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Locality properties for discrete and continuum Widom–Rowlinson
models in random environments
Benedikt Jahnel, Christof Külske, Alexander Zass

Abstract

We consider the Widom–Rowlinson model in which hard disks of two possible colors are
constrained to a hard-core repulsion between particles of different colors, in quenched random
environments. These random environments model spatially dependent preferences for the attach-
ment of disks. We investigate the possibility to represent the joint process of environment and
infinite-volume Widom–Rowlinson measure in terms of continuous (quasilocal) Papangelou inten-
sities. We show that this is not always possible: In the case of the symmetric Widom-Rowlinson
model on a non-percolating environment, we can explicitly construct a discontinuity coming from
the environment. This is a new phenomenon for systems of continuous particles, but it can be
understood as a continuous-space echo of a simpler non-locality phenomenon known to appear for
the diluted Ising model (Griffiths singularity random field [EMSS00]) on the lattice, as we explain in
the course of the proof.

1 Introduction

In this article we consider the Widom–Rowlinson model (WRM) in a random environment, from
the discrete lattice to the continuum. Physically the model describes a quenched random substrate
on which particles of two types can attach, subject to a repulsive interaction between particles of
different types. The attachment process is described in terms of a WRM in each of the connected
components of the substrate. In the classical WRM, first introduced in [WR70], the substrate (or base-
space) is the Euclidean space Rd; in this case the particle positions are drawn from two independent
homogeneous Poisson point processes (PPP) of intensity λ+ for the plus-particles, and λ− for the
minus-particles, under the constraint that particles of different types cannot be closer than a fixed
radius. Recall that, as a fundamental property, the symmetric model with large and equal particle
intensities λ := λ+ = λ− shows a phase transition: it has two translation-invariant infinite-volume
Gibbs measures µ+ and µ− which show symmetry breaking in the particle densities for plus-particles
and minus-particles, see [Rue71, BKL84, CCK95, DH19]. More generally the WRM, and its high-density
phase transition, has also been studied for spatially-homogeneous discrete base spaces, including the
integer lattice [HT04] or the Cayley tree, as well as in versions where the strict hardcore interaction
is replaced by a mollified interaction, see [KKR19, Kül19]. For dynamical questions of metastability,
see [HJKP19].

In the present work on the WRM in quenched environments, we are after structural locality properties
of the joint measures that describe the environment process together with the process of attached WR
particles. The environment processes in the present work are given by percolation models driven by
spatially independent processes, such as the Poisson–Boolean model (PBM) in the continuum, the
Poisson–Gilbert graph (PGG), or the clusters of iid Bernoulli site percolation (BSP) on the lattice.

We are ultimately interested in exhibiting a discontinuity in the fully-continuous model and explore this
question also in the two more discrete cases, which are interesting models in themselves. Indeed, not
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only does their study provide insight into the techniques and mechanisms needed for the case of the
PBM, but they present interesting different features, see Table 1. Let us comment on these models
individually.

Poisson–Boolean environments. In the fully-continuous model the substrate is modeled by a PBM.
By definition this model describes the distribution of a random subset of Euclidean space A ⊂ Rd,
obtained as the union of disks of independent random radii drawn from a distribution ν, whose midpoints
are chosen according to a driving PPP in Euclidean space with homogeneous intensity β > 0. For
precise definitions, see Section 4, formula (8) in our paper; for percolation properties of this model,
see [MR96]. Conditional on a fixed realization of this environment, the positions of WR particles and
their marks (plus or minus) are then distributed according to the WRM on A, with symmetric intensity
λ. This model is the most complex we consider in this work, and so it is worthwhile to explain setup,
questions, and mechanisms in the limiting case of a substrate of zero radii. The meaningful limiting
formulation of our problem for the PBM is the following.

Poisson–Gilbert graphs. The environment is completely described by Poisson points in Euclidean
space of a given intensity β. Each of these environment points serves as a potential docking site for
a plus- or minus-WR particle, but it may also be left empty. This happens with site-wise independent
a-priori probabilities p+, p−, p0, subject to the WR hardcore-condition that inter-particle distances must
be greater or equal than 1 between particles of different signs. We note that the resulting joint process
is then a dependently marked point process. Its configuration space is the space of marked point clouds
(η, ση) where η ⊂ Rd is a locally finite point cloud, and the marks σy take values in the mark space
{−1, 0, 1}, where 0 stands for a vacancy. In our treatment of the joint measures of the WRM on the
full Poisson–Boolean environment we adopt a similar view as marked point process, where necessarily
our spaces will then carry more information, see (4). Our analysis will start from the following further
discretization of the model.

Bernoulli site percolation. In this setting the environment is described by a subcritical Bernoulli(q)
lattice field on Zd, i.e., each site i ∈ Zd is either occupied (v, with probability q) or unoccupied (u, with
probability 1− q), independently of the others. As in the PGG setting, each occupied environment point
is a potential docking site for a WR particle plus, minus, or zero. The joint measure of the WRM on this
dilute lattice can then be seen as a finite-alphabet model with alphabet given by {u,−1, 0,+1}.

Papangelou intensities and specification kernels. PPPs and marked point processes are most
conveniently described in stochastic analysis in terms of Papangelou intensities ρ(x,η), see [Der19],
by means of the GNZ equation, see (5). In a dynamical interpretation, the GNZ equation describes
the invariance of an infinite-volume measure under the dynamics which adds a marked particle x
with rate ρ(x,η) to a given marked point cloud η sampled from the measure, and kills particles with
rate 1, see [GY05]. For readers familiar with infinite-volume equilibrium statistical mechanics, the GNZ
equation is a spatially infinitesimal version of the DLR equation for models with discrete base spaces
which are described via specifications. The Papangelou intensity then serves as an analogue to the
single-site specification kernel γx. For models in continuous space, specifications, i.e., families of
kernels indexed by general bounded subvolumes in Rd, are still very relevant. For this reason, it is
useful to note that there is a simple relation between specifications and the Papangelou intensity given
by formula (6). It indicates that all specification kernels (i.e., conditional probabilities for the process
in bounded volumes Λ of Euclidean space, given the realization of the process outside of Λ) can be
derived from the simpler Papangelou intensity, by adding points iteratively. As Papangelou intensities
refer to a single points x instead of nontrivial volumes Λ, they are very convenient for computations
and analysis, and we prefer to focus on them in the present work.
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Section 2 Section 3 Section 4
Environment BSP(q) PGG(β) in Rd PBM(β) w/random radii

Small WR intensity ql-Gibbs non-ql-Gibbs ql-Gibbs if bounded radii
Large WR intensity non-ql-Gibbs non-ql-Gibbs non-ql-Gibbs

Table 1: Overview of the results on existence and absence of quasilocal (ql) Papangelou intensities
for the joint measure of the WRM in three environments. The environments are given by Bernoulli
site percolation (BSP), Poisson–Gilbert graphs (PGG), and Poisson–Boolean models (PBM) in the
subcritical percolation regimes with respect to their corresponding parameters q ∈ [0, 1] and β > 0.

Do our models have continuous Papangelou intensities? In this paper we investigate the possibility
to represent the joint process of environment and infinite-volume WRMs in terms of continuous
(quasilocal) Papangelou intensities. This question is driven by similar investigations on the quasilocal
Gibbsianness of a variety of models, mostly in the context of discrete base space models, see for
example [BKL98, EFHR02, KNR04]. This is relevant also because non-locality of rates makes it
impossible to define infinite-volume dynamics using standard techniques [Lig85]. For studies which
consider transformations of the WRMs under time-evolutions, see [JK17] in the continuum, or [KK18,
BKK23] in discrete setups. For a dynamic version of the WRM as a birth and death process and
associated out-of-equilibrium questions, see [HJKP19] and upcoming works by the same authors.

Main results. Let us explain our result with respect to the fully-continuous model, where WR points
are bound to lie on the area covered by the PBM describing the environment. We prove the following
negative result: The symmetric high-density WRM on a subcritical PBM does not admit a continuous
Papangelou intensity.

This non-representability statement of joint measures in terms of good Papangelou intensities is
prototypical for the other cases we treat, albeit modulo some notable changes, concerning the local
and non-local nature of possible discontinuities, see Definition 4.3. In Table 1 we present an overview
of the results.

We note that in the PBM setting, natural non-equivalent families of Papangelou intensities exist, based
on different association rules for the WR particles, cf. (10) and (18) and the respective Figures 3 and 8.
The discontinuity of the Papangelou intensity we encounter is due to intrinsic non-local effects in the
joint measure, which occur when we are connecting or disconnecting large but finite clusters of the
substrate, at large distances. Indeed, even though in the subcritical regime very large clusters are
clearly very improbable, their effect cannot be neglected as it leads to a non-removable discontinuity.
This is a phenomenon reminiscent of Griffiths singularities [Gri69], and is related to a non-locality
phenomenon which has been proved to occur for the Ising model on site percolation clusters on the
lattice, see [EMSS00].

