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A Λ-Fleming-Viot type model with intrinsically varying population
size

Julian Kern, Bastian Wiederhold

Abstract

We propose an extension of the classical Λ-Fleming-Viot model to intrinsically varying pop-
ulation sizes. During events, instead of replacing a proportion of the population, a random mass
dies and a, possibly different, random mass of new individuals is added. The model can also
incorporate a drift term, representing infinitesimally small, but frequent events. We investigate el-
ementary properties of the model, analyse its relation to the Λ-Fleming-Viot model and describe
a duality relationship. Through the lookdown framework, we provide a forward-in-time analysis of
fixation and coming down from infinity. Furthermore, we present a new duality argument allowing
one to deduce well-posedness of the measure-valued process without the necessity of proving
uniqueness of the associated lookdown martingale problem.

1 Introduction

Genetics and Ecology Early mathematical models of evolution could often be classified as belong-
ing either to genetics or population dynamics. The former focusses on the development of the genetic
information carried by the population through biological mechanisms, most prominently mutation, se-
lection, recombination and genetic drift. These effects already result in a high amount of stochasticity.
In order to handle the models, compromises are made in other areas such as the interplay with the
environment or other species. These, in turn, are the strongholds of population dynamics, which often
neglect the genetic code of individuals.

It has become a major endeavour of population modelling to weaken this separation. A common
characteristic of models at the intersection of ecology and genetics is to incorporate a form of varying
population size required for the implementation of ecological factors such as external catastrophes,
selective sweeps, interspecies relationships or competition for a fluctuating abundance of resources.
Conceptually, the population size can vary extrinsically or intrinsically. In the first case, the population
size enters as a parameter into the development of the population and is driven by a randomness
independent of the remaining stochasticity. This lends itself to modelling external influences such as
catastrophes or the loss of habitat, see e.g. [KK03; CPS22; CCS+22]. Whereas the population size
is assumed to be only slowly varying in [KK03], it is taken to undergo drastic changes (so-called
bottlenecks) in [CPS22; CCS+22], leading to vastly different genealogies.

In contrast, models with intrinsically varying population size inextricably link the reproductive dynamics
with the population size. The recent works [EK19] and [EKL+23] have emphasized the potential of the
lookdown framework in analysing intrinsically varying models, see also [DK96; DK99b; DK99a]. The
former provides a toolbox for population models and constructs a spatial Λ-Fleming-Viot model with
varying population size, which has been a major motivation for this work. The latter analyses a locally
regulated population with a two-step reproduction mechanism with a juvenile and adult stage, which
allows for a wide range of population profile patterns to appear.
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J. Kern, B. Wiederhold 2

A varying size Λ-Fleming-Viot process With this paper, we wish to further contribute to the under-
standing of the implications of intrinsically varying population size by considering a toy model based
on a variation of the classical Λ-Fleming-Viot paradigm. More precisely, the model will evolve through
a series of reproduction events during which a random proportion zd of the population is killed and
a random mass zb of offspring with a type chosen uniformly from the population prior to the event is
added. To ensure persistence of the population, we will allow for an appropriate drift in the population
size. Although to our knowledge, this specific model has not yet been considered, it fits into the gen-
eral framework from [DK99b]. A similar model in the spatial context, but under much more restrictive
assumptions can be found in [EK19, Section 4.2]. Our model should also be compared to the model
in [Sch03], where individuals can be parental to large families, but the population size is reduced to a
fixed quantity after reproduction.

The model is not a generalisation of the Λ-Fleming-Viot model in a strict sense: although it covers
Λ-Fleming-Viot processes for a range of impact measures Λ, not all are included. Instead, it should
be viewed as the natural variant for which neither the offspring distribution nor the death proportion
is restricted. This is complemented by the fact that we can approximate any classical Λ-Fleming-Viot
process arbitrarily well. Despite this relatedness with classical models, the interplay between varying
population size and reproduction events will necessitate additional care in the analysis. Even though
duality is still available in a restricted sense, the dual coalescent is time inhomogeneous and not
suitable for analysis. Instead of studying fixation and coming down from infinity backwards in time, we
develop a forward-in-time approach to analyse the genealogy.

The major tool in this analysis is the lookdown construction from [DK99b] which allows one to represent
the measure-valued model as a countable particle system, where each individual has a unique label
or level in N. The main advantage of lookdown constructions is the fact that offspring always “look
down"to their parent: from all individuals participating in a reproduction event, the one with the lowest
level is parental. This incorporates the corresponding coalescent backwards in time in a consistent
way and allows one to trace lines of descent forward in time, independently of their changing type.

Outline Section 2 contains the definition of the model, presents the main results and closes with a
discussion of the model choice. In Section 3 we will start our analysis by collecting properties of the
population size process. Section 4 shows the closedness of the class of processes under a natural
convergence condition. In Section 5 we will see that any Λ-Fleming-Viot process can be recovered as
a limit of our processes. Section 6 recalls the lookdown construction of [DK99b] and provides a proof
through the Markov Mapping Theorem. The corresponding dual process is identified in Section 7,
where we also examine the genealogy. Code for simulation is provided at https://github.
com/mushunrek/GammaPiModel.jl.

2 Model and main results

2.1 The (γ,Π)-Fleming-Viot process

Throughout this work, we consider measure-valued populations taking values in the space MF (K)
of finite measures on a compact Polish type space K, usually K = {a,A} or K = [0, 1]. Denote by
M1(K) ⊆ MF (K) the set of probability measures on K.

Definition 2.1 (Events and Characteristics). In the context of deaths and births, we will always denote
pairs z,γ ∈ R2 by bold letters and their entries by (zd, zb) and (γd, γb).
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A Λ-Fleming-Viot type model with intrinsically varying population size 3

1 We denote by

Z :=
(
[0, 1]× [0,+∞)

)
\ {(0, 0), (1, 0)}

the event space. Throughout this paper, its elements will be referred to as events and be de-
noted by z =: (zd, zb). Here, zd denotes the proportion of individuals to be killed, and zb the
mass of offspring added during the event z.

2 We define the space C of characteristics to contain exactly the pairs (γ,Π) ∈ R2 × M(Z)
satisfying

i) γ ≥ 0,

ii) the subordinator condition ∫
Z
z dΠ(z) < +∞, (2.1)

iii) and the balance condition

γd +

∫
Z
zd dΠ(z) = γb +

∫
Z
zb dΠ(z). (2.2)

In the above, M(Z) denotes the set of σ-finite measures on Z . The inequalities are to be
understood entrywise. In analogy to z, we will write Πd and Πb for the marginals of Π.

The events (0, 0) and (1, 0) are excluded to avoid trivialities: the first does not change the population,
whereas the second kills off all individuals without replacing any. The second condition (2.1) is neces-
sary for the process to be well-defined. It is referred to as subordinator condition as it implies together
with γ ≥ 0 that (γ,Π) ∈ C defines a two-dimensional subordinator with drift γ and jump measure
Π.

Definition 2.2 (The (γ,Π)-Fleming-Viot process). Let (γ,Π) ∈ C be a characteristic. Define the
operator

Lγ,ΠΦ(σ)=
(
γb − γdσ(K)

)
DΦ

(
σ,

σ

σ(K)

)
+

∫
K

∫
Z

[
Φ
(
(1− zd)σ + zbδκ

)
− Φ(σ)

]
dΠ(z)

dσ(κ)

σ(K)

(2.3)

for all bounded Fréchet-differentiable Φ ∈ C1
bMF (K) with bounded derivative. Any MF (K)-valued

solution σ to the martingale problem for Lγ,Π is called a (γ,Π)-Fleming-Viot process.

In Section 2.3 we give a detailed motivation of the model choice. Any σ ∈ MF (K) \ {0} can
be uniquely decomposed into σ = Nρ, where N := σ(K) is the population size and the probability
measure ρ ∈ M1(K) is the type distribution. If σ is a (γ,Π)-Fleming-Viot process, thenN is solution
to the martingale problem for

Lγ,Πf(N) =
(
γb − γdN

)
f ′(N) +

∫
Z

[
f
(
(1− zd)N + zb

)
− f(N)

]
dΠ(z). (2.4)

Similarly, σ is a (γ,Π)-Fleming-Viot process if and only if (N, ρ) is solution to the martingale problem
for

Lγ,ΠF (N, ρ)

=
(
γb − γdσ(K)

)
∂NF (N, ρ)

+

∫
K

∫
Z

[
F
(
(1− zd)N + zb, (1− z) ρ+ zδκ

)
− F (N, ρ)

]
dΠ(z) dρ(κ),

(2.5)
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J. Kern, B. Wiederhold 4

where we denote by

z := z(N, z) :=
zb

(1− zd)N + zb

the effective impact of an event z at population size N . We keep the dependence on N implicit to
improve the readability. In both cases, we abuse slightly the notation for Lγ,Π by applying it to functions
f ∈ C1

b (R) and F ∈ C1
b ((0,+∞)×M1(K)) respectively. Furthermore, the equivalence holds only

because the population does not vanish, which we will prove rigorously later on, see Section 3.
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Figure 1: Simulation of a (γ,Π) process: we start with 20 different types of equal mass 0.05, each represented
by a different colour. Here, γ ≈ (0.74, 1) and the marginals of Π are independent such that Πd has density
1[0.0001,0.3](x)

3
x , and Πb has density ∝ 1[0.0001,0.4](x)

1
x .

2.2 Main results

Properties of the model We show in Section 6 that the model can be understood with the framework
from [DK99b]. In particular, the following result follows solely from studying the population process.

The martingale problem for the (γ,Π)-Fleming-Viot process is well-posed for any characteristic
(γ,Π) ∈ C. Furthermore, the unique solution is a Hunt process, i.e quasi-left continuous and strongly
Markovian.

In the context of Λ-Fleming-Viot processes, reproduction events are parametrised by an impact u ∈
(0, 1], representing the proportion of the population to be replaced. Events of small impact u ≈ 0
are usually modelled to occur at an accelerated rate of order u−2. Indeed, small reproduction events
are expected to be much more frequent in large populations than large scale, catastrophic events with
impact u > 0. In the limit u ↓ 0, the dynamics can be approximated by the Wright-Fisher diffusion
which therefore can be thought of as “0-impact Fleming-Viot".

