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Simulation of the mode dynamics in broad-ridge laser diodes
Eduard Kuhn

Abstract

In this publication a method to simulate the mode dynamics in broad-ridge laser diode is
presented. These devices exhibit rich lateral mode dynamics in addition to longitudinal mode
dynamics observed in narrow-ridge laser diodes. The mode dynamics are strongly influenced by
higher order effects, which are described by effective interaction terms and can derived from the
band structure and the carrier scattering in the quantum well. The spatial dependency of pump
current densities plays a crucial role in lateral mode dynamics, and thus, a Drift-Diffusion model
is employed to calculate the current densities with an additional capturing term.

1 Introduction

Fabry-Pérot type laser diodes find use in a diverse range of applications such as laser displays [1–4]
and projection [5–7], exhibiting phenomena related to mode competition [8, 9]. These lasers often
demonstrate mode hopping, wherein the relative activity levels of different longitudinal modes change
with respect to time due to an antisymmetric interaction among these modes. In a recent develop-
ment, a similar effect has been noted in broad area laser diodes, where multiple lateral modes are
present [10]. This mode interaction can be explained by the beating vibrations of carrier densities
within the quantum well, which appear when several longitudinal modes are concurrently active[11].

The most common approach for simulating mode dynamics in these devices involves using rate equa-
tions, which entail formulating equations of motion for the photon numbers of the different optical
modes and the quantum well carrier densities. An alternative method, the traveling wave method,
involves solving a partial differential equation for the electrical field [12–18]. Nonetheless, thus far,
simulations of mode dynamics using the traveling wave method have not succeeded in reproducing
the experimental results.

As the mode dynamics are strongly influenced by higher order effects such as beating vibrations of the
carrier densities or spectral hole burning, it is insufficient to consider a spatially constant carrier density
in the rate equations. One possibility is to use spatial and energy-dependent distribution functions [19],
but these calculations are very computationally expensive. Alternatively it is possible to add an effective
mode interaction term to the rate equations for the photon numbers, which has been initially derived for
maser devices by Lamb et al. [20]. In literure this term can be found for single lateral mode Fabry-Pérot
laser diodes [11, 21–25] and also for devices with multiple lateral modes [26].

Another important aspect for the simulation of Fabry-Pérot laser diodes with multiple lateral modes
is the spatial dependency of the pump current densities. A higher current density in a specific area
can result in an increased carrier density, leading to higher optical gain. Consequently, the modal gain
of lateral modes increases when their mode functions reach a maximum in that region. Thus, it is
important to accurately describe these pump current distributions in order to describe the lateral mode
dynamics. For this purpose the Drift-Diffusion equations are often used in literature to describe carrier
transport and to study the properties of semiconductor laser devices [27–31].
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E. Kuhn 2

The goal of the study is to combine the rate equations with an effective mode interaction term with
an improved description of carrier transport using the Drift-Diffusion equations. As the time scale of
the mode dynamics is in the region of 100ns, using a time-dependent Drift-Diffusion model would be
too computationally expensive. Thus the Drift-Diffusion equations are solved for a steady state. The
resulting pump current densities are used in a subsequent mode dynamics simulation, where only the
carriers in the quantum wells are considered in the dynamic equations. In section 3 simulation results
using this method for a green nitride laser diode with a ridge width of 10µm.

2 Theory

2.1 Mode Function

The goal of this publication is the simulation of the mode dynamics in Fabry-Pérot type laser diodes.
For this purpose the optical field is expanded using mode functions:

E(r) =
∑
mp

i

√
ℏωmp

2ϵ0

[
Bmpunp(r)−B∗

mpu
∗
mp(r)

]
.

The goal of th mode dynamics simulation is to know how mode coefficients Bmp or the number of
photons in each mode Smp = |Bmp|2 change with respect to time. It is assumed that the ridge
width of the laser diode is small compared to the resonator length in order to be able to separate the
longitudinal and transverse contributions of the mode functions ump(r∥, z):

ump(r) = tm(x, z)gp(y).

