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Solving a spectral problem for large-area photonic crystal
surface-emitting lasers

Mindaugas Radziunas, Eduard Kuhn, Hans Wenzel

Abstract

We present algorithms for constructing and resolving spectral problems for novel photonic
crystal surface-emitting lasers with large emission areas, given by first-order PDEs with two spa-
tial dimensions. These algorithms include methods to overcome computer-arithmetic-related chal-
lenges when dealing with huge and small numbers. We show that the finite difference schemes
constructed using relatively coarse numerical meshes enable accurate estimation of several major
optical modes, which are essential in practical applications.

1 Introduction

Semiconductor lasers (SLs) are small, efficient, relatively long-living, and cheap devices used in many
modern applications. SLs are applied, for example, in instruments and sensors requesting an en-
hanced coherence of light, optical communication systems demanding regular and stationary or irreg-
ular dynamics, or for material processing requiring up to a few kilowatt optical power. The emission of
conventional high-power edge-emitting lasers considered in our previous works [10, 13], for example,
is mainly concentrated within the rectangular area at the laser facet. The beam divergence in vertical
and lateral directions is different, so that the use of additional optical elements (lenses) for collimating
the emitted fields is unavoidable. However, even sophisticated external optics can not improve the
poor lateral beam quality induced by multiple lateral optical modes contributing to the overall emission
of broad area lasers [12].
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Figure 1: Schematics of photonic-crystal surface-emitting semiconductor laser. (a): sandwiching of
material layers along vertical (z ∈ [0, Z]) direction. (b): three-dimensional scheme of the device. (c):
lateral ((x, y) ∈ [0, L] × [0, L]) photonic crystal layer consisting of three vertically-homogeneous
sublayers. (d): structure of the elementary cell of lateral size a× a within each sublayer of the crystal.

In 1999, Prof. Susumu Noda and his group from Kyoto University proposed a Photonic-Crystal (PC)
surface-emitting laser (SEL) [5], see schematic representation of PCSEL in Fig. 1. The operation of this
device is determined by the vertical structure of the SL (panels (a), (b)), the size and configuration of
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the PC layers (panel (c)), and the structure of unit cells of the PC (panel (d)). Whereas the vertical con-
figuration should support a single vertical transverse-electric optical mode, the PC structure provides
diffraction of the field in both lateral directions and its redirection towards the vertical output facet of
the laser. Currently, the emission power of the best PCSELs [11] is comparable to that of the best edge
emitters. In contrast to high-power edge-emitting SLs, high-power PCSELs have much lower power
density at the output facet (damaging the facet coating is less probable) and possess radial symmetry
and low emission divergence. On the other hand, best PCSELs rely on the PCs composed of periodi-
cally made air holes within semiconductor layers, i.e., technology that is more elaborated compared to
standard all-semiconductor layer growth-etching-regrowth procedures. Compared to semiconductor-
air PCs, coupling of the different components of the optical fields by diffraction in all-semiconductor
PC layers is weaker, which requires an increase of the lateral dimension of PCSEL (increasing factor
L in Fig. 1(c)) and, thus, the development of advanced algorithms and numerical schemes suited for
solving PCSEL models within a large lateral domain (x, y) ∈ [0, L]× [0, L]. Construction and study
of currently available PCSEL models for large-area devices and solving the related spectral problem
is the main aim of this work.

Our paper is structured as follows. In Section 2, we introduce a spectral problem for PCSELs, a system
of first-order partial differential equations for slowly varying complex components of an optical mode
in a two-dimensional spatial domain. We also present several nontrivial auxiliary problems that should
be solved to define the parameters entering the model equation. Section 3 is devoted to constructing
the complex 4× 4 dimensional matrix providing coupling of counter- and cross-propagating fields. In
particular, numerical algorithms are provided, and several challenges related to using huge and almost
vanishing numbers are discussed. Section 4 discusses numerical methods for solving the spectral
problem. Here, we construct, apply, and analyze finite difference schemes of different precision. We
show that the schemes constructed using coarse numerical meshes can provide acceptable precision
for a few primarily important optical modes. Some conclusions are drawn in Section 5.

2 Mathematical model

2.1 Optical field equations and optical modes

To describe the spatio-temporal dynamics in PCSELs, we use the three-dimensional coupled-wave
model derived from the Maxwell equations by making some assumptions [7, 6]. Neglecting noise
terms, the central part of this model, a system of the first-order PDEs in two lateral dimensions for
slowly varying field amplitudes u(x, y, t) = (u+, u−)T and v(x, y, t) = (v+, v−)T (T denotes the
transpose), can be written as

1
vg

∂
∂t

(
u
v

)
=
[
iC−

(
σ ∂
∂x

0
0 σ ∂

∂y

)
−i∆β

](
u
v

)
, (x, y) ∈ [0, L]×[0, L],

boundary conditions: u+|x=0 = u−|x=L = v+|y=0 = v−|y=L = 0.

(1)

Here, L defines the lateral dimensions of the PCSEL, vg = c0/ng is the group velocity (c0: speed of
light in vacuum, ng: group index), σ =

(
1 0
0 −1

)
, 0 is a 2 × 2 zero matrix, whereas C is a nontrivial

4× 4 field coupling matrix, which will be discussed in detail in the second part of this Section. Finally,
∆β = ∆β(N ;T ) is a carrier N - and temperature T -dependent relative propagation factor, see,
e.g., Ref. [13]. Its real part represents changes in the refractive index and, thus, deviation of the lasing
frequency (or wavelength) from the reference frequency (wavelength λ0). The imaginary part is defined
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Spectral problem for photonic crystal surface-emitting lasers 3

by (N -dependent) optical amplification and losses within the PCSEL. The dependence of ∆β on self-
heating in high-power SLs is essential. However, due to significantly differing time scales of the photon,
carrier, and temperature dynamics, temperature T (x, y, t) remains nearly unchanged within typically
calculated time windows and should be accounted for parametrically [13]. On the contrary, temporal
and spatial changes of the carriers N(x, y, t) in dynamical simulations are crucial, such that one has
to supplement the model with equations governing the carrier dynamics; see, e.g., Refs. [6, 12]. If the
current injected into a laser is switched on, N grows, causes changes of ∆β, and, most importantly,
implies growth of =∆β until it reaches some threshold where the laser is switched on. After this
lasing threshold is reached, (averaged)N and ∆β remain approximately fixed, whereas further growth
of electrical pumping induces growth of the emission’s power. In the present paper, we are mainly
interested in the study of the threshold behavior of PCSELs, where ∆β remains (nearly) uniform in
space and stationary in time, thus can be well represented by a single complex constant ∆β.

For any fixed in time ∆β, the field equations (1) define optical modes (Ω,Φ(x, y)). The four-component
vector-eigenfunction Φ(x, y) provides spatial distributions of four field components. The real and
imaginary parts of the complex frequency Ω represent the mode’s relative frequency and damping,
respectively. These modes can be found by substituting the Ansatz(

u(x, y, t)
v(x, y, t)

)
= Φ(x, y)eiΩt, Φ =

(
Φu
Φv

)
, Φν =

(
Φ+
ν

Φ−ν

)
, ν ∈ {u, v} (2)

into Eqs. (1) and resolving the resulting spectral problem[
iC−

(
σ ∂
∂x

0
0 σ ∂

∂y

)
− Λ

]
Φ = 0, (x, y) ∈ [0, L]× [0, L],

Λ = i(∆β + Ω
vg

), Φ+
u (0, y) = Φ−u (L, y) = Φ+

v (x, 0) = Φ−v (x, L) = 0.
(3)

Here, we exploit our assumption of spatially uniform distribution of ∆β = ∆β, which allows combining
the complex optical frequency Ω and the complex factor ∆β into a single complex eigenvalue Λ.−<Λ
represents the threshold of the mode, i.e., the value of=∆β at which the mode damping=Ω vanishes.

The spectral problem (3) defines multiple optical modes (Λ,Φ) and is vital when designing PCSEL
devices. Mode with the largest but still negative<Λ (the main mode) is excited first when up-tuning the
bias current, which causes an increase of =∆β. The damping =Ω of this mode vanishes; a threshold
of this mode is the lasing threshold, −<Λ1 = [=∆β]th; the remaining modes have negative =Ω,
i.e., <Λrest < <Λ1, and remain damped. For practical applications, PCSEL configurations should
exhibit small [=∆β]th, i.e., large <Λ1, and a possibly large threshold gap to other modes, i.e. large
<(Λ1−Λrest), which allows expecting a single-mode operation of the PCSEL. Besides, when analyz-
ing separate modes, one can be interested in the balance of the generated intensity, losses within and
at the lateral edges of the PCSEL, and radiation in the vertical to PC and QW layers direction. Eq. (3)
allows relating integral factors Il (losses at the lateral borders), Ig, and Iv (mainly determined by the
generated and vertically radiated field intensity but also include field losses inside the PCSEL) [7].