As soon as events are balanced only in mean (2.2), events z ≈ 0 can only happen at rate proportional
to |z|−1 (see the discussion in Section 2.3). This is illustrated by the subordinator condition (2.1)

WIAS Preprint No. 3053 Berlin 2023



A Λ-Fleming-Viot type model with intrinsically varying population size 5

which ensures the existence of the (γ,Π)-Fleming-Viot process. Mirroring the approach from the
Λ-Fleming-Viot process, it is natural to ask whether an additional process is needed to describe the
“0-impact"behaviour. The next theorem gives a negative answer: the class of (γ,Π)-models is closed
under a natural notion of the convergence of characteristics.

For a Polish space E, denote by D[0,+∞)(E) the space of E-valued càdlàg processes with the usual
Skorokhod topology. On MF (K), we consider the Polish topology of weak convergence induced by
the topology on K.

Definition 2.3. For a sequence
(
(γ(n),Π(n))

)
n
⊂ C of characteristics and a characteristic (γ,Π) ∈

C, we write (γ(n),Π(n)) −→
n

(γ,Π) if and only if

lim
n

γ(n) · ∇g(0) +
∫
Z
g(z) dΠ(n)(z) = γ · ∇g(0) +

∫
Z
g(z) dΠ(z) (2.6)

for all g ∈ Cb(R2) differentiable in 0 such that g(0) = 0.

Theorem 2.4. The set of (γ,Π)-Fleming-Viot processes is closed under limits of characteristics in C

in the following sense: if σ(n)
0 converges weakly to some σ0 ∈ MF (K) \ {0} and if (γ(n),Π(n)) →

(γ,Π) ∈ C, then the sequence of (γ(n),Π(n))-Fleming-Viot processes started in σ(n)
0 converges

weakly in D[0,+∞)

(
MF (K)

)
to the (γ,Π)-Fleming-Viot process started in σ0.

Finally, it is of interest to understand the relation between the (γ,Π)- and the classical Λ-Fleming-Viot
model. The next result illustrates that any Λ-Fleming-Viot process can be obtained by letting the jump
measure concentrate on the diagonal zd = zb.

Theorem 2.5. Let
(
(γ(n),Π(n))

)
n
⊂ C be a sequence of characteristics and Λ be a finite measure

on [0, 1]. Assume that

lim
n

∫
Z
g(z) dΠ(n)(z) =

∫ 1

0

g(u, u)
dΛ(u)

u2

for all g ∈ Cb(R2) vanishing in a neighbourhood of the origin and that

lim
ε↓0

lim
n

∫
Z∩[0,ε]2

(
zb

1− zd + zb

)2

dΠ(n)(z) = Λ({0}).

Let
(
(N

(n)
0 , ρ

(n)
0 )
)
n
⊂ (0,+∞) × M1(K) be a sequence with weak limit (1, ρ0) ∈ (0,+∞) ×

M1(K), and denote by (N (n), ρ(n)) the (γ(n),Π(n))-Fleming-Viot process started from (N
(n)
0 , ρ

(n)
0 ).

Then, (N (n), ρ(n)) converges weakly to (1, ρ), where ρ is a Λ-Fleming-Viot process started from ρ0.

Genealogy and duality As an infinite-population limit does not describe individuals any more, its
genealogy can only be given a biological interpretation by considering the model as a limit of individual-
based models. In Section 7.1, we prove the convergence of an individual-based lookdown process to
our model based on [DK99b, Theorem 3.2]. This allows us to view the coalescent originating from
tracing the lowest levels in the lookdown construction as providing the genealogy of the model.

The same coalescent can usually be used as a dual process to the type distribution process. Indeed,
the lookdown construction from Section 6.1 immediately implies a duality relation; see Section 7.2.
However, due to the dependence on the population size, the type distribution is not Markovian on its

WIAS Preprint No. 3053 Berlin 2023
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Figure 2: Illustration of Theorem 2.5 in the case of a finite number of types. The limiting process is a multi-type
Wright-Fisher diffusion. On the left-hand side of each figure, we start with 20 different types of equal proportions,
each represented by a different colour. From the top left-hand figure to the bottom right-hand figure, we have
used

Πi := δ0 ⊗Unif([0, ki])

where k1 = 1, k2 = 1/3, k3 = 1/10, k4 = 1/20. The drift γi is given by (γi)d = 1 and

(γi)b = 1−
∫
Z
zb dΠ(z) = 1− ki

2
.

own. Using the lookdown construction, we will turn this non-Markovian duality into a pathwise duality
in the sense of [JK14]. Interestingly, this will provide us with an alternative proof of well-posedness of
the (γ,Π)-Fleming-Viot martingale problem that does not require the uniqueness of the associated
lookdown process. Furthermore, our method will provide us with a semi-explicit description of the
coalescent, conditional on the driving noise. We do not expect to obtain a more explicit description as
the coalescent not only depends on the time reversal of the population size, but also on the offspring
sizes not available from the population size process; see Section 7.2 for details.

For this reason, we analyse two fundamental properties of the coalescent, fixation and coming down
from infinity, by studying the genealogy through the lookdown process forwards-in-time. We say that
fixation occurs at time t if the corresponding type distribution is a Dirac measure on a single type.
Through the lookdown construction, this is equivalent to proving that at time t for every n ∈ N, the
n-th individual is a descendant of the lowest level individual. We say that fixation occurs if the above
random time is a.s. finite. Weakening the above, we say that quasi-fixation occurs if for every n ∈ N,
there exists an a.s. finite time until the lowest n levels are descendants from the lowest level.

Theorem 2.6 (Quasi-fixation). Consider the lookdown construction of the (γ,Π)-Fleming-Viot pro-
cess from Section 6. Assume that the population process Nt is ergodic (cf. Proposition 3.3) and that

WIAS Preprint No. 3053 Berlin 2023



A Λ-Fleming-Viot type model with intrinsically varying population size 7

the marginal Πb of Π governing the births does not only charge zero. Then, for any n ≥ 2, after an
a.s. finite time, the individuals associated to the lowest n levels will be descendants of the individual
associated to the lowest label.

Coming down from infinity describes the property that the coalescent started from infinitely many
lineages contains only finitely many lineages after a finite amount of time. Fixation cannot occur if
the associated coalescent does not come down from infinity. To complement the above, we show that
the coalescent contains dust at all times, i.e. that the coalescent started from infinitely many lineages
contains infinitely many singletons at all times and in particular does not come down from infinity. For
Λ-coalescents which are not star-shaped, i.e. with Λ({1}) = 0, this has been shown in the acclaimed
paper [Pit99] to be equivalent to ∫ 1

0

u
Λ( du)

u2
<∞. (2.7)

Heuristically, this always holds for the (γ,Π)-Fleming-Viot process, as we assume the subordinator
condition (2.1) for the measure Π.

Theorem 2.7 (The coalescent contains dust). Consider the lookdown construction of the (γ,Π)-
Fleming-Viot process from Section 6. Then, for any time t > 0, the probability for the lowest lineage
to not have had offspring before time t is positive.

If Πd does not charge 1, this guarantees that, at every time t, there are a.s. infinitely many ancestral
lineages that do not coalesce in the time interval [0, t].

2.3 Discussion

The (γ,Π)-Fleming-Viot model is a natural extension of the Λ-Fleming-Viot paradigm. To make this
connection apparent, let us consider the following intermediate example between the Λ- and the full
(γ,Π)-Fleming-Viot framework.

For small u ≈ 0, let νu be a distribution on [0,+∞) with mean u. In the following, νu[f(zb)] will
denote the expectation of f w.r.t. zb ∼ νu. The population size process of the (0, δu ⊗ νu)-Fleming-
Viot model, then, has the generator

Luf(N) = νu
[
f
(
(1− u)N + zub

)
− f(N)

]
≈ νu

[
f(N + zub )− uNf ′(N + zub )− f(N)

]
≈ −uNf ′(N) + νu

[
f(N + zub )− f(N)

]
,

where we make use of the fact that E[f ′(N + zb)] ≈ f ′(N) as u ↓ 0. Whereas the first term is of
order u, this is not necessarily true for the second. Instead, we will make the natural assumption that
it behaves in the limit like a Lévy process. This is the same as asking that there are γb, σb ≥ 0 and a
σ-finite measure Πb on (0,+∞) satisfying

∫ +∞
0

1 ∧ z2b dΠb(zb) < +∞ such that

lim
u↓0

1

u
νu[g(zub )] = γbg

′(0) + σbg
′′(0) +

∫ +∞

0

g(zb) dΠb(zb) (2.8)

for all g : R → R smooth enough and satisfying g(0) = 0. In our case, however, the jumps are
all positive so that the stronger conditions σb = 0 and

∫ +∞
0

1 ∧ zb dΠb(zb) < +∞ hold. This is
a particular case of Equation (2.6). Consequently, if we consider a Lévy subordinator (Lt)t≥0 with

WIAS Preprint No. 3053 Berlin 2023
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characteristics (γb,Πb), the measures νu := Law(Lu) satisfy Equation (2.8) with σb = 0. Putting
everything together, we obtain as a special case of Theorem 2.4 that

Luf(N) ≈ u ·
(
(γb −N)f ′(N) +

∫ +∞

0

f(N + zb)− f(N) dΠb(zb)

)
.

Adding a non-constant death proportion does not alter the above substantially. Indeed, the only part
that becomes more subtle is why we should not be able to see a diffusion in the limit as zb− zdN can
both be positive and negative. This can be seen heuristically by the following Taylor expansion (that
assumes both zd and zb to be of order u):∫

Z
f(N − zdN + zb)− f(N) dΠu(z)

≈
∫
Z
(zb − zdN)f ′(N − zdN + zb) + (zb − zdN)2f ′′(N − zdN + zb) dΠu(z)

≈
(∫

Z
(zb − zdN) dΠu(z)

)
· f ′(N) +

(∫
Z
(zb − zdN)2 dΠu(z)

)
· f ′′(N).