The manuscript is organized as follows. It proceeds from simpler environment processes to envi-
ronments with higher complexity. In Section 2 we investigate the quenched WRM on the clusters of
subcritical BSP and prove absence of quasilocal specifications due to an essential discontinuity point
along connected halfspaces. In Section 3 we consider the discrete WRM on the subcritical PGG and
prove absence of quasilocality on the level of graph Papangelou intensities. Finally, in Section 4 we
show the absence of quasilocal Papangelou intensities for the quenched continuum WRM on the PBM.
All proofs are presented in Section 5. Finally in the appendix in Section 6 we elaborate on an alternative
approach towards the canonical Papangelou intensity of the continuum WRM on the PBM.
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Figure 1: Configuration of the WRM
on the diluted lattice. Black vertices
represent occupation in the under-
lying Bernoulli site percolation. Blue
(resp. green, red) disks represent the +
(resp. 0,−) spins in the WRM.

2 The WRM on the dilute lattice

Consider the Bernoulli lattice field π(dη) on Zd, d ≥ 2, with density q ∈ (0, 1), i.e., ηi ∈ {u, v}
where ηi = v represents that the site i ∈ Zd is occupied, ηi = u represents that the site i ∈ Zd is
unoccupied and occupation at i ∈ Zd happens independently with probability q. It will be convenient
to occasionally identify η ∈ {u, v}Zd

with the set of occupied sites, i.e., consider η ⊂ Zd. It is a
well-known fact that there exists a critical threshold 0 < qc < 1 such that for all q < qc the field π is in
the subcritical percolation regime, where almost surely no infinite connected component of occupied
sites exists [Gri99]. In what follows we will always assume that q < qc. We are interested in the joint
measure

K(dη, dση) = π(dη)µη(dση), (1)

where µη is the countable product measure over the almost-surely finite components (η(k))k∈I of
η, i.e., µη(dση) = Πk∈Iµη(k)(dση(k)). Then, for a finite component η(k), µη(k)(dσ) is the discrete
Widom–Rowlinson model (WRM) [HT04], i.e.,

µη(k)(ση(k)) =
1

Zη(k)

∏
i∈η(k)

pσi
1{ση(k) is feasible}, ση(k) ∈ {−1, 0, 1}η(k) , (2)

where p0, p+, p− ∈ (0, 1) with p0 + p+ + p− = 1 are the spin probabilities and feasibility

1{ση(k) is feasible} =
∏

i,j∈η(k) : |i−j|=1

1{σiσj ̸= −1}

represents the constraint that no neighboring spins face in opposite directions. Zη(k) is the usual
normalizing constant. In words, we consider the WRM with open boundary conditions on the finite
clusters of a subcritical Bernoulli site percolation model and the measure K can then be seen as
a probability measure on Ω = {u,−1, 0, 1}Zd

as illustrated in Figure 1. In particular, K(dη) is a
finite-alphabet model with alphabet {u,−1, 0, 1} and a configuration Ω ∋ η = (η, ση) is completely
determined by its gray configuration η (the set of occupied sites) together with its coloring ση.

Note that, in order for K to be well-defined, we need to ensure measurability of µη with respect to η.
For this, note that we can define µη also in a super-critical regime for example as the extremal measure
µ+
η (with plus-boundary condition), whose existence follows by FKG-type arguments for monotone

finite-volume limit on increasing observables. Furthermore, µη can be uniquely identified as a measure
on Ω (without reference to η) via µη ⊗ δuηc

, where uηc is the all-u configuration on Zd \ η. Then, the
measurablity of η 7→ µη can be checked on local configurations wΛ := {w′ ∈ Ω: w′

Λ = wΛ} and
follows from the fact that µη(wΛ) is the limit of local (and therefore measurable) functions.

As first noted in [EMSS00], for the case of the Ising model defined on the clusters of a Bernoulli lattice
field, the model K seems very local at a first glance. However, this is not the case, when locality is
defined in the following sense.
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Consider a specification γ = (γΛ)Λ⋐Zd indexed by finite subsets Λ ⋐ Zd, i.e., a consistent and
proper family of probability kernels γΛ(ηΛ|ηΛc) on ΩΛ = {u,−1, 0, 1}Λ with boundary condition
ηΛc ∈ ΩΛc . Here Λc = Zd \ Λ. We are interested in continuity properties of γ with respect to the
boundary condition based on the product topology on Ω, here we equip Ω with the Borel-σ-algebra F
associated to the product topology.

Definition 2.1 (Quasilocal specifications). Let γ be a specification on Ω. A configuration η ∈ Ω is
called good for γ if, for any Λ ⋐ Zd and any local function f : Ω → R,

sup
η′ : η′

∆=η∆

|γΛ(f |η′
Λc)− γΛ(f |ηΛc)| → 0 as Zd ⋑ ∆ ↑ Zd.

We denote by Ω(γ) the set of good configurations for γ, while elements of Ω \Ω(γ) are called bad for
γ. We say that γ is quasilocal if Ω(γ) = Ω.

Let us note that quasilocality of specifications is in one-to-one correspondence to the existence of
summable potentials such that the specification can be written as a Boltzmann weight with respect to
this specification [Koz74, Sul73].

Based on a notion of quasilocal specifications we can now characterize quasilocal Gibbsianness.

Definition 2.2 (Quasilocal Gibbsianness). A probability measure P ∈ P(Ω) is said to be quasilocally
Gibbs, if P satisfies the DLR equations with respect to some quasilocal specification γ, i.e.,

P (A) =

∫
P (dη)γΛ(A|ηΛc) for all Λ ⋐ Zd and A ∈ F .

Otherwise P is called non-quasilocally Gibbs.

Let us note that in [Sok81] it is shown that, under general conditions, for every random field there exists
a specification satisfying the DLR equation. However, the specification is not necessarily quasilocal.
Using these definitions, we can now formulate our first main result on the presence and absence of
quasilocal Gibbsianess.

Theorem 2.3. Let q < qc and consider the symmetric WRM, where p+ = p− is sufficiently close to
1/2. Then, the measure K is non-quasilocally Gibbs. On the other hand, for q < qc and all sufficiently
small p+, p−, K is quasilocally Gibbs.

As a point of reference, for the following sections, let us mention that the proof of Theorem 2.3, which
is presented together with all other proofs in Section 5, is based on the canonical version of the
specification given by K(ηΛ|ηΛc). More precisely, leveraging factorization and translation invariance,
rather than K(ηΛ|ηΛc), it suffices for us to work with the following quantity,

ρo(ηo,ηoc) :=
K(ηo|ηoc)

K(uo|ηoc)
=

q

1− q

Zη[o]

Zη[o]∪{o}
1{σn(o,η)∪{o} is feasible}1{η[o] is finite} (3)

where ηo ∈ {−1, 0, 1}, n(x, η) ⊂ η denotes the set of vertices in η that are neighbors of x, and
η[x] ∪ {x} denotes the cluster of η ∪ {x} at x, where η[x] = (η[x] ∪ {x})\{x} is the finite union of
connected components of η which are merged by adding x. As will become clear later, the quantity (3)
can be seen as a discrete Papangelou intensity.

Let us also note that the last statement about quasilocal Gibbsianness in Theorem 2.3 in fact holds
for all q ∈ [0, 1]. However, in order to make this precise we would have to define WRMs on infinite
clusters, as explained above.
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Figure 2: A realization of the discrete
WRM on clusters of the Poisson–Gilbert
graph, represented by gray edges. In blue
(resp. green, red) the +1 (resp. 0,−1)
the spins of the WRM.

3 The WRM on the Poisson–Gilbert graph

In this section we investigate an intermediate model in which the diluted lattice is replaced by a
subcritical Poisson–Gilbert graph (PGG). That is, we consider a homogeneous Poisson point process
(PPP) Π(dη) in Rd with intensity β > 0 and use the associated Gilbert graph g(η) in which every
pair of points Xi, Xj ⊂ η is connected by an undirected edge if and only if |Xi −Xj| < 1. In order
to introduce some notation, recall that Π is a probability measure on the set X = {η ⊂ Rd : |ηΛ| <
∞ for all bounded Λ ⊂ Rd} of locally finite subsets of Rd that features total spatial independence.
Here ηΛ denotes the restriction of η to the volume Λ ⊂ Rd. It is a well-known fact from continuum
percolation theory that there exists a critical intensity 0 < βc <∞ such that for β < βc the PGG is
subcritical in the sense that with probability one, Π features only finite connected components in g(η).
β hence plays the role of q from Section 2 and we assume the Gilbert graph to be subcritical. We are
interested in the joint measure

K(dη, dσ) = Π(dη)µη(dση), (4)

where, for Π-a.e. pointcloud η, the PGG decomposes into countably many connected components with
vertex sets (η(k))k∈I , and µη is the countable product measure over these components, µη(dση) =
Πk∈Iµη(k)(dση(k)), where for a finite component η(k) we define µη(k) as in (2) as the discrete WRM.
The only difference is that feasibility is now defined as

1{ση(k) is feasible} =
∏

i,j∈η(k) : i∼
g(η(k))

j

1{σiσj ̸= −1}

where the constraint is that no two spins of neighboring sites i ∼g(η(k)) j in g(η(k)) face in opposite
directions. Again, Zη(k) is the usual normalizing constant. In words, we consider the WRM with open
boundary conditions on the finite clusters of a subcritical PGG and the measure K can then be seen
as a (dependently) marked point process in Rd with mark space M = {−1, 0, 1} as illustrated in
Figure 2. In other words, random elements η distributed according to K are locally finite marked
configurations in Ω = X ×M. We note that K is not a Potts model in the sense of [GH96] since there
is in general no symmetry with respect to spin change.