Lemma 1. Let Λ and the nontrivial four-component vector-function Φ(x, y) satisfy Eq. (3). Then the
following integral balance relations hold:

Ig = Iv + Il, where Ig = −2<Λ‖Φ‖2, Iv = 2=(Φ,CΦ),

Il =
∫ L

0
|Φ+

u (L, y)|2 + |Φ−u (0, y)|2dy +
∫ L

0
|Φ+

v (x, L)|2 + |Φ−v (x, 0)|2dx.
(4)

Here (ξ, ζ) =
∫ L

0

∫ L
0

∑dim{ξ,ζ}
j=1 ξ∗j (x, y)ζj(x, y)dxdy is the scalar product of vector-functions ξ and

ζ , and ‖ξ‖ = (ξ, ξ)1/2 is a corresponding norm of ξ.

DOI 10.20347/WIAS.PREPRINT.3059 Berlin 2023



M. Radziunas et al. 4

Proof. The relations (4) can be obtained after scalar multiplication of both sides of Eq. (3) by 2Φ and
taking the real part of the resulting equation.

2.2 Coupling of the optical fields

The coupling matrix C depends on the laser’s vertical structure, see Fig. 1(a)-(c), the PC unit cells’
size and shape, Fig. 1(d), and the real squared refractive index n̄2(x, y, z), which is a part of the
complex dielectric constant ε̄(x, y, z) = n̄2(x, y, z) + ∆ε(x, y, z) in each material layer, Fig. 1(a).
Here, complex ∆ε accounts for the material’s field absorption and carrier- and temperature-induced
corrections of the dielectric constant. A desired operation of PCSELs can be achieved only for devices
with λ0 ≈ a n• (a: the size of the PC unit cell, n•: effective refractive index of the main vertical optical
mode). This work presents the basic steps of the algorithm used to construct C. Refs. [7, 6] provide
more physical insight into this derivation.

The PCSEL device is sandwiched fromm vertically homogeneous material layers S̄k along the vertical
coordinate z, see Fig. 1(a). Let

S̄k = [zk−1, zk], Sk = (zk−1, zk), S0 = (−∞, 0), Sm+1 = (Z,+∞),

∪mk=1S̄k = [0, Z], |Sk| = zk − zk−1, z̄k = zk−1+zk
2

,
(5)

where z0 = 0, zm = Z , and other zk are interfaces of corresponding layers. Each layer is either
laterally homogeneous with a real refractive index nk ≡ n̄(x, y, z)|z∈Sk or is a PC layer determined
by the pair of real indices (nIk, n

II
k ) representing the material within the PC feature (e.g., air with

nIIk ≈ 1 as in [7, 6]) and surrounding semiconductor material, respectively. By n2
k here, we denote

the spatial average of n̄2(x, y, z)|z∈Sk over the unit cell of the PC,

n2
k = 1

a2

∫ a/2
−a/2

∫ a/2
−a/2 n̄

2(x, y, z)|z∈Skdxdy. (6)

The real positive piece-wise function n(z), n(z)|z∈Sk = nk, k = 1, . . . ,m, represents the (laterally-
averaged) refractive index of each material layer, including PC layers. If considered, real refractive
indices of the infinitely broad lower (S0) and upper (Sm+1) materials surrounding the PCSEL device
are denoted as nL and nU , respectively. In this work, we assume it is air, i.e., nL,U ≈ 1. Constants
nL,U and the function n(z) define the layer-wise constant function σ(z) and factors σL,U ,

σ(z)|z∈Sj = σj
def
= σ̃(n•, nj), j = {1, . . . ,m}, σL,U

def
= σ̃(n•, nL,U),

where σ̃(ξ, ζ) = k0

√
ξ2 − ζ2 ∈ C, <σ̃(ξ, ζ) ≥ 0, k0

def
= 2π

λ0
,

(7)

exploited in the one-dimensional Helmholtz problem

d2

dz2 Θ(z)− σ2(z)Θ(z) = 0, z ∈ [0, Z], σ2(z) ∈ R, (8)

satisfying homogeneous Dirichlet (ρ = 0) or natural radiating (ρ = 1) boundary conditions (BCs) at
z = 0 and z = Z :

ρdΘ
dz

(0) = σLΘ(0), ρdΘ
dz

(Z) = −σUΘ(Z), σL,U ∈ R, σL,U ≥ 0. (9)

Within each Sk, function Θ(z) can be written as a linear combination of two special solutions θ+
k (z)

and θ−k (z) to a linear homogeneous Eq. (8):

Θ(z)|z∈Sk = BΘT
k θk(z), BΘ

k

def
=

(
Θ(zk)

Θ(zk−1)

)
, θk =

(
θ+
k

θ−k

)
,

θ±k |z∈Sk satisfy Eq. (8), θk(zk) =
(

1
0

)
, θk(zk−1) =

(
0
1

)
.

(10)
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Eqs. (8), (9) with σ determined in Eq. (7) define the real effective refractive index n• ∈ [max{nL, nU},maxz n(z)]
(or (0,maxz n(z)] in the case of Dirichlet BCs) and the corresponding nontrivial vertical mode Θ(z),
normalized by

∫
R |Θ(z)|2dz = 1. In typical applications, n• is between 3 and 4, such that BCs (9) for

ρ = 1 and nU,L ≈ 1 represent at z → ±∞ vanishing optical fields. Non-vanishing Fourier expansion
coefficients within the PC layers Sj ,

ξjr,s = 1
a2

∫ a/2
−a/2

∫ a/2
−a/2 n̄

2(x, y, z)|z∈Sjei2π(rx+sy)/adxdy, r, s 6= 0, (11)

together with the PC-layer-wise integrals

PΘ
j =

∫
Sj
|Θ(z)|2dz = BΘT

j pjBΘ∗
j , pj

def
=
∫
Sj
θj(z)θ∗Tj (z)dz,

G(k,j)
(r,s) =

∫
Sk

∫
Sj
G(r,s)(z, z

′)Θ(z′)dz′Θ∗(z)dz = BΘT
j gk,jBΘ∗

k ,

g
(k,j)
(r,s)

def
=
∫
Sk

∫
Sj
θj(z

′)G(r,s)(z, z
′)dz′ θ∗Tk (z)dz,

(12)

determined by the values of Θ at material interfaces and (2 × 2) matrices pj and g
(k,j)
(r,s) , are used to

define C. Green’s functionsGp(z, z
′) with p

def
= (r, s) and |p|2 def

= r2 + s2 solve the inhomogeneous
problem [8]

∂2

∂z2Gp(z, z
′)− σ2

p(z)Gp(z, z
′) = −δ(z − z′), (z, z′) ∈ [0, Z]× [0, Z], (13)

with radiating boundary conditions

∂Gp(0,z′)
∂z

= σp,LGp(0, z
′), ∂Gp(Z,z′)

∂z
= −σp,UGp(Z, z

′). (14)

δ(ζ) in Eq. (13) is the Dirac’s delta-function, whereas σp is defined by

σp(z) = σ̃( |p|λ0

a
, n(z)), σp,j = σ̃( |p|λ0

a
, nj), j ∈ {1, . . . ,m} ∪ {L,U}. (15)

Since λ0

a
≈ n•, for |p| = 1 (not used when building C), the left-hand side of Eq. (13) reminds that of

Eq. (8). At z = z′ ± 0, Eq. (13) implies

Gp(z
′ + 0, z′) = Gp(z

′ − 0, z′), ∂Gp(z′+0,z′)
∂z

= ∂Gp(z′−0,z′)
∂z

− 1. (16)

In typical applications, for |p| > 1, the factors σp,j are strictly positive real, such that BCs (14) imply
the convergence of |Gp(z, z

′)| to zero when z → ±∞. When |p| = 0, the real parts of σp,L and
σp,U are absent, such that the radiated fields preserve their intensity outside the domain [0, Z]. In this
case, we use σp,{L,U} = ik0|n{L,U}|, which reminds us of Sommerfeld’s radiation conditions, even
though those are formulated only for two- and three-dimensional cases.

Matrix C is defined as an infinite sum of simpler 4 × 4-dimensional matrices, which are functions of
G(r,s), PΘ, and ξr,s:

C = C1D(PΘ, ξ±2,0, ξ0,±2) + Crd(G(0,0), ξ±1,0, ξ0,±1) + C2D,

C2D =
∑
|r|+|s|>1 C

(r,s)
2D (G(r,s),PΘ, ξr±1,s, ξr,s±1).