If Πu is a probability measure, then the first integral is of order u whereas the second is of order u2.
In particular, whenever the first integral is non-zero, there is no way to speed up the dynamics to see
a diffusion. For a more complete treatment, see also [JS03, Chapter VII, Section 3]. In the Λ-Fleming-
Viot paradigm, this does not pose a problem as N ≡ 1 constantly so that for zb ≡ u ≡ zd the
first order term vanishes. In the setting of a fluctuating population size, however, the first term can
only vanish for at most one value of N . More precisely, under the balance condition (2.2), it vanishes
exactly for N = 1. One should see a diffusion appear only in the setting where N is forced to stay
infinitesimally close to 1, i.e. in the setting of Theorem 2.5, leading back to the Λ-Fleming-Viot model.
The particular choice of the balance condition (2.2) is not relevant. The fraction

K :=
γb +

∫
Z zb dΠ(z)

γd +
∫
Z zd dΠ(z)

(2.9)

captures the carrying capacity of the system to which the population experiences an exponential drift.
If we consider a (γ,Π)-Fleming-Viot process (N, ρ) such that it satisfies Equation (2.9) instead of
the balance condition (2.2), then we may define

N̂t :=
Nt

K
, γ̂ :=

(
γd,

γb
K

)
and

∫
Z
g(z) dΠ̂(z) :=

∫
Z
g
(
zd,

zb
K

)
dΠ(z)

to obtain a (γ̂, Π̂)-Fleming-Viot process (N̂ , ρ) that has carrying capacity 1.

3 The population size process

Unsurprisingly, the population size process is crucial to the study of (γ,Π)-Fleming-Viot processes.
Hereafter, we will collect basic properties that we will use several times in the remainder of the paper.

Let (γ,Π) ∈ C be a characteristic. We will consider the operator (2.4)

Lγ,Πf(N) = (γb − γdN)f ′(N) +

∫
Z

(
f
(
(1− zd)N + zb

)
− f(N)

)
dΠ(z),

defined for any f ∈ C2
c (R).

WIAS Preprint No. 3053 Berlin 2023



A Λ-Fleming-Viot type model with intrinsically varying population size 9

Theorem 3.1 (Well-Posedness). The martingale problem for Lγ,Π is well-posed. Furthermore, the
unique solution for a given initial condition is a conservative strong Markov process that is concentrated
on (0,+∞) whenever the initial condition is in (0,+∞). More precisely, if

τε := inf{t ≥ 0 : Nt 6∈ (ε, 1/ε) or Nt− 6∈ (ε, 1/ε)},

then
lim
ε↓0

P
(
τε ≤ T

)
= 0 (3.1)

for all finite time horizons T ≥ 0.

If L is a Lévy subordinator of characteristic (γ,0,Π), a solution can be constructed as the strong
solution to

dNt =

(
−Nt−

1

)
· dLt.

Equivalently, one obtains the process by taking a Poisson point process ξ on [0,+∞)×Z with mean
intensity dt⊗ Π(dz) and considering the unique strong solution to

dNt = (γb − γdNt)dt+

∫
Z
zb − zdNt− ξ(dt, dz).

Furthermore, the process is a Feller process if and only if the first marginal Πd has no atom on 1.

Proof. Since Lγ,Π maps C2
c (R) into Cb(R), [Kur11, Theorem 2.3] ensures that any solution to the

martingale problem on the one-point-compactification of (0,+∞) is a weak solution to the SDE

dNt =

(
−Nt−

1

)
· dLt

and vice-versa. As the coefficient is globally Lipschitz, there exists a pathwise unique, non-exploding,
strong solution to this SDE. Weak uniqueness follows and we may conclude the well-posedness of the
martingale problem.

Next, we prove Equation (3.1). First, assume that Πd does not charge 1. Enumerating the jumps of
the driving noise L, we may bound Nt a.s. by

e−γdt

(∏
ti≤t

(
1− zid

))
N0 ≤ Nt ≤ N0 + γbt+

(
0

1

)
·Lt.

Since the lower bound is non increasing and the upper bound is non decreasing, it suffices to show
that the lower bound is strictly positive and the upper bound is finite. For the upper bound, this is
immediate. For the lower bound, we note that the product is nonzero if and only if

∑
ti≤t z

i
d is finite,

which follows from

E

[∑
ti≤t

zid

]
= t

∫
Z
zd dΠ(z) < +∞.

Now, if Πd charges 1, write I for the set of jump indices satisfying zid = 1. If i ∈ I , then Nti has the
law νb = Π({1} × ·)/Π({1} × (0,+∞)). In particular, we may bound

Nt ≥ e−γdT

∏
ti≤T
i 6∈I

(1− zid)

 ·min(N0, Nb),
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where Nb ∼ νb is independent of both N0 and the values of zid, i 6∈ I . As before, we conclude that
this random variable is a.s. finite.

Finally, we apply [Küh18, Corollary 1.2] which states that the Feller property is equivalent to

lim
|N |→+∞

Π
{
z ∈ R2 : zb −Nzd ∈ −B(N, r)

}
= 0

for all r > 0, where B(N, r) denotes the ball of radius r around N . This is exactly the case if the first
marginal of Π does not charge the point 1.

The next result will be of practical interest when proving different tightness results.

Corollary 3.2 (Compact Containment). Let (γ(α),Π(α))α ⊂ C be a family of characteristics satisfying

sup
α

(
γ
(α)
b +

∫
Z
zb dΠ(α)(z)

)
< +∞.

Furthermore, suppose that the family (N
(α)
0 )α of (0,+∞)-valued random variables is tight. Let

(N
(α)
t )t≥0 be the population size process with characteristic (γ(α),Π(α)) started in N (α)

0 . Then, for
any finite time horizon T ≥ 0 and any threshold ε > 0, there exists a compact Γ ⊆ [0,+∞) such
that

inf
α
P
(
N

(α)
t ∈ Γ for all t ∈ [0, T ]

)
≥ 1− ε.

Proof. Let L(α) denote the Lévy subordinator corresponding to N (α). As the strong solution to

dN
(α)
t =

(
−Nt−

1

)
· dL(α),

the processN (α) is almost surely bounded from above by the Lévy subordinator L(α,2)
t :=

(
0
1

)
·Lα of

characteristic
(
γ
(α)
b ,Π

(α)
b

)
. Since subordinators are monotonically increasing, we may bound L(α,2)

t

from above by L(α,2)
T for any t ∈ [0, T ]. Now,

E
[
L
(α,2)
T

]
= T

(
γ
(α)
b +

∫
Z
zb dΠ(α)(z)

)
≤ CT

for a constant CT depending only on T . Setting Γ :=
[
0, CT

ε

]
, we obtain

P

(
sup
t∈[0,T ]

N
(α)
t ∈ Γ

)
≥ P

(
L
(α,2)
T ∈ Γ

)
≥ 1− P

(
L
(α,2)
T ≥ CT

ε

)
= 1− ε.

We end this section with the long time behaviour of the population size process. This will be of in-
terest when investigating whether there is fixation of a given type. The total variation distance of two
measures µ and ν on a common measurable space is defined as

‖µ− ν‖TV := sup
A

|µ(A)− ν(A)|,

where the supremum ranges over all measurable sets.
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Proposition 3.3 (Ergodicity). Suppose that γd > 0 and Π 6= 0. Then, there exists a unique invari-
ant measure µ∗ for the (γ,Π)-Fleming-Viot process. Furthermore, this measure is concentrated on
(0,+∞) and has a finite first moment in the sense that∫ +∞

0

n dµ∗(n) < +∞.

Whenever N0 ∼ µ0 satisfies E[N0] < +∞, the population size process N of a (γ,Π)-Fleming-Viot
process started in N0 is exponentially ergodic: if µt denotes the distribution of Nt, one has

‖µt − µ∗‖TV ≤ Cµ0e
−Ct

for two constants C,Cµ0 > 0, where C is independent of µ0.

Proof. The existence of an invariant measure with finite first moment and the exponential ergodicity
is an application of [Kul09], see Proposition 0.1 and Theorem 1.2 therein. From Equation (3.1) and
ergodicity, it follows that µ∗ is concentrated on (0,+∞).

It is to be expected that this results extends to more general conditions, where γd = 0 as long as Πd

is non-zero. Since this is not the main focus of this paper, it is left for future work.

4 Closedness in the space of characteristics

Recall that (σt)t≥0 is a (γ,Π)-Fleming-Viot process if and only if it is a MF (K)-valued solution to
the martingale for Lγ,Π defined in Equation (2.3). We will make use of the well-posedness result from
Section 6 which does not depend on this section.

This section is concerned with the proof of Theorem 2.4. For the rest of this section, we consider a
weakly convergent sequence σ(n)

0 → σ0 ∈ MF (K) \ {0} and some characteristics (γ(n),Π(n)) →
(γ,Π) ∈ C in the sense of Definition 2.3. Write σ(n) for the (γ(n),Π(n))-Fleming-Viot process started

from σ
(n)
0 . The proof is divided into two lemmas.

Lemma 4.1 (Tightness). The sequence (σ(n))n is tight.

Proof. Corollary 3.2 guarantees the compact containement condition for the population size process,
and thus for the process σ, as sets of measures that are uniformly bounded by a constant are compact.
By [EK86, Theorem 3.9.4], it is then sufficient to show the uniform boundedness of the generator in
expectation over finite time intervals:∣∣∣Lγ(n),Π(n)

Φ(σ)
∣∣∣ ≤ (γ(n)b + γ

(n)
d σ(K)

)
‖DΦ‖∞

+

∫
Z
‖DΦ‖∞

(
z
(n)
d σ(K) + z

(n)
b

)
dΠ(n)(z)

≤ 2C‖DΦ‖∞ ·
(
1 + σ(K)

)
.

We conclude by noting that the corresponding population size process N (n)
t = σ

(n)
t (K) satisfies

E
[
N

(n)
t

]
≤ E

[
N

(n)
0

]
+ Ct,

which is uniformly bounded on any compact time interval.
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Lemma 4.2. Any limit point of the family (σn)n≥1 is a (γ,Π)-Fleming-Viot process.

