(D) + ‖z1 − z2‖). (16)

Accordingly,

|h(un, zn, xn)− h(u, z, x)| ≤
|[S(un, zn)](xn)− [S(u, z)](xn)|+ |[S(u, z)](xn)− [S(u, z)](x)| ≤
C(‖un − u‖L2(D) + ‖zn − z‖) + |[S(u, z)](xn)− [S(u, z)](x)|

Here, both terms on the right converge to zero (the second one thanks to S(u, z) ∈ C(D̄)). This
shows the continuity of h. As observed in [21, p.3], the operator S admits for some y0 ∈ C(D̄) a
decomposition

S(u, z) = P (u, z) + y0 ∀(u, z) ∈ L2(D)× Rm

where P : L2(D) × Rm → C(D̄) is some continuous linear operator. Consequently, for fixed x ∈
D̄, the function (u, z) 7→ h(u, z, x) is the sum of a constant y0(x) − α and a continuous linear
function (u, z) 7→ [P (u, z)](x). This implies that h is Fréchet differentiable and convex in its first two
arguments. Moreover, the partial Fréchet derivative D(u,z)h at (u, z, x) equals the continuous linear
function [P (·, ·)](x). Altogether, we have shown the validity of assumptions 1. and 2. of Theorem 3.2.
Assumption 3. follows immediately from (15). In order to check assumption 4., observe that by (16),
the function u 7→ h(u, z, x) is locally Lipschitzian with some common modulus C at all u ∈ L2(D)
and for all (z, x) ∈ Rm × D̄. Consequently,

‖Duh(u, z, x)‖ ≤ C ≤ ce‖z‖ ∀(u, z, x) ∈ L2(D)× Rm × D̄ : ‖z‖ ≥ c := max{1, logC}.

This shows the validity of assumption 4. and finishes the proof.

Remark 3.4. One may easily derive from [48, Prop. 3.11] that condition (15) is satisfied whenever the
probability ϕ(ū) is larger than or equal to 0.5. Since typically the probability level p is chosen close
to one, this condition will be automatically fulfilled for most iterations of the control. Hence, the exact
formula for the Clarke subdifferential in Theorem 3.2 will basically hold true unconditionally.

Remark 3.5. If the sets M∗(v) introduced in Theorem 3.3 satisfy the condition

#M∗(v) = 1 µζ − a.e. v ∈ Sm−1, (17)

then the integral in the formula for the Clarke subdifferential, and hence the Clarke subdifferential itself,
reduce to singletons. Therefore, the probability function is strictly differentiable in the Hadamard sense
(see [14, Prop. 2.2.4]) and its derivative is given by

Dϕ(ū) = −
∫

{v∈Sm−1:ρ(v)<∞}

fχ(ρ(v))

κ(v, x∗(v))
· ux∗(v) dµζ(v), (18)

where, for µζ− almost every v ∈ Sm−1, x∗(v) is defined as the unique element in the set M∗(v).

DOI 10.20347/WIAS.PREPRINT.3062 Berlin 2023



Numerical solution of an optimal control problem with probabilistic & almost sure state constraints 7

Simple examples show that in the setting of Theorem 3.3 the probability function may fail to be dif-
ferentiable, hence condition (17) is violated in general. Evidently, (17) is difficult to verify for concrete
data. In [49, Lemma 4.3], some easy to understand constraint qualification (so-called “rank 2-CQ”)
has been shown to imply (17) for finite random inequality systems. A generalization to our setting with
infinite systems (uniform state constraints) does not seem to be straightforward, so that the verification
of differentiability for the probability function remains an open problem. On the other hand, in the nu-
merical solution of the given control problem, one may be forced to replace the uniform state constraint
(1d) by evaluating it on a finite subset D̃ ⊆ D of the domain. Then, the aforementioned rank 2-CQ
reduces to the following verifiable condition at some fixed control ū ∈ U :

rank {Y (xa), Y (xb)} = 2 ∀xa, xb ∈ D̃ :

xa 6= xb, ȳ(ū)(x
a) + 〈z, Y (xa)〉 = ȳ(ū)(x

b) + 〈z, Y (xb)〉 = α

∀z ∈ Rm : ȳ(ū)(x) + 〈z, Y (x) ≤ α ∀x ∈ D̃

Here, for x ∈ D̃, the vector Y (x) := (y(1)(x), . . . , y(m)(x)) collects in its components all values of
the basic functions y(i) at x.

3.3 Convexity properties under Gaussian and truncated Gaussian distribu-
tions

In this section, we show that problem (1) is convex under Gaussian and truncated (to convex sets)
Gaussian distributions. Given the assumed convexity of the objective F , it is sufficient to verify con-
vexity of the constraint. For pure Gaussian distributions, this has been done (without explicit statement)
in [21]. We refer to the abstract form (3) of problem (1), where ϕ is defined as the Gaussian probability
function associated with the random inequality g(u, ξ(ω)) ≤ 0. In the context of our problem (1),
this constraint function takes the form (10). Similarly, we may consider problem (1) under a truncated
Gaussian distribution and represent it in the abstract form (3) with ϕ being replaced by the truncated
Gaussian probability function ϕ̃ associated with the same constraint function g from (10). More pre-
cisely, if ξ̃ ∼ T N (µ,Σ,Ξ) designates a random vector having a Gaussian distribution N (µ,Σ)
truncated to a closed set Ξ := {z ∈ Rm | s(z) ≤ 0} (s : Rm → R continuous), then

ϕ̃(u) = P(ω | g(u, ξ̃(ω)) ≤ 0) =
P(ω | g(u, ξ(ω)) ≤ 0, s(ξ(ω)) ≤ 0)

P(ω | s(ξ(ω)) ≤ 0)
.

The last equation above expresses the fact that the truncated distribution is nothing but the original
distribution conditioned to a subset. Consequently, the probabilistic constraint ϕ̃(u) ≥ p in (3) (with ϕ
replaced by ϕ̃) can be equivalently written as P(ω | g̃(u, ξ(ω)) ≤ 0) ≥ p̃, where

g̃(u, z) := max{g(u, z), s(z)}, p̃ := p · P(ω | s(ξ(ω)) ≤ 0). (19)

Proposition 3.6. The optimization problem (1) is convex if the random vector ξ follows a Gaussian
distribution or a Gaussian distribution truncated to a set Ξ := {z ∈ Rm | s(z) ≤ 0} where
s : Rm → R is convex, hence continuous.