(17)

Crd is responsible for the outcoupling of the radiated light. For considered real-valued n̄2, C1D is
a Hermitian matrix, inducing coupling of counter propagating fields only, whereas another Hermitian
matrix C2D incorporates all higher-order effects, including cross-coupling of fields, which is necessary
for achieving high quality of radiation. For more details on the definition of C, see Refs. [7, 6].
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Remark 1. Since C1D and C2D in Eq. (17) are Hermitian, i.e., C−C∗T = Crd −C∗Trd , the integral
factor Iv in Eq. (4) can be reformulated as

Iv = 2=
(
Φ,CΦ

)
= −

(
Φ, i[C−C∗T ]Φ

)
= 2=

(
Φ,CrdΦ

)
, (18)

i.e., is determined only by the radiative component of the matrix C.

The main numerical cost in estimating C is calculations of the double integrals G(k,l)
(r,s) in Eq. (12) for

large sets of parameters (r, s). Estimation of these integrals using numerically discretized functions
Θ(z) and G(r,s)(z, z

′) is inefficient, especially when |p| is large, which causes a very fast exponential
growth and decay of |G(r,s)(z, z

′)| at z ≈ z′. Luckily, provided n• is known, θ and G(r,s) can be
written as linear combinations of exponentials1{

eσj(z−z̄j), e−σj(z−z̄j) for θj(z) in Sj
eνσp,k(z−z̄j)eν

′σp,j(z′−z̄j), ν, ν ′∈ ± for G(k,j)
p (z, z′) in Sk × Sj

, (19)

and the matrices pj , g
(k,j)
p in Eq. (12) admit analytic expressions relying on their integrals. Still, these

expressions rely on possibly huge and almost vanishing exponentials eσ·,j |Sj | and corresponding sinh
and cosh functions, which can not be properly handled by computer arithmetics. To avoid numerical
problems even when σj → 0 (not a very probable case in realistic problems, achievable only when
n• = nj) or eσ·,j|Sj | → ∞ (unavoidable in calculations of Green’s function with large |p| and large
positive σ), we introduce new notations:

(1− Γj)
def
= 2e−σj |Sj |

1+e−σj |Sj |
, Γj = 1− (1− Γj) = tanh

σj |Sj |
2
,

such that <Γj ≥ 0, Γj
σj→0−→ 0,

Γj
σj

σj→0−→ |Sj |
2
, Γj

<σj |Sj |�1−→ 1.
(20)

In practical calculations, we define first 1 − Γj (almost zero when Γj ≈ 1) and only then Γj and
the remaining Γj-dependent expressions. In this way, we can keep a tiny but still non-vanishing factor
1− Γj , which could otherwise be lost due to computer arithmetics2.

3 Construction of the coupling matrix C

3.1 Transfer matrices

When deriving the matrix C, we consider Eqs. (8) and (13), both related to the ordinary differential
equation

F ′′(z)− σ2(z)F (z) = 0, z ∈ ∪mj=1Sj, (21)

where σ(z) is a complex layer-wise constant function,

σ(z)|z∈Sj = σj ∈ C, σ2
j ∈ R, <σj ≥ 0, j ∈ {1, . . . ,m}. (22)

Below, we give several formulas for translating F and F ′ between spatial positions z and z′ by transfer
matrices [2] and present algorithms for avoiding possibly huge exponentials |eσj |Sj || in calculations.
These formulas and algorithms are used for constructing the vertical mode function Θ(z), Green’s
functions Gp(z, z

′), and required integral expressions of these functions.

1In general, it is possible that n• = nk in specific layers Sk, such that σk = 0, and instead of exponentials (19), we
have to use linear w.r.t. z functions. In most cases, the formulas derived below for nonzero σk can be corrected by taking
their limit with σk → 0. Factors σp,k used to construct Green’s functions are never zero in real applications.

2For example, e−2σj |Sj | can be of order 10−100 and still be treated correctly in multiplicative expressions in the com-
puter code. However, nominally the same number (e−2σj |Sj | + 1)− 1 can be treated as zero during the calculations.
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Spectral problem for photonic crystal surface-emitting lasers 7

Lemma 2. Assume that F (z) ∈ C2(Sj) satisfies Eqs. (21), (22), and BFj (i.e., F (zj−1) and F (zj))
are known. Then, according to Eq. (10),

F (z) = BF Tj θj(z), where θj =
(
θ+
j

θ−j

)
, θ±j (z) =

± sinhσj(z−z̄j±|Sj |/2)

sinhσj |Sj | . (23)

If instead of F (zj) (or F (zj−1)) we have F ′(zj−1) (or F ′(zj)), the vector
(
F
F ′

)
(z) at any z ∈ Sj can

be written using transfer matrices:(
F
F ′

)
(z) = Mj(z, zj−1;σj)

(
F
F ′

)
(zj−1) = Mj(z, zj;σj)

(
F
F ′

)
(zj),

Mj(z, z̃;σj)|z,z̃∈S̄j
def
=

(
cosh(σj(z − z̃)) sinh(σj(z − z̃))/σj
σj sinh(σj(z − z̃)) cosh(σj(z − z̃))

)
.

(24)

When σj → 0, expressions sinhσjξ

sinhσj |Sj | within θj(z) in Eq. (23) should be replaced by ξ
|Sj | , and

Mj(z, z̃;σj) in (24) by the matrix
(

1 z−z̃
0 1

)
.

Proof. One can easily check that the expressions for θj(z) in (23) and F (z) in (24) satisfy Eq. (21),
whereas at the edges of Sj , θj(z) fulfills Eq. (10). Since the second-row elements of Mj in (24) are z-
derivatives of the corresponding first-row elements, Mj provides a correct expression of F ′(z) along
Sj . The expressions for σj → 0 follow directly from the relation limξ→0

sinh ξ
ξ

= 1.

Remark 2. Transfer matrices are invertible, Mj(z, z̃;σj) = M−1
j (z̃, z;σj), and can be combined

with each other, Mj(z, z̃;σj) = Mj(z, z
′;σj)Mj(z

′, z̃;σj). In both these cases we assume that
z, z′, z̃ ∈ S̄j .

Corollary 1. A complex conjugate of F (z) satisfying all conditions of Lemma 2 is given by Eq. (23)
using BF ∗j instead of BFj .

Proof. We can easily show that the vector-function θj(z) in Eq. (23) is real, which immediately proves

our statement. Recall that σ2
j ∈ R. For σ2

j > 0, we have σj > 0 and sinhσjξ

sinhσj |Sj | ∈ R. When σ2
j < 0,

σj = i|σj| and the same expressions can be written as sin |σj |ξ
sin |σj ||Sj | ∈ R.

Corollary 2. Matrix pj introduced in Eq. (12) can be written as

pj
def
=

(
p+
j p−j
p−j p+

j

)
, p±j =

2[Γ2
j±1]+[Γ2

j∓1](1−Γ2
j )|Sj |

σj
Γj

8σjΓj

σj→0−→ (3±1)|Sj |
12

. (25)

Proof. According to Corollary 1, θj defined in Eq. (23) is real, i.e., θj = θ∗j . Integration of θ+
j θ
−
j ,

(θ+
j )2, and (θ−j )2 over Sj imply expressions (25). The limit of these expressions for σj → 0 can be

found using L’Hopital’s rule.

Lemma 3. Assume that the complex function F (z) ∈ C2(∪mj=1Sj)∪C1([0, Z]) satisfies the problem
(21), (22). Then, we can construct composite transfer matrices M(zl, zk;σ), translating the vector(
F
F ′

)
(z) between any layer interfaces zk and zl, 0 ≤ k, l ≤ m. If {Sj} are all layers between zk

and zl, the composite matrix elements can be written as linear combinations of all different products
of exponentials e±σj |Sj |.
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Proof. For simplicity, let us assume that zl > zk, such that {Sj} are all layers with indices j =
k + 1, . . . , l. Because of the continuity of F and F ′, transfer matrices (24) can also be used at the
layer borders, which also are borders of the neighboring layer Sj−1 or Sj+1. By superposing layer-wise
transfer matrices Mj , we construct the required overall transfer matrix,

M(zl, zk;σ) = Ml(zl, zl−1;σl) · · ·Mk+1(zk+1, zk;σk+1), (26)

propagating
(
F
F ′

)
(z) from zk to zl. Each of submatrices Mj is determined by combinations of e−σj |Sj |

and e+σj |Sj | (or just constants 0, 1, |Sj| if σj → 0). Thus, the elements of the overall matrix are as
suggested in this Lemma. An invertibility of each Mj , see Remark 2, allows us to construct an inverse
matrix M−1(zl, zk;σ) = M(zk, zl;σ) = Mk+1(zk, zk+1;σk+1) · · ·Ml(zl−1, zl;σl).