Now, we reproduce the non-locality result in the more advanced continuum setting. We do this in
the framework of Papangelou intensities [GY05] as also hinted towards in the Step 7 of the proof of
Theorem 2.3. That is we consider non-negative measurable functions ρ : (Rd ×M)× Ω → [0,∞)
that will serve as analogues for the specifications above and call them Papangelou intensities. We write∫
dxf(x) =

∫
dx
∑

σx∈M f((x, σx)) =
∫
dx
∑

σx∈M f(x).

Definition 3.1 (GNZ equations). A marked point process P on Ω satisfies the GNZ equations with
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respect to some Papangelou intensity ρ if∫
P (dη)

∑
x∈η

f(x,η) =

∫
dx

∫
P (dη)f(x,η ∪ {x})ρ(x,η) (5)

for all measurable f : (Rd ×M)× Ω → [0,∞).

The characterizations of Gibbs point processes with respect to Papangelou intensities is in one-
to-one correspondence to the characterizations with respect to local specifications [Der19, FPT19].
More specifically, as described for example in [GY05], the Papangelou intensity is in one-to-one
correspondence to local specifications via

γΛ(d(η(1) · · ·η(n))|ηΛc) = ΠΛ(d(η(1) · · ·η(n)))ρ(η(1),ηΛc)
n∏

i=2

ρ(η(i),η(1) · · ·η(i−1)ηΛc). (6)

We are interested in locality properties of Papangelou intensities characterized as a continuity with
respect to the τ -topology.

Definition 3.2 (Quasilocal Papangelou intensities). Let ρ be a Papangelou intensity. A configuration
η ∈ Ω is called good for ρ if, for all x = (x, σx) ∈ Rd ×M ,

sup
η′ : η′

∆=η∆

|ρ(x,η′)− ρ(x,η)| → 0 as ∆ ↑ Rd.

We denote by Ω(ρ) the set of good configurations for ρ, while elements of Ω \ Ω(ρ) are called bad for
ρ. We say that ρ is quasilocal if Ω(ρ) = Ω.

Let us note that in [JK21] results are presented for the representability of quasilocal intensities via
summable potentials.

Remark 3.3 (Topology). Let us further note that instead of the uniform τ -topology, where for η = (η, ση)
we have that η′ ⇒ η if and only if

∑
x∈η′ f(x) →

∑
x∈η f(x) for all compactly supported and

bounded measurable functions f : Rd × M → R, also the vague topology is a candidate for
the definition (of absence) of convergence. In simple terms, the vague continuity would require the
Papangelou intensity to be continuous with respect to perturbations for the point cloud even in bounded
volumes. However, this continuity is already violated by many standard hard-core models such as the
classical continuum WRM. In our case the continuity is required with respect to non-local perturbations
and thus the uniform τ -topology seems appropriate, see our remarks below Theorem 3.6.

In the continuum it is necessary to distinguish quasilocality from continuity with respect to local spatial
perturbations. In order to accommodate this, we want to focus our attention towards a canonical class
of Papangelou intensities that are graph-functions with respect to η. This means that ρ(x[1], η[1]) only
depends on the (non-spatial) graph structure of η and η ∪ {x}, where

η[1] = (η, 1η)

is the all-one configuration on η. In order to make this precise, we say that η′ and η have the same
graph structure if there exists a bijection ψ : η → η′ such that for all x, y ∈ η we have that |x− y| <
1 ⇔ |ψ(x)− ψ(y)| < 1.

Definition 3.4 (Graph functions). We call a mapping ρ : (Rd ×M)×Ω → [0,∞) a graph function if

ρ(x[1], η[1]) = ρ(x[1], η′[1])

whenever η′ and η, as well as η′ ∪ {x} and η ∪ {x}, have the same graph structure with a bijection ψ
such that ψ(x) = x.
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As before, let η[x] ∪ {x} denote the cluster of η ∪ {x} at x, where η[x] = (η[x] ∪ {x})\{x} is the
finite union of connected components of η which are merged by adding x. Furthermore, similar as
above, n(x, η) ⊂ η denotes the set of vertices in η that are neighbors of x in the PGG. We will always
work in the setting where η[x] is finite almost surely for any x ∈ Rd. Let us first exhibit our canonical
Papangelou intensity for K.

Proposition 3.5. K satisfies the GNZ equations with respect to the Papangelou intensity

ρ(x,η) = β
Zη[x]

Zη[x]∪{x}
1{σn(x,η)∪{x} is feasible}1{η[x] is finite}, (7)

which is also a graph function.

As in the purely discrete model of Section 2, the canonical Papangelou intensity (7) (see in particular
the spatially discrete analogue (3)) is the main ingredient for the proof of our following second main
result about the absence of quasilocal graph Papangelou intensities in the strong coupling regime.

Theorem 3.6. Let β < βc and consider the symmetric WRM where p+ = p− > 0. Then, there exists
no quasilocal Papangelou intensity that is also a graph function such that the GNZ equation (5) is
satisfied for K.

We highlight that, due to the additional spatial flexibility, the non-quasilocality holds on the whole
symmetric parameter region. Before we continue, let us present some remarks on topology and
soft-core WRMs.

Remark 3.7 (Soft-core WRM). As noted above, the classical continuum WRM is defined by a finite-range
hard-core interaction

1{σ is feasible} =
∏

i,j∈η : |i−j|<2a

1{σiσj ̸= −1}

and with an a-priori measure given by the superposition of two independent homogeneous PPP with
intensities λ±. In particular, the interaction function is local but not continuous in the vague topology.
This is due to the hard-core |i− j| < 2a.

However, one can also consider a soft-core version of the model where 1{σ is feasible} is replaced by

ψ(σ) =
∏
i,j∈η

(
1− ψ(|i− j|)1{σiσj = −1}

)
,

where ψ is a smooth mollification function of the indicator 1[0,2a), e.g., some smooth decreasing function
with value 1 for all r ∈ [0, 2a) and value 0 for r > 3a. With this definition the soft-core WRM model is
vaguely continuous. The same soft-core version can be defined for the discrete WRM on the PGG from
above. Considering the proof, it will become clear that in this case, even though the soft-core WRM is
vaguely continuous, the associated discrete WRM on the PGG is non-quasilocally Gibbs with respect
to the vague topology.

Let us further note that in the soft-core WRM we cannot expect to find graph Papangelou intensities
as distances between points may appear in which the interaction is non-trivial (non-hardcore) and
varies continuously with respect to perturbing the distances. In general, the precise distances matter.
This provides continuity with respect to local variations of the point cloud, as we will discuss now. The
canonical version of the Papangelou intensity (7) can also serve as a Papangelou intensity in the
soft-core case. However, it is no-longer a graph Papangelou intensity and it is now continuous with
respect to local perturbations of the point cloud. Hence, working with the vague topology is adequate
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for the soft-core WRM. This property (which we could call locally vague continuity) is of course a
necessary requirement to be vaguely continuous. However, there is no vaguely continuous version
of the Papangelou intensity, due to non-local reasons. More precisely, the canonical version of the
Papangelou intensity (7) is locally vaguely continuous, however, it is not vaguely continuous since,
as in the proof of Theorem 3.6, we can choose a bad configuration η, as well as its n-dependent
perturbation, based on point clouds such that the soft-core WRM interaction acts as a perfect hardcore
interaction. We may choose the lattice bad configuration for this purpose, and even allow also for small
enough perturbations, depending on the parameters of the mollification, as long as we stay in the
perfect hardcore region.