Proof. By [EK86, Theorem 4.8.10] it suffices to show

lim
n→∞

E

[(
Φ(σ

(n)
t+τ )− Φ(σ

(n)
t )−

∫ t+τ

t

Lγ,ΠΦ(σ(n)
s ) ds

)
k∏
i=1

hi(σ
(n)
ti )

]
= 0 (4.1)

for all k ≥ 0, 0 ≤ t1 < t2 < ... < tk ≤ t < t+ τ and h1, ..., hk ∈ CbMF (K).

Equation (4.1) is satisfied in the prelimit in the sense that

lim
n→∞

E

[(
Φ(σ

(n)
t+τ )− Φ(σ

(n)
t )−

∫ t+τ

t

Lγ(n),Π(n)

Φ(σ(n)
s ) ds

)
k∏
i=1

hi(σ
(n)
ti )

]
= 0.

This reduces the statement necessary for proving the result to

lim
n→∞

E

[∫ t+τ

t

∣∣∣Lγ(n),Π(n)

Φ(σ(n)
s )− Lγ,ΠΦ(σ(n)

s )
∣∣∣ ds k∏

i=1

hi(σ
(n)
ti )

]
= 0.

Using the tower property of conditional expectation, this statement is satisfied provided

lim
n→∞

E

(∫ t+τ

t

∣∣∣Lγ(n),Π(n)

Φ(σ(n)
s )− Lγ,ΠΦ(σ(n)

s )
∣∣∣ ds ∣∣∣∣∣ Ft

)
= 0. (4.2)

Let us introduce the family of functions

fσΦ : R2 → R, (z1, z2) 7→
∫
K
Φ
(
(1− z2)σ + z1δκ

)
− Φ(σ)

dσ(κ)

σ(K)
,

which are continuously differentiable and satisfy fσΦ(0) = 0. The following identity holds for such
functions:

∇fσΦ(0) = DΦ

(
σ,

σ

σ(K)

)(
1

−σ(K)

)
.

and thus
(γb − γdσ(K))DΦ

(
σ,

σ

σ(K)

)
= γ · ∇fΦ(0).

For σ ∈ MF (K) the difference between the prelimiting and limiting generator is given by∣∣∣Lγ(n),Π(n)

Φ(σ)− Lγ,ΠΦ(σ)
∣∣∣

≤

∣∣∣∣∣(γ(n)b − γ
(n)
d σ(K)

)
DΦ
(
σ,

σ

σ(K)

)
−
(
γb − γdσ(K)

)
DΦ
(
σ,

σ

σ(K)

)
+

∫
Z

∫
K

[
Φ
(
(1− zd)σ + zbδκ

)
− Φ(σ)

] dσ(κ)
σ(K)

dΠ(n)(z)

−
∫
Z

∫
K

[
Φ
(
(1− zd)σ + zbδκ

)
− Φ(σ)

] dσ(κ)
σ(K)

dΠ(z)

∣∣∣∣∣
≤

∣∣∣∣∣γ(n) · ∇fΦ(0) +
∫
Z
fΦ(z) dΠ(n)(z)− γ · ∇fΦ(0)−

∫
Z
fΦ(z) dΠ(z)

∣∣∣∣∣.
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Hence, by the convergence of the characteristics, we obtain the pointwise limit

lim
n→∞

∣∣∣Lγ(n),Π(n)

Φ(σ)− Lγ,ΠΦ(σ)
∣∣∣ = 0.

Writing N := σ(K) for the population size, we have∣∣∣Lγ(n),Π(n)

Φ(σ)− Lγ,ΠΦ(σ)
∣∣∣ ≤ ‖DΦ‖∞

(
sup
n

|γ(n)b − γb|+ sup
n

|γd − γ
(n)
d |N

)
+ sup

n
2‖DΦ‖∞

∫
Z
(zb + zd) dΠ(n)(z),

which has finite mean. The above is an integrable majorant and we may apply Lebesgue’s Dominated
Convergence to conclude.

5 Relation to the Λ-Fleming-Viot process

This section is devoted to the proof of Theorem 2.5, which illustrates that (γ,Π)-Fleming-Viot pro-
cesses can approximate Λ-Fleming-Viot processes arbitrarily well. We prove the result in two steps.
First, we prove that the population size concentrates on 1 by viewing it as the solution to an SDE with
large drift. Then, we verify the convergence of the type distribution. More precisely, making use of
[BES04, Lemma 5.3], it is enough to show the convergence of the type composition up to the stopping
time τδ := inf{t ≥ 0 : Nt ≤ δ or Nt− ≤ δ}.

Lemma 5.1. Let
(
(γ(n),Π(n))

)
n
⊂ C be a sequence of characteristics satisfying the assumptions of

Theorem 2.5. Then the associated sequence (N (n))n of population size processes converges weakly
to 1 in D(R).

Lemma 5.2. Let
(
(γ(n),Π(n))

)
n
⊂ C be a sequence of characteristics satisfying the assumptions

of Theorem 2.5 for a finite measure Λ on [0, 1], and suppose that (N (n)
0 , ρ

(n)
0 ) → (1, ρ0) weakly.

Denote by ρ(n) the associated sequence of measure-valued type processes and write ρ for the Λ-
Fleming-Viot process started in ρ0. For every δ > 0, the sequences of processes ρ(n) stopped at τδ
converges weakly to ρ stopped at τδ.

As the total population size process converges to a deterministic function, the convergence of the
components suffices for the joint convergence of (N (n), ρ(n)) and Theorem 2.5 follows.

Proof of Lemma 5.1. If Λ satisfies the subordinator condition, in the sense that∫ 1

0

u−1 dΛ(u) < +∞,

and supn |γ| < +∞, then necessarily γ(n)d − γ
(n)
b → 0. In particular, the convergence follows from

the closedness of the model, see Theorem 2.4. The remainder of the proof relies on [Kat91] which
considers stochastic processes that are forced onto a manifold by a large drift.

To this end, suppose from now on that Cn := γ
(n)
b +

∫
Z zb dΠ(n)(z) → +∞. From Theorem 3.1,

we have that the population size process is a solution to

N
(n)
t = N

(n)
0 + Cn

∫ t

0

(1−N
(n)
t ) dt+

∫ t

0

(
−N
1

)
· dL

(n)
t ,
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where L(n) is a Lévy process with characteristic
(
−
∫
Z z dΠ(n)(z),0,Π(n)

)
. In this setting, the

second term forces the process onto the singleton manifold {1}. Note that L(n) is a martingale with
quadratic variation

[L(n)]t = t

∫
Z
z2 dΠ(n)(z),

which is uniformly bounded in n, and thus uniformly integrable. In particular, [Kat91, Condition (4.2)]
is satisfied for Y = L(n) by choosing δ = ∞ and M = L(n). This implies that [Kat91, Condition
(C5.1)] holds, whereas [Kat91, Condition (C5.2)] follows automatically. We apply [Kat91, Theorem 6.2]
to obtain the convergence N (n) → 1.

Proof of Lemma 5.2. The generator of the Fleming-Viot process is given by

A1Φ(ρ) :=
1

2

∫
K

∫
K
D2Φ(ρ; δκ, δχ) (δκ − ρ) (dχ) ρ(dκ),

where D2 denotes the second order Fréchet derivative. The generator is defined for all functions
Φ ∈ C(M1(K)) for which the second derivative exists for all κ, χ ∈ K and is bounded continuous.
The generator of the Λ-Fleming-Viot is AΦ(ρ) = AΛ

1Φ(ρ) + AΛ
2Φ(ρ), where

AΛ
1 := Λ({0})A1 and AΛ

2Φ(ρ) :=

∫ 1

0

∫
K

[
Φ
(
(1− u)ρ+ uδκ

)
− Φ(ρ)

]
dρ(κ)

dΛ(u)

u2
.

Recall that the generator of the type distribution process ρ(n) is given by

A(n)Φ(N, ρ) =

∫
Z

∫
K
Φ
(
(1− z)ρ+ zδκ

)
− Φ(ρ) dρ(κ) dΠ(n)(z)

=

∫
Z∩[0,ε]2

∫
K
Φ
(
(1− z)ρ+ zδκ

)
− Φ(ρ) dρ(κ) dΠ(n)(z)

+

∫
Z\[0,ε]2

∫
K
Φ
(
(1− z)ρ+ zδκ

)
− Φ(ρ) dρ(κ) dΠ(n)(z)

=: A
(n,ε)
1 + A

(n,ε)
2 .

with z := zb
(1−zd)N+zb

for functions Φ ∈ C1
b (M1(K)) depending only on ρ. Adapting [BK93, Theorem

2.3] to our situation, the statement follows from

1 the sequence (ρ(n))n is tight in D[0,T ](M1(K)),

2 and for all Φ : M1(K) → R such that Φ is three times Fréchet differentiable with bounded
derivatives,

sup
n→∞

E

[
sup
t∈[0,T ]

∥∥A(n)Φ(N (n), ·)
∥∥
∞

]
≤ CΦ (5.1)

for 0 < CΦ < +∞ and for any t ∈ [0, T ]

lim
n→∞

E
[∥∥A(n)Φ(N (n), ·)− AΦ

∥∥
∞

]
= 0. (5.2)
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These conditions present a slight modification of [BK93, Theorem 2.3], where we have used that the
three times Fréchet differentiable functions are dense in the domain of A and that the proof remains
valid if (5.1) and (5.2) hold in expectation. Now, tightness of (ρ(n))n follows from (5.1) and the com-
pactness of M1(K), so that we will concentrate on proving (5.1) and (5.2).

Applying Taylor’s expansion to the inner part, we obtain

A
(n,ε)
1 Φ(N, ρ)

=

∫
Z∩[0,ε]2

∫
K

[
z ·DΦ(ρ; δκ − ρ) + z2 · 1

2
D2Φ(ρ; δκ − ρ, δκ − ρ) +O

(
z3
)]

dΠ(n)(z).

The first summand is equal to zero due to the identity∫
K
DΦ(ρ; δκ − ρ) dρ(κ) =

∫
K

∫
K

[
DΦ(ρ; δκ)−DΦ(ρ; δχ)

]
dρ(κ) dρ(χ) = 0.