Corollary 3. We can rewrite matrices M(zl, zk;σ) with k 6= l in Eq. (26) as

M(zl, zk;σ) =
[∏max{l,k}

j=min{l,k}+1 e
σj |Sj |

]
M
† sgn(l−k)
[l,k] (σ),

M†ν
[l,k](σ) =

{
M†ν

[l] (σl) · · ·M
†ν
[k+1](σk+1) for ν = +

M†ν
[l+1](σl+1) · · ·M†ν

[k](σk) for ν = −
, where

M†±
[j] (σj)

def
= 1

(1+Γj)2

(
1 + Γ2

j ±2Γj/σj
±2σjΓj 1 + Γ2

j

)
σj→0−→

(
1 ±|Sj|
0 1

)
,

(27)

such that the reduced matrices M† do not depend on possibly huge |eσj |Sj ||.

Proof. The statement follows directly from Eqs. (26), (24), and (20).

Lemma 4. Matrices M† translate Robin BCs

F ′(0) = σLF (0), F ′(Z) = −σUF (Z), (28)

of Eqs. (21) and (22) to similar conditions at any material layer interface zj , j = 1, . . . ,m− 1:

F ′(zj) = ηLj+1F (zj), ηLj+1 =
M†+

[j,0],21
(σ)+σLM

†+
[j,0],22

(σ)

σLM
†+
[j,0],12

(σ)+M†+
[j,0],11

(σ)
,

F ′(zj) = −ηUj F (zj), ηUj =
M†−

[j,m],21
(σ)−σUM†−[j,m],22

(σ)

σUM
†−
[j,m],12

(σ)−M†−
[j,m],11

(σ)
.

(29)

Proof. Eqs. (29) can be easily derived by relating the vectors
(
F
F ′

)
(0) or

(
F
F ′

)
(Z) with

(
F
F ′

)
(zj) using

transfer matrices M(zj, z0;σ) or M(zj, zm;σ), see Eq. (26), exploring the reduced form of M given
in Eq. (27), and solving the resulting equations together with the BCs (28).

Algorithm 1. To avoid problems induced by computer arithmetics when working with almost vanishing
numbers, for calculations of factors ηL,U , one should better use the recurrent expressions, which do
not fail even when in some Sj Γj → 1 and still are well defined when |σj| → 0 and Γj → 0:

ηL1 = σL,
[
ηLj+1 − σj

]
=

(ηLj −σj)(1−Γj)
2

(1+Γ2
j )+

2Γj
σj

ηLj

σj→0−→ ηLj
1+|Sj |ηLj

, 1 ≤ j < m,

ηUm = σU ,
[
ηUj−1 − σj

]
=

(ηUj −σj)(1−Γj)
2

(1+Γ2
j )+

2Γj
σj

ηUj

σj→0−→ ηUj
1+|Sj |ηUj

, m ≥ j > 1.
(30)

These conditions can be derived by transferring the Robin-type relations of F and F ′ at material
interfaces zj by a single adjacent material layer to zj+1 (using the matrix M†+

[j+1](σj+1) from Eq. (27),

obtaining the following ηLj+2) or zj−1 (using M†−
[j] (σj), obtaining ηUj−1). When Γj ≈ 1, the expressions

at both sides of the equations are also small, and we avoid undesired additions and subtractions of
small and moderate numbers in this formula.
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Spectral problem for photonic crystal surface-emitting lasers 9

Remark 3. Algorithm 1 can also be used for Dirichlet BCs, F (0) = F (Z) = 0 (ρ = 0 in BCs (9), for

example). The procedure (30) should be started from
[
ηL2 − σ1

]
= σ1(1−Γ1)2

2Γ1
and

[
ηUm−1 − σm

]
=

σm(1−Γm)2

2Γm
in this case.

3.2 Vertical mode and its intensity

To identify the required vertical mode Θ(z) and effective refractive index n•, we substitute the one-
dimensional Helmholtz problem (7), (8), (9) with the root-finding of the related algebraic (characteristic)
equation [4, 2] and the reconstruction of Θ(z) using transfer matrices M afterward.

Theorem 1. The problem (7), (8), (9) with ρ ∈ {0, 1} has a nontrivial solution Θ(z) ∈ C2(∪mj=1Sj)∪
C1([0, Z]) if and only if the characteristic equality

0 = χ(σ)
def
=

{(
σU 1

)
M(Z, 0;σ)

(
1
σL

)
if ρ = 1 [Robin BC]

M12(Z, 0;σ) if ρ = 0 [Dirichlet BC]
(31)

holds. Here (2× 2)-matrix M(Z, 0;σ) is constructed as suggested in Lemma 3.

Proof. Let Θ(z) be a nontrivial solution to the considered problem. Assume first that ρ = 1, such
that Θ(0) 6= 0. Otherwise, due to BCs (9),

(
Θ
Θ′

)
vanishes at z = 0, while Lemmas 3 and 2 imply

the vanishing of Θ(z) at all layer interfaces and within all layers, respectively. The same consideration
allows us to conclude that Θ(Z) 6= 0 as well. Translation of the nontrivial

(
Θ
Θ′

)
(0) over [0, Z] using

M(Z, 0;σ) and applying BCs (9) to eliminate Θ′(0) and Θ′(Z) from the resulting relation implies the
condition

(
1
−σU

)
Θ(Z) = M(Z, 0;σ)

(
1
σL

)
Θ(0), which, after the multiplication of both sides by the

row-vector (σU 1) from the left and accounting for the statements of Corollary 3, gives characteristic
Eq. (31). Assume now that χ(σ) = 0, i.e.,

−σU [M11(Z, 0;σ) + σLM12(Z, 0;σ)] = M21(Z, 0;σ) + σLM22(Z, 0;σ).

Let us translate a vector
(

1
σL

)
(satisfying BCs (9) at z = 0) with M(z, 0;σ) over [0, Z], obtaining

nontrivial Θ(z) and Θ′(z) in this way. Within [0, Z], Θ(z) solves Eqs. (7), (8). At z = Z ,
(

Θ
Θ′

)
(Z) =

M(Z, 0;σ)
(

1
σL

)
∝
(

1
−σU

)
, i.e., Θ(z) satisfies BCs (9) at z = Z and, thus, solves our problem.

For ρ = 0, the BCs (9) are of Dirichlet-type, such that a nontrivial Θ(z) should have non-vanishing
Θ′(0) and Θ′(Z). Translation of

(
0

Θ′(0)

)
over [0, Z] implies

(
0
1

)
Θ′(Z) = M(Z, 0;σ)

(
0
1

)
Θ′(0), which

gives us χ(σ) = 0 in (31). On the other hand, if χ(σ) = 0, by propagating
(

Θ
Θ′

)
(0) =

(
0
1

)
over [0, Z],

we obtain a nontrivial Θ(z) solving Eqs. (7), (8), and at z = Z satisfying the relation Θ(Z) = χ(σ),
i.e., fulfilling Dirichlet BCs in (9).

Corollary 4. Matrix M(Z, 0;σ) in Eq. (31) can be replaced by M†+
[m,0](σ) or by another matrix

M††+
[m,0](σ) obtained after substituting M†+

[j] (σj) within some layers Sj in Eq. (27) with the original

layer-wise propagator Mj(zj, zj−1;σj).

Proof. The proof is identical to that of Theorem 1, since these matrices can be obtained fromM(Z, 0;σ)
by multiplying it with a non-vanishing factor composed of all or several multipliers e−σj |Sj |.