4 The WRM on the Poisson–Boolean model

We now consider the case in which the random environment is given by a Poisson–Boolean model
(PBM). For this, we let η̄ = (η,mη) denote an iid marked PPP in Rd with intensity β > 0 and mark
space (R+,B(R+), ν) of random radii with ν(m < ε) > 0 for all ε > 0 as well as ν[md] <∞. The
last property in particular implies the existence of a subcritical percolation phase for the associated
PBM

BM(η̄) =
⋃
x∈η

Bmx(x),

see [Gou08]. Here, Br(x) denotes the open ball centered at x with radius r. We highlight, that we do
not require the radii to be unbounded. Let us fix a constant a > 0 and assume in the following that
β is sufficiently small such that the PBM BMa(η̄) =

⋃
x∈η Bmx+a(x) is in the subcritical percolation

regime, i.e., β < βc. Denote by Ω the space of locally finite point clouds with marks in R+.

Now, for any measurable bounded Borel set A ⊂ Rd, we consider the (finite-volume) continuum WRM

µA(dσ̄) =
1

ZA

Π±
A(dσ̄)1{σ̄ is feasible},

where Π±
A is the superposition of two independent PPPs Π+

A and Π−
A with intensity measures λ±1{x ∈

A}dx and σ̄ = (ω, σω) = (σ+
ω , σ

−
ω ) is called feasible if for all x ∈ σ+

ω and y ∈ σ−
ω we have that

Ba(x) ∩ Ba(y) = ∅. Once again ZA is the associated normalization function that turns µA into a
probability measure on Ω±, the space of locally finite point clouds with marks in M = {+,−}. For a
WR configuration σ̄ ∈ Ω± and a fixed set A ⊂ Rd, we denote by σ̄A the restriction of the configuration
to the set A×M, that is σ̄A = σ̄ ∩ (A×M).

We are interested in locality properties of the following probability measure on W = Ω× Ω±

K(dη̄, dσ̄) := Π(dη̄)µBM(η̄)(dσ̄), (8)

where µBM(η̄) should be understood as the (countable) infinite product of WRM measures for each of the
(almost-surely) finite connected regions of BMa(η̄). We highlight that the assumption of subcriticality of
BMa(η̄) ensures that indeed WRMs in different clusters do not interact. Let us note that the marginal∫
K(dη̄, dσ̄)f(σ̄), or annealed measure, can be seen as a Cox–Gibbs point process since the

underlying PPP is governed by a random intensity measure based on η̄.

For our analysis, it is essential to conceive also this model as a dependently marked PPP. In analogy to
the model in Section 3 we can equip each point x ∈ η with an extended mark (mx, σ̄(x)) ∈ R+ × Ω±

consisting of both, the radius mx and a two-layer Poisson point cloud σ̄ = σ̄(x) − x governed by
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the probability measure ν(dm)Π±
BM((o,m))(dσ̄). Here σ̄ + x = (σ+ + x, σ− + x). However, a naive

superposition of the marks
⋃

x∈η σ̄(x) has too many points (in the sense of expected number of points)
in non-empty overlapping regions BM(x̄) ∩ BM(ȳ), compared to the a-priori measure underlying (8)
(where the feasibility is dropped). This phenomenon that does not occur in the model of Section 3 as
environment points do not overlap there. In particular, in view of the GNZ approach, adding a point
x = (x, (mx, σ̄(x))) = (x̄, σ̄(x)) to a configuration η = (η̄, σ̄BM(η̄)), i.e., considering η ∪ {x}, would
also potentially lead to too many points in BM(x̄) ∩ BM(η̄). There are multiple ways to resolve this.
For example, one can device a random algorithm to remove all but one configuration of marks in the
overlapping region. We give details for this approach in Appendix 6. However, a more direct approach,
which works in our case, is to simply only allow the addition of the point x, if the overlapping region is
free of points coming from η.

To be more precise, we write
∫
dxf(x) =

∫
dx̄
∫
Π±

BM((o,m))(dσ̄)f((x̄, σ̄ + x)) with
∫
dx̄f(x̄) =∫

dx
∫
ν(dm)f((x,m)), where we highlight that we deliberately separated notationally the environ-

ment part x̄ = (x,m) and the coloring part σ̄. We further consider non-negative measurable joint
Papangelou intensities ρ : (Rd × R+ × Ω±)×W → [0,∞) that give rise to infinite-volume Gibbs
point process via the GNZ equations.

Definition 4.1 (GNZ equations). A marked point process P on W satisfies the GNZ equations with
respect to the Papangelou intensity ρ, if∫

P (dη)
∑
x∈η

f(x,η) =

∫
dx

∫
P (dη)f(x,η ∪ {x})ρ(x,η), (9)

for all f : (Rd × R+ × Ω±)×W → [0,∞).

Like in the previous sections, we are interested in locality properties of the Papangelou intensity.

Definition 4.2 (Quasilocal Papangelou intensities). Let ρ be a Papangelou intensity. A configuration
η ∈ W is called good for ρ if, for all x ∈ (Rd × R+ × Ω±),

sup
η′ : η′

∆=η∆

|ρ(x,η′)− ρ(x,η)| → 0 as ∆ ↑ Rd.

We denote by W(ρ) the set of good configurations for ρ, while elements of W \W(ρ) are called bad
for ρ. We say that ρ is quasilocal if W(ρ) = W .

As a replacement for the notion of a graph function in our second model, we consider the following
robustness with respect to local perturbations in the environment. We define ε-balls around finite
subsets η̄(f) = {(y1,my1), . . . , (yl,myl)} ⊂ η̄ via

Bε(η̄
(f), η̄) = {ζ̄ = ζ̄ (f) ∪ (η̄ \ η̄(f)) ∈ Ω: ζ̄ (f) = {(z1,mz1), . . . , (zl,mzl)}

and for all i ∈ {1, . . . , l}, ζ (f) ∩Bε(yi) = zi, |mzi −myi | < ε}.

In words, Bε(η̄
(f), η̄) is the set of configurations which are perturbations, both with respect to the

position and the mark, of a finite subset of a given environment η̄. Similar to the previous model, for
some ȳ ∈ Rd ×R+, we denote by η̄[ȳ] the set of marked Poisson points in η̄ \ {ȳ} that give rise to the
cluster in BMa(η̄ ∪ {ȳ}) that contains y. In this setting, let η[1] = (η̄, 1η̄) be the configuration, where
the WR mark consists of the empty configuration.
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Figure 3: A realization of a WRM on the clusters
of a PBM, represented in gray. In blue (resp. red)
the +1 (resp. −1) marks of the WRM. According to
(10), adding the marked point η ∋ x = (x̄, σ̄BM(x̄))
given by the dark-gray environment point and the
highlighted WR points is possible only if there are
no WR points of η in the overlap BM(x̄) ∩ BM(η̄).

Definition 4.3 (Local robustness). We say that a function ρ : (Rd × R+ × Ω±) ×W → [0,∞) is
locally robust if, for all x̄ ∈ (Rd ×R+) and all η̄ ∈ Ω such that BMa(η̄) contains no infinite component,
we have that

sup
η̄′∈Bε(η̄[x̄],η̄)

|ρ(x̄[1], η′[1])− ρ(x̄[1], η[1])| → 0 as ε→ 0.

The next result exhibits the canonical Papangelou intensity for K. Here the idea is that a point x can be
added to a configuration η only if the WR points of η are such that the overlapping region is empty, see
Figure 3. Correspondingly to the previous models, we write n(x̄, η̄) ⊂ η̄ for the vertices in ȳ ∈ η̄ that
such that BM(ȳ) ∩ BM(x̄) ̸= ∅.

Proposition 4.4. The measure K satisfies the GNZ equations with respect to the locally robust
Papangelou intensity

ρ
(
(x̄, σ̄′), (η̄, σ̄)

)
=β

ZBM(η̄[x̄])

ZBM(η̄[x̄]∪x̄)
1{σ̄′

BM(x̄)σ̄BM(n(x̄,η̄))\BM(x̄) is feasible}χx̄,η̄[x̄](σ̄), (10)

where χx̄,η̄[x̄](σ̄) = e(λ++λ−)|BM(x̄)∩BM(η̄[x̄])|1{σ̄BM(x̄)∩BM(η̄[x̄]) = ∅}1{η̄[x̄] is finite}.

Note that, compared to the corresponding canonical Papangelou intensities (3) and (7), in (10), we
find an additional term χȳ,η̄[ȳ] that removes overlapping points from the boundary condition. Finally, we
present our third main result that states that, for large enough symmetric coupling, there is no locally
robust quasilocal Papangelou intensity for K but, as in the lattice case, for uniformly bounded radii, i.e.,
ν(m < T ) = 1 for some T > 0, and sufficiently weak coupling, the quasilocality is restored.

Theorem 4.5. Let β < βc and consider the symmetric WRM, where λ+ = λ− is sufficiently large.
Then, there exists no locally robust quasilocal Papangelou intensity such that (9) is satisfied for K. On
the other hand, if the radii are uniformly bounded, we have that for all sufficiently small λ+ = λ−, the
canonical Papangelou intensity (10) is quasilocal.