Proof. The convexity of the constraint ϕ(u) ≥ p in case of a Gaussian distribution follows in the
abstract setting from the convexity of the constraint function g(u, z) (jointly in both variables), see
[21, Lemma 2.4]. That this property holds true for the concrete function g defined in (10), has been
shown in [21, Lemma 2.7]. As for the case of a truncated distribution, we have seen above that we
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may represent the corresponding chance constraint as in the Gaussian case but with the modified
constraint function g̃ and the modified probabilty level p̃ defined in (19). Evidently, g̃ is jointly convex
in (u, z) since g is so and s is convex. Consequently, we can apply again the previous argument to
prove the convexity of the feasible set also under truncated Gaussian distribution.

4 Numerical results for the control problem with probabilistic
constraints

4.1 Implementation of the spherical-radial decomposition

In order to deal with the probabilistic constraint ϕ(u) ≥ p in the general problem (3) numerically, one
has to appropriately approximate the probability functionϕ and, assuming differentiability, its derivative
Dϕ. Since ϕ is defined as the spherical integral (5), it can be approximated by a finite sum

ϕ(u) ≈ ϕ̂(u) :=
1

K

K∑
k=1

e(u, v(k)) ∀u ∈ U,

where {v(k)}Kk=1 is a sample of size K of the uniform distribution on the sphere Sm−1. A simple way
to create such a sample consists in normalizing to unit length a quasi-Monte Carlo (QMC) sample of
the given Gaussian distribution. It was shown in [21, eq. (19)] that, for any fixed ū with g(ū, 0) < 0,
there exists a neighborhoodN of ū such that

e(ū, v) =

{
Fχ(ρ∗(v)) if ρ∗(v) <∞
1 if ρ∗(v) =∞ ∀u ∈ N ∀v ∈ Sm−1, (20)

where Fχ is the cumulative Chi-distribution function introduced before and

ρ∗(v) := sup{r ≥ 0 | g(ū, rΣ1/2v) ≤ 0} (v ∈ Sm−1).

It follows from [21, eq. (29)] that ρ∗ coincides with the function ρ defined in the statement of Theorem
3.3. Consequently, the probability function can be approximated at some ū with g(ū, 0) < 0 by

ϕ(ū) ≈ ϕ̂(u) =
1

K
#{k ∈ {1, . . . , K} | ρ(v(k)) =∞}

+
1

K

∑
{k∈{1,...,K}:ρ(v(k))<∞}

Fχ(ρ(v(k))).

Should ϕ be differentiable, the spherical integral in (18) can be approximated by the sample-based
quantity

Dϕ(ū) ≈ Dϕ̂(ū) := −
∑

{k∈{1,...,K}:ρ(v(k))<∞}

fχ(ρ(v(k)))

κ(v(k), x∗(v(k)))
· ux∗(v(k)),

whose ingredients are defined in the statement of Theorem 3.3 and below (18), respectively.

It is essential to observe that values and derivatives (in a specified direction h ∈ L2(D)) can be
simultaneously updated by sharing the same sample v(k). In this way, the potentially time-consuming
computation of ρ(v(k)) may be carried out only once, when it comes to updating the probabilities
themselves, whereas it does not have to be redone during the update of the gradient. Altogether, this
leads us to the algorithmic scheme in Algorithm 1.
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Algorithm 1 Algorithmic approximation of probabilities and their gradients via spherical-radial decom-
position

Input: D ⊂ Rd (domain), f0 (expected source term), φi(i = 1, . . .m) (basic source functions), Σ
(covariance matrix of Gaussian distribution for random coefficients), ū (control of interest satisfying
(15)), h (direction of interest to apply the gradient to).

1 Initialization

1.1 Fix sample size K and create a sample {v(k)}Kk=1 uniformly distributed on the sphere
Sm−1.

1.2 prob := 0, deriv := 0, k := 1.

1.3 Determine functions y(i)(i = 1, . . .m) as the solutions of (13).

1.4 Determine function ȳ(ū) as the solution to (12) (with u := ū).

1.5 Determine function yh as the solution to (14).

2 Iteration on k

2.1 Define a function κ :=
m∑
i=1

(Σ1/2v(k))iy
(i)

2.2 Calculate ρ := max{r ≥ 0 | ȳ(ū)(x) + rκ(x) ≤ α ∀x ∈ D̄}
2.3 Determine a point x∗ ∈ D̄ satisfying ȳ(ū)(x

∗) + ρκ(x∗) = α

(if x∗ is not unique then the probability function fails to be differentiable and the output will
yield a subgradient rather than a gradient).

2.4 If ρ <∞ then prob := prob+ Fχ(ρ) else prob := prob+ 1.

2.5 If ρ <∞ then deriv := deriv + fχ(ρ)

κ(x∗)
yh(x∗).

3 Termination: If k < K then k := k + 1. Goto Step 2.

4 Output: prob := K−1prob, deriv := K−1deriv

Output: Approximation of probability ϕ(ū) ≈ prob and of its directional derivative Dϕ(ū)(h)〉 ≈
deriv.

4.2 Results in dimension one

We consider problem (1) with the following data:

d = 1, D = (0, 1),m = 6, α = 0.2, F (u) = ‖u‖2L2(D), p = 0.9,Σi,j = 9 · 0.6|i−j| (i, j = 1, . . .m),

f0(x) = 5x2, φ2i−1(x) = sin(ix) (i = 1, 2, 3), φ2i−2(x) = cos(x/i) (i = 2, 3, 4).

We use a finite difference discretization over a subdivision of the domain into 120 intervals. The values
and—assuming differentiability—derivatives of the probability function in were obtained as described
in Algorithm 1 on the basis of a QMC sample on the unit sphere of size 512. The optimization prob-
lem was numerically solved with the “SLSQP” method from the Python standard minimzation routine
scipy.optimize.minimize. Fig. 1 (left) shows the optimal control under the indicated Gaussian distribu-
tion. Fig. 1 (middle) plots twenty states associated with the optimal control and with twenty scenarios
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Figure 1: Numerical solution of (1). Optimal control for probability level p = 0.9 (left) and associated
states for twenty scenarios of the random source term (right)

for the random source term f(x, ξ(ω)) in (1b). It can be seen that only two of them exceed the desired
threshold α occasionally, whereas the remaining ones stay below it uniformly over the domain, which
corresponds well to the imposed probability level of p = 0.9.