Theorem 1 and Corollary 4 define the characteristic equation χ(n•)
def
= χ(σ̃(n•, n(z))) = 0. σ̃ is

defined in Eq. (7), and n(z) is a layer-wise constant positive real function introduced at the beginning
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of Section 3. Since n(z) is real, all physically relevant n• satisfying Eq. (8) and, thus, Eq. (31) are also
real and belong to the interval (0,maxz n(z)]. To find these roots, we scan χ(ξ) along the suggested
interval, detect rough approximations of n• on the way, and correct them using the Newton-Raphson
iterative procedure, exploring analytic expressions for χ and χ′ given by the following algorithm:

Algorithm 2. Assume that the characteristic function (31) is constructed using the matrix M†+
[m,0](σ)

(27), where a layer-wise constant σ(z) defining parameters σL,U 6= 0 and σr, r = 1, . . . ,m, are

functions of the variable ξ (7). Accounting that d
dξ
σν(ξ) =

k2
0ξ

σν(ξ)
, we can construct χ(σ̃(ξ, n(z))) =

χ(ξ) and its ξ-derivative using the recurrent matrix-vector multiplication procedure:

χ(ξ) =
(
σU
1

)TFm(ξ), χ′(ξ) =
(
σU
1

)TF ′m(ξ) +
k2

0ξ

σU

(
1
0

)TFm(ξ), whereFr(ξ)
def
= M†+

[r] (σr)Fr−1(ξ)

F ′r(ξ)
def
= M†+

[r] (σr)F ′r−1(ζ) +
k2

0ξ
d
dσ

M†+
[r]

(σr)

σr
Fr−1(ξ)

, 1 ≤ r ≤ m;

F0(ξ) =
(

1
σL

)
, F ′0(ξ) =

[
d
dσL

(
1
σL

)]
dσL
dξ

=
k2

0ξ

σL

(
0
1

)
.

(32)

If σj(ξ) → 0, factor F ′j(ξ) is undefined. Thus, following the statement of Corollary 4, for those

layers where |e|Sj |σj(ξ)| remains moderate (1 for σj = 0), during the construction of χ(ξ) instead
of M†+

[j] (σj), one should better use Mj(zj, zj−1;σj), which has a well-defined ξ-derivative even for
vanishing σj :

d

dξ
Mj(zj, zj−1;σj(ξ)) =

k2
0ξ

d
dσ
Mj(zj, zj−1;σj)

σj

σj→0−→ k2
0ξ|Sj|

(
|Sj| |Sj |2

3

2 |Sj|

)
.

Algorithm 3. After finding vertical-mode-defining n•, we reconstruct the vertical mode and find its
layer-wise intensities PΘ

j using the following steps:

i) Find σj = σ̃(n•, nj), 1 ≤ j ≤ m (and j ∈ {L,U}, if ρ = 1 in Eq. (9));

ii) Find factors ηL (or ηU ) for Robin-type relations of Θ and Θ′ (29) at the border zk of the active
zone or PC layer (where |Θ| is expected to be large) using Algorithm 1 (and Remark 3, if
Dirichlet BCs are considered);

iii) Set
(

Θu
Θ′u

)
(zk) =

(
1

ηLk+1

)
and propagate this vector towards z = Z and z = 0 with transfer

matrices (26) and (24). The selection of zk allows us to avoid large exponential growth within
the layers Sj with large <σj|Sj|. Here, we can have less vital exponential decay towards zero
instead;

iv) During propagation, collect Θu(z) at the layer borders and use them to evaluate the mode
power PΘu

j in each layer Sj ; see Eqs. (12) and (25) for the definition of matrix pj . For Robin
BCs, we have Θu(±∞) = 0 and Γ0,m+1 → 1, s. t. in the infinitely long outside regions S0 and
Sm+1 the relations PΘu

0 = |Θu(0)|2/(2σL) and PΘu
m+1 = |Θu(Z)|2/(2σU) hold;

v) PΘu
T =

∑m+1
j=0 P

Θu
j is the overall intensity of the unscaled mode Θu(z). It is used for the final

mode scaling, Θ(z) = Θu(z)/(PΘu
T )1/2, and for defining the scaled mode power within the

layers, PΘ
j = PΘu

j /PΘu
T .

An example with six calculated vertical modes (lines) and corresponding function n(z) (red dots) is
shown in Fig. 2. We used vertical structure and PC cell size a from Ref. [6] and Robin BCs with

DOI 10.20347/WIAS.PREPRINT.3059 Berlin 2023



Spectral problem for photonic crystal surface-emitting lasers 11

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

QW
PC

n-clad
p-clad

|Θ
(z

)|2    
[1

/µ
m

], 
   

   
   

 n
(z

)

vertical coordinate  z,   [µm]

n•=3.429
n•=3.291
n•=3.276
n•=3.250
n•=3.212
n•=3.160

n(z)

Figure 2: Six calculated scaled vertical modes
(solid lines) and corresponding function n(z) (red
dots). Magenta: the main mode used for construc-
tion of C.
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Figure 3: Green’s functions G(0,0) (magenta),
G(1,1) (green), and G(2,2) (light blue) at fixed z′

within the PC layer. Solid and dashed: real and
imaginary parts of Gp.

nL,U = 1 in calculations. Since the description of the PC layer was not complete, we used unit cells
containing a pair of by air-filled 45◦ slanted ellipses centered at (x±, y±) = (±a

8
,±a

8
), see the

middle diagram of Fig. 1(d), allowing to have in Ref. [6] reported effective refractive index n• ≈ 3.429.
Besides the broad n- and p-cladding layers at the edges of the figure, we distinguish an active region
composed of three quantum wells (QWs) and a PC layer. The mode with the largest n• and largest
intensity within the QW layer is the vertical mode of our interest.

3.3 Green’s function and related integral expressions

Below, we build matrices g(k,j)
p (12), which, together with the values of Θ at the PC layer edges, enable

finding integrals G(k,j)
p used to construct matrix C. When reconstructing Gp(z, z

′) [8] for (z, z′) ∈
Sk × Sj , we distinguish the cases of k = j and k 6= j. In the first case, for z ∈ ∪j−1

l=1Sl and
z ∈ ∪ml=j+1Sl, and z′ considered as a parameter, Green’s function defining Eqs. (13), (14) are similar
to (21), (28). We use matrices M† and Algorithm 1 to calculate factors ηLp,j and ηUp,j , determining
Robin BCs (29) at the edges of Sj . In both subregions z < z′ and z > z′ of the square Sj × Sj , the
Green’s functions are solutions of the homogeneous Eq. (13), i.e., they can be written as3

Gp(z, z
′) =

{
BL+
p,j (z′)eσp,jz +BL−

p,j (z′)e−σp,jz for z < z′

BU+
p,j (z′)eσp,jz +BU−

p,j (z′)e−σp,jz for z > z′
. (33)

Gp(z, z
′) satisfies BCs (29) at z = zj−1 and zj and the connection conditions (16) at z = z′. By

resolving the resulting system of four inhomogeneous equations w.r.t. four variables BL±
p,j , BU±

p,j , we

3Note that |p| 6= 1, such that |σp,j | is not vanishing.
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can rewrite Gp(z, z
′) as

Gp(z, z
′) = e−σp,j |z−z

′|

2σp,j
+ ETp,j(z′)Bp,jEp,j(z), where

Ep,j(ξ) = (1 + Γp,j)

(
eσp,j(ξ−zj)

eσp,j(zj−1−ξ)

)
,

Bp,j =

 (σp,j+η
L
p,j)(σp,j−ηUp,j)

2σp,j∆p,j

(σp,j−ηLp,j)(σp,j−ηUp,j)(1−Γp,j)

2σp,j∆p,j(1+Γp,j)
(σp,j−ηLp,j)(σp,j−ηUp,j)(1−Γp,j)

2σp,j∆p,j(1+Γp,j)

(σp,j−ηLp,j)(σp,j+ηUp,j)
2σp,j∆p,j

,
∆p,j = (σp,j + ηLp,j)(σp,j + ηUp,j)(1 + Γp,j)

2

−(σp,j − ηLp,j)(σp,j − ηUp,j)(1− Γp,j)
2.

(34)

Inspired by the form of Gp(z, z
′) within Sj × Sj , given as a linear combination of four exponentials

eνσp,jzeν
′σp,jz′ , {ν, ν ′} ∈ {±}, we seek to writeGp for any z′ ∈ Sj and z belonging to any of material

interfaces, z = zl, 0 < l < m, as

Gp(zl, z
′) = J j T

p,l Ep,j(z′), with z′-independent J j
p,l =

(
J j+
p,l

J j−
p,l

)
. (35)

Indeed, at both sides of the Sj-layer, Eq. (34) provides the relations

J j±
p,j−1 =

(1∓Γp,j)(σp,j∓ηUp,j)
∆p,j

, J j±
p,j =

(1±Γp,j)(σp,j±ηLp,j)
∆p,j

. (36)

Since z′ ∈ Sj , Green’s function defining Eq. (13) is homogeneous for z ≤ zj−1 and z ≥ zj . Due

to Lemma 3 and Corollary 3, one can translate
( Gp
∂zGp

)
(z, z′) from zj−1 to zl, l < j − 1, and zj

to zl, l > j, using matrices M†−
[l] (σp.l) and M†+

[l] (σp.l) (27), respectively. Exploiting the relations

∂zGp(zl, z
′) = ηLp,l+1Gp(zl, z

′), l < j, and ∂zGp(zl, z
′) = −ηUp,lGp(zl, z

′), l ≥ j, with factors ηL,U

derived following Algorithm 1 and collecting the terms at the corresponding exponentials e±σp,l(z
′−z̄l)

provide the required relations

J j±
p,l−1 =

σp,l(1−Γ2
p,l)

σp,l(1+Γ2
p,l)+2ηLp,lΓp,l

J j±
p,l , l = j − 1, . . . , 1,

J j±
p,l =

σp,l(1−Γ2
p,l)

σp,l(1+Γ2
p,l)+2ηUp,lΓp,l

J j±
p,l−1, l = j + 1, . . . ,m.

