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Pressure-robust approximation of the incompressible
Navier–Stokes equations in a rotating frame of reference

Medine Demir, Volker John

Abstract

A pressure-robust space discretization of the incompressible Navier–Stokes equations in
a rotating frame of reference is considered. The discretization employs divergence-free, H1-
conforming mixed finite element methods like Scott–Vogelius pairs. An error estimate for the
velocity is derived that tracks the dependency of the error bound on the coefficients of the
problem, in particular on the angular velocity. Numerical examples illustrate the theoretical
results.

1 Introduction

This paper considers discretizations of the incompressible Navier–Stokes equations in a rotating
frame of reference, which are given by

ρ∂tu− µ∆u+ ρ(u · ∇)u+ 2ρω × u+∇p = f − ρω × (ω × r) in (0, T ]× Ω,
∇ · u = 0 in (0, T ]× Ω.

(1)
Here, u [m/s] and p [Pa] denote the unknown velocity field and the unknown pressure of the
flow. The physical constants ρ [kg/m3] > 0, µ [kg/ms] > 0, and ω [1/s] 6= 0 denote the density
of the fluid, the dynamic viscosity of the fluid, and the angular velocity vector of the rotating
frame of reference, respectively. These quantities are given. The kinematic viscosity is defined by
ν = µ/ρ [m

2
/s]. It is assumed that the axis of rotation meets the origin of the coordinate system.

The position vector is denoted by r [m]. Then, 2ρω × u and ρω × (ω × r) model the Coriolis
and the centripetal forces, respectively. Note that the centripetal force can be written as a gradient

ρω × (ω × r) = −∇φc with φc =
ρ

2
‖ω × r‖22,

where ‖·‖2 denotes the Euclidean norm of a vector. The problem is posed in a bounded Lipschitz

continuous domain Ω ⊂ Rd, d ∈ {2, 3}, and in a finite time interval (0, T ]. It will be considered
with homogeneous Dirichlet boundary conditions

u(t,x) = 0 in [0, T ]× ∂Ω,

where ∂Ω is the boundary of Ω. Finally, an initial condition

u(0,x) = u0(x) in Ω

has to be prescribed.

Fluid equations in a rotating frame of reference have a broad class of important applications
in meteorology and oceanography, especially in the large-scale flows considered in ocean and
atmosphere, as well as many physical and industrial applications [1, 9]. The Coriolis and the cen-
tripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such
applications it may be required to solve the system in complex three-dimensional geometries. On
one hand, one has to deal with the usual challenges in approximating problems of Navier–Stokes
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type, which are nonlinearity, which require to satisfy or circumvent the discrete inf-sup condi-
tion, and which comprise dominating convection in the turbulent regime, see [17]. On the other
hand, one has to properly handle the extra forces, namely the Coriolis and the centripetal forces,
generating complicated fluid structures.

In recent years, the Navier–Stokes equations in a rotating frame have been investigated in a
number of papers to contribute to the analysis and the accurate and efficient numerical simulation.
For example, Refs. [12, 14, 15, 19] studied the global well-posedness of (1) with uniformly small
initial datau0. An error analysis of a two step projection method was performed in [28]. In [33] one
can find an error analysis of the incremental pressure-correction projection scheme. A discrete
projection method was analyzed both theoretically and numerically for problem (1) in [32]. The
main result of these projection methods is that the velocity is a first-order approximation and the
pressure is an approximation of order 0.5. The analysis of an operator splitting method for the
numerical solution of (1) can be found in [31].