Figure 2: Solution of (1) for Gaussian distribution truncated to an ellipsoid and for increasing probability
levels.

In order to include the almost sure case (p = 1) for later comparison, the problem was solved again
with the Gaussian distribution truncated to an ellipsoid E defined by E := {z ∈ Rm | zTΣ−1z ≤
36} (the choice of the Mahalanobis norm in this definition facilitates computations). In this way, the
support of the distribution becomes compact so that the problem with an almost-sure constraint has
a chance to have a feasible solution. As can be seen from Fig. 1 (right), the optimal solutions of the
probabilistically constrained problems seem to converge to that with almost sure constraints for p→ 1
(for a rigorous statement, see Section 5.1).

Note that passing to truncated Gaussian distributions already points to the possibility of using alterna-
tive distributions. We do not present details here but note that the same methodology could be applied
to multivariate lognormal or Student or Gaussian mixture distributions.

4.3 Results in dimension two

In this section, we revisit problem (1) but with some increased complexity when compared to the
previous section: the domain will be in two dimensions, the dimension of the random parameter will
increase from 6 to 30, and additional bound constraints will be imposed on the control. More precisely,
we consider the following data:
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d = 2, D = (0, 1)2,m = 30, α = 0.2, F (u) = ‖u‖2L2(D), p = 0.9,Σi,j = 9 · 0.6|i−j| (i, j = 1, . . .m),

f0(x1) = 5x1x2, φi(x1, x2) = sin(ix1) cos(ix2) (i = 1, . . . ,m).

In addition, we impose the following bounds on the control:

−5 ≤ u(x1, x2) ≤ 0 a.e. (x1, x2) ∈ D.
The PDE is numerically solved using a Python code by Zaman available on

Figure 3: Optimal solution of the control problem in 2D (left). For graphical reasons the negative control
is plotted. Contourplot (right).

https://github.com/zaman13/Poisson-solver-2D

and which is based on the paper [56]. The PDE was solved using finite differences on a 20x20 grid
of the domain and the random parameter was approximated by using 213 = 8192 QMC samples on
the sphere. Figure 3 shows the resulting optimal control (linearly interpolated). It can be seen in both
plots that the control bound becomes active in a certain small region of the domain (yellow).

5 Almost sure constraints

In this section, we want to consider the extreme case of risk-averse decision making, namely the op-
timal control with constraints that should be satisfied almost surely. In this case, our PDE-constrained
optimization problem becomes

min
u∈L2(D)

F (u) (21a)

s.t. −∆y(x, ω) = u(x) + f(x, ξ(ω)), x ∈ D P-a.s., (21b)

y(x, ω) = 0, x ∈ ∂D P-a.s., (21c)

y(x, ω) ≤ α, x ∈ D P-a.s. (21d)

We shall assume in this section that the support Ξ ⊆ Rm of the random vector ξ is compact, because
otherwise there may not exist a feasible solution that satisfies (21d). This assumption will meet the
setting illustrated in Fig. 1 (right), where the distribution was assumed to be Gaussian, truncated to an
ellipsoid.
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5.1 Almost sure constraints as limit of probabilistic constraints

Evidently, by equivalence of (21d) with (1d) when choosing p = 1, this optimization is equivalent
with the previously analyzed probabilistically constrained problem (1) when choosing the maximum
possible probability level. We emphasize that, in spite of this equivalence, necessary and sufficient
optimality conditions can be obtained for the formulation (21) ([21, Theorem 3.10]) while they cannot for
the formulation (1) ([21, Remark 2.6 and Example 3.1]). On the other hand, we were able numerically
to find a candidate solution to (1) for p = 1 and observed a convergence of solutions for p → 1
towards this candidate (see Fig. 2). Two questions arise: is the candidate we found the true solution
of the almost sure problem (21) and can we prove the mentioned convergence? The first question will
be considered in the next section, whereas the second question will be answered after the following
technical preparation.

Lemma 5.1. Consider problem (1) but with the random vector ξ having a Gaussian distribution trun-
cated to a compact convex set Ξ as in Proposition 3.6. Let upk ∈ L2(D) be optimal solutions of (1)
with pk ∈ (0, 1) and pk → 1. In addition, suppose that upk ⇀ ū ∈ L2(D). Then, ū is an optimal
solution of problem (1) with p = 1 and F (upk)→ F (ū).

Proof. As shown in Section 3.3, the constraint of (1) can be rewritten as ϕ̃(u) ≥ p̃, where ϕ̃(u) =
P(ω | g̃(u, ξ(ω)) ≤ 0) is a probability function related to an untruncated Gaussian random vector and
g̃, p̃ are defined in (19). By [21, eq. (5)], the functions (u, z) 7→ [S(u, z)](x) are affine linear (hence
weakly lower semicontinuous) for each x ∈ D̄. Consequently, the function g in (10) is weakly lower
semicontinuous as a sum of a constant and a maximum of such functions. On the other hand, the func-
tion (u, z) 7→ s(z) with s from Proposition 3.6 is convex and continuous, hence weakly lower semi-
continuous. It follows once more that g̃ as the maximum of two weakly lower semicontinuous functions
shares this property. Therefore, using [17, Lemma 2], we get that the function ϕ defined in (3) is weakly
sequentially upper semicontinuous, whence ϕ(ū) ≥ lim supk→∞ ϕ(upk) = 1. Now, let u′ ∈ L2(D)
be any control function satisfying ϕ(u′) = 1. Since in problem (3) with probability level pk, the control
u′ is feasible while the control upk is optimal, it follows thatF (upk) ≤ F (u′). In particular, it shows that
F (upk) ≤ F (ū) and consequently lim supk→∞ F (upk) ≤ F (ū). Therefore, utilizing the weak lower
semicontinuity of the objective function, we can conclude that F (ū) ≤ lim infk→∞ F (upk) ≤ F (u′),
thereby demonstrating the optimality of ū and limk→∞ F (upk) = F (ū).