(37)

For any k 6= j and z ∈ Sk, parametrically on z′ ∈ Sj depending Gp(z, z
′) satisfies homoge-

neous Eq. (21) and, thus, is defined by the analog of Eq. (23) with boundary values BGp(·,z′)
k (i.e.,

Gp(zk−1, z
′) and Gp(zk, z

′)) given by Eqs. (35), (36), (37) and θp,k(z) defined using σp,k instead of
σk. One can show that in each subregion Sk × Sj , k 6= j, Gp(z, z

′) can be written as

Gp(z, z
′) = ETp,j(z′)A

j
p,kEp,k(z), where

Aj
p,k =


A†jp,kJ

j
p,k

(
(1 + Γp,k)(σp,k + ηLp,k)

(1− Γp,k)(σp,k − ηLp,k)

)T
if k < j

A†jp,kJ
j
p,k−1

(
(1− Γp,k)(σp,k − ηUp,k)
(1 + Γp,k)(σp,k + ηUp,k)

)T
if k > j

,

A†jp,k = 1

2(1+Γ2
p,k)σp,k+2Γp,k

[
(ηLp,k+ηUp,k)−sgn(k−j)(ηLp,k−η

U
p,k)
] .

(38)

Examples of three Green’s functions Gp(z, z
′) for p = (0, 0), (1, 1), and (2, 2) for the fixed z′ and

the parameters explored in Fig. 2 are shown in Fig. 3. For |p| = 0, the function has non-vanishing and,
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within each but z′-containing layer, harmonically oscillating real and imaginary parts. For the remaining
p, =Gp vanishes, and the function is represented by a sharp exponentially growing/decaying spike at
z = z′. This shape of Gp suggests that for large |p|, a proper fully numerical estimation of the integral
expressions Gp can require a very fine numerical mesh and, thus, a considerable computational time.

Let us switch to calculating matrices g(k,j)
p from Eq. (12). For contributions due to continuously differ-

entiable part of Gp (defined by matrices B and A in Eqs. (34), (38)), separation of variables z and z′

is possible, and we only need to calculate layer-wise integrals of the matrix-function θj(z)ETp,j(z). Ep,j
and θj are by exponents and by combinations of exponents defined vector-functions, see Eqs. (34)
and (23), respectively.

Ip,j =

(
I+
p,j I−p,j
I−p,j I+

p,j

)
def
=
∫
Sj
θj(z)ETp,j(z)dz, where

I±p,j =
(σp,j∓σjΓj)(Γp,j±1)∓

σj
Γj

(1−Γ2
j )Γp,j

(σ2
p,j−σ2

j )

σj→0−→ σp,j |Sj |(Γp,j±1)∓2Γp,j
σ2
p,j |Sj |

.

(39)

The least trivial is the major contribution to g
(j,j)
p , which involves double-integration of e−σj |z−z

′| over
Sj × Sj and requires splitting the inner integration region into two subintervals [zj−1, z] and [z, zj].
Still, we can show that∫

Sj

∫
Sj

θj(z
′) e−σp,j |z−z

′|

2σp,j
dz′ θTj (z)dz =

pj
(σ2
p,j−σ2

j )
− Ip,jRp,jIp,j, where

Rp,j = R†p,j

(
R′p,j R′′p,j
R′′p,j R′p,j

)
, R′p,j =

(σ2
p,j−σ2

j )

σp,j(1+Γj)

σj→0−→ σp,j,

R′′p,j =
(σ2
p,j+σ

2
j )(1−Γp,j)+2

σj
Γj
σp,j(Γ

2
j−Γp,j)

σp,j(1+Γj)(1+Γp,j)

σj→0−→ (1−Γp,j)σp,j |Sj |−4Γp,j
(1+Γp,j)|Sj | ,

R†p,j =
(1+Γj)

8
(
σp,j−

σj
Γj

Γp,j

)(
σp,jΓp,j−σjΓj

) σj→0−→ |Sj |
8Γp,jσp,j(σp,j |Sj |−2Γp,j)

.

(40)

The expressions for g(k,j)
p now can be written as

g
(k,j)
p =

{
pj

(σ2
p,j−σ2

j )
+ Ip,j[Bp,j −Rp,j]Ip,j if k = j

Ip,jA
j
p,kIp,k if k 6= j

. (41)

Recall that σp,j is non-vanishing, σp,j and ηL,Up,j can be similar (corresponding differences are small),
and, especially for large |p|, factor Γp,l ≈ 1, which should be ever accounted for when estimating the
required expressions.

All formulas in this Subsection are written avoiding summations of numbers differing by many orders
and divisions of very small or very large numbers. Such arithmetic operations, used in sometimes more
compact formulas for PΘ

j and G(k,j)
(r,s) , have led to inaccuracies of computer arithmetics and violations

of calculations in our first version of the numerical code.

3.4 Truncation of the coupling matrix

As it was indicated in Eq. (17), C, or, more precisely, C2D, relies on the infinite sum of submatrices
C

(r,s)
2D , depending on the Fourier coefficients ξjr±1,s, ξ

j
r,s±1 (11) of the squared refractive index, vertical

mode intensities PΘ
j within PC sublayers Sj , and integral factors G(k,j)

(r,s) with integration performed in
the PC sublayer-defined regions Sk × Sj . By the finite (truncated) sum

C
(M)
2D =

∑
|r|+|s|>1,{|r|,|s|}≤M C

(r,s)
2D , (42)
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we denote approximations of C2D obtained using the truncation parameter M . The Fourier coeffi-
cients ξjr,s are obtained using the Fast Fourier Transform (FFT) of the uniformly in the unit cell of the

PC discretized function n̄2(x, y, z)|z∈Sj . Thus, calculations of C(M)
2D are only possible if the number

of discretization steps along the cell sides more than twice exceeds the parameter M . In the calcula-
tion examples of Fig. 4, we used the model parameters as in Figs. 2 and 3 and a uniform 211 × 211

discretization of the unit cell, which is sufficient for construction of the truncated sums with up to
M = 1022.
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Figure 4: Calculations of C(M)
2D in dependence on the truncation parameterM (42). (a): Time required

for calculations of C(M)
2D in the same PCSEL with 1, 3, and 5 PC layers. (b): Relative error of C(M)

2D

elements as function of M . Inset: moduli of these elements. (c): spectrum of iC in dependence on
M . X : eigenvalues of iC obtained using C

(20)
2D .

In Fig. 4(a), we show the time needed for calculations of C(M)
2D with different M when the PCSEL has

a single PC layer (magenta) or this layer is subdivided into three (green) and five (light blue) sublayers,
respectively. With an increase ofM , this time grows quadratically in all three cases, which is in accord
with a quadratic growth of the parameter set {(r, s)} satisfying the summation conditions in Eq. (42).
An increase in the number of PC sublayers implies another, approximately quadratic, growth of the
calculation time, which is due to the necessity of estimating factors G(k,j)

p for growing sets of PC

layer indices {(k, j)} (recall that in the structure with a single PC layer Sk, a single factor G(k,k)
p is

needed for each value of |p|). We note that Fig. 4(a) shows only the time needed for the estimation

of C(M)
2D . Time spent for construction of the whole matrix C using M = 1020 (including reading and

preprocessing of model parameters, 2-dimensional FFT of n̄(x, y, z), and finding the vertical mode
and the remaining components of C) was about 41, 107, and 268 s in 1-, 3-, and 5-PC-layer cases,
respectively. In contrast to the above-used analytic formulas, calculations of C using M = 20, multi-
layer PCs, and fully numerical procedures for integral factors G(k,j)

p and PΘ
j took the whole day and

even more.