It is well known that most of the classical inf-sup stable mixed methods for approximating the
Navier–Stokes equations, like the H1-conforming Taylor—Hood pairs of finite element spaces,
suffer from poor mass conservation when the viscosity ν is small, e.g., see [18, 20, 25]. In ad-
dition, the pressure gradient balances forces of gradient type, which might be strong in practice.
Numerical analysis reveals that classical methods, like Taylor–Hood pairs, introduce a pressure-
dependent contribution in the velocity error bounds that is proportional to some inverse power
of the viscosity, e.g., see [27, 18, 23, 24, 21, 4, 3]. Hence, these methods are optimally conver-
gent but small velocity errors might not be achieved for complicated pressures and small viscos-
ity coefficients. Several approaches have been proposed for improving the pressure-robustness
of pairs of finite element spaces. One popular approach consists in applying grad-div stabiliza-
tion [27, 4, 16, 26, 2]. Another approach is to use appropriate reconstructions of test functions
[24, 23, 22]. Finally, it is possible to use pairs of spaces that lead to weakly divergence-free finite
element solutions, like Scott–Vogelius pairs. However, this approach might come with additional
requirements, like the use of barycentric-refined grids in case of Scott–Vogelius pairs, [30, 34].

In the literature, the Navier–Stokes equations with Coriolis force have been approximated most
often by some projection method and using classical finite elements. To the best of the authors’
knowledge, until now, no pressure-robust mixed method has been proposed and analyzed for
these equations. This contribution studies the application of Scott–Vogelius pairs of finite element
spaces to approximate the solution of (1). It will be shown that the method is stable and satisfies
an energy equality. A velocity error estimate will be derived that is pressure-robust. The error
bound does not depend explicitly on negative powers of the viscosity, but there is a dependency
on the angular velocity. Numerical studies will support the analytic results.

The remainder of the paper is organized as follows. Section 2 provides some notations and math-
ematical preliminaries needed for the numerical analysis. In addition, the discretization with the
Scott–Vogelius finite element method is introduced. Section 3 is devoted to the numerical analy-
sis of the method. Numerical studies for verifying the analytic results are presented in Section 4.
Finally, Section 5 provides a summary and an outlook.

2 Weak Formulation and Finite Element Discretization

Standard notations for Sobolev spaces and their norms will be used. In particular, the inner prod-
uct in L2(Ω)d, d ≥ 1, is denoted by (·, ·) and the induced norm by ‖ · ‖0. Sobolev spaces
on Ω are denoted by Hr(Ω), r ∈ R, r > 0, with the corresponding norm ‖ · ‖r . Spaces for
vector-valued functions are indicated with bold face symbols. Function spaces in spatio-temporal
domains are denoted as usual with the time interval and the spatial function as arguments.
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Pressure-robust methods for Navier–Stokes equations with rotating frame 3

The space of weakly divergence-free functions is defined by

Hdiv(Ω) =
{
σ ∈ L2(Ω) : ∇ · σ ∈ L2(Ω), −(σ,∇ψ) = 0 ∀ ψ ∈ H1(Ω)

and σ · n = 0} ,

with n being the unit outer normal at ∂Ω. If a weakly divergence-free function is even from
H1

0(Ω), then the corresponding subspace is denoted by

V div =
{
v ∈H1

0(Ω) : ∇ · v = 0
}
.

Then, a weak formulation of (1) with time-independent velocity test functions v ∈ V div for
computing the velocity u ∈ L2 (0, T ;V div) ∩ L∞ (0, T ;Hdiv(Ω)) is given by

ρ (∂tu,v) + µ (∇u,∇v) + ρ ((u · ∇)u,v) + 2 (ω × u,v) = 〈f ,v〉
H
−1

,H
1
0

(2)

for all v ∈ V div, where f ∈ L2
(

0, T ;H−1(Ω)
)

is assumed and the symbol for the right-hand

side denotes the dual pairing. The pressure and the centripetal force do not occur in this weak
formulation because they are gradients that are tested with a weakly divergence-free function.
The initial value is u0(x) ∈Hdiv(Ω).