The second summand equals∫
K
D2Φ(ρ; δκ − ρ, δκ − ρ) dρ(κ)

=

∫
K

[
D2Φ(ρ; δκ, δκ − ρ)−D2Φ(ρ; ρ, δκ − ρ)

]
dρ(κ)

=

∫
K

∫
K
D2Φ(ρ; δκ, δχ) (δκ − ρ)(dχ) dρ(κ)

−
∫
K

∫
K

∫
K

[
D2Φ(ρ; δη, δκ)−D2Φ(ρ; δη, δθ)

]
dρ(η) dρ(θ) dρ(κ)

=

∫
K

∫
K
D2Φ(ρ; δκ, δχ) (δκ − ρ)(dχ) dρ(κ) = AΦ(ρ)

and the third can be bounded by

ε

(1− ε)3
1

N3
· sup

n

∫
Z
z2b dΠ(n)(z).

Altogether,

A
(n,ε)
1 Φ(N, ρ) =

(∫
Z∩[0,ε]2

z2 dΠ(n)(z)

)
· A1Φ(ρ) +O

( ε

N3

)
which is bounded up to the stopping time τδ. The boundedness of A(n,ε)

2 is immediate from the fact
that Π(n) is finite outside a neighbourhood of 0:

|A(n,ε)
2 Φ(N, ρ)| ≤ 2‖Φ‖∞ sup

n

∫
Z\[0,ε]2

dΠ(n)(z) < +∞.

To prove (5.2) we first bound

lim
n

E
[∥∥A(n)Φ(N (n), ·)− AΦ

∥∥
∞

]
≤ lim sup

ε↓0
lim
n

E
[∥∥A(n,ε)

1 Φ− AΛ
1Φ
∥∥
∞ +

∥∥A(n,ε)
2 Φ− A

(Λ,ε)
2,2 Φ

∥∥
∞ +

∥∥A(Λ,ε)
2,1 Φ

∥∥
∞

]
,

(5.3)
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where

A
(Λ,ε)
2,1 Φ(ρ) :=

∫ ε

0

∫
K

[
Φ
(
(1− u)ρ+ uδκ

)
− Φ(ρ)

]
dρ(κ)

dΛ(u)

u2
,

A
(Λ,ε)
2,2 Φ(ρ) :=

∫ 1

ε

∫
K

[
Φ
(
(1− u)ρ+ uδκ

)
− Φ(ρ)

]
dρ(κ)

dΛ(u)

u2
.

The first summand of inequality (5.3) is bounded by∣∣A(n,ε)
1 Φ(N, ρ)− AΛ

1Φ(ρ)
∣∣

≤

∣∣∣∣∣
∫
Z∩[0,ε]2

[(
zb

(1− zd)N
(n)
t + zb

)2

−
(

zb
1− zd + zb

)2
]

dΠ(n)(z)

∣∣∣∣∣∥∥A1Φ‖∞

+

∣∣∣∣∣
∫
Z∩[0,ε]2

(
zb

1− zd + zb

)2

dΠ(n)(z)− Λ({0})

∣∣∣∣∣ ∥∥A1Φ
∥∥
∞ +O

( ε

N3

)
Here, the second part vanishes due to the assumption on Λ({0}). The first and the third parts can be
treated up to τδ by using the convergence of the population size and by noting that∣∣∣∣∣

∫
Z∩[0,ε]2

( zb

(1− zd)N
(n)
t + zb

)2

−
(

zb
1− zd + zb

)2
 dΠ(n)(z)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Z∩[0,ε2]

2zb|1−N
(n)
t |

(1− ε)2N
(n)
t

· zb
1− ε

(
(1 + 2ε)

(1− ε)N
(n)
t

+ 1

)
dΠ(n)(z)

∣∣∣∣∣
≤ 2|1−N

(n)
t |

(1− ε)3N
(n)
t

(
(1 + 2ε)

(1− ε)N
(n)
t

+ 1

)
sup
n

∫
Z∩[0,ε]2

z2b dΠ(n)(z).

The convergence of the second summand of inequality (5.3) can be achieved in a similar fashion,
adding and subtracting a term without the population size and using Taylor’s expansion. The third
summand of (5.3) can be expanded similarly to A(n,ε)

1 above and is bounded because of the bound-
edness of the derivatives of Φ. Taking limits, the last term vanishes as well.

6 Lookdown construction

This section provides a proof for Section 2.2, i.e. the existence and uniqueness of the (γ,Π)-Fleming-
Viot process. The main part will be the construction of a lookdown representation, from which unique-
ness will carry over to the original process. This is a special case of [DK99b, Section 4], see also
[BBC+05, Section 2] for a similar construction. We will reframe the result in the language of the Markov
Mapping Theorem from [Kur98], see also [KN11; EK19].

A lookdown process allows one to represent a measure-valued population process as a countable
system of particles, labelled by some levels in N. The name lookdown comes from the fact that children
typically look down on their parents in the sense that individuals with higher levels inherit the type
of individuals with lower level. However, even though the dynamics of the labelled population can
depend on the labels, care has to be taken as to keep the particles exchangeable. This allows the
measure-valued process to be retrieved from the lookdown process as the limiting empirical average
(or DeFinetti measure).
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Types before event
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1
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Figure 3: Illustration of a reproduction event: during the event, the particles with labels 2, 4, 5 are chosen to
participate. Offspring of the parental type are inserted. All other levels have to shift upwards accordingly. Types
are marked by colors, drawn arrows indicate birth, dashed arrows the necessary shift.

If the individual-based prelimiting model can be used to define the lookdown process, the latter also
contains the genealogy and can be used to study the corresponding coalescent. In this case, the
lookdown even provides a forward-in-time option to study the lines of descent.

6.1 Construction as a Λ-Fleming-Viot in a random environment

The following lookdown representation was first introduced in a general form in [DK99b, Section 3.3].
Here, we follow the presentation of [BBC+05], where a special case has been treated. In the following,
we will write (N, ρ) to denote a (γ,Π)-Fleming-Viot process. More generally, we use the symbol N
for a population size and ρ for a type distribution on K. In this section, we consider a system of labelled
particles as a sequence k ∈ KN in the sense that i is the label of the individual k(i). We will describe
a particle process (kt)t≥0 such that kt is conditionally independent with DeFinetti measure ρt. Since
this sequence does not contain any information on the actual size of the population, we will additionally
consider the population size process N .

As we noted in Equation (2.5), the type distribution does not see the continuous births and deaths and
evolves only through reproduction events. If we denote by z := z(N, z) := zb

(1−zd)N+zb
the effective

impact of the event z at population size N , the event z affects the type distribution via

ρt =
(
1− z(Nt−, z)

)
ρt− + z(Nt−, z)δκ,

where κ ∼ ρt−. To achieve this on the level of the lookdown, we will assign every individual i inde-
pendently a uniform variable u(i) ∼ Unif([0, 1]). Since a proportion z is to be replaced, we mark
an individual i whenever u(i) ≤ z. Since we suppose the sequence k to be exchangeable, we may
choose the parent to be the marked individual with the lowest level. Note that this means that the
parent is always killed and replaced by its offspring, but this does not impact an infinite population.
From here, we would like to simply replace all marked individuals by offspring with the type of the
parent. However, this would destroy the exchangeability of the particle system. Instead, we will insert
the offspring at the marked levels and shift all other individuals upwards accordingly, see Figure 3.

More rigorously, let ξ be a Poisson point process on [0,+∞) × Z × [0, 1]N with mean intensity
ds ⊗ Π(dz) ⊗ du, where du denotes the Lebesgue measure on [0, 1]N. Then, we construct the
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population size process as the strong solution to

Nt = N0 +

∫ t

0

[
γb − γdNs

]
ds+

∫
[0,t]×Z×[0,1]N

[
zb − zdNs−

]
ξ(ds, dz, du).

The levels with label n will not influence levels with label m < n, so that it is enough to describe
the dynamics on the space Kn of n levels, n ∈ N. Enumerate the points of ξ =

{
(ti, zi, ui)

}
i

and
write zi := z(Nti−, zi) for the corresponding effective impact. For a set of levels J ⊆ [[1, n]] :=
{1, . . . , n} with |J | ≥ 2, we denote by LnJ(t) the number of times that exactly these levels have been
chosen in an event before time t:

LnJ(t) :=
∑
i:ti≤t

∏
j∈J

1ui(j)≤zi

∏
j 6∈J

1ui(j)>zi
.

For |J | ≤ 1, we set LnJ ≡ 0 as an event has no effect if at most one level is chosen to participate.
Since

E
[
LnJ(t) | {(ti, zi)}i

]
=
∑
i:ti≤t

z
|J |
i (1− zi)

n−|J | ≤
∑
i:ti≤t

zi,

Lemma 6.1 below ensures that the processes LnJ a.s. jump only finitely often in any compact time
interval. At a jump time of LnJ , the vector k ∈ Kn is replaced by θnJ(k), in which copies of k(min J)
are inserted at the indices in J \{min J} and the last |J |−1 entries are discarded to obtain a vector
of length n:

θnJ(k)(i) =


k(i) if i < min J

k(min J) if i ∈ J

k
(
i− |J ∩ [[1, i]]|+ 1

)
otherwise

.

We set θJ(k) = k for |J | ≤ 1.

Lemma 6.1. The sum
∑

i:ti≤t zi is a.s. finite for every t ≥ 0 .

Proof. As in Theorem 3.1, let

τε := inf{t ≥ 0 : Nt 6∈ Uε or Nt− 6∈ Uε}, where Uε = (ε, 1/ε).

Then, for any ε > 0

E

[ ∑
i:ti≤t∧τε

zi

]
≤ E

[
1N0≥ε

∫
[0,t]×Z×[0,1]n

zb
(1− zd)ε+ zb

ξ(dt, dz, du)

]
≤ t

∫
Z

zb
(1− zd)ε+ zb

dΠ(z)

≤ t ·
∫
Z
1{zd≥1/2} +

2zb
ε

dΠ(z) < +∞.