We highlight that the phase transition of existence and absence of quasilocality is similar in the fully
continuous and in the lattice case of Section 2, but it is different in the intermediate model of Section 3.
This is a consequence of the fact that, from the perspective of the WRM, the intermediate model
has much less spatial structure compared to the other two models. Let us finally mention that the
requirement that ν(m < ε) > 0 for all ε > 0 is for convenience of the proof only. The results should
also hold for general (even deterministic) marks that guarantee existence of a subcritical percolation
phase.
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5 Proofs

Proof of Theorem 2.3. Let us start with the proof of non-quasilocal Gibbsianness. We denote p :=
p+ = p−.

Step 1: As a first step, we consider the canonical candidate for a specification given by the conditional
measure at the origin o ∈ Zd given some typical boundary condition. To be more precise, let o ∈ η be a
gray configuration such that the maximally connected component at the origin o, the cluster of occupied
sites containing the origin, is finite. Furthermore, consider a boundary condition η[1]

oc = (η\{o}, 1η\{o}),
where again 1η denotes the all-one coloring of the gray configuration η and oc = Zd \ {o}. Then,
using the independence of the WRM with respect to disjoint clusters in η, we have that

K(σo = 1|η[1]

oc) =
q p

q(1− p) + (1− q)Zη[o]∪{o}/Zη[o]

. (11)

Note that all terms in (11) except for Zη[o]∪{o}/Zη[o] are of course strictly spatially local with respect to
ηoc . They are even Markovian in the sense that only the configuration in the one-step neighborhood of
the origin is relevant.

Step 2: In this step, we consider a particular choice of boundary condition ηoc in order to exhibit
a discontinuity. More precisely, consider the half spaces Λ+ = {(x1, . . . , xd) ∈ Zd : x1 > 0}
and Λ− = {(x1, . . . , xd) ∈ Zd : x1 < 0} and let Λn

+ = Λ+ ∩ (Qn(o) ∪ Qn(2ne2)) and Λn
− =

Λ− ∩ (Qn(o) ∪ Qn(2ne2)), where Qn(x) = [−n, n]d + x is the n-box centered at x ∈ Zd and
ei = (01, . . . , 0i−1, 1i, 0i+1, . . . , 0d) is the unit vector in the i-th coordinate. In words, Λn

± are two
disjoint rectangles which are symmetric towards each other and also symmetric with respect to the
reflection that identifies o and 2ne2, see Figure 4. There are many other possible choices for such

o

2ne2

Λn
− Λn

+

Figure 4: A realization of a WRM on the truncated half-lattices
Λn

±. Black vertices represent occupation in the underlying
Bernoulli site percolation. Blue (resp. green, red) disks repre-
sent the + (resp. 0,−) spins in the WRM.

regions, however, this choice seems computationally convenient.

Now let Λn = Λn
− ∪ Λn

+, ζn = Λn ∪ {o} and note that it is only the origin that creates a connection
between the symmetric sets since ζn\{o} = Λn. We want to compareZζn/Zζn\{o} withZζ′n/Zζ′n\{o}
where ζ ′n = ζn ∪ {2ne2}. Note that in ζ ′n there is an additional connection between Λn

− and Λn
+

at the point 2ne2 present for any n, however, both ζn and ζ ′n share the same limiting configuration
ζ = Λ− ∪ Λ+ ∪ {o} = Λ ∪ {o}, as n tends to infinity. Hence, in order to show that any boundary
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condition ηoc with ζoc = Λ is a discontinuity point of ηoc 7→ K(σo = 1|η[1]

oc), it suffices to show that

lim inf
n↑∞

∣∣∣ Zζ′n

Zζ′n\{o}
− Zζn

Zζn\{o}

∣∣∣ > 0.

For this, note that for all n ≥ 1, with zn = 2ne2, we have thatZζn\{o}/Zζ′n\{o} = ZΛn/ZΛn∪{zn} ≥ 1,
since 1{σΛn∪{zn} is feasible} ≤ 1{σΛn is feasible}, and thus,∣∣∣ Zζ′n

Zζ′n\{o}
− Zζn

Zζn\{o}

∣∣∣ = Zζn\{o}

Zζ′n\{o}

∣∣∣ Zζ′n

Zζn\{o}
−

ZζnZζ′n\{o}

Zηn\{o}Zζn\{o}

∣∣∣ ≥ ∣∣∣ Zζ′n

Zζn\{o}
−

ZζnZζ′n\{o}

Zζn\{o}Zζn\{o}

∣∣∣.
Hence, using the symmetry with respect to o and zn, it suffices to show that

lim inf
n↑∞

∣∣∣ZΛn∪{o,zn}

ZΛn

−
(ZΛn∪{o}

ZΛn

)2∣∣∣ > 0. (12)

Step 3: Now, in order to prove (12), let us denote by xo, respectively yo, the unique neighbor of o in
Λn

−, respectively Λn
+. Then, making explicit the probability with respect to the origin, we have that

ZΛn∪{o}

ZΛn

= µΛn(1− p+ p1{σxo = σyo = 0} − p1{σxoσyo = 1}︸ ︷︷ ︸
=:ϕ(σxo ,σyo )

),

and analogously for ZΛn∪{zn}/ZΛn with xn, respectively yn, the unique neighbor of zn in Λn
−, respec-

tively in Λn
+. Similarly, making explicit the probability with respect to o and zn, we have

ZΛn∪{o,zn}

ZΛn

= µΛn(ϕ(σxo , σyo)ϕ(σxn , σyn)),

and thus (12) can be seen as a statement for the covariance of ϕ(σxo , σyo) and ϕ(σxn , σyn) under the
measure µΛn . Since constants do not play a role in the covariance, it suffices to prove that for all p
sufficiently close to 1/2,

lim inf
n↑∞

Covn
(
1{σxo= σyo= 0} − 1{σxoσyo= 1};1{σxn= σyn= 0} − 1{σxnσyn= 1}

)
> 0,

(13)

where Covn denotes the covariance with respect to µΛn . We first focus on the dominant term
Covn

(
1{σxoσyo = 1};1{σxnσyn = 1}

)
.

Step 4: We claim that, for all p sufficiently close to 1/2, we have that,

lim inf
n↑∞

Covn
(
1{σxoσyo = 1};1{σxnσyn = 1}

)
> 1/5.

Indeed, first note that by independence and symmetry with respect to the halfspaces Λn
±,

Covn
(
1{σxoσyo = 1};1{σxnσyn = 1}

)
= 2
(
µΛn

−
(σxo = σxn = 1)2

+ µΛn
−
(σxo = −σxn = 1)2 − 2µΛn

−
(σxo = 1)4

)
,

(14)

where

0 ≤ 1/2− µΛn
−
(σxo = 1) = µΛn

−
(σxo = 0)/2.
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We will show in the next step below that µΛn
−
(σxo = 0) tends to zero as p tends to 1/2. In order

to estimate the other two terms in (14), we employ the random-cluster representation RΛn
−

of µΛn
−

see [HT04, Lemma 5.1]. In words,RΛn
−

is a measure on {0, 1}Λn
− in which sites interact via the number

of (gray) clusters. In particular, since µΛn
−
(σxo = σxn = 1) ≤ 1/2,

0 ≤ 1/2− µΛn
−
(σxo = σxn = 1) ≤ RΛn

−
(xo ̸↭ xn)/2,

where {xo ̸↭ xn} denotes the event that xo and xn do not belong to the same cluster, which is a
decreasing event with respect to the natural partial ordering on {0, 1}Zd

. In particular, note that the
random-cluster measure RΛn

−
is bounded from below by a Bernoulli field P on {0, 1}Zd

, via Holley’s
inequality, see [HT04, Lemma 5.4], with a parameter that tends to one as p tends to 1/2. Hence,
RΛn

−
(xo ̸↭ xn) ≤ P (xo ̸↭ xn) and P (xo ̸↭ xn) tends to 1− ϑ2 as n tends to infinity, where ϑ

denotes the percolation probability. However, ϑ tends to one as p tends to 1/2. In a similar fashion,

0 ≤ µΛn
−
(σxo = −σxn = 1) ≤ RΛn

−
(xo ̸↭ xn)/2,

where the right-hand side tends to 1− ϑ2 as n tends to infinity and ϑ tends to one as p tends to 1/2.
Using this, we arrive at

lim inf
n↑∞

Covn
(
1{σxoσyo = 1};1{σxnσyn = 1}

)
≥ 1/4− ε(p),

for some function p 7→ ε(p) with limp↑1/2 ε(p) = 0, as desired.