Here the index m is used to number the transverse modes tm and p the longitudinal modes gp. The
coordinates are chosen so that the optical field propagates in y direction and the device is grown
in z direction. For transverse electric (TE) modes the polarization primarily points in the x direction
tm(x, z) = extm(x, z) and the transverse modes are given by the eigen equation [32](

∂2

∂x2
+

∂2

∂z2

)
tm(x, z)+

ω2

c2
n2(x, z, ω)tm(x, z)

=
ω2

c2
(nm

eff(ω))
2tm(x, z) (1)

for a given refractive index profile n(x, z, ω) and the interface conditions for the electromagnetic field.
In the simulations this equation is solved for a frequency ω0 near the gain maximum in order to obtain
the transverse mode functions tm(x, z), their respective effective refractive indices nm

eff(ω0) and the
group refractive indices

nm
gr (ω0) = nm

eff(ω0) + ω0
∂nm

eff(ω0)

∂ω0

.

The group refractive index determines the longitudinal mode spacing and is used to calculate the
mode frequencies

ωmp =
πc

nm
eff(ω0)L

p0 +
πc

nm
gr (ω0)L

(p− pm0 ) ,

where pm0 = round
(
nm

eff(ω0)Lω0

πc

)

DOI 10.20347/WIAS.PREPRINT.3061 Berlin 2023



Simulation of the mode dynamics in broad-ridge laser diodes 3

and L is the resonator length. The normalization of the mode functions is given by [33]∫
dx

∫
dz n2(x, z, ω) |tm(x, z)|2 = 1.

2.2 Mode Dynamics

The equations of motion for the carriers and photon numbers can be derived in the Heisenberg picture
[33] and for the carrier densities ne and nh are approximately given by [26]

d

dt
ne,h(x) = −B (ne(x), nh(x))−

ne,h(x)

τnr

+De,h
∂2

∂x2
ne,h(x) +

d

dt
ne,h(x)

∣∣∣∣
Pump

(2)

+
∑
mp

|tm(x, zQW)|2 ωmp
Smp

L
Imχ (ωmp, ne(x), nh(x)) .

The first two terms describe the losses due to spontaneous emission and nonradiative processes.
The next two terms are used to describe the pumping and diffusion of carriers inside the quantum
wells, while the last term gives the losses due to stimulated emission. The stimulated emission term
is proportional to the photon numbers Smp and the imaginary part of the susceptibility Imχ is evalu-
ated at the respective mode frequencies. The losses due to spontaneous emission B (ne, nh) and the
susceptibility χ(ω, ne, nh) depend on the carrier densities and are calculated using Fermi-Dirac dis-
tributions with a fixed temperature. The equations of motion for the photon numbers are given by [26,
33]

d

dt
Smp = −ωmpSmp

∫
dx |tm(x, zQW)|2 Imχ (ωmp, ne, nh)

+

∫
dx |tm(x, zQW)|2 ISE (ωmp, ne, nh)

− Smp

τphoton
+

d

dt
Smp

∣∣∣∣
Interaction

. (3)

The first three term denote changes of the photon numbers due to stimulated emission, spontaneous
emission and losses respectively. The last term is used to describe an effective interaction between
the optical modes due to third order effects. Without this last term there would be no mode competition
effects and in a simulation a steady state would be reached after a few nano seconds, where only the
longitudinal mode with the highest gain would be active. The effective mode interaction is derived in
Ref. [26] and is given by the integral

d

dt
Smp

∣∣∣∣
Interaction

≈
∑
nq

1

2L

SmpSnq

ωmpωnq

×
∫

dx |tm(x, zQW)|2 |tn(x, zQW)|2

×G (ωnq − ωmp, ne(x), nh(x)) , (4)

where the factor G(∆ω, ne, nh) determines the strength of the mode interaction, and depends on the
carrier densities and the frequency difference of two modes.
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A change of the carrier densities causes the susceptibility of the quantum wells to change. The re-
sulting pertubations of the mode functions can also be included in the calculations by solving the
one-dimensional Eigen equation [34]