Let {Th}, h > 0, be a family of admissible and quasi-uniform triangulations of Ω. For the dis-

cretization in space, the Scott–Vogelius pair of finite element spaces (V h, Qh) = (P r, P
disc
r−1),

proposed in [30], for approximating velocity and pressure will be considered. This pair is known
to fulfil the discrete inf-sup condition

inf
06=qh∈Qh

sup
06=vh∈V h

(∇ · vh, qh)

‖∇vh‖0‖qh‖0
= βh > 0, (3)

independently of the mesh width under certain restrictions on the mesh and polynomial degree,
e.g.,

• in 2d, if r ≥ 4 and the mesh has no singular vertices, [30],
• when r ≥ d and the mesh is a barycentric refinement of a regular mesh, [34, 29].

This paper considers such situations, so that (3) holds.

An attractive property of the Scott–Vogelius element is that the discrete mass conservation en-
forced with

(∇ · vh, qh) = 0 ∀ qh ∈ Qh,

implies even weak mass conservation, since ‖∇·vh‖0 = 0 by the special choice of qh = ∇·vh,
which is possible due to ∇ · V h ⊂ Qh. Hence the discretely divergence-free subspace of V h

can be characterized as follows

V h,div = {vh ∈ V h : (∇ · vh, qh) = 0, ∀ qh ∈ Qh}
= {vh ∈ V h : ‖∇ · vh‖0 = 0} .

Note that the elements of V h,div are weakly divergence-free and hence V h,div ⊂Hdiv(Ω).

A modified Stokes projection sh : V → V h,div is considered for the error analysis of the
velocity, see [8], satisfying

(∇sh,∇vh) = (∇u,∇vh) ∀ vh ∈ V h,div. (4)

The following bound holds for m ∈ {0, 1}, compare [8],

‖uh − sh‖m ≤ Ch
r+1−m‖u‖r+1 ∀ u ∈ V ∩H

r+1(Ω)d. (5)
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In addition, the following bounds are valid, see [11, (3.32)], [7, (21)], [5],

‖sh‖L∞ ≤ C(‖u‖d−2‖u‖2)1/2, ‖∇sh‖L∞ ≤ C‖∇u‖L∞ . (6)

If ∂tu is sufficiently regular, a modified Stokes projection of the form (4) can be defined for ∂tu
and error bounds of the form (5) can be derived for ∂t(u− sh).

In the semi-discrete problem (continuous-in-time problem), the centripetal force will be added to
the pressure to define a modified discrete pressure, which is denoted for simplicity also by ph.
Let (V h, Qh) be a pair of Scott–Vogelius finite element spaces satisfying (3), the semi-discrete
problem reads as follows: find uh : (0, T ] → V h and ph : (0, T ) → Qh such that for all
(vh, qh) ∈ (V h, Qh) it holds

ρ (∂tuh,vh ) + µ (∇uh,∇vh) + ρ ((uh · ∇)uh,vh)

+ρ (2ω × uh,vh)− (∇ · vh, ph) = 〈f ,vh〉H−1
,H

1
0
, (7)

(∇ · uh, qh) = 0,

with an initial velocity uh(0,x), which is an appropriate approximation of u0(x) in V h. Note
that

((uh · ∇)vh,vh) = 0 ∀ vh ∈ V h, (8)

since uh ∈ V h,div ⊂ V div. In addition, since the vector ω × vh is perpendicular to vh, it is

(2ω × vh,vh) = 0 ∀ vh ∈ V h. (9)

3 Numerical Analysis

This section presents the analysis of method (7): consistency, energy equality, stability, and a
velocity error estimate.

Lemma 3.1 (Consistency) For any velocity solution u of (2) satisfying u ∈ V h for all t > 0
and u0(x) = uh(0,x), it holds that uh(t) = u(t) for all t ∈ [0, T ].

Proof: By assumption both problems (2) and (7) have the same initial condition.

A velocity field is a solution of the discrete problem if and only if it satisfies the discrete initial
condition and it holds for all test functions from V h,div

ρ (∂tuh,vh ) + µ (∇uh,∇vh) + ρ ((uh · ∇)uh,vh)

+ρ (2ω × uh,vh) = 〈f ,vh〉H−1
,H

1
0
.