Proposition 5.2. In addition to the assumptions of Lemma 5.1, assume that the objective F in (1) is
strictly convex. Then, any bounded sequence (upk)k∈N of minimizers of (1) with pk ∈ (0, 1) weakly
converges to the unique solution of (1) with p = 1. If the objective happens to be even strongly convex
(as in the numerical examples), then any bounded sequence (upk)k∈N of minimizers of problem (1)
with pk ∈ (0, 1) strongly converges to the unique solution of problem (1) with p = 1.

Proof. As proven in Proposition 3.6, problem (1) has a convex feasible set for all p ∈ (0, 1]. Therefore,
if F is strictly convex, the problem has a unique minimizer. Hence, if upk is bounded, then as per
Lemma 5.1, the only possible accumulation point is the unique minimizer of (1) for p = 1.

Strong convexity of F (with modulus µ) gives

F (upk)− F (ū) ≥ 〈∇F (ū), upk − ū〉+
µ

2
‖upk − ū‖2. (22)

From Lemma 5.1, we have limk→∞ F (upk) = F (ū). Also 〈∇F (ū), upk − ū〉 → 0 as k → ∞ by
weak convergence of upk . Strong convergence of the same sequence follows by (22).
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Note that the last Proposition explains why in Figure 2 we observe strong and not just weak conver-
gence.

5.2 Moreau–Yosida approximation for dealing with almost sure constraints

A difficulty in the numerical solution to problem (21) is in the enforcement of the state constraints.
One possibility to handle this computationally is to penalize this constraint in the objective. Note that
(H1

0 (D), L2(D), H−1(D)) is a Gelfand triple. Moreover, the cone K = {y ∈ L∞P (Ω, H1
0 (D)) |

y(x, ω) ≤ 0 a.e.-P-a.s.} is compatible with the cone KH = {y ∈ L2
P(Ω, L2(D)) | y(x, ω) ≤

0 a.e.-P-a.s.} in the sense that KH ∩ L∞P (Ω, H1
0 (D)) = K. This justifies the penalization on the

weaker (Hilbert) space H = L2
P(Ω, L2(D)) where the projection πKH onto the cone KH is possibly

computationally cheaper. The Moreau–Yosida regularization (or envelope) for the indicator function on
the cone KH has the formula

β̂γ(k) = γ‖k − πKH (k)‖2
H ;

see, e.g., [22, Section 4.1]. Let α ∈ L∞P (Ω, H1(D)) be the function that is equal to α a.e. in D and
P-a.s. Penalizing the constraint (21d) amounts to adding β̂γ(y − α) to the objective, leading to the
modified problem

min
u∈L2(D)

{
fγ(u) := F (u) + γE[‖max(0, y −α)‖2

L2(D)]
}

(23a)

s.t. −∆y(x, ω) = u(x) + f(x, ξ(ω)), x ∈ D P-a.s., (23b)

y(x, ω) = 0, x ∈ ∂D P-a.s. (23c)

The results from [22] focus on the consistency of the optimality conditions for (23) to the optimality
conditions for (21), which require an interior point condition (and therefore higher regularity of the
solution to the PDE). Here, we will focus on the consistency of the primal problem and will work
with the weakest regularity available. Let A : H1

0 (D) → H−1(D) represent the Laplacian, which
is a linear isomorphism thanks to Assumption 2.1 and the Lax–Milgram lemma. We denote with
A−1 : L∞P (Ω, L2(D)) → L∞P (Ω, H1

0 (D)) the superposition defined by [A−1y](ω) = A−1y(·, ω).
Let B : L2(D) → L∞P (Ω, L2(D)) be the canonical embedding. Let f̃ be defined by f̃(x, ω) :=
f(x, ξ(ω)). It will be convenient to define the (affine linear) control-to-state operator S̃ : L2(D) →
L∞P (Ω, H1

0 (D)) by S̃(u) = A−1(Bu + f̃), which is bounded by [21, Lemma 10]. Due to the con-
tinuous canonical embedding ι : L∞P (Ω, H1

0 (D)) → L2
P(Ω, L2(D)), the operator S := ι ◦ S̃ is

continuous from L2(D) to L2
P(Ω, L2(D)).

We demonstrate how solutions to (23) converge to (21) in the limit as γ → ∞. First we need the
following.

Lemma 5.3. For any γ ≥ 0, the reduced functional βγ : L2(D)→ R defined by

βγ(u) = γE[‖max(0,S(u)−α)‖2
L2(D)]

is convex and (weakly) lower semicontinuous.

Proof. Since S is continuous and the map y 7→ E[‖max(0, y−α)‖2
L2(D)] is evidently continuous on

L2
P(Ω, L2(D)), βγ is continuous on L2(D). Moreover, since S is (affine) linear, βγ is convex. Weak

lower semincontinuity follows from the continuity and convexity of βγ .

We now have the following result:
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Lemma 5.4. If F is (in addition to the usual assumptions) coercive, then there exists a solution uγ to
(23) for all γ > 0. Additionally, if there exists a feasible point for problem (21), then given a sequence
(γn) with γn →∞, weak limit points of uγn solve (21).

Proof. Let Fad = {u ∈ L2(D) | [S(u)](x, ω) ≤ α a.e.-P-a.s.} denote the feasible set for problem
(21). It is straightforward to show that this set is convex; it is closed thanks to the continuity of S. Thus,
Fad is weakly closed (see [8, Theorem 2.23]). Coercivity of F (in combination with the other assump-
tions) implies that fγ attains its minimum over Fad. In particular, there exists a minimizing sequence
(un)n∈N ⊂ Fad such that limn→∞ f

γ(un) = infu∈Fad f
γ(u). This sequence is also bounded due to

the coercivity of F , so we can extract a subsequence (unk)k∈N such that unk ⇀ uγ . Now, we have
(since F is weakly lower semicontinuous, as convex and continuous function)

lim inf
k→∞

F (unk) + βγ(unk) ≥ lim inf
k→∞

F (unk) + lim inf
k→∞

βγ(unk) ≥ F (uγ) + βγ(uγ),

meaning uγ solves problem (23). In other words, a solution exists for any γ > 0.