Fig. 4(b) shows the evolution of the relative error |(C(M)
2D,ij −C2D,ij)/C2D,ij| (main diagram, C(1020)

2D

was used instead of the exact C2D) and |C(M)
2D,ij| (insert) with an increase ofM . Since C2D is Hermi-

tian [6, 7] and due to the symmetry of the PC unit cell w.r.t. y = x line, the moduli of all 16 components
of C2D are represented by these four curves. One can see that M = 160 is sufficient to reduce the
relative errors of the matrix C2D elements to 1% and less in this case. In practical calculations, where
estimation of the eigenvalues (especially their real parts) of the spectral problem (3) is required, even
smaller values of M can also be sufficient. The illustration is given in Fig. 4(c), showing changes in
the spectra of iC calculated using truncated C

(M)
2D with an increase of M . Crosses in this diagram,

representing the eigenvalues ΛiC obtained with a moderate value of M = 20, have nearly the same
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Spectral problem for photonic crystal surface-emitting lasers 15

real parts and not so much distinguishable imaginary parts as the eigenvalues calculated using high
M (indicated by dark bullets in the same figure). Since ΛiC give us decent approximations of the
exact eigenvalues solving the spectral problem (3) in the case of L → ∞, we expect that moderate
M values can be sufficient when considering the spectral problem for large but still finite L.

4 Numerical solution of the spectral problem

Similar spectral problems defined for domains with one spatial variable occur, e.g., in the analysis
of edge-emitting distributed-feedback lasers. Often, these problems can be solved exactly for a finite
number of modes using transfer matrices, corresponding characteristic functions, and replacement of
the spectral problem by the root-finding problem [9], as it was done in Theorem 1 and Subsection 3.2.
In the limit case of fully decoupled cross-propagating field functions Φu and Φv, i.e., when off-diagonal
2 × 2 blocks of matrix C are 0, problem (3) splits into a pair of similar effectively one-dimensional
problems. As will be shown later in this work, exact eigenvalues Λ1D for this limit-case problem can
still provide reasonable approximations for certain eigenvalues of the whole system. In this work, we
use a fully numerical approach based on finite difference approximations to find the modes in the
general case.

To construct a numerical scheme for the spectral problem (3), we subdivide the domain (x, y) ∈
[0, L]× [0, L] into n2 squares with the side length h = L

n
, and introduce the staggered mesh,

ωhu = ω′hx × ω′′hy and ωhv = ω′′hx × ω′hy , where

ω′hξ = {ξj = jh, 0 ≤ j ≤ n}, ω′′hξ = {ξj− 1
2

= (j − 1
2
)h, 1 ≤ j ≤ n}, (43)

represented with black and red bullets in Fig. 5. This mesh defines the grid function Φh with 4n(n+1)
components:

Φh =
(

Φhu
Φhv

)
, Φh

u =
(

Φh+
u

Φh−u

)
, Φh

v =
(

Φh+
v

Φh−v

)
, where

Φh±
u,j,l−0.5 ≈ Φ±u (xj, yl−0.5), Φh±

v,j−0.5,l ≈ Φ±v (xj−0.5, yl).
(44)

These components are variables of the linear system consisting of 4n2 equations approximating each
of four equations in (3) at n2 spatial positions ω′′hx × ω′′hy (central positions of small squares in Fig. 5)
and 4n BC-induced relations:(

σ∂hx 0
0 σ∂hy

)
Φh =

[
iC− Λh

]
Φ̄h, (x, y) ∈ ω′′hx × ω′′hy ,

Φh+
u,0,k−0.5 = Φh−

u,n,k−0.5 = Φh+
v,k−0.5,0 = Φh−

v,k−0.5,n = 0, 1 ≤k≤ n.

(45)

Here, ∂hxΦh, ∂hyΦh, and Φ̄h are linear operators of the grid function Φh, providing finite-difference

approximations of ∂
∂x

Φ, ∂
∂y

Φ, and Φ at ω′′hx × ω′′hy .

4.1 Second order finite difference scheme

A simple approximation of Eqs. (3) at ω′′hx × ω′′hy is given by the second-order finite difference
scheme (45), obtained using

Φ̄h±
u,j,l

def
= σhj Φh±

u,·,l−0.5, Φ̄h±
v,j,l

def
= σhl Φh±

v,j−0.5,·,

∂hxΦh±
u,j,l

def
= σ†hj Φh±

u,·,l−0.5, ∂hyΦ±v,j,l
def
= σ†hl Φh±

v,j−0.5,·,
(46)
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Figure 5: Scheme of the discretized computation
domain. Bullets indicate spatial positions where
mesh functions Φh

u and Φh
v are defined.
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Figure 6: Schematics of sparse matricesHh (non-
vanishing black and red elements) and Dh (non-
vanishing red elements) for the second order finite
difference scheme.

where operators σhk and σ†hk are given by

σhkV
h =

V hk +V hk−1

2
, σ†hk =

V hk −V
h
k−1

h
, 1 ≤ k ≤ n. (47)

A discrete analog of conservation law (4) holds for Eqs. (45), (46), (47), which indicates good quality
of the numerical scheme.

Lemma 5. Let Λh and nontrivial Φh satisfy Eqs. (45), (46), (47). Then

Ihg = Ihv + Ihl , where Ihg = −2<Λh‖Φ̄h‖2
h, Ihv = 2=(Φ̄h,CrdΦ̄h)h,

Ihl = h
n∑
j=1

|Φh+
u,n,j−0.5|2 + |Φh−

u,0,j−0.5|2 + |Φh+
v,j−0.5,n|2 + |Φh−

v,j−0.5,0|2.
(48)

Here Φ̄h and CΦ̄h are n2-component sets of four-component vectors Φ̄h
j,l and CΦ̄h

j,l; (ξ̄h, ζ̄h)h =

h2
∑n

j,l=1 ξ̄
h∗T
j,l ζ̄

h
j,l and ‖ξ̄h‖h = (ξ̄h, ξ̄h)

1/2
h are discrete analogs of scalar products and norms intro-

duced in Lemma 1.

Proof. Linear equations in (45) can be interpreted as a n2-component set of four-equation sub-
systems, each approximating Eq. (3) at different positions of ω′′hx × ω′′hy . By applying the discrete
scalar product with respect to this set and 2Φ̄h, taking the real part, and eliminating 4n boundary
elements, we get Ihl = 2<

(
Φ̄h, iCΦ̄h

)
h

+ Ihg . As in Remark 1, the relation 2<
(
Φ̄h, iCΦ̄h

)
h

=

i
(
Φ̄h, [C−C∗T ]Φ̄h

)
h

= Ihv immediately leads to the proof of this Lemma.

Substituting the expressions (46), (47) into Eq. (45), multiplying them by 2, and eliminating the BCs
alow rewriting our schemes as a standard generalized spectral problem (or corresponding classical
spectral problem):

HhW
h = ΛhDhW

h ⇔ D−1
h HhW

h = ΛhW
h. (49)

Here, 4n2-dimensional vector W h contains all variables of Φh except for boundary elements from
Eq. (45). Hh and Dh are sparse 4n2×4n2-matrices with∼ 32n2 and∼ 8n2 non-vanishing elements
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each. For example, we can set

W h
2j−1+2n(l−1) = Φh−

u,j−1,l−0.5, W h
2j+2n(l−1) = Φh+

u,j,l−0.5,

W h
2l−1+2n(j−1+n) = Φh−

v,j−0.5,l−1, W h
2l+2n(j−1+n) = Φh+

v,j−0.5,l,
(50)

such that matrices Hh and Dh have at least half of their non-vanishing elements concentrated close
to the main diagonal; see schematic representation of these matrices in Fig. 6 for the case of n = 4.
In the matrix Hh, only the elements denoted by black or red stars are non-vanishing. In the easily
invertible matrix Dh, the elements denoted by black stars vanish as well, whereas at the positions of
red stars stands 1. Once the algorithm is constructed correctly, calculating both matrix-vector products
HhV

h and DhV
h requires ∼ 44n2 arithmetic operations; estimating D−1

h V h with arbitrary 4n2-
dimensional vector V h can be done with∼ 4n2 operations. Construction of the whole matrix D−1

h Hh

with ∼ 8n3 non-vanishing entries also requires ∼ 4n2 operations.

4.2 Example

For the construction and solution of the discrete spectral problem (45), we used Julia programming
language (version 1.9) [3], all formulas and schemes presented above in this work, and the function
“eigen()” available within the Julia’s “LinearAlgebra” library. The example calculations presented in
Fig. 7 were performed for the PCSEL device with L = 300µm (as considered in Ref. [6]), with
the vertical structure and PC layer’s configuration explored already when performing calculations for
Figs. 2, 3, and 4. In this example, the modes (Λh,Φ

h) solve the discrete spectral problem (45) for
several small-to-moderate discretization parameter n values.
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Figure 7: Calculations of eigenvalues Λh solving Eq. (45). (a): All Λh for the cases n = 16 (magenta),
32 (red), and 48 (light blue). (b): same Λh close to the origin. (c) and (d): Convergence of the main
(smallest threshold) and the second mode with growing n. Empty symbols (squares, circles, triangles,
rhombs) in (b)-(d): five main modes for n = 48. Orange full squares in (a), (b): eigenvalues Λ1D

in the limit case of the original system (3) with decoupled Φu and Φv. Black triangle in (b): lowest-
threshold eigenvalue of iC. Bottom row diagrams: intensity distributions of five main identically scaled
eigenfunctions, |Φh(x, y)|2, within [0, L]× [0, L].