Since for the Scott–Vogelius pair of spaces V h,div ⊂ V div, these test functions can be used
also in the continuous problem (2), showing that u satisfies the same equation. �

Lemma 3.2 (Energy equality and stability) For any velocity solution uh ∈ V h of the spatially
discretized problem (7) holds, for all t ∈ (0, T ], the energy equality

1

2
‖uh(t)‖20 + µ

t∫
0

‖∇uh(s)‖20 ds =
1

2
‖uh(0, ·)‖20 +

t∫
0

〈f(s),uh(s)〉
H
−1

,H
1
0

ds

and the a priori estimate (stability estimate)

‖uh(t)‖20 + µ

t∫
0

‖∇uh(s)‖20 ds ≤ ‖uh(0)‖20 + µ−1
t∫

0

‖f(s)‖2
H
−1 ds.
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Proof: Testing (7) by vh = uh(s) ∈ V h,div, with fixed s ∈ (0, T ], and using the definition
of the kinematic viscosity, (8), and (9) yields

1

2

d

dt
‖uh(s)‖20 + µ‖∇uh(s)‖20 = 〈f(s),uh(s)〉

H
−1

,H
1
0
. (10)

Integrating over the time interval (0, t) ⊂ (0, T ] gives the energy equality.

Applying the Cauchy–Schwarz and the Young inequalities on the right-hand side of (10) leads
to

1

2

d

dt
‖uh(s)‖20 + µ‖∇uh(s)‖20 ≤ ‖f(s)‖

H
−1‖∇uh(s)‖0

≤ 1

2µ
‖f(s)‖2

H
−1 +

µ

2
‖∇uh(s)‖20.

The stability estimate is obtained by integrating the inequality over (0, t) ⊂ (0, T ]. �

We proceed to present an error analysis for the velocity solution of (7).

Theorem 3.1 (Velocity error estimate) Assume for the solution of (2) that

u ∈ L2 (0, T ;V div) ∩ L2
(

0, T ;Hr+1(Ω)
)
∩ L∞ (0, T ;Hdiv(Ω))

∩L∞
(

0, T ;Hmax{2,r}(Ω)
)
∩ L1

(
0, T ;W 1,∞(Ω)

)
and assume that ω ∈ L∞(0, T ;L∞(Ω)). Let uh be the velocity solution of (7). Then, the
following error estimate holds

‖(u− uh)(t)‖20 + ν‖∇(u− uh)‖2
L

2
((0,t);L

2
)

≤ Ch2r
(
‖u(t)‖2L∞((0,t);H

r
) + ν‖∇u‖2

L
2
((0,t);H

r
)

+ exp (L(T,u))M(T,u,ω)
)

+2 exp (L(T,u)) ‖uh(0)− sh(0)‖20, (11)

for all t ∈ (0, T ] with

L(T,u) = 2

∫ T

0

(‖∇u‖L∞ + 1) ds, (12)

and

M(T,u,ω) =

∫ T

0

(
‖u‖1‖u‖2‖u‖

2
r+1 + ‖∂tu‖

2
r + ‖ω‖2L∞‖u‖

2
r

)
ds. (13)

The constant in (11) does not blow up as ν tends to zero.

Proof: The proof follows the proof of [10, Theorem 4.7]. The error is split into

e = u− uh = (u− sh)− (uh − sh) = η − φh,

where sh is the Stokes projection defined in (4). Hence, it is φh ∈ V h,div. Then, subtracting
(7) from (2) and using (4) leads to the error equation

ρ (∂tφh,vh) + µ (∇φh,∇vh) + ρ ((uh · ∇)uh,vh)− ρ ((sh · ∇)sh,vh)

+ρ (2ω × φh,vh) = ρ (∂tη,vh) + ρ ((u · ∇)u,vh)− ρ ((sh · ∇)sh,vh)

+ρ (2ω × η,vh) ∀ vh ∈ V h,div.