Consequently,

P

(∑
i:ti<t

zi = +∞

)
≤ P

(⋂
ε↓0

{τε < t}

)
= lim

ε↓0
P(τε < t) = 0.

The proof that this is indeed the correct lookdown process for the (γ,Π)-Fleming-Viot process will be
postponed to Section 6.3.
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6.2 The Markov Mapping Theorem

Before stating the theorem, we will give a short heuristic guide. Consider the following situation: on
a base space B, we have a solution Y to a given martingale problem AB . However, part of the
stochastic information is not explicitly observed; one could think of the driving noise of an SDE or the
level structure of a lookdown. The Markov Mapping Theorem will allow us in specific cases to retrieve
this additional information. More precisely, we want to find a processX on an extended spaceE such
that it “projects"to the initial process: Y = Γ(X) in distribution for a measurable function Γ : E → B.
This will be possible if the generator AB can be viewed as the averaged version αAE of a generator
AE ofE, where the averaging α has to behave well w.r.t. the projection Γ. In our case,B will represent
the measure-valued population distribution, whereasE will denote the space of labelled “individualsïn
a loose sense. The projection Γ will retrieve the distribution as the DeFinetti measure of the labelled
population.

The following theorem will make these ideas rigorous. We will use the notation for multivalued gen-
erators from [EK86] and the terminology of [EK19]. Let E be a Polish space, B(E) be the space of
bounded measurable functions and Cb(E) be the space of bounded continuous functions.

Theorem 6.2 (Markov Mapping Theorem, [KN11, Corollary 3.2]). Let E and B be separable Polish
spaces. Let AE ⊆ Cb(E)×B(E) and ψ ∈ C(E) with ψ ≥ 1. Suppose that for every f ∈ D(AE),
there exists a cf ≥ 0 such that

|g(x)| ≤ cfψ(x) for all x ∈ E (6.1)

for all g ∈ B(E) such that (f, g) ∈ AE . Define A0
Ef := AEf

ψ
.

Suppose that A0
E is a countably determined pre-generator, and suppose that D(A0

E) = D(AE) is
closed under multiplication and is separating. Let Γ : E → B measurable, and let α be a transition
kernel fromB toE satisfying α

(
y,Γ−1(y)

)
= 1 for all y ∈ B. Furthermore, assume that αψ < +∞

and define

AB :=
{(
αf, α(AEg)

)
| (f, g) ∈ AE

}
.

Let µ ∈ M1(B) and ν :=
∫
B
α(y, ·) dµ(y). Suppose Ỹ is a càdlàg solution to the martingale

problem for (AB, µ) without fixed point of discontinuity.

1 If Ỹ satisfies
∫ t
0
αψ(Ỹt) < +∞ a.s. for all t ≥ 0, there exists a solution X to the martingale

problem for (AE, ν). If Y := γ ◦ X is càdlàg, then Y and Ỹ have the same distribution on
DB([0,+∞)).

2 For any t ≥ 0, one has E[f(Xt) | FY
t ] = αf(Yt).

3 If uniqueness holds for the martingale problem for (AE, ν), then uniqueness holds for the mar-
tingale problem for (AB, µ).

6.3 Well-posedness of the (γ,Π)-Fleming-Viot martingale problem

In this section, we link the lookdown process from Section 6.1 back to the (γ,Π)-Fleming-Viot pro-
cess. Well-Posedness of the martingale problem then follows from the Markov Mapping Theorem.
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Here, the base space is given byB := (0,+∞)×M1(K). The extended spaceE := (0,+∞)×KN

is the space of labelled particles. We set the projection Γ : E → B to be the empirical average

Γ(N, k) :=

(
N, lim

n→+∞

1

n

n∑
i=1

δk(i)

)

whenever it exists and set Γ(N, k) := (N, ρ0) otherwise for some arbitrary, but fixed ρ0 ∈ M1(K).
Conversely, we define the kernel α from B to E by

α(N, ρ; ·) := δN ⊗ ρ⊗N.

Next, we identify the martingale problem for the lookdown process. Define the space D of test func-
tions to contain h : E → R of the form

h(N, k) = f(N)
n∏
i=1

gi
(
k(i)
)

(6.2)

for f ∈ C1
b (R), n ∈ N, and g1, . . . , gn continuous with 0 ≤ gi ≤ 1. Then, the lookdown process is

solution to the martingale problem for

Ah(N, k) =
(
γb − γdN

)f ′(N)

f(N)
h(N, k)

+

∫
Z

 ∑
J⊆[[1,n]]

z|J | (1− z)n−|J | h
(
(1− zd)N + zb, θJ(k)

)
− h(N, k)

 dΠ(z),

defined on D, where h is assumed to be given by (6.2).

To compute the averaged generator αA, we first note that

αh(N, ρ) = f(N)
n∏
i=1

gi,

where gi :=
∫
K gi(κ) dρ(κ). If we apply the kernel to the lookdown generator A, this gives

α(Ah)(N, ρ)

= (γb −Nγd)
f ′(N)

f(N)
αh(N, ρ)

+

∫
Z

[
f
(
(1− zd)N + zb

)
×
∑

J⊆[[1,n]]

z|J | (1− z)n−|J |

(∫
K

∏
i∈J

gi(κ
∗) dρ(κ∗)

)
·

(∏
i 6∈J

gi

)

− αh(N, ρ)

]
dΠ(z)

= (γb −Nγd)
f ′(N)

f(N)
αh(N, ρ)
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+

∫
Z

∫
K

[
f
(
1− zd)N + zb

) n∏
i=1

(
(1− z)gi + zgi(κ

∗)
)
− αh(N, ρ)

]
dρ(κ∗) dΠ(z)

= (γb −Nγd)
f ′(N)

f(N)
αh(N, ρ)

+

∫
Z

∫
K
αh ((1− zd)N + zb, (1− z) ρ+ zδκ∗) dρ(κ∗) dΠ(z),

which is the generator of the (γ,Π)-Fleming-Viot martingale problem, verifying the basic assumption
of the Markov Mapping Theorem 6.2.

We will divide the prove of Section 2.2 into three parts: we first prove that the martingale problem is
regular, then existence and uniqueness.

Lemma 6.3. Consider a (γ,Π)-Fleming-Viot process. Then:

1 there exists a càdlàg modification of the process;

2 this modification is quasi-left continuous and thus has no fixed point of discontinuity.

Proof of Lemma 6.3. Note that B = (0,+∞)×M1(K) is separable and that C1
b (B) is separating

and contains a countable set that separates points. If (N, ρ) is a (γ,Π)-Fleming-Viot, then N is the
population size process studied in Section 3 and thus

P
(
(Nt, ρt) ∈ ΓT,ε ×M1(K) for all t ∈ [0, T ]

)
≥ 1− ε

for all T, ε > 0 and a compact ΓT,ε given by Corollary 3.2. Hence, [EK86, Theorem 4.3.6] yields the
existence of a càdlàg modification. Finally, [EK86, Theorem 4.3.12] ensures that the càdlàg modifica-
tion is quasi-left continuous, and thus has no fixed point of discontinuity.

Since any modification of a solution to the martingale problem is a solution itself, we may and will
assume in the following that any solution is càdlàg.

Lemma 6.4. For any given initial condition (N0, ρ0) ∈ S, there exists a (γ,Π)-Fleming-Viot process.

Proof. Existence is immediate as soon as the jump measure Π is finite, as a solution may be con-
structed as a Piecewise Deterministic Markov Process. For a general characteristic (γ,Π), setΠ(n)(z) :=
1‖z‖>1/nΠ(z) and choose γ(n) such that (γ(n),Π(n)) ∈ C and γ(n) → γ. Then, (γ(n),Π(n)) →
(γ,Π) in the sense of characteristics and we may apply Theorem 2.4 to obtain a (γ,Π)-Fleming-Viot
process as the limit of (γ(n),Π(n))-Fleming-Viot processes, see also Section 4.

By [EK86, Theorems 4.4.2 and 4.4.6] the strong Markov property follows for both the lookdown and
projected process from the next two lemmas.

Lemma 6.5 (see e.g. [DK99b, Section 4]). The martingale problem for A is well-posed. In particular,
the unique solution is given by the construction in Section 6.1.

Proof. The main idea is reproduced for the convenience of the reader. First, consider the localizing
sequence

τε := inf{t ≥ 0 : Nt 6∈ Uε or Nt− 6∈ Uε} with Uε := (ε, 1/ε)
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from Theorem 3.1. Then, the stopped martingale problem (A, τε) has bounded jump rates and we
may conclude uniqueness. Finally, the result is extended to the martingale problem for A by virtue of
[EK86, Theorem 4.6.2] and the fact that

lim
ε↓0

P
(
τε ≤ t

)
= 0

for all t ≥ 0.

Lemma 6.6. The (γ,Π)-Fleming-Viot martingale problem is well-posed for any (γ,Π) ∈ C.

Proof. In order to apply Theorem 6.2, it suffices to find a function ψ satisfying (6.1) and
∫ t
0
αψ(Ỹt) <

+∞. We have the bound

|Ah(N, κ)| ≤ (γb +Nγd)‖f ′‖∞

+
n∏
i=1

gi(κi)

∫
Z
f
(
(1− zd)N + zb

)
− f(N) dΠ(z)

+ 2‖h‖∞
∑

J⊆[[1,n]]
|J |≥2

∫
Z
z2 dΠ(z)

≤ C ·N + C2n ·
(
1 +

1

N

)
(6.3)

for a constant depending on the choice of h and the characteristic (γ,Π). Here, we used that z =
zb

(1−zd)N+zb
and thus that z2 ≤ z is bounded by 2zbN−1 if zd ≥ 1/2 and by 1 otherwise. Let (N, ρ)

be a (γ,Π)-Fleming-Viot process and take the localizing sequence (τε)ε↓0 from the previous proof.
One has

E
[∫ t∧τε

0

Ns +
1

Ns

ds

]
< 2tε−1 < +∞

for all t ≥ 0. The same argument as in the proof of Lemma 6.1 yields that

C

∫ t

0

1 +Ns +
1

Ns

ds

is a.s. finite for every t ≥ 0. Using the bound (6.3), point 1. of Theorem 6.2 ensures the existence
of a solution to the lookdown martingale problem (A,α(N0, ρ0; ·)). By Lemma 6.5 and point 3. of
Theorem 6.2, we conclude that the (γ,Π)-Fleming-Viot martingale problem has at most one solution
for any initial condition.