Now, let (uγn)n∈N be a sequence such that γn →∞ as n→∞. Let ū ∈ Fad 6= ∅ be a minimizer to
(21). Then, by optimality of uγn and feasibility of ū, we have

F (uγn) ≤ F (uγn) + βγn(uγn) ≤ F (ū) + βγn(ū) = F (ū). (24)

This means uγn is a minimizing sequence for F , which is bounded thanks to the coercivity of F .
Therefore, there exists a subsequence (uγnk )k∈N and point û such that uγnk ⇀ û. Weak lower
semicontinuity of F implies that

F (û) ≤ lim inf
k→∞

F (uγnk ) ≤ F (ū). (25)

It only remains to show that û is feasible for (21). Since F is bounded over Fad, (24) implies that there
exists a constant c > 0 such that

βγnk (uγnk ) ≤ c ⇔ E[‖max(0,S(uγnk )−α)‖2
L2(D)] ≤

c

γnk
.

Since γnk →∞, we obtain E[‖max(0,S(uγnk )−α)‖2
L2(D)]→ 0, implying that [S(û)](x, ω) ≤ α

a.e. P-a.s. By definition of S , the function S(u) satisfies (21b)–(21c).

Corollary 5.5. Under the same conditions as Lemma 5.4, suppose that F is strongly convex. Then
any bounded sequence (uγn)n∈N of minimizers of problem (23) with γn → ∞ converges to the
unique solution of problem (21).

Proof. Since there can only be one solution to (21), (25) together with the feasibility of û and ū
imply that limn→∞ F (uγn) = F (ū). Strong convergence follows with the same reasoning used in
Proposition 5.2.

Remark 5.6. While the above proof is based on [22, Proposition 3.8], we used the reduced formulation
here, which greatly simplified certain arguments; we did not need to rely on arguments using the weak*
topology, for one. Moreover, we did not require an interior point condition to establish consistency
(which was assumed in [22] but not used in this proof).
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5.3 Numerical results by “sampling the distribution,” “sampling the support,”
or “sampling the boundary” of the support

In the following numerical tests, we use gradient descent to solve a sample average approximation
of the subproblem (23). Given a fixed number N of samples z1, . . . , zN of the random vector ξ, the
corresponding SAA problem is

min
u∈L2(D)

{
f̂γ(u) := F (u) +

γ

N

N∑
i=1

[‖max(0, yi −α)‖2
L2(D)]

}
(26a)

s.t. −∆yi(x) = u(x) + f(x, zi), x ∈ D ∀i = 1, . . . , N, (26b)

yi(x) = 0, x ∈ ∂D ∀i = 1, . . . , N. (26c)

The gradient of f̂γ can be computed using standard techniques, resulting in

∇f̂γ(u) = ∇F (u)− 1

N

N∑
i=1

pi, (27)

where pi is the solution to the adjoint equation

−∆pi(x) = −2γmax(0, yi(x)− α), x ∈ D and pi(x) = 0 x ∈ ∂D, (28)

and yi is the solution to (26b)–(26c) for a fixed sample zi. For numerical tests, we use the same setup

Algorithm 2 SAA Gradient descent with Moreau–Yosida penalization

Input: D ⊂ Rd (domain), K (number of penalty updates), {z1, . . . , zNK} (set of samples), u1

(initial control), (γk)k∈{1,...,K} (sequence of penalties), (tj)j (step-size rule)
for k = 1, . . . , K do

for j = 1, 2, . . . do
if ‖∇f̂γk(uj)‖ > tol then

break
end if
for ` = 1, . . . , Nk do
y` ← solution to (26b)–(26c) with z` and uj
p` ← solution to (28) with y` and γk

end for
uj+1 := uj − tj(∇F (uj)− 1

Nk

∑Nk
i=1 pi)

end for
u1 := uj

end for
Output: Solution u.

as described at the beginning of Section 4.2. However, rather than considering the purely Gaussian
distribution N (0,Σ) defined there, we truncate it to the ellipsoid E defined below the original data
in connection with Fig. 1 (right). The sampling of this truncated Gaussian distribution is carried out
by accepting/rejecting samples of the underlying original Gaussian distribution according to whether
or not these samples belong to the ellipsoid E . The PDEs (26b)– (26c) and (28) were solved using
FEniCS [4] with a finite element discretization over 29 intervals. We use a path-following approach,
where in an outer iteration, the penalty was increased and in inner iterations, gradient descent on a
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subproblem was performed until a given tolerance. A starting value for the control was set to u ≡ −1.
In each outer iteration k ∈ {0, . . . , 8}, γ = 10k, an increasing batch of 3k m-dimensional vectors
was used. The step-size for each outer iteration was chosen to be t` = 4/`, which was informed by
the strong convexity of the problem; see [23] for a discussion of this choice in the context of PDE-
constrained optimization. Each inner iteration was terminated when ‖∇f̂γ(uj)‖L2(D) < 10−4. In Fig.
4 (top left), different optimal controls are displayed for increasing values γ = 10k and increasing
sample sizes 3k.

Figure 4: Solutions uγ obtained for increasing values γ = 10k and increasing sample sizes 3k using
sampling of the distribution (top left), sampling of the support (top right), and sampling on the bound-
ary of the support (bottom left). The decrease of constraint violation as a function of k for the three
sampling approaches is illustrated in the diagram at the bottom right.

So far, we have considered samples of the distribution in order to characterize solutions of the almost
sure model. Sometimes, however, one can do better than sampling the distribution. As observed in [21,
Example 3.3], problems with almost sure constraints are not equivalent, in general, to problems with
worst-case constraints on the support of the random parameter [21, Lemma 3.4]. They are, however, if
the underlying random inequality is lower semicontinuous with respect to the random parameter. This
is the case, for instance, in our problem. Therefore, the problem (21) with almost sure constraints is
equivalent with the robust optimization problem

min
u∈L2(D)

F (u) (29a)

s.t. −∆ŷ(x, z) = u(x) + f(x, z), (x, z) ∈ D × Ξ, (29b)

ŷ(x, z) = 0, (x, z) ∈ ∂D × Ξ, (29c)

ŷ(x, z), ≤ α (x, z) ∈ D × Ξ, (29d)