∂2

∂x2
t̃xp(x) + k2

0ϵ1D(x)t̃
x
p(x) = k2

0n
2
eff,pt̃

x
p(x),

where t̃p is the corrected transverse mode function at the position of the quantum well and neff,p is the
corrected refractive index. The effective dielectric function is given by

ϵ1D(x) =

∫
dz |t0(x, z)|2 n2(ω0, x, z)∫

dz |t0(x, z)|2

+ δϵ(x)

∫
QW

dx dz |t0(x, z)|2

where t0(x, z) is the solution of the two-dimensional Eigen equation (1) and n2(ω0, x, z) is the re-
spective refractive index profile. The change of the dielectric function in the quantum well is given
by

δϵ(x) =
1

dQW

[
χ (ω0, ne(x), nh(x))− χ

(
ω0, n

ref
e , nref

h

)]
,

where the reference densities nref
e and nref

h are included in the two-dimensional Eigen equation and
are chosen close to the threshold densities.

It is possible to solve the equations of motion for a given pump term, for example a constant pump
current density:

d

dt
ne,h(x)

∣∣∣∣
Pump

= j0.

For laser diodes with larger ridge widths multiple transverse modes participate in the mode dynam-
ics. For an accurate simulation of the mode dynamics it is therefore important to know the spatial
dependency of the pump term, in order to estimate which transverse modes benefit based on their re-
spective lateral mode profiles. For example, if the pump term has a global maximum at a certain point
then transverse modes will be important when their respective mode functions also have a maximum
near that point.

2.3 Drift-Diffusion Model

For a more detailed calculation of the pump term we perform a steady state calculation, where the
carriers in the bulk material are treated separately from the carriers in the quantum wells. For the bulk
carriers we use use the Drift-Diffusion equations which are given by [35, 36]

−∇
(
µM
e

e
n3D
e ∇µe

)
= Re(n

3D
e , n3D

h , ϕ)

−∇
(
µM
h

e
n3D
h ∇µh

)
= Rh(n

3D
e , n3D

h , ϕ)

−∇ (ϵ0ϵr∇ϕ) = ρ = e
(
n3D
h − n3D

e + C
)
+ ρQW, (5)
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where µM
e,h are the mobilities, µe,h are the chemical potentials, ϕ is the static electrical field and C is

the charge density due to doping. The relationship between the bulk densities n3D and the chemical
potentials is given by the Boltzmann distribution as shown in Ref. [35], but is possible to use other
statistical functions [27, 28].

The equations for quantum well carriers and the photon numbers are given by Eqs. (2) and (3) where
the time derivatives are set to zero. There are no mode dynamics in the steady state calculation,
therefore it is sufficient to only consider one longitudinal mode per transverse mode, here the mode
with the frequency closest to the gain maximum ω0 is used. The charge density of the quantum well
carriers is included in poisson equation as an additional charge density:

ρQW =

{
e

dQW
(nh − ne) for |z − zQW| < dQW

2

0 elsewhere
,

where dQW is the quantum well thickness. The capture of the bulk carriers into the quantum wells is
included in the recombination term:

Re,h =Rcapture
e,h − n3D

e n3D
h

(
1− eβ(µe+µh)

)
×

( 1

τe (n3D
e + n0

e)
+

1

τh (n3D
h + n0

h)

+ cen
3D
e + chn

3D
h + rspont

)
,

where the second term describes the losses due to spontaneous emission, SRH and Auger recombi-
nation [35]. The capture term is only considered for |z − zQW| < dQW/2, and is given by

Rcapture
e,h = Ce,hne,hηe,h

(
ne,h, n

3D
e,h

)
.

The constants Ce,h determine the strength of the capture process and the efficiencies ηe,h are given
by

η
(
n, n3D

)
=

∑
k,kz

fBulk
k,kz

(1− fk)∑
k,kz

fBulk
k,kz

,

where both fBulk
k,kz

and fk are Fermi-Dirac distributions that reproduce the densities n and n3D for a
fixed temperature. Similar capture terms can be found in literature [31, 37]. For the bulk carriers the
k ·p method is used to calculate the three-dimensional band structure using the parameters from the
material surrounding the quantum well. For the carriers in the quantum well the k · p method is used
as well, here a one-dimensional differential equation is solved in order to obtain the two-dimensional
band structure.