In addition to the well-posedness of the (γ,Π)-Fleming-Viot martingale problem, the application of
the Martingale Mapping Theorem yields information on the lookdown process.

Corollary 6.7. Let (N, k) be the lookdown process from Section 6.1 corresponding to the (γ,Π)-
Fleming-Viot process (N, ρ). Then, kt is an exchangeable sequence with DeFinetti measure ρt for
every t ≥ 0.

Proof. This is point 2. of Theorem 6.2.
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7 Genealogy and duality

One can only refer to a coalescent of an infinite-population limit as the genealogy, if the coalescent
arises as the limit of the genealogies of the corresponding individual-based models. We will conclude
this property for our model from the lookdown framework. Then, we will discuss the implications of
the varying, non-reversible population size of the (γ,Π)-Fleming-Viot process for the notion of duality
between the coalescent and the proportion process. Finally, we will investigate fixation of types and
whether the associated coalescent comes down from infinity.

7.1 Individual-based model

Fix a characteristic (γ,Π), an initial condition N0 > 0 and m ∈ N which should be thought of as
carrying capacity of the population.

Heuristically, we will consider the following model: we start with an initial population Nm
0 := bmN0c

and impose two dynamics on the individuals:

Continuous part: Each individual carries an independent Poisson clock with rate γd. When the clock
rings, the individual dies. Independently, there is a Poisson clock with rate mγb. Whenever it
rings, an individual is chosen at random to produce an offspring.

Discrete events: Reproduction events fall as a Poisson point process on [0,+∞) × Z with mean
intensity dt⊗Π(dz). At an event (t, z), bNm

t zdc individuals die and bmzbc individuals are born
and carry the type of an individual chosen uniformly at random from the population immediately
before the event.

Events with zd < 1/Nm
t and zb < 1/m do not appear at all, so only a finite number of events occur

on any compact time interval. In the following, we will assume the process to be stopped at the first
time the population size Nm

t = 0 reaches zero.

To fit the above into the setting of [DK99b], we decompose the population process Nm
t = Nm

0 +
Bm
t −Dm

t into births and deaths. The dynamics are described by the generator

Lmf(n, b, d) = mγb

(
f(n+ 1, b+ 1, d)− f(b, d)

)
+ nγd

(
f(n− 1, b, d+ 1)− f(b, d)

)
+

∫
Z

(
f(n− bnzdc+ bmzbc, b+ bmzbc, d+ bnzdc)− f(n, b, d)

)
dΠ(z).

The first part is a continuous birth and death generator, whereas the second part implements repro-
duction events.

Similarly to the infinite population limit, we can construct this population model as a lookdown process,
see [DK99b, Section 1.2]. More precisely, we start with an exchangeable sequence km0 ∈ Km. If the
population changes at time t, we denote by k := ∆Bm

t the number of births. Births work exactly as
in the lookdown construction from Section 6.1: first, choose k+1 levels i0 < · · · < ik randomly from
1, . . . , Nm

t ; then, insert individuals of the type kmt−(i0) at levels i1, . . . , ik and move all other indi-
viduals upwards. All individuals with level greater than Nm

t are considered dead, which automatically
takes care of death events.

We wish to prove that this lookdown construction converges in a suitable sense to the one defined
in Section 6.1. One verifies immediately that the the sequence (Nm/m)m∈N converges in law to the
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population process N started from N0. However, to apply [DK99b, Theorem 3.2], we need to prove
a stronger convergence. More precisely, writing [Bm] for the quadratic variation process of Bm, we
define

Um
t :=

[Bm]t +Bm
t

m2
.

One then checks that (Nm/m,Um) converges weakly to (N,U), where

Ut =

∫
[0,t]×Z

z2b ξ(dt, dz)

if ξ denotes the driving noise of N (see Theorem 3.1). Using the fact that N does not reach 0 in finite
time together with the remark just after Equation (3.12) in [DK99b], we deduce the following result on
genealogies.

Theorem 7.1 (see [DK99b, Theorem 3.2]). Let k0 ∈ KN be an exchangeable sequence with DeFinetti
measure ρ0 and set km0 := (k0(i))1≤i≤m. Consider the lookdown process (kmt )t≥0 defined above and
view it as a process on KN by setting kmt (i) := km(i) if maxs≤tN

m
s ≤ i and kmt (i) := kmτmi (t)−(i),

where τmi (t) := sup{s < t : Nm
s ≥ i} otherwise.

Write (Nt, kt)t≥0 for the lookdown process from Section 6.1 and let ρt be the DeFinetti measure of
kt. Then, setting

ρmt :=
1

Nm
t

Nm
t∑

i=1

δkmt (i)

up to the extinction time, the sequence
(
Nm

m
, N

m

m
ρm, km

)
converges in law to (N,Nρ, k). In particu-

lar, the genealogy of k approximates the genealogy of the individual-based model.

7.2 Duality

The notion of duality that we will apply becomes slightly more subtle due to the changes in population
size. For this reason, we will give a short reminder of different duality concepts.

Definition 7.2 (See e.g. [JK14, Definition 1.1]). Consider two Markov processesX =
(
Ω1,F1, (Xt)t∈[0,T ], (Px)x∈E

)
and Y =

(
Ω2,F2, (Yt)t∈[0,T ], (Py)y∈F

)
on state spaces E and F . We say that Y is the dual to X

w.r.t. a bounded measurable H : E × F → R if

Ex[H(Xt, y)] = Ey[H(x, Yt)] (7.1)

for all x ∈ E, y ∈ F and t ∈ [0, T ]. In this case, H is referred to as duality function.

Often, duality can be checked via a simple generator argument. If LX and LY denote the time-
homogeneous generator of X and Y and if H is regular enough, duality w.r.t. H follows from(

LXH(·, y)
)
(x) =

(
LYH(x, ·)

)
(y)

for all x ∈ E and y ∈ F , see e.g. [JK14, Proposition 1.2] for details. If a lookdown construction is
available, duality can often be strengthened to pathwise duality, where the two processes are con-
structed on the same probability space and Equation (7.1) holds almost surely.
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Definition 7.3 (See e.g. [JK14, Definition 4.2]). Let X,Y and H be as before. Suppose that there
exists families {(Xx

t )t∈[0,T ]}x∈E and {(Y y
t )t∈[0,T ]}y∈Y on a common probability space (Ω,F ,P)

such that:

i) for all x ∈ E and y ∈ Y , the finite-dimensional distributions of Xx and Y y under P agree with
those of X and Y under Px and Py resp.;

ii) for all t ∈ [0, T ], x ∈ E and y ∈ F , we have

H(x, Y y
T ) = H(Xx

t , Y
y
T−t) = H(Hx

T , y) P-a.s..

Then, X and Y are said to be pathwise dual w.r.t. H .

Let us consider the graphical construction from Section 6.1. We will focus on the case K = {a,A}
of two types and discuss the extension to more general type spaces at the end of the section. For
any x ∈ [0, 1], we can start the process from the initial condition ρ0 = xδa + (1 − x)δA and track
the proportion of one type Xx

t := ρt({a}). Then, we can fix a time horizon T > 0 and we can
trace the y ∈ N lowest levels of the lookdown construction backwards in time by following the arrows
from tip to tail. Let Yt denote the number of these ancestral lineages at time t backwards in time (or
(T − t)− forward in time). Then, as all individuals are of the same type if and only if their ancestors
in the lookdown were of the same type, we have

xY
`
T = (Xx

t )
Y y
T−t = (Xx

T )
` (7.2)

almost surely. However, this is not a pathwise duality in the sense of Definition 7.3 as the processes
X and Y are not Markovian. Furthermore, this cannot be salvaged by forcing Markovianity by adding
more information: in order for Y to be Markov, it is necessary to add some information from the
graphical construction backwards-in-time. Since the time reversed population process cannot start
from an arbitrary initial value as it is constrained by the final value forward-in-time, this will not induce
a pathwise duality.

Instead, recall that the lookdown process was constructed via the driving Poisson point process ξ on
[0,+∞) × Z × [0, 1]N with mean intensity dt ⊗ Π(z) ⊗ du. Writing ξ0 for the projection of ξ onto
[0,+∞) × Z , we may view the lookdown process as being constructed in the random environment
ξ0 which determines the times and strength of the impacts. Let (�,F ,P) denote the probability
space supporting ξ, and write Pξ0 for the regular conditional probability of P with respect to ξ0. If P
denotes the law of the random environment ξ0, then

E [f ] = E
[
Eξ0 [f ]

]
.

The laws P and Pξ0 are usually referred to as the annealed and the quenched law respectively.

Under Pξ0 , X and Y are inhomogeneous Markov processes . However, since ξ0 also prescribes the
times of possible jumps, the processesX and Y cannot be weakly continuous anymore and there will
be times at which the sets {Xt 6= Xt−} and {Yt 6= Yt−} have positive probability. This immediately
implies that Equation (7.2) can only hold for every t ∈ [0, T ] a.s. under the quenched law if and only
if we choose the left-continuous variant of Y , which is not a modification. Indeed, X and the left-
continuous variant of Y are pathwise dual under the quenched law with respect to the usual moment
duality functions H(x, y) = xy.
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The dependence of the dual process on the driving noise makes it difficult to describe it in a useful
way. Using the framework from [CPS23], one option is to view it as a solution to a canonical abstract
martingale problem with control variable ξ0. More precisely, all processes of the form

M f
t := f(Y y

t )− f(y)

−
∫
[T−t,T ]×Z

Y y
s∑

k=2

(
zb
Ns

)k (
1− zb

Ns

)Y y
s −k

·
(
f(Y y

s − k + 1)− f(Y y
s )
)
ξ0(ds, dz)

for bounded f : N → R are martingales under the quenched law of Y y w.r.t. to the filtration generated
by the past of Y and the complete information from ξ0. Note that Ns is a measurable function of ξ0
and does not provide any additional randomness, so that M f

t is a measurable function of (Y y, ξ0)
for every t ∈ [0, T ]. In the following, however, we will concentrate on a forward-in-time approach to
derive genealogical properties.