DOI 10.20347/WIAS.PREPRINT.3062 Berlin 2023



Numerical solution of an optimal control problem with probabilistic & almost sure state constraints 17

where the support Ξ of the random vector ξ plays the role of the uncertainty set with respect to which
the worst case has to be taken into account. Since the support Ξ—contrary to our concrete simple
ellipsoid E—can be potentially complicated and hard to deal with, one approach might consist in
uniformly sampling this support. Of course, our previous sampling of the distribution trivially provides
samples on the support. These are, however, strongly concentrated around the mean 0 of the ellipsoid
due to the underlying Gaussian distribution, while only few of these samples will be close to the
boundary of the ellipsoid. However, points at the boundary are much more informative in defining the
robust constraint (see discussion in Section 5.4 below). Therefore, it seems reasonable, if possible, to
work with a uniform sample of the support or even just its boundary. In the case of our ellipsoid E :=
{z ∈ Rm | zTΣ−1z ≤ 36}, a uniformly distributed sample can be created as follows: Let {v(k)}Kk=1

be a sample of the uniform distribution on the sphere Sm−1 as in Section 4.1 and let {τ (k)}Kk=1 be
a sample of the uniform distribution on [0, 1]. Then, {6τ (k)Σ1/2v(k)}Kk=1 is a sample of the uniform
distribution on E . When fixing τ (k) ≡ 1 instead, one rather obtains a uniform distribution on the
boundary of E . With this potentially more efficient uniform sampling of the support Ξ or its boundary,
respectively, one may numerically proceed in the same way as with the previous sampling of the
distribution. The corresponding results are illustrated in Fig. 4 (top right and bottom left). A plot showing
the decrease in constraint violation for the three sampling strategies is illustrated in the diagram at the
bottom right. More precisely, constraint violation refers to the maximum excess over the threshold α
(with respect to the domain of the space variable x and to the support of the random variable ξ) of
the random state under optimal control. All sampling schemes show convergence according to the
theoretical results, but uniform sampling of the support and even more of just its boundary seem to
exhibit much faster convergence than sampling of the distribution (see amplitudes of solutions in Fig.
4). This will be confirmed in the following section upon comparing results with the sample-free solution
of the problem.

5.4 Sample-free solution of the optimization problem with almost-sure con-
straints

So far, we have seen four alternative approaches for dealing with almost sure constraints: one by
formulating a probabilistic constraint with probability level p = 1 and three sample average approaches
based on Moreau–Yosida approximation with increasing penalty parameter. The latter three methods
differed according to whether the distribution was sampled itself or rather its support or even just
the boundary of the support. In this section, we present yet another alternative, namely the direct
solution of the robust optimization problem (29) without sampling. This solution can be understood as
the “true” solution of the almost sure problem. We emphasize that such a sample-free approach may
not be possible in general, when the objective and the support are not simple enough to provide an
analytical solution of the inner problem below.

We recall our assumption that the support Ξ ⊆ Rm of the random vector ξ is compact. Similar to the
probabilistic setting, we may exploit the parametric control-to-state operator S there, in order to recast
(29) as an infinite-dimensional optimization problem

min
u∈L2(D)

F (u) s.t. h(u) ≤ 0, h(u) := max
(x,z)∈D̄×Ξ

[S(u, z)](x)− α. (30)

In order to solve (30) numerically, we need to compute the function h and its (sub-) gradients. It is
advantageous to rewrite h as an iterated maximum

h(u) = max
x∈D̄

max
z∈Ξ

[S(u, z)](x)− α. (31)
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Since S is affine linear in z, the inner maximization problem (for some fixed u ∈ L2(D) and x ∈ D̄)
can be solved analytically if the support Ξ is a simple set (e.g., rectangle, ellipsoid). Then, since the
domain D is of low dimension, the outer maximization is easily carried out on a grid corresponding to
the discretization of the state. For instance, if the support is given by an ellipsoid

Ξ = {z ∈ Rm | zTBz ≤ γ} (32)

for some symmetric and positive definite matrixB and some γ > 0, then a linear function cT z realizes
its maximum over Ξ at the point

z∗ =

√
γ

cTB−1c
B−1c.

Now, in order to compare the sample-free robust solution with the previous three methodologies,
assume that the support of Ξ of the truncated Gaussian random vector ξ is the ellipsoid E := {z ∈
Rm | zTΣ−1z ≤ 36} as in Section 4.2. For a fixed u ∈ L2(D), denote as in Theorem 3.3 by
ȳu := S(u, 0) the mean state associated with u, i.e., the solution of the PDE (1c), (1d) with right-
hand side u(x) + f0(x). Then, with (11), we infer that

[S(u, z)](x) = ȳ(u)(x) +
m∑
i=1

ziy
(i)(x) ∀(x, z) ∈ D̄ × Ξ.

Hence, for some fixed u ∈ L2(D) and x ∈ D̄, the inner maximization problem mentioned above
amounts to maximizing the linear function cT z with c := (y(i)(x))mi=1 over the ellipsoid (32) with
B := Σ−1 and γ := 36, where the data for the support have been chosen as in the previous
computations. Therefore, the maximum is realized for

z∗ =
6√
cTΣc

Σc.

Summarizing, the function value of h can be determined as

h(u) = max
x∈D̄

ȳ(u)(x) +
m∑
i=1

z∗i y
(i)(x)− α =: max

x∈D̄
H(u, x)− α,

which is easily approximated over the discretized state in low dimensions. The robust constraint func-
tion h will be typically nonsmooth (see discussion below). Its (convex) subdifferential is easily charac-
terized as

∂h(u) = clco {ux | x ∈M(u)}; M(u) := {x ∈ D̄ | h(u) = H(u, x)− α},

where ux is introduced below (13). Equipped with these tools, an appropriate algorithm for nonsmooth
convex optimization can be employed in order to numerically solve problem (30). Figure 5 (left) shows
the comparison of the probabilistic solution in Figure 1 (right) for p = 1 with the three sampled and the
sample-free robust solutions on the same support. The sampled robust solutions are those illustrated
in Fig. 4 with penalty parameter γ = 108 and sample size 38. Several conclusions can be drawn when
understanding, as suggested above, the sample-free solution as the “true” reference: First, sampling
the distribution is the least efficient method. This is not surprising, because in this sampling proce-
dure a minimum amount of information is exploited. In particular, no knowledge about the support
of the distribution is used. Sampling the support uniformly (and not according to the original random
distribution, which might be strongly concentrated in the interior of the support) yields a much better
approximation. This can even be significantly improved when just sampling uniformly the boundary of
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Figure 5: Comparison of the probabilistic, three sampling-based the sample-free solutions to the worst-
case problem (left). Illustration of the nonsmoothness of the robust constraint function h (right), details
see text.

the support. The explanation of this further improvement is that, thanks to the linearity of the objective
in the inner maximization problem (31), all constraints are already induced by boundary points. This
observation from Fig. 5 complements those from Fig. 4. Best performance in approximating the “true”
solution is reached by the just-mentioned sampling of the boundary of the support combined with a
Moreau–Yosida approximation on the one side and probabilistic constraint with level p = 1 on the
other side. The difference between both results is that the former method better approximates the
smooth pieces of the solution, whereas the latter one is more precise close to the nonsmooth kinks.

