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A hybrid physics-informed neural network based multiscale
solver as a partial differential equation constrained optimization

problem
Michael Hintermüller, Denis Korolev

Abstract

In this work, we study physics-informed neural networks (PINNs) constrained by partial differ-
ential equations (PDEs) and their application in approximating multiscale PDEs. From a contin-
uous perspective, our formulation corresponds to a non-standard PDE-constrained optimization
problem with a PINN-type objective. From a discrete standpoint, the formulation represents a hy-
brid numerical solver that utilizes both neural networks and finite elements. We propose a function
space framework for the problem and develop an algorithm for its numerical solution, combining
an adjoint-based technique from optimal control with automatic differentiation. The multiscale
solver is applied to a heat transfer problem with oscillating coefficients, where the neural network
approximates a fine-scale problem, and a coarse-scale problem constrains the learning process.
We show that incorporating coarse-scale information into the neural network training process
through our modelling framework acts as a preconditioner for the low-frequency component of the
fine-scale PDE, resulting in improved convergence properties and accuracy of the PINN method.
The relevance of the hybrid solver to numerical homogenization is discussed.

1 Introduction

Solving partial differential equations (PDEs) using physics-informed neural networks (PINNs) is cur-
rently an active area of research (see, e.g. [1] for an overview and references therein). The main
principle of physics-informed learning was pioneered by [2] and later reincarnated in its modern com-
putational interpretation by Raissi et al. [3]. It consists of integrating physical laws, typically in the
form of the residuals of underlying PDEs, into a least-squares objective and finding the approximate
solution to the corresponding residual minimization problem. The approximation ansatz uθ,n for the
PDE solution u from a Banach space U is then sought in a neural network class Nθ,n. The unknown
network parameters θ ∈ Rn, the so-called weights and biases, are determined by solving an asso-
ciated nonlinear and non-convex optimization problem. PINN methods are typically meshless, making
them potentially useful as PDE solvers on complex geometries or in high dimensions [4], [5]. The
framework is quite flexible and allows data to be easily incorporated in various ways, making PINNs
not only versatile, but also a competitive approach for solving inverse problems [6]–[8]. In addition,
the expressiveness of neural networks is supported by universal approximation theorems [9]–[13]
and transfer learning capabilities [14], [15]. Moreover, (approximate) optimization can be performed
rapidly on modern computers and compute clusters, thanks to the excellent parallelization capabilities
of neural networks on GPUs, advances in automatic differentiation, as well as parallel and domain
decomposition techniques [16]–[18]. On the other hand, the non-convex nature of the underlying op-
timization and complex nonlinear dynamics within the learning process often lead to difficulties and
limitations rendering the analytical and numerical handling delicate [19], [20]. Furthermore, PINNs can
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M. Hintermüller, D. Korolev 2

be difficult to train for problems exhibiting high-frequency or multiscale behavior [21], particularly due
to the spectral bias of neural networks. This bias prioritizes learning the low-frequency modes and
prevents networks from effectively learning high-frequency functions [22]. However, the combination
of physics-informed neural networks with numerically robust and efficient solvers may yield a way to
mitigate these challenges.

Motivated by multiscale systems, in this work we enhance neural network training by incorporating
a learning-informed PDE as a constraint into the PINN optimization. For the ease of exposition, we
consider here a two-scale setting only, which involves a fine-scale equation (of formidable compu-
tational complexity, perhaps beyond reach) at the fine scale and a coarse-scale equation (which we
consider computationally tractable). The aforementioned computational burden may stem, e.g., from
fine-scale properties of composite materials (foams, textiles, etc) resulting in highly oscillatory multi-
scale or high-contrast coefficients (heat conductivity, permeability, etc) or domains with multiple and
not necessarily periodically scattered perforations or inclusions of complex shapes. A reliable asso-
ciated simulation may then require a prohibitively fine numerical resolution. In order to remedy the
enormous computational complexity, we use a neural network solver for the fine-scale problem, and
it informs the coarse-scale problem through a homogenization procedure of choice. In our proposed
modelling framework, this gives rise to the following PDE-constrained optimization problem:{

inf J(y, uθ,n) over (y, uθ,n),

subject to (s.t.) L
[
uθ,n

]
y = f,

(1)