We end this section with a short discussion of the case of general type spaces K. In this case, the
lineage counting process is not enough, but the argument still applies when considering the partition-
valued process (πyt )t∈[0,T ] tracking the whole coalescent of the lowest y levels backwards in time.
More precisely, we start with the trivial partition πy0 := {{1}, . . . , {y}}. Every time the lineage count-
ing process Y y jumps by ∆Y y

t = l, one chooses l blocks from πyt− and merges them. For a function
f : Ky → R and a partition π = {A1, . . . , Am} of {1, . . . , y}, we then define fπ : Kπ → R to be
the function

fπ(kA1 , . . . , kAm) = f(kB1 , . . . , kBy),

where Bj ∈ π is the unique bloc in π containing j. Then, the non-Markovian duality from Equa-
tion (7.2) can be extended to∫

Kπ
y
T

fπy
T
(k) ρ

⊗πy
T

0 (dk) =

∫
Kπ

y
T−t

fπy
T−t

(k) ρ
⊗πy

T−t

t (dk) =

∫
Ky

f(k) ρ⊗yT (dk) a.s.

for all continuous bounded f : Ky → R. As before, pathwise duality also holds in the quenched
version, at least if we consider the left-continuous coalescent.

Remark 7.4. The pathwise duality provides us with an alternative proof of uniqueness that avoids
treating uniqueness of the lookdown process. This might be a useful observation in other situations,
where the uniqueness of the lookdown construction is difficult, see [EK19, Remark 4.9].

Suppose (N, ρ) and (N̂ , ρ̂) are two solutions for the (γ,Π)-Fleming-Viot martingale problem. The
Markov Mapping Theorem 6.2 and the lookdown construction yields two lookdown processes (N, k)
and (N̂ , k̂) and even their respective driving Poisson point processes ξ and ξ̂; see [Kur11] for the
reconstruction of the driving noise. By characterizing all moments, the conditional pathwise duality
from above uniquely determines the laws of ρ and ρ̂ conditioned on ξ0 respectively ξ̂0. As the two
Poisson point process have the same law, also the unconditional laws of ρ and ρ̂ are equal.

Although we did not need to consider the uniqueness of the lookdown process, the existence of a
corresponding lookdown is crucial in the argument. Indeed, uniqueness is not immediately implied by
Equation (7.2) as duality only provides uniqueness of the one-dimensional distributions. To extend this
to all finite-dimensional distributions, one generally makes use of the Markov property.

7.3 Fixation

We will first prove that the lowest levels of the lookdown process will eventually all be of the same type
and deduce afterwards the equivalence to fixation of a certain type in the population.
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Theorem 2.6 (Quasi-fixation). Consider the lookdown construction of the (γ,Π)-Fleming-Viot pro-
cess from Section 6. Assume that the population process Nt is ergodic (cf. Proposition 3.3) and that
the marginal Πb of Π governing the births does not only charge zero. Then, for any n ≥ 2, after an
a.s. finite time, the individuals associated to the lowest n levels will be descendants of the individual
associated to the lowest label.

Proof. For two constants 0 < C1 < C2 to be determined later and i ≥ 1, we define σ0 := 0 and the
down- and upcrossing stopping times

τi := inf{t ≥ σi−1 : Nt ≤ C1 or Nt− ≤ C1},
σi := inf{t ≥ τi : Nt ≥ C2 or Nt− ≥ C2}.

Due to the ergodicity, a stationary distribution µ exists, satisfying in particular

1

T

∫ T

0

1[0,C1](Nt) dt −→
T→+∞

µ([0, C1]) a.s.

Choose C1 large enough such that µ([0, C1]) > 0. Then, the above implies that τ1 is a.s. finite.
Assume for the moment that σ1 is a.s. finite. If C2 → +∞, then so does σ1. For any fixed T0 > 0
and ε ∈ (0, 1), we may choose C2 = C2(T0, ε) large enough so that σ1 − τ1 > T0 with probability
at least 1− ε. Enumerate the point process ξ = {(ti, zi, ui)} from the lookdown construction. Then,

P
(
There is a point (ti, z

i, ui) with zib ≥ δ in the time interval [τ1, σ1]
)

≥ P
(

There is a point (ti, z
i, ui) with zib ≥ δ in the time interval [τ1, τ1 + T0]

and σ1 − τ1 > T0

)
= 1− P(There is no such point in [τ1, τ1 + T0])− P(σ1 − τ1 ≤ T0)

≥ 1− exp
(
−T0Πb

(
[δ,+∞)

))
− ε.

As Πb 6= 0, we may choose δ > 0 small enough such that Πb([δ,+∞)) strictly positive. Then, choose
T0 large enough that the above remains bounded away from 0. Finally, by Section 2.2, the strong
Markov property extends this argument to the interval [τ2, σ2] etc. Hence, there will be a.s. infinitely
many reproduction events with effective impact

zi =
zib

(1− zid)Nti− + zib
≥ δ

C2 + δ
=: C > 0.

Consequently, the n lowest lineages are all effected by a common reproduction event with probability
at least Cn > 0 a.s. infinitely often and we may conclude that the n lowest lineages are effected by a
common reproduction event at an a.s. finite time.

Now, if σi = +∞ with positive probability, we may proceed in a more straightforward way. Indeed, this
will imply that the interval [τi, σi] is infinite on this event, and thus contains infinitely many reproduction
events satisfying zi ≥ C . Hence, it suffices to choose ε := 1− P(σi = +∞) and T0 large enough
to compensate.

Corollary 7.5. Suppose that K ⊆ [0, 1] is closed. For a (γ,Π)-Fleming-Viot process, let Ft(κ) :=
ρt([0, κ]) denote the cumulative distribution function of ρt. Under the assumptions of Theorem 2.6,
Ft(κ) converges for every κ ∈ K a.s. to a random variable F∞(κ) supported on {0, 1} such that

P
(

lim
t→+∞

Ft(κ) = 1

∣∣∣∣ F0

)
= F0(κ).
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Proof. Without loss of generality, we may consider K = {0, 1}, as Ft(κ) splits the type space into
two sets. We will write wt := ρt({1}) and it suffices to show that wt → w∞ a.s. for a Bernoulli
random variable w∞ with conditional mean w0, which we may choose to be deterministic. For a test
function f = f(w) independent of N , we obtain

Lγ,Πf(N,w) =

∫
Z

[
wf
(
(1− z)w + z

)
+ (1− w)f

(
(1− z)w

)
− f(w)

]
dΠ(z).

In particular, wt is a bounded martingale and we may conclude that it converges almost surely to its
limit w∞. Additionally,

wnt =

(∫
K
κ dρt(κ)

)n
= E

[
n∏
i=1

κt(i)

∣∣∣∣∣ ρt
]

a.s.

Hence, if we write τn for the almost surely finite time at which the n lowest lineages are all descendants
from the lowest lineage, then

wnτn = E

[
n∏
i=1

κτn(i)

∣∣∣∣∣ ρt
]
= E

[
n∏
i=1

κ0(0)

]
= E[κ0(0)] = w0.

This implies for all n ∈ N

E[wn∞] = lim
t→+∞

E[wnt ]

= lim
t→+∞

(
E [wnt 1τn≤t] +O(P(τn > t)

)
= w0 lim

t→+∞
P(τn ≤ t) = w0,

which concludes the proof.

7.4 Not coming down from infinity

Coming down from infinity addresses the question whether a coalescent started from infinitely many
lineages coalesces quickly enough to later have only finitely many lineages. The next result shows
that our coalescent contains a non-trivial fraction of singleton lineages at any time, a situation know
as containing dust. This complements the previous result as it shows that fixation cannot occur in
bounded time. A related discussion can be found on [DK99b, p.196].

Theorem 2.7 (The coalescent contains dust). Consider the lookdown construction of the (γ,Π)-
Fleming-Viot process from Section 6. Then, for any time t > 0, the probability for the lowest lineage
to not have had offspring before time t is positive.

If Πd does not charge 1, this guarantees that, at every time t, there are a.s. infinitely many ancestral
lineages that do not coalesce in the time interval [0, t].

Proof. Let t ≥ 0 be arbitrary. Since the rate Πd({1}) at which the entire population is replaced is
finite, there is a positive probability that no such event takes place before time t. As such, we may and
will assume Πb({1}) = 0.
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Conditionally on the events ξ0 = {(ti, zi)}, the first lineage does not jump until time t with probability

at least
∏

ti≤t (1− zi), where zi :=
zib

(1−zid)Nti+z
i
b
. Now,∏

ti≤t

(1− zi) > 0 if and only if
∑
ti≤t

zi < +∞.

Denote by τε := inf{t ≥ 0 : Nt ≤ ε}. Then, for any K, ε > 0, we have

P

(∑
ti≤t

zi < K

)
≥ P

({∑
ti≤t

zi < K
}
∩ {τε > t}

)

≥ P

({∑
ti≤t

zib
(1− zid)ε+ zib

< K
}
∩ {τε > t}

)

= 1− P

({∑
ti≤t

zib
(1− zid)ε+ zib

≥ K
}
∪ {τε ≤ t}

)

≥ 1− P

({∑
ti≤t

zib
(1− zid)ε+ zib

≥ K
})

− P(τε ≤ t)

≥ 1−K−1E

[∑
ti≤t

zib
(1− zid)ε+ zib

]
− P(τε ≤ t)

= 1−K−1t

∫
Z

zb
(1− zd)ε+ zb

dΠ(z)− P(τε ≤ t).

The integral in the last line is finite as∫
Z

zb
(1− zd)ε+ zb

dΠ(z) ≤ 2

ε

∫
{zd≤1/2}

zd dΠ(z) +

∫
{zd≥1/2}

dΠ(z) < +∞.

If we choose K large enough and ε small enough, the above is bounded away from zero and the
statement follows.
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