Remark 5.7. We note that the benefit of sampling the boundary of the support pertains to constraint
functions g(u, z) that are not necessarily linear but just convex in the random variable z. Then, the
objective in the inner maximization of (31) is convex and, hence, assuming that the support Ξ is not
just compact but also convex, the maximizers are still located on the boundary of Ξ.

It is interesting to observe that the robust constraint function h fails to be differentiable at the optimal
solution u∗ (here, we do not refer to the fact, evident from Fig. 5 (left), that this solution itself is a non-
smooth function). A first indication of this is that the function H(u∗, ·) plotted in Fig. 5 (right) achieves
its maximum over D̄ = [0, 1] on a whole interval. Hence, the set M(u∗) and the subdifferential
∂h(u∗) do not shrink to a singleton and, consequently, h is nonsmooth. This fact can be alternatively
illustrated by plotting h as a univariate function of a needle variation of u∗ on a small interval ∆ ⊆ D
in the middle of the domain. More precisely, we define the function h̃(t) := h(ut), where

ut(x) :=

{
u∗(x) + t if x ∈ ∆
u∗(x) if x ∈ D \∆

Evidently, if h was differentiable, then so would the univariate function h̃ be, too. This, however, is not
the case as can be seen from Fig. 5 (right). Note that in the figure, we are simultaneously using the
horizontal axis for the x-variable of the function H(u∗, x) and for the t-variable of the function h̃.

A Appendix

In the following, we provide a proof of Theorem 3.2. It will follow from two lemmas below.

Lemma A.1. Under the assumptions of Theorem 3.2, the mapping g defined there, satisfies the as-
sumptions of Theorem 3.1.

Proof. We refer to the assumptions 1.-4. of Theorem 3.2. The continuity of h (see 1.) ensures that
g can be written as a max rather than just sup and that g(ū, 0) < 0 by 3. Condition 2. implies that
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g is locally Lipschitzian. Indeed, the function γ(u, z) := maxw∈K ‖D(u,z)h(u, z, w)‖ is continuous
by 2., hence it is locally bounded around an arbitrary (u, z) by some constant C . This implies that
all functions h(·, ·, w) for w ∈ K are locally Lipschitz continuous around (u, z) with a common
Lipschitz constant C . Hence, g is locally Lipschitz continuous around (u, z). The convexity of h in its
second argument (see 1.) yields that g is convex in its second argument too. Therefore, our general
assumption (GA) on g holds true. We show that 4. implies (4). To this aim, for (u, d, z, t) ∈ U ×
U × Rm × R, denote by wu,d,z,t ∈ K some element with g(u + td, z) = h(u + td, z, wu,d,z,t),
which exists thanks to the compactness of K and the continuity of h. It follows that g(u′ + td, z) =
h(u′ + td, z, wu′,d,z,t) and −g(u′, z) ≤ −h(u′, z, wu′,d,z,t), which yields

g◦(·, z)(u; d) = lim sup
u′→u,t↓0

g(u′ + td, z)− g(u′, z)

t

≤ lim sup
u′→u,t↓0

h(u′ + td, z, wu′,d,z,t)− h(u′, z, wu′,d,z,t)

t

≤ lim sup
u′′→u

sup
w∈K
‖Duh(u′′, z, w)‖‖d‖

≤ c exp(‖z‖)‖d‖ ∀u : ‖u− ū‖ ≤ (2c)−1 ∀z : ‖z‖ ≥ c ∀d ∈ U.

Since, for some c0,

exp (‖z‖) ≤ ‖z‖−m exp

(
‖z‖2

2 ‖Σ1/2‖2

)
∀z : ‖z‖ ≥ c0,

(4) holds true with l := max{1, c0, 2c}.

As a consequence of the previous lemma, Theorem 3.2 yields (7) via Theorem 3.1. The argument
provided in [30] to infer (7) from the assumptions of Theorem 3.1, relies on the functions e(·, v) being
uniformly (with respect to all v ∈ Sm−1) Lipschitzian with a common modulus on a neighborhood
of ū, see [30, Theorem 5, Corollary 2]. Since constants are integrable with respect to the uniform
distribution on the sphere, one may invoke Clarke’s theorem on subdifferentiation of integral functionals
[14, Theorem 2.7.2] in order to derive (7). According to an addendum in Clarke’s theorem, equality
in (7) along with Clarke regularity of ϕ at ū could be inferred if the partial functions e(·, v) were
Clarke regular at ū. Unfortunately, they are not. On the other hand, with e(·, v) also the negative
functions−e(·, v) are uniformly Lipschitzian with a common modulus on a neighborhood of ū. Hence,
multiplying relation (5) by minus one, we may apply the same Clarke’s theorem in order to derive the
inclusion

∂C(−ϕ)(ū) ⊆
∫

Sm−1

∂Cu (−e)(ū, v) dµζ(v). (33)

Now, the addendum to Clarke’s theorem mentioned above yields that equality in (33) and Clarke
regularity of −ϕ would hold true if the functions −e(·, v) were Clarke regular at ū. Contrary to the
functions e(·, v) themselves, this will hold true for −e(·, v), so that we can conclude equality instead
of inclusion in (7) upon multiplying the relation (33) with minus one. Summarizing, the assertion of
Theorem 3.2 will hold true as a consequence of the following