The numerical scheme (45) has 4n2 (i.e., a finite number of) eigenvalues Λh and, thus, is not able
to approximate all (an infinite number of) eigenvalues Λ of the original problem (3). Fig. 7(a) shows
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how the spectra of (45) evolve with an increase of n. For each fixed n, most of the eigenvalues Λh

belong to the prolongated clusters, all grouped along the circle whose radius is proportional to n (or
1/h, where h is a discrete mesh size in both spatial directions). The number of clusters and the
number of modes within each cluster grows linearly with n. Eigenvalues Λh having large values of
−<Λh (at least 90% of the the upper part of “mode-circles”) are far away from realistic Λ, which for
an uncoupled Φu and Φv case are represented by densely to each other located orange squares in
panel (a). On the other hand, eigenvalues Λh located on the lower part of the “mode circle” provide a
much better resemblance of realistic Λ: see Fig. 7(b) where only Λh within a small window close to the
origin are shown. We can see four clusters of (red and light blue) modes with an accumulation of Λh

close to four orange boxes representing exact eigenvalues Λ1D of Eq. (3) with the decoupled cross-
propagating fields. Note also that whereas the tips of two lower clusters of magenta modes (calculated
for a low n = 16) are still pretty well represented by Λ1D, the remaining clusters are further apart,
indicating an insufficient approximation of the corresponding modes at this low value of n.

Five main modes calculated with n = 48 are indicated by different empty black-framed symbols in
the upper panels of Fig. 7. Their intensity distributions |Φh(x, y)|2 = |Φh+

u |2 + |Φh−
u |2 + |Φh+

v |2 +
|Φh−

v |2 are presented in the bottom-row panels. While third-to-fifth low-threshold modes are close to
the lowest Λ1D in Fig. 7(b), two main modes belong to the mode group tending towards the filled
black triangle, representing one of four eigenvalues ΛiC of the matrix iC shown in Fig. 2(c). It is
a significant coupling of the cross-propagating fields, which implies a significant separation of these
two most important modes from Λ1D. The suggested configuration of the PCSEL implies a well-
pronounced mode threshold gap for these modes, and already small n ∼ 20 can provide pretty
good approximations for several critical eigenvalues Λ of the original spectral problem (3). The last
statement is illustrated by Fig. 7(c) and (d), showing a convergence of Λh for two main modes with an
increase of n (note the same scaling of both axes in these diagrams).

The sufficiency of low n would be a perfect message in practical computations since calculations of all
Λh for n = 20 took about 2 minutes, while the same task using n = 40 was performed in more than 4
hours. Finally, we note that in the presented example we still used a moderate value of L suggested in
Ref. [6]. However, our algorithms also work well for much larger structures with L > 1000µm, which
will be considered when designing new PCSEL devices.

4.3 Higher order schemes

As it was mentioned earlier, the schemes above provide a second-order approximation w.r.t. the
discretization step h. When dealing with larger PCSEL devices requiring finer discretizations and,
thus, substantial memory resources and processing time, it could be helpful to explore higher-order
schemes [1]. A reasonable fourth-order scheme can be realized by replacing pretty simple operators
σhk and σ†hk in Eq. (47) with more elaborated ones, acting differently for inner (1 < k < n) and
boundary (k = 1, n) cells of the discretized domain:

σhkV
h =


35V hk−1+140V hk −70V hk+1+28V hk+2−5V hk+3

128
for k = 1

9(V hk +V hk−1)−(V hk+1+V hk−2)

8
for 1 < k < n

35V hk +140V hk−1−70V hk−2+28V hk−3−5V hk−4

128
for k = n

,

σ†hk V
h =


−22V hk−1+17V hk +9V hk+1−5V hk+2+V hk+3

24h
for k = 1

27(V hk −V
h
k−1)−(V hk+1−V

h
k−2)

24h
for 1 < k < n

22V hk −17V hk−1−9V hk−2+5V hk−3−V
h
k−4

24h
for k = n

.

(51)
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These formulas are at least twice longer than those of (47), such that the corresponding matrices
Hh and Dh in Eq. (49) have more non-vanishing elements now. Shorter expressions within the inner
cells can be explained by the symmetry of the applied stencil w.r.t. the center of the cell where the
approximation of the continuous functions and their derivatives is performed. In contrast, this symmetry
is lost at the border cells, and the fourth-order approximations here use five mesh points. Loss of the
symmetry also violates the conservation law (48). Similarly, one can also construct even higher 2s-
order schemes (45), which are defined by further modifications of operators σhk and σ†hk which exploit
2s + 1 values of the grid function at s − 1 outer cell layers, and 2s values of the same grid function
within the remaining inner cells.
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Figure 8: Comparison of schemes with different approximation orders used to calculate the five lowest
threshold modes. Calculation time (a) and precision of calculated main (b) and the second (c) modes
as functions of discretization parameter n. Dashed in (a): approximation of time by nρ.

The performance of different schemes is represented in Fig. 8. In contrast to our previous study shown
in Fig. 2, where all eigenvalues Λh of the considered discrete problem (45) were calculated, now we
calculated only five major modes but could exploit fine numerical meshes generated using n ≤ 512
instead. Panel (a) of Fig. 8 shows the calculation time required to find these main modes using dif-
ferent approximations and discretization parameters n. In all cases, the simulation time grows with
an increase of n as nρ, with ρ being between 2.3 and 2.9. We note a large gap between the times
required by 2nd-order and 4th-order schemes compared to those of higher-order schemes. We at-
tribute this difference to the trivial two-diagonal form of the matrix Dh in the 2nd order scheme (red
dots in Fig. 6), which is supplemented by additional diagonals and spoiled by the border-cell-induced
asymmetries in the higher-order schemes.

Panels (b) and (c) of Fig. 8 show a convergence (i.e., decay of the absolute errors |Λh − Λ|) of two
major eigenvalues with the up-sweep of n. “Exact” eigenvalues Λ in this study were calculated using
n = 512 and the 8th-order scheme. The calculations due to 2nd and 4th-order schemes (magenta
and green) show the expected convergence rate nicely. This rate for even higher order schemes is
degraded once the error reaches ∼ 10−15, the level at which approximations of Λh in the iterative
procedure used by the spectral solver could not be adequately distinguished anymore.

From a practical point of view, these diagrams clearly show the advantages of the higher-order schemes,
even if for the same n, these schemes require up to 10 times longer calculation time. For example,
the precision of 10−6 for the main mode, see panel (b), is achieved using n ≈ 100 and 16 in the
2nd and 4th-order schemes, whereas the calculation time for these cases, see panel (a), is about 1
and 0.03 seconds, respectively. Since the higher-order precision schemes do not demand very fine
meshes, one can use them for reliable estimation of the main modes in large-area PCSELs with L in
the mm-cm range.
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5 Conclusion

In this work, we addressed the practical problems arising during the construction of the mathematical
model for novel PCSEL devices, which, up to our knowledge, were not discussed yet in the (mainly
engineering) papers on PCSELs. Namely, we gave a detailed description of the algorithms to construct
the field cross-coupling matrices C, indicated possible numerical problems related to the limitations
of computer arithmetics when dealing with the huge and tiny values of the exponential functions, and
presented methods for avoiding these limitations. Our algorithms for constructing C rely on analytic
formulas. They are precise and much more efficient than fully numerical approaches and allow us to
account for a much larger number of submatrices C

(r,s)
2D in the infinite series used for the definition

of C2D and C. Next, we constructed the 2nd-order finite difference scheme for the spectral problem.
After deriving a discrete analog of the integral conservation law, we demonstrated the performance of
this scheme in solving the spectral problem for a selected PCSEL device. We have shown that even
the schemes with relatively coarse numerical meshes can provide decent approximations of several
main eigenvalues of the original problem. Finally, we have also constructed the higher order schemes,
which can be preferable if a better precision of calculated spectra is required, many similar spectral
calculations should be performed in a limited time, or spectral calculations of PCSELs with a huge
emission area (large L) are needed.
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