Step 5: Now, in order to finish the proof of the statement (13), note that by bounding indicator functions
by one, all the remaining terms can be bounded by µΛn

−
(σxo = 0). In order to show that µΛn

−
(σxo = 0)

tends to zero as p tends to 1/2, we again invoke the random-cluster representation RΛn
−

and the
dominating Bernoulli field P and note that

µΛn
−
(σxo = 0) = RΛn

−
(ωxo = 0) ≤ P (ωxo = 0)

since {ωxo = 0} is a decreasing event. However, P (ωxo = 0) tends to zero as p tends to 1/2 and
this finishes the proof that ηoc 7→ K(σo = 1|η[1]

oc) is not continuous at ζ [1] with ζ = Λ ∪ {o}.

Step 6: As a final step in this part of the proof, we need to lift the discontinuity to all specifications γ
that satisfy the DLR equations with respect to K . For this, it suffices to prove that ζ [1] with ζ = Λ∪{o}
is also a point of discontinuity of η 7→ γo(σo = 1|ηoc). Let us assume the contrary, namely that

lim
∆↑Zd

sup
η : η∆=ζ

[1]
∆

|γo(σo = 1|ηoc)− γo(σo = 1|ζ [1]

oc )| = 0.

Then, by a version of the Lebesgue differentiation lemma, see for example [JK22, Lemma 3.6], we have
that

lim
n↑∞

1

K(An)

∫
An

K(dη)γo(σo = 1|η) = γo(σo = 1|ζ [1]

oc ),

where
Ω ⊃ An = {(η, ση) : σζn = 1 and ηi = u for all i ∈ ∂ζn}

is the set of configurations that have a cluster ζn of color one that is surrounded by unoccupied sites
and that are otherwise unspecified. Note that An is a Borel set and K(An) > 0 for all n ≥ 1.
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However, due to the DLR equations and the locality of canonical conditional expectation from Step 1,

1

K(An)

∫
An

K(dη)γo(σo = 1|η) = 1

K(An)

∫
An

K(dη)K(σo = 1|η) = K(σo = 1|ζn,[1]oc )

and the same holds for ζn,[1] replaced by ζ ′n,[1]. Hence,

lim
n↑∞

(
γo(σo = 1|ζn,[1]oc )−K(σo = 1|ζn,[1]oc )

)
= 0 = lim

n↑∞

(
γo(σo = 1|ζ ′n,[1]oc )−K(σo = 1|ζ ′n,[1]oc )

)
.

But by the previous steps, lim infn↑∞
∣∣K(σo = 1|ζ ′n,[1]oc ) − K(σo = 1|ζ ′n,[1]oc )

∣∣ > 0 and thus also
lim infn↑∞

∣∣γo(σo = 1|ζn,[1]oc ) − γo(σo = 1|ζ ′n,[1]oc ))
∣∣ > 0, a contradiction. This finishes this part of

the proof.

Step 7: It remains to prove the quasilocal Gibbsianness for all sufficiently small p+, p−. For this,
note that it suffices to check the continuity for the discrete Papangelou intensity η 7→ ρo(ηo,ηoc) as
presented in (3) and repeated here for convenience,

η 7→ ρo(ηo,ηoc) =
K(ηo|ηoc)

K(uo|ηoc)
=

(
q

1− q

∏
i∈η : |i|=1

1{σiσo ̸= −1}

)
Zη[o]

Zη[o]∪{o}

with ηo ∈ {−1, 0, 1} and already assuming that the boundary condition is feasible. Indeed, we can
factorize K(ηΛ|ηΛc) into finitely many single-site terms, use that K(uo|ηoc) is uniformly bounded
away from zero and translation invariance. Now, in order to see the continuity at small p+, p−, we note
that the inverse fraction of partition functions can be rewritten as the WR expectation in the volume η[o]

of the function h(η∂o) =
∑

σo=+1,−1,0 pσo

∏
i∈η : |i|=1 1{σiσo ̸= −1} depending on the spins at the

boundary of the origin, i.e.,

Zη[o]∪{o}

Zη[o]

= µη[o]

(
h(η∂o)

)
.

The dependence of this quantity on the change of the volume η[o] can now be estimated by standard
uniqueness techniques like the Dobrushin criterion. In particular, for all sufficiently small p+, p− the
WRM is in the uniqueness regime, which implies continuity of η 7→ µη[o]

(
h(η∂o)

)
.

Proof of Proposition 3.5. First note that ρ is clearly a graph function as defined above. We claim that
this is also a Papangelou intensity for K. Indeed, by the Slivnyak–Mecke theorem for PPPs,∫

dx

∫
K(dη)f(x,η ∪ {x})ρ(x,η)

=

∫
dx

∫
Π(dη)

∑
ση

µη(ση)f
(
(x, σx), (η ∪ {x}, ση∪{x})

)
ρ
(
(x, σx), (η, ση)

)
= β

∫
dx

∫
Π(dη)

∑
ση∪{x}

µη∪{x}(ση∪{x})f
(
(x, σx), (η ∪ {x}, ση∪{x})

)
=

∫
Π(dη)

∑
x∈η

∑
ση

µη(ση)f
(
(x, σx), (η, ση)

)
=

∫
K(dη)

∑
x∈η

f(x,η),

as required.
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Proof of Theorem 3.6. We denote again p = p+ = p−.

Step 1: As a first part, we consider the canonical Papangelou intensity given by the conditional WRM
measure at the origin o ∈ Rd for some boundary condition. To be more precise, let o ∈ η be a
configuration such that the cluster of the origin in η is finite. Then, using the independence of the WRM
with respect to disjoint clusters in η, we have that

µη[o]∪{o}(ση[o]1o)

µη[o](ση[o])
= p

∏
i∈η[o] : i∼o

1{σi ̸= −1}
Zη[o]

Zη[o]∪{o}
, (15)

where again, Zη[o] is the partition function in the definition of the WRM where the domain is only the
cluster of the origin in η but evaluated omitting o, and ση[o]1o is the coloring of η[o] ∪ {o} where o is
assigned the color +1.

Now we can use the same construction as in the discrete part to see that the (rescaled) lattice
configuration ζ = (1− ε)ζ ′, where ε > 0 is sufficiently small (to retain the usual lattice neighborhood
structure) and ζ ′ is the lattice configuration from the proof of Theorem 2.3 (there it is called ζ), is a
point of discontinuity for

η 7→ Zη[o]/Zη[o]∪{o}.

The rescaling is necessary since we assumed that the connectivity threshold for the underlying PGG is
1.

Step 2: Now in order to show the statement for all p we can use the following trick. We consider
ζ = (1− ε)ζ ′ with small ε as above and attach to each vertex in ζ a fixed finite set κ ⊂ Bε/2(o) with

|κ| = k, i.e., we consider the vertex-thickened lattice ζ̂ = ζ ⊕ κ, see Figure 5 for illustration. We

o

2
n
(1

−
ε)
e 2

ε/21− ε
ε/2

Figure 5: A realization of a WRM on the
(rescaled) truncated half-lattices for large
p. In black the vertices of the underly-
ing Gilbert graph. Blue (resp. green, red)
disks represent the + (resp. 0,−) spins
in the WRM. The magnified areas repre-
sent the thickening procedure of Step 2,
for k = 9.

highlight that, for sufficiently small ε, the points in x̂ := κ+ x are only connected to other points in x̂
and to points in ŷ if y is a neighbor of x in ζ . Note that the thickened vertex set x̂ acts as a unit as,
by the color constraint, all non-0 colored points in x̂ must have the same WR-color +1 or −1. The
probability that x̂ has color 0 (in the sense that all points in x̂ have color 0) under the a-priori measure
is given by (1− 2p)k, which tends to zero as k tends to infinity. Hence, for sufficiently large k we enter
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again a regime of large (effective) p as in Step 1. Reproducing Steps 2-5 in the proof of Theorem 2.3,
but now using the effective spin σ̂x̂ of the thickened vertice x̂ instead of σx gives the result.

Step 3: As the third step, we need to lift the discontinuity to all graph Papangelou intensities ρ′

that satisfy the GNZ equations with respect to K. We do this here only for the case of large p, the
general case follows by the same arguments. It suffices to prove that any η based on the discontinuity
point ζ = (1 − ε)Λ with all marks set to 1 and 0 < ε < 1/2, is also a point of discontinuity of
η′ 7→ ρ′(x,η′).

Let us assume the contrary. Our key tool to relate ρ′ to ρ are the GNZ equations. We want to employ
them for a well-chosen sequence of functions fn that concentrate around 1oζ

[1]. For this let

f ζn,[1]

n (x,η) =
1

|B1/n(o)|
1{x = (x, ηx) : x ∈ B1/n(o), ηx = 1}

× 1

K(B1/n(ζn,[1]))
1{η ∈ B1/n(ζ

n,[1])},

where |Br(x)| denotes the Lebesgue measure of the open ball with radius r centered at x and
Br(ζ

n,[1]) denotes the event that for each x ∈ ζn there is precisely one point in y ∈ ω at distance
at most r from x and that σy = 1x and additionally that ζn is isolated, i.e., that no other point is
in distance less than 1 + a to ζn. Since K is based on the Poisson point processes, we have that
K(B1/n(ζ

n,[1])) > 0 for all n ∈ N.