Lemma A.2. Under the assumptions of Theorem 3.2, for each v ∈ Sm−1, the functions −e(·, v) are
Clarke regular at ū.
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Proof. We define functions ew : U × Sm−1 → R for w ∈ K by ew(u, v) := µχ(A(u, v, w)), where
A(u, v, w) := {r ≥ 0 | h(u, rΣ1/2v, w) ≤ 0}. By continuity of g and g(ū, 0) < 0, there exists
a neighborhood N of ū such that g(u, 0) < 0 or h(u, 0, w) < 0 for all u ∈ N and all w ∈ K .
Then, the convexity of h in the second argument yields the existence of a positive (possibly infinite)
number ρ(u, v, w) such that A(u, v, w) = [0, ρ(u, v, w)] for all (u, v, w) ∈ N × Sm−1 ×K . Now,
the definitions of e and g provide that, for all (u, v) ∈ N × Sm−1,

e(u, v) = µχ

(⋂
w∈K

A(u, v, w)

)
= µχ

(⋂
w∈K

[0, ρ(u, v, w)]

)

= µχ

(
[0, inf

w∈K
ρ(u, v, w)]

)
= inf

w∈K
µχ([0, ρ(u, v, w)]) = inf

w∈K
ew(u, v).

Here, the penultimate identity follows from µχ being an absolutely continuous measure. Condition 4.
of Theorem 3.2 ensures that ew(·, v) is continuously differentiable on N for each w ∈ K and each
v ∈ Sm−1 by [53, Corollary 3.2 and Example 3.1] and its derivative is given by (with ρ introduced
above)

Duew(u, v) =

{
−fχ(ρ(u, v, w)) Duh(u,ρ(u,v,w)Σ1/2v,w)

〈Dzh(u,ρ(u,v,w)Σ1/2v,w),Σ1/2v〉 if ρ(u, v, w) <∞
0 if ρ(u, v, w) =∞.

(34)

Here, fχ denotes the density of the Chi- distribution µχ with m degrees of freedom. The Clarke
regularity of−e(·, v) = supw∈K −ew(u, v) at ū for every v ∈ Sm−1 can be checked by applying [14,
Theorem 2.8.2]. Indeed, according to this theorem and translated to our setting, it will be sufficient to
show the following statements for each v ∈ Sm−1 separately:

(a) The mappingN ×K 3 (u,w) 7→ Du(−ew)(u, v) is continuous

(b) The functions ew(·, v) with w ∈ K are Lipschitz continuous on a neighborhood of ū with some
common modulus;

(c) The set {ew(ū, v) | w ∈ K} is bounded;

(d) The mapping w 7→ ew(u, v) = µχ([0, ρ(u, v, w)]) is continuous at each u ∈ N .

In order to show (a), consider a sequence (uk, wk)→ (u,w). On the one hand, if ρ(u, v, w) <∞,
we have that the continuity of ρ [50, Lemma 4.10 (ii)] and the continuity of Duh,Dzh by condition
2. of Theorem 3.2 imply via (34) that Du(−ewk)(uk, v) → Du(−ew)(u, v). On the other hand,
if ρ(u, v, w) = ∞, then again by [50, Lemma 4.10 (ii)], we have that ρ(uk, v, wk) → ∞. Now,
adapting [53, Lemma 3.2] to our setting, we infer for k large enough the estimate

‖Duewk(uk, v)‖ ≤ c

|h(u, 0, wk)|
fχ(ρ(uk, v, wk))ρ(uk, v, wk) exp

(
4ρ(uk, v, wk)‖Σ1/2‖

)
,

where c is the constant from condition 4. of Theorem 3.2. For k → ∞, the expression |h(u, 0, wk)|
tends to |h(u, 0, w)|, which is nonzero by definition of N (see above). Moreover, given the explicit
formula for the density of the Chi-distribution with m degrees of freedom (including some normalizing
constant c̃ > 0), we get that

fχ(t)t exp
(
4t‖Σ1/2‖

)
= c̃tm exp(−t2/2) exp

(
4t‖Σ1/2‖

)
→ 0 (as t→∞).
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Hence, by (34), Duew(u, v) = 0 = limk→∞Duewk(uk, v), which shows the continuity of (u,w) 7→
Du(−ew)(u, v). To proceed with items (b-d), observe that, from the already shown continuity of the
mapping (u,w) 7→ Duew(u, v), it follows that the function u 7→ maxw∈K ‖Duew(u, v)‖ is continu-
ous on N . Hence, there is a neighborhood N ′ of ū and some κ > 0 such that ‖Duew(u, v)‖ ≤ κ
for all w ∈ K and all u ∈ N ′. This implies (b) with the common Lipschitz modulus κ, while (c) is
trivial because ew is a probability. Concerning (d), fix an arbitrary (u, v, w) ∈ N × Sm−1 ×K and
a sequence wk → w with wk ∈ K . We repeat the case distinction on ρ(u, v, w) from above: If
ρ(u, v, w) < ∞, then ρ(u, v, wk) → ρ(u, v, w) by the continuity of ρ already mentioned above.
Moreover, ρ(u, v, wk) <∞ for k large enough and, hence, with Fχ denoting the continuous distribu-
tion function of the Chi-distribution with m degrees of freedom, we arrive at

ewk(u, v) = µχ([0, ρ(u, v, wk)]) = Fχ(ρ(u, v, wk))→k Fχ(ρ(u, v, w))

= µχ([0, ρ(u, v, w)]) = ew(u, v),

which is the desired continuity in the first case. Otherwise, if ρ(u, v, w) = ∞, then, as already seen
above, we have that ρ(u, v, wk) → ∞. Let ε > 0 be arbitrary. Since limt→∞ Fχ(t) = 1, it follows
that ewk(u, v) = Fχ(ρ(u, v, wk)) ≥ 1− ε whenever k is large enough and ρ(u, v, wk) < ∞. If, in
contrast, ρ(u, v, wk) =∞ for some k, then

ewk(u, v) = µχ([0,∞)) = 1.

Hence, ewk(u, v) ≥ 1− ε whenever k is large enough. Consequently,

ewk(u, v)→k 1 = µχ([0,∞)) = µχ([0, ρ(u, v, w)) = ew(u, v).

This proves the desired continuity in the second case and, hence, (d).
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