Taking vh = φh and using (9) yields

ρ

2

d

dt
‖φh‖

2
0 + µ‖∇φh‖

2
0 ≤ ρ |((uh · ∇)uh,φh)− ((sh · ∇)sh,φh)|
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+ρ |((u · ∇)u,φh)− ρ ((sh · ∇)sh,φh)|
+ρ |(∂tη,φh)|+ ρ |(2ω × η,φh)| . (14)

The first term on the right-hand side of (14) is bounded by adding and subtracting (uh·∇)sh,φh),
applying the triangle inequality, using the skew-symmetric property of the nonlinear term for
weakly divergence-free functions (8), and finally Hölder’s inequality

ρ| ((uh · ∇)uh,φh)− ((sh · ∇)sh,φh) |
≤ ρ| ((uh · ∇)φh,φh) |+ ρ| ((φh · ∇)sh,φh) | = ρ| ((φh · ∇)sh,φh) |
≤ ρ‖∇sh‖L∞‖φh‖

2
0.

For bounding the second term on the right-hand side of (14), ((sh · ∇)u,φh) is added and
subtracted, Hölder’s inequality, Sobolev embeddings, a Sobolev interpolation, (6), and (5) are
used to obtain

ρ |((u · ∇)u,φh)− ρ ((sh · ∇)sh,φh)|
≤ ρ |((η · ∇)u,φh)|+ |(sh · ∇)η,φh)|
≤ ρ‖η‖

L
6‖∇u‖

L
3‖φh‖0 + ‖sh‖L∞‖∇η‖0‖φh‖0

≤ Cρ
(
‖∇u‖1/2 + ‖sh‖L∞

)
‖η‖1‖φh‖0

≤ Cρ
(

(‖u‖1‖u‖2)1/2 + ‖sh‖L∞
)
‖η‖1‖φh‖0

≤ Cρhr(‖u‖1‖u‖2)1/2‖u‖r+1‖φh‖0.

The third term on the right-hand side of (14) is estimated by applying the Cauchy–Schwarz
inequality and (5) for the temporal derivative

ρ |(∂tη,φh)| ≤ ρ‖∂tη‖0‖φh‖0 ≤ Cρh
r‖∂tu‖r‖φh‖0.

And the last term is estimated similarly

ρ |(2ω × η,φh)| ≤ 2ρ‖ω‖L∞‖η‖0‖φh‖0 ≤ Cρh
r‖ω‖L∞‖u‖r‖φh‖0.

Inserting all estimates, applying Young’s inequality, and multiplying with 2/ρ gives

d

dt
‖φh‖

2
0 + 2ν‖∇φh‖

2
0 ≤ Ch2r

(
‖u‖1‖u‖2‖u‖

2
r+1 + ‖∂tu‖

2
r + ‖ω‖2L∞‖u‖

2
r

)
+2 (‖∇sh‖L∞ + 1) ‖φh‖

2
0.

By the regularity assumptions, all terms in the parentheses are in L1(0, T ), so that Gronwall’s
lemma can be applied. One obtains for any t ∈ (0, T ]

‖φh(t)‖20 + 2ν‖∇φh‖
2
L

2
((0,t);L

2
)

≤ exp (L(T,u)) ‖φh(0)‖20 + Ch2r exp (L(T,u))M(T,u,ω),

where L(T,u) and M(T,u,ω) are defined in (12) and (13), respectively.

The application of the triangle inequality concludes the proof. �

In contrast to the robustness of the error (11) with respect to the viscosity, the bound blows up
if the angular velocity increases. It can be seen that the predicted blow-up is not exponential but
linear for one term of the error bound (note that the square of the error is considered in (11)).
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Figure 1: The domain of the numerical problem with a barycentric-refined grid.