The pump term in Eq. (2) is then given by

d

dt
ne,h

∣∣∣∣
Pump

= Ce,h

∫
QW

dz n3D
e,hηe,h

(
ne,h, n

3D
e,h

)
= j0e,h. (6)

This way the equilibrium current densities can be calculated for every voltage and can be included in
the dynamic simulations. However, in order to include changes of the pump current densities due to
changes of the quantum well densities in the dynamic simulations, the equation

Ce,hdQWn
3D,0
e,h ηe,h

(
ne,h, n

3D,0
e,h

)
= j0e,h,
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is solved for an effective three-dimensional density n3D,0
e,h using the two-dimensional density and the

current density from the equilibrium simulation. The pump term in Eq. (2) is then given by

d

dt
ne,h

∣∣∣∣
Pump

= Ce,hdQWn
3D,0
e,h ηe,h

(
ne,h, n

3D,0
e,h

)
.

DOI 10.20347/WIAS.PREPRINT.3061 Berlin 2023



Simulation of the mode dynamics in broad-ridge laser diodes 7

0

1
y

[µ
m

]
Electrons

1.40

1.42

1.44

1.46

y
[µ

m
]

Electrons

−20 −10 0 10 20

x [µm]

0

1

y
[µ

m
]

Holes

−15 −10 −5 0 5 10 15

x [µm]

1.40

1.42

1.44

1.46

y
[µ

m
]

Holes

1Figure 1: Solution of the stationary Drift-Diffusion model for a single QW laser diode with a ridge width
of 10µm and a voltage of 4V. The arrows denote the carrier current densities for electrons and holes,
while the colors indicate the recombination term. On the right side the region near the quantum well is
shown in more detail.

3 Results

In this section results for an example structure with a single quantum well and a ridge width of 10µm
that exhibits multiple transverse modes are shown. The structure is described in more detail in Table 2
in the appendix. To calculate two-dimensional mode functions in Eq. (1) the dielectric function from
Ref. [38] is used. Additionally the dielectric function of the quantum well is considered for a reference
carrier density of 1 × 1013 cm−2. As mentioned before, the band structure of the quantum well is
required to compute the optical properties such as the susceptibility. For this purpose the k · p-
Hamiltonian proposed by Chuang et al. is used [39–41], the method is described in more detail in
Ref. [26]. The thickness of the InGaN quantum well used in the simulations is given by 2nm, the
indium concentration by 28% and the material parameters are taken from Ref. [40]. The formulas for
the susceptibility and the mode interaction term are given in the appendix.

For the charge carrier mobilities the model as described in Ref. [42] is used. The Drift-Diffusion equa-
tions are solved using the finite volume method with the Scharfetter-Gummel scheme for the carrier
current densities [43]. The remaining simulation parameters for the simulations are shown in Table 1.

In Fig. 1 the current densities and the bulk carrier recombination are shown for a voltage above thresh-
old. With the chosen parameters most of the carrier recombination is caused by the capture term at

0 2 4 6 8 10
x [µm]

0.0

2.5

5.0

7.5

10.0

j
[k

A
/
cm

2
]

U = 3.930V
U = 3.750V
U = 3.570V
U = 3.390V
U = 3.210V
U = 3.030V
U = 2.850V

1Figure 2: The electron pump current densities from Eq. (6) for different voltages near the threshold.
The hole pump current densities look almost identical.
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the position of the quantum well. The corresponding pump current densities are shown in Fig. 2 for
different voltages. Due to the low hole mobility the pump current densities are high below the ridge and
small in the other regions, but as the n-contacts are on the sides and far away from the ridge, the pump
current densities have a maximum near the edge of the ridge. This maximum is more pronounced for
larger voltages.