Then, since we assume that (1o, ζ [1]) is a continuity point and ρ′ is a graph function, we have that

ρ′(1o, ζoc) = lim
n↑∞

∫
dx

∫
K(dη)f ζn,[1]

n (x,η)ρ′(x,η)

= lim
n↑∞

∫
dx

∫
K(dζ)f ζn,[1]

n (x,η)ρ(x,η),

where we used the GNZ equations twice as well as the definition of quasilocality. The same holds for
f ζ′n,[1]

n . However, since (1o, ζ
[1]) is a point of discontinuity for ρ, we have that

0 =
∣∣∣ lim
n↑∞

∫
dx

∫
K(dη)f ζn,[1]

n (x,η)ρ(x,η)− lim
n↑∞

∫
dx

∫
K(dη)f ζ′n,[1]

n (x,η)ρ(x,η)
∣∣∣

≥ lim inf
n↑∞

|ρ(1o, ζn,[1])− ρ(1o, ζ
′n,[1])|

−
∣∣∣ lim
n↑∞

∫
dx

∫
K(dη)f ζn,[1]

n (x,η)(ρ(x,η)− ρ(1o, ζ
n,[1]))

∣∣∣
−
∣∣∣ lim
n↑∞

∫
dx

∫
K(dη)f ζ′n,[1]

n (x,η)(ρ(x,η)− ρ(1o, ζ
′n,[1]))

∣∣∣,
where lim infn↑∞ |ρ(1o, ζn,[1])− ρ(1o, ζ

′n,[1])| > 0 and,

lim sup
n↑∞

|
∫

dx

∫
K(dη)f ζn,[1]

n (x,η)(ρ(x,η)− ρ(1o, ζ
n,[1]))| = 0

since, for all sufficiently large n, the neighborhood graph of allowed η is precisely the same as the one
given by ζn. This is the desired contradiction.

Proof of Proposition 4.4. Using the Slivnyak–Mecke theorem, we can directly calculate for all non-
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negative test functions f ,∫
dy

∫
K(dη)f(y,η ∪ {y})ρ(y,η)

= β

∫
dȳ

∫
Π±

BM(ȳ)(dσ̄
′)

∫
Π(dη̄)

1

ZBM(η̄∪{ȳ})

∫
Π±

BM(η̄)(dσ̄)

1{σ̄BM(η̄)σ̄
′
BM(ȳ)\BM(ȳ) is feas.}χȳ,η̄[y](σ̄)f

(
(ȳ, σ̄′), (η̄ ∪ {ȳ}, σ̄BM(η̄)σ̄

′
BM(ȳ))

)
= β

∫
dȳ

∫
Π(dη̄)

1

ZBM(η̄∪{ȳ})

∫
Π±

BM(η̄∪{ȳ})(dσ̄)1{σ̄BM(η̄∪{ȳ}) is feas.}

f
(
(ȳ, σ̄BM(ȳ)), (η̄ ∪ {ȳ}, σ̄BM(η̄∪{ȳ}))

)
(S–M)
=

∫
Π(dη̄)

1

ZBM(η̄)

∫
Π±

BM(η̄)1{σ̄BM(η̄) is feas.}
∑
y∈η

f(y,η),

which verifies the GNZ equation.

Moreover, ρ is locally robust, since, for BM(η̄[ȳ]) finite in BM(η̄), we can find εo > 0 such that for all
ε < εo and η̄′ ∈ Bε(η̄[ȳ], η̄) also BM(η̄′[ȳ]) bounded and in particular disconnected from the BM based
on the remaining points η̄ \ η̄[ȳ]. In this case

|ρ(ȳ[1], η′[1])− ρ(ȳ[1], η[1])|

= β|
ZBM(η̄′

[ȳ]
)

ZBM(η̄′
[ȳ]

∪ȳ)
e(λ++λ−)|BM(ȳ)∩BM(η̄′

[ȳ]
)| −

ZBM(η̄[ȳ])

ZBM(η̄[ȳ]∪ȳ)
e(λ++λ−)|BM(ȳ)∩BM(η̄[ȳ])||.

Now, note that ||BM(η̄′[ȳ])|−|BM(η̄[ȳ])|| ≤ |BM(η̄ε[ȳ])\BM(η̄[ȳ])|, where η̄ε[ȳ] = {(x,mx+2ε) : (x,mx) ∈
η̄[ȳ]}, which tends to zero as ε tends to zero. Using this and introducing indicators for the events that no
Poisson points lie in the set differences of the Boolean models, we can estimate

|ZBM(η̄′ȳ)
− ZBM(η̄ȳ)| = |

∫
BM(η̄′ȳ)

Π±(dσ̄′)1{σ̄′ is feas.} −
∫

BM(η̄ȳ)

Π±(dσ̄)1{σ̄ is feas.}|

≤ (1− e−λ±|BM(η̄′ȳ)\BM(η̄ȳ)|) + (1− e−λ±|BM(η̄ȳ)\BM(η̄′ȳ)|)

+ |e−λ±|BM(η̄ȳ)\BM(η̄′ȳ)| − e−λ±|BM(η̄′ȳ)\BM(η̄ȳ)||,

where λ± = λ+ + λ−, which tends to zero uniformly. Estimating the remaining terms in a similar
fashion gives the result.

Proof of Theorem 4.5. We again denote λ = λ+ = λ−.

Step 1: We show that the Papangelou intensity in (10) is not quasilocal. As in the previous sections,
the discontinuity already comes from a comparison of partition functions of the form

ZBM(η̄[ō])

ZBM(η̄[ō]∪{ō})

for a well-chosen marked point cloud η̄. Let us note that the additional part χx̄,η̄[x̄] may also give rise
to discontinuities, but only if the radii are unbounded, something that we do not require in general.
In order to see that fraction of partition functions give rise to a discontinuity, we use that the marks
can be chosen arbitrarily small. We proceed as follows. Consider the, by now, well-known truncated
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o

2nea,ϵ2

Λa,ε,n
− Λa,ε,n

+

Figure 6: A realization of a WRM on the truncated half-lattices
Λa,ε,n

± (in grey). clusters of a PBM, represented in gray. In blue
(resp. red) the +1 (resp. −1) marks of the WRM.

half-lattices Λn
± from the proof of Theorem 2.3. Rescaling by 2(a− ε) for some small ε > 0 creates

half-lattices Λa,ε,n
± with the following property:

Two points b, c are neighbors in Λa,ε,n := Λa,ε,n
− ∪ Λa,ε,n

+ if and only if, for any x ∈ Bε(b) and
y ∈ Bε(c), we have that Ba(x) ∩Ba(y) ̸= ∅. In other words, if the environment ζ̄n is given attaching
marks ε to every point of ζn := Λa,ε,n ∪ {o}, the associated Boolean model BMa(ζ̄n) has a single
component. For every x ∈ ζn, its ball Bε(x) can carry no WR points, in which case it is empty, or a
positive number of WR points, which then must be of the same color, see Figure 6 for an illustration,
where ea,ε2 = 2(a− ε)e2 denotes the rescaled unit vector e2. In particular, by construction, neighboring
lattices points with a positive number of WR points in their ε-balls force the colors of the WR points
to be equal. Considering then ζ ′n := ζn ∪ {2nea,ε2 } yields precisely the situation of Section 2 with
p = (1− exp(−λ|Bε(o)|))/2 and hence leading to the same discontinuity.

Setting all colorings of σ̄BM(ζ̄) to plus, and denoting such a configuration by ζ [1], the discontinuity of
ZBM(η̄[ō])/ZBM(η̄[ō]∪{ō}) carries over to a discontinuity at (ō[1], ζ [1] \ {ō[1]}) of the map

(y,η) 7→
ZBM(η̄[ȳ])

ZBM(η̄[ȳ]∪{ȳ})
1{(σ̄BM(n(ȳ,η̄)∪{ȳ})) is feasible}. (16)

Step 2: We lift the discontinuity from Step 1 to all (locally robust) Papangelou intensities ρ′ that satisfy
the GNZ equations with respect to K.