4 Numerical Studies

This section presents a few numerical studies to verify the theoretical results for method (7). For
this purpose, we consider (1) with the prescribed solution

u1 = π sin(t) sin(2πy) sin2(πx),

u2 = −π sin(t) sin(2πx) sin2(πy), (15)

p = sin(t) cos(πx) sin(πy).

Simulations are performed in the unit square Ω = (0, 1)2 and with the final time T = 1. The ex-
ternal force f , the Dirichlet boundary condition, and the initial condition were determined by (15).
We considered ρ = 1 kg/m3 and simulations with different values of µ and ω were performed.
Note that in two dimensions the angular velocity is ω = ωez , where ez is the Cartesian unit vec-
tor in z-direction. As temporal discretization, the second order linearly extrapolated backward dif-
ferentiation formula (BDF2LE), i.e., replacing the first factor in the convective termun+1

h ·∇un+1
h

with the extrapolation (2un
h − u

n−1
h ), is used. In order that the temporal discretization error is

negligible, the very small time step ∆t = 0.0001 was applied, hence the number of time steps is
N = 10000. As spatial discretization, the Scott–Vogelius pair (P2, P

disc
1 ), i.e., r = 2, defined

on barycentric refinements was used. The simulations are performed with the finite element soft-
ware package FreeFem++ [13], where the UMFPACK sparse direct linear solver [6] was applied
for solving the linear systems of equations.

We computed numerical solutions on successively refined meshes and refinements with h ∈
{1/8, 1/16, 1/32, 1/64} were considered. An example of a barycentric-refined mesh can be
seen in Figure 1.

The studied errors are given by

‖u− uh‖L∞(L
2
)

= max
t
n∈[0,T ]

‖(u− uh)(tn)‖
L

2 , (16)

µ1/2‖∇(u− uh)‖
L

2
([0,1];L

2
)

=

(
µ

N∑
n=1

∆t‖∇(u(tn)− un
h)‖2

L
2

)1/2

, (17)

and the square root of the term on the left-hand side of (11) (which is abbreviated with ‘l.h.s. of
error estimate’).

We first performed a study for varying viscosity µ ∈ {1, 102, 104, 106} with fixed angular velocity
ω = 1, see Figure 2. This study aimed to check the robustness of the errors with respect to
viscosity. The robustness of the error on the left-hand side of (11) for small viscosity coefficients
as well as the predicted second order of convergence of this term can be clearly observed. With
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Figure 2: Velocity errors for varying viscosity µ and fixed ω = 1. The bottom picture is for the
square root of the left-hand side of error estimate (11).

respect to the error in L∞(L2) defined in (16), a small increase can be observed if the viscosity
decreases, but not a blow up. Apart of the smallest viscosity coefficient, third order convergence
can be already seen. The error given in (17) is robust. For all but the smallest viscosity coefficient,
the second order convergence is already visible.

The second study was for fixed µ = 1 and varying ω ∈ {1, 102, 104, 106}. In this case the
error bound (11) predicts a linear dependency on the angular velocity. However, the considered
example seems not to be a worst case, as considered in the error analysis, or the error bound is
dominated by a term that does not depend on ω since the angular velocity does not possess much
impact on the errors, compare Figure 3. The expected orders of convergence can be observed.

5 Conclusion

This paper studied a finite element discretization of the Navier–Stokes equations in a rotating
frame of reference. To this end, the classical Scott–Vogelius pairs of finite element spaces were
considered, which lead to weakly divergence-free velocity solutions. As main result, it was shown
that the velocity error in a standard norm can be bounded with the expected order of convergence
and in a pressure-robust way. The error bound is also convection-robust in the sense that it does
not explicitly contain inverse powers of the viscosity. One term of the error bound depends linearly
on the angular velocity. The theoretical results were validated with numerical studies.
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Figure 3: Velocity errors for fixed µ = 1 and varying ω. The bottom picture is for the square root
of the left-hand side of error estimate (11).
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