Table 1: Remaining simulation parameters

L cavity length 600µm
T carrier temperature 300K
τs scattering time 300 fs
γ dephasing constant 30meV
τnr nonradiative losses (QW) 5ns
τphoton photon lifetime 5.9ps
De electron diffusion constant (QW) 151.9nm2ps−1

Dh hole diffusion constant (QW) 7.77nm2ps−1

Ce electron capture constant 1ps−1

Ch hole capture constant 100ps−1

τe electron nonradiative losses 1ns
τh hole nonradiative losses 1ns
rspont bulk spontaneous emission losses 0.01nm3ps−1

ce electron Auger losses 0.01nm6ps−1

ch hole Auger losses 0.01nm6ps−1

n0
e electron density for nonradiative losses 1019cm−3

n0
e hole density for nonradiative losses 1019cm−3

0 2 4 6 8 10
x [µm]

0.0

2.5

5.0

7.5

10.0

j
[k

A
/
cm

2
]

Ch/Ce = 1

Ch/Ce = 10

Ch/Ce = 100

Ch/Ce = 500

1Figure 3: The electron pump current densities from Eq. (6) for the structure with two quantum wells
are shown for different ratios Ch/Ce of the capture constants. The structure is the same as in Fig. 2
except for the additional QW, and is given in table 2 in the appendix.

The method can also be used for structures with multiple quantum wells. In this case the pump current
densities depend strongly on the capture coefficients, which is shown in Fig. 3 for a structure with
two quantum wells. For equal capture constants the current densities are split equally between the
quantum wells. However, due to the lower hole mobility the hole capture constant is expected to be
larger. As expected this results in a higher pump current density for the quantum well on the p-side.

Using these results it is possible to perform a mode dynamics simulation, as shown in Fig. 4 for different
currents. The effect of mode hopping can be observed, where the laser output wavelength periodically
changes from lower to higher values. As multiple transverse modes participate, the contributions of the
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1Figure 4: The longitudinal and transverse mode dynamics of a Fabry-Pérot laser diode with a sin-
gle quantum well for four different currents. Here the output of the laser is shown as a function of
wavelength and time. The data for this figure is calculated by multiplying the time-dependent photon
numbers from the simulation with Gaussian functions that are centered at their respective vacuum
wavelengths with a width of 0.02nm.

respective longitudinal modes overlap, making it difficult to identify individual modes. This has been
also observed experimentally for laser diodes with an even broader ridge of 40µm [10].

Therefore it is of interest to look at the contributions of different transverse modes separately, which
is shown in Fig. 5. In this case the different longitudinal modes can be observed, and the wavelength
separation ∆λ = 2L

ngr
is determined by the cavity length L. For the considered structure the funda-

mental mode is not active, because the pump current maximum is not in the middle of the structure
but near the edge of the ridge, as shown in Fig. (2). If the current is increased further, more transverse
modes will participate due to spatial hole burning.

In the model the time dependence of the mode wavelengths is also considered and is shown in Fig. 6
for different longitudinal and transverse modes. However after the relaxation oscillations are finished,
the mode wavelengths remain constant in time und the changes do not play a role for the simulation
of the mode dynamics.
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0 50 100 150

t [ns]

526

527

528

λ
[n

m
]

5. transverse mode
0 50 100 150

t [ns]

6. transverse mode

1Figure 5: The contributions of different transverse modes to the mode dynamics for a laser diode with
a single quantum well and a current of 200mA.
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1Figure 6: Changes of the mode wavelengths due to changes in the quantum well carrier densities for
I = 150mA.

4 Summary

In this publication a model for the simulation of mode dynamics in Fabry-Pérot type laser diodes with
larger ridge widths and multiple lateral modes is presented. The carrier transport from the contacts
to the active region is calculated for the steady state using the Drift-Diffusion model. The carriers in
the quantum well are treated separately and are connected to bulk carriers using a capture term. The
interaction between two different modes can de derived from third-order effects and is described in the
simulation by an effective interaction term. This term strongly depends on the difference of the mode
frequencies and the quantum well carrier densities.