It suffices to prove that ζ [1] is also a point of discontinuity for ρ′. Let us assume the contrary. We want to
employ the GNZ equations to connect ρ′ and ρ via the following test function

f ζn,[1]

n (η) =
1{∃ȳ ∈ η̄ : y ∈ B1/n(o),my ∈ B1/n(ε)}

|B1/n(o)|ν(B1/n(ε))

1{∃x̄ ∈ σ̄BM(ȳ) : x ∈ B1/n(o), σx = 1}
|B1/n(o)|

×
1{η̄ ∈ B1/n(ζ̄

n)}
Π(B1/n(η̄n))

1{σ̄ ∈ B1/n(σ̄
n)}

Π±
BM(η̄′)(B1/n(σ̄n))

,

where σ̄n is some reference configuration compatible with ζ̄n in which all marks are set to +. Heuristi-
cally, f ζn,[1]

n assigns positive weight only to those configurations that are close to ζn,[1]; all indicators are
compensated by the corresponding probability weights under K and the Lebesgue and mark measures,
making f ζn,[1]

n a probability density.
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Now, using the fact that ρ′ is assumed to be quasilocal, we have that

ρ′(o,η \ o) = lim
n↑∞

∫
dy

∫
K(dη)f ζn,[1]

n (η ∪ {y})ρ′(y,η)

= lim
n↑∞

∫
dy

∫
K(dη)f ζn,[1]

n (η ∪ {y})ρ(y,η) = ρ(o,η \ o).

However, ζ [1] is a point of discontinuity for ρ and hence also for ρ′. This is the desired contradiction.

Step 3: In order to see that for sufficiently small λ+ = λ− we reenter a regime of quasilocality, first
note that, under the bounded-radii condition, the function η̄ 7→ χx̄,η̄[x̄] is quasilocal for all x̄ since
it is local. Furthermore, since also the indicator 1{σ̄′

BM(x̄)σ̄BM(n(x̄,η̄))\BM(x̄) is feasible} is quasilocal
under the bounded-radii condition, it suffices to show the continuity of the ratio of partition functions
η 7→ ZBM(η̄[ō])/ZBM(η̄[ō]∪{ō}).

For this, as in Step 7 of the proof of Theorem 2.3, note that we can write the ratio ZBM(η̄[ō]∪{ō})/ZBM(η̄[ō])

as an expectation of a local function with respect to the WRM µBM(η̄[ȳ]). Now, the random-cluster
representation of the symmetric WRM is dominated by a Poisson–Boolean model with intensity
λ+ + λ− and the same interaction threshold a. More precisely, note that the WR density (i.e., the
normalized feasibility indicator) is decreasing with respect to the addition of points. On the other hand,
the percolation event of existence of a connected component that connects BM(ȳ) with Bc

r(o), for
r > 0 large and on BM(η̄[ȳ]), is increasing under the addition of points. Thus, using the FKG inequality
with respect to the PPP with intensity λ+ + λ− (that underlies the random-cluster representation), the
probability of the percolation event under the random-cluster representation of the WRM is bounded
from above by the probability of the percolation event under the (unconstrained) PPP with the same
intensity, see [JK17, Appendix].

Furthermore, if λ+ + λ− is sufficiently small, the probability of the percolation event under the PPP
tends to zero as r tends to infinity on the whole domain Rd and hence also on all subdomains of
the form BM(η̄[ȳ]). But this implies absence of percolation in the random-cluster representation of the
WRM also on any subdomain and hence the WRM model is in the uniqueness regime. This implies
quasilocality.

6 Appendix

The formalism used in Section 4 is convenient since it allows us to present the canonical Papangelou
intensity in a simple form corresponding well to the canonical Papangelou intensities of the other models
in this manuscript. However, the resulting dependently marked PPP under K is unconventional since
every point x carries an iid radius mark mx, but then a whole cluster BM(η̄(k)) carries a joint mark
σ̄BM(η̄(k)) which is not clearly coming from the individual points in η(k). This can be rectified, but only
with some additional work, which we present here as a reference.

6.1 Removal of overlaps

We start by constructing a suitable reference measure based on an iid-marked PPP that includes the
colored points but has no color-dependent interaction. There is however the necessity to compensate
the possible overcounting of colored points in overlapping environment regions. To be more precise,
we consider as an a-priori measure a PPP η and attach to every point x ∈ η the mark (mx, σ̄(x)) ∈
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x̄

ȳ1

ȳ2

x̄

ȳ1

ȳ2

Figure 7: Colored points on the cluster of a PBM (in gray). On the left, a realization of Π where
overlapping regions have too many points; on the right a realization of Π(1). Note the different intensities
in the overlap regions.

R+×Ω±. In words, the mark consists of the radiusmx and a two-layer Poisson point cloud σ̄ = σ̄(x)−x.
A priori, the marks are iid distributed via the probability measure ν(dm)Π±

BM((o,m))(dσ̄) and we write

x for a marked point in the iid marked PPP η with distribution Π(dη).

Now, in order to derive the distribution (8) based on η we need to deal with the situation that in
non-empty regions BM(x̄) ∩ BM(ȳ) we see too many colored points σ̄. One possible way to deal with
this is to randomize the deletion of points. For this, we define

Π(1)(dη) := Π(dη)χ(η)

where χ(η) :=
∏

x∈η χ(x, η̄) with

χ(x, η̄) :=

∫
Leb(dwη∪{x})1{(σ+

(x) ∪ σ−
(x)) ∩ (R((x̄, wx), (η̄, wη))− x) = ∅}

×T−1
(
(x̄, wx), (η̄, wη)

)
.

(17)

Here, Leb(dwη∪{x}) =
⊗

y∈η∪{x} Leb[0,1](dwy) is the independent superposition of uniform distribu-
tions on [0, 1] (which serve as choice variables) and

R((x̄, wx), (η̄, wη)) = BM(x̄) ∩
⋃

y∈η : wy<wx

BM(ȳ)

represents the intersection of the ball Bmx(x) with all other balls Bmy(y) in η corresponding to points
with smaller choice variables. This construction ensures that in any region of BM(η̄) we remove all but
precisely one coloring mark, the coloring associated to the Poisson point with smallest choice variable,
see Figure 7. The normalization

T
(
(x̄, wx), (η̄, wη)

)
:= Π±((σ+

(x) ∪ σ−
(x)) ∩R((x̄, wx), (η̄, wη)) = ∅

)
in (17) is almost-surely finite by our subcriticality assumption and it further ensures that Π(1) is still a
probability measure. Form this construction it follows that almost-surely under Π(1), the configuration⋃

x∈η σ̄(x) has an intensity precisely given by λ±1{y ∈ BM(η̄)}dy.
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x̄

ȳ1

ȳ2

Figure 8: A realization of K(1): a WRM on the clus-
ters of a PBM, represented in gray. The blue (+1)
and red (−1) marks are subject to the WR con-
straint.

6.2 An alternative Papangelou intensity

Now, we incorporate the WRM constraint, see Figure 8, into the previously defined a-priori measure
Π(1) via

K(1)(dη) := Π(1)(dη)µ̄(η),

where µ̄(η) =
∏

k∈I µ̄(η
(k)) is a product over the clusters in BMa(η̄), with

µ̄(η(k)) = 1
{ ⋃

x∈η(k)
σ̄(x) is feasible

}
Z−1(η̄(k))

with Z(η̄(k)) =
∫
Π±

BM(η̄(k))
(dσ̄)1

{
σ̄ is feasible

}
. Our construction can now be summarized in the

following statement.

Lemma 6.1. For all measurable functions f : W → [0,∞) we have that∫
K(dη̄, dσ̄)f(η̄, σ̄) =

∫
K(1)(dη)f(η̄,

⋃
x∈η

σ̄(x)).

In the following we will drop the superscript (1) and simply write K. The key advantage of this
representation is that we can now conceive K as having a density χµ̄ with respect to the iid marked
Poisson point process Π for which we can employ for example the Slivnyak–Mecke formula.

Proposition 6.2. The measure K satisfies the GNZ equations with respect to the Papangelou intensity

ρ(x,η) = β
χ(η ∪ {x})µ̄(η ∪ {x})

χ(η)µ̄(η)
1{η̄[x] is finite}. (18)

The difference between the expressions (18) and (10) lies only in the handling of the overlaps. The
color constraint encoded in the ratio of the µ̄, respectively the ration of the partition functions Z, is
precisely the same and is the one responsible for the possible lack of continuity. Finally note that µ̄
as well as χ factorize over connected components in BMa(η̄) and hence in the ratio in (18) we see
cancellations.

Proof of Proposition 6.2. Using the Slivnyak–Mecke theorem for the iid marked PPP Π, we can calcu-
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late for all non-negative measurable test functions f ,∫
dx

∫
K(dη)ρ(x,η)f(x,η ∪ {x}) =

∫
dx

∫
Π(dη)χ(η)µ̄(η)ρ(x,η)f(x,η ∪ {x})

= β

∫
dx

∫
Π(dη)χ(η ∪ {x})µ̄(η ∪ {x})f(x,η ∪ {x})

=

∫
Π(dη)χ(η)µ̄(η)

∑
x∈η

f(x,η)

=

∫
K(dη)

∑
x∈η

f(x,η),

which verifies the GNZ equation.
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