Simulation results are shown for a green nitride laser diode with a ridge width of 10µm, but in prin-
ciple this model can be used for other materials and geometries. The effect of mode hopping can be
observed in the resulting mode dynamics, which can also observed experimentally for similar struc-
tures [10]. However, the experiments show multiple mode clusters. In order to obtain the same be-
haviour in simulations the presented model could be extended, for example fluctuations of the indium
content in the quantum wells can be taken into account in future work.
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A Calculation of the susceptibility and the mode interaction

For the calculation of the susceptibility and the mode interaction the same formulas as in Ref. [26] are
used. In order to keep the calculations simple for the example structure, a constant scattering time τs
is used to describe the carrier scattering. It is of course possible to use more complicated scattering
terms as described in Ref. [26] in more detail. Similarly a dephasing constant γ is used to describe the
homogenous broadening and Hartree-Fock corrections are neglected. In this case the susceptibility is
given by

χ(ω) =
2

A

∑
λk

e2|pλ|2
ϵ0m2

0ω
2

1− f e
k − fλ

k

ℏω + iγ − εek − ελk
.

Here λ is used as index for the hole bands and the carrier distributions are given by Fermi-Dirac
distributions for a given temperature and carrier densities. The quantum well band structure ελk and
momentum matrix elements pλ are calculated using the k ·p method. The mode interaction in Eq. (4)
can be split into symmetric and antisymmetric contributions with respect to the frequency difference of
the two modes ∆ω:

G(∆ω) = GS(∆ω) +GA(∆ω).

For a constant scattering time the symmetric mode interaction strength is given by

GS(∆ω) = ω4
0Imχ(ω0)Imχ′(ω0)

τs
∆ω2τ 2s + 1

−
∑
λλ′k

e4|pλ|2|pλ′ |2
m4

0ϵ
2
0

τs(1 + δλλ′)

∆ω2τ 2s + 1

× 2

A

γ2(1− f e
k − fλ′

k )(
(ℏω0 − εek − ελk)

2 + γ2
) (

(ℏω0 − εek − ελ
′

k )
2 + γ2

)
and the antisymmetric interaction term is given by

GA(∆ω) = ω4
0

Imχ(ω0)Reχ
′(ω0)

∆ω
.

The carrier losses in the quantum well due to spontaneous emission are given by [26, 44]

B(ne, nh) =
2

A

∑
λk

2e2|pλ|2n3
eff

3πm2
0ϵ0c

3ℏ2
(
εek + ελk

)
f e
kf

λ
k .

The spontaneous emission spectrum ISE in Eq. (3) is calculated like the susceptibility, except that the
factor 1− f e

k − fλ
k is replaced by f e

kf
λ
k :

ISE(ω) = − 2

A

∑
λk

e2|pλ|2
m2

0ϵ0ω
Im

{
f e
kf

λ
k

ℏω + iγ − εek − ελk

}
.
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B Structural parameters

The example structure with one quantum well used in the simulations has been obained by stretching
the structure in Ref. [45] in lateral direction. The structural parameters are given in Table 2. The exam-
ple structure with two quantum wells is obtained by repeating the 2nm and 8nm layers. The p-contact
is located on top of the ridge and the n-contact is on top of the substrate with a distance of 10µm to
the diode.

Table 2: Structural parameters for the laser diode used in the calculations, adapted from Ref. [45].

Thickness Width Material Doping

55nm 10µm GaN 1× 1018 cm−2

340nm 10µm Al0.08Ga0.92N 1× 1018 cm−2

10nm 30µm Al0.15Ga0.85N 1× 1018 cm−2

15nm 30µm GaN 1× 1018 cm−2

50nm 30µm GaN 0 cm−2

13nm 30µm In0.05Ga0.95N 0 cm−2

2nm 30µm In0.22Ga0.78N 0 cm−2

8nm 30µm In0.05Ga0.95N 0 cm−2

2nm 30µm In0.22Ga0.78N 0 cm−2

13nm 30µm In0.05Ga0.95N 0 cm−2

115nm 30µm GaN −1× 1018 cm−2

1300nm 30µm Al0.06Ga0.94N −1× 1018 cm−2

4000nm 50µm GaN −1× 1018 cm−2
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