where J stands for a (least-squares) loss functional penalizing the PDE residual of the fine-scale equa-
tion (possibly including boundary conditions). It is worth noting that in the standard PINN framework,
J depends solely on uθ,n. Here, however, we also introduce a coupling term to make the loss also
dependent on y, thus enabling the training for the aforementioned coarse-scale enrichment. Concep-
tually, the additional term incorporates information on the weak convergence of the fine-scale solution
to the coarse-scale one into the loss functional. By L[uθ,n] : Y → Z we denote a coarse-scale dif-
ferential operator between Banach spaces Y and Z , which is informed by our neural network ansatz
yielding uθ,n. Together with some given data f , it defines an equality constraint in (1). From an opti-
mal control perspective, the ansatz uθ,n serves as a control variable, while the coarse-scale solution y
acts as a state variable. We note that in our applications, the lift from the fine-scale to the coarse-scale
equation is based on upscaling and the related Representative Elementary Volume (REV) concept
(see, e.g. [23]–[25]). However, the abstract framework is quite general, and it allows for the use of
other homogenization techniques to define possible lifts, i.e., parameterizations of L

[
uθ,n

]
by uθ,n.

In the realm of learning-informed optimal control, several works, including [26], [27], have focused
on approximating nonlinear constituents or source terms in the state equation using neural networks.
PINNs have also been employed as solvers for underlying state and adjoint equations in various PDE-
constrained optimization scenarios [28], [29]. In [30], the neural stabilization of non-stable discrete
weak formulations is proposed, resulting in a non-standard PDE-constrained optimization with neural
network controls. Let us point out here that all the aforementioned techniques, while structurally per-
haps similar, differ from this work. Indeed, in the usual approaches the objective is typically not related
to a neural network learning problem or PDE residual minimization, but rather to minimizing specific
(e.g., tracking-type) cost functionals [31], [32]. This difference has significant implications in analysis
and numerical implementation. Besides, to the best of the authors’ knowledge, our work is the first
to deal in detail with a PINN-based optimization problem constrained by a PDE. Here, problem (1)
is formulated and analyzed in a function space setting, taking into account the regularity of the fine-
scale and coarse-scale PDE solutions as well as the interdependent choices of activation functions
and PINN losses. The concept of quasi-minimization [33] is crucial when aiming to minimize over a
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non-closed set of neural networks, and we study its applicability to our problem.

Discretizing the coarse-scale equation in (1), e.g., via the finite element method, while considering
a (meshless) PINN-based approach for the fine-scale problem, leads to a hybrid physics-informed
multiscale numerical solver. In this context, the meshless approach appears particularly useful for
complex geometries. Note also that in the course of the optimization process for solving the hybrid finite
dimensional approximate version of (1) possibly requires to frequently solve the discretized coarse-
scale PDE. The hope now is that the coarse-scale equation can be solved numerically at a significantly
lower cost (compute time) than computing the PINN solution, while still well informing low-frequency
components of the fine-scale solution. Our numerical experiments provide evidence that incorporating
the coarse-scale solution into the learning process through a coupling term in the objective of (1)
acts as a preconditioner for the low-frequency component of the fine-scale PDE, thereby accelerating
the PINN training. The proposed methodology can be used with most PINN architectures (standard
PINNs [3], Fourier features networks [21], [34], FBPINNs [17], etc). It, thus, has the potential to improve
existing benchmarks.

PINNs find numerous applications in multiscale systems and material design (see, e.g., [6], [28], [35],
[36]). Some PINN-based homogenization techniques have also been proposed [37], [38]. However,
our multiscale solver relies on a different upscaling technique and aims to obtain efficient material
properties via appropriate averaging methods, which are often used for general heterogeneous me-
dia. To introduce the context of applications, we first want to highlight the two averaging methods
of upscaling, which for convenience, following [24] and [25], are referred to as local and global ap-
proaches. In the local approach, the domain Ω is partitioned into grid blocks, and local auxiliary prob-
lems are solved on each grid block. The respective solutions (and related fluxes, gradients, etc) are
then post-processed, typically through an averaging process, and are used to compute the upscaled
properties (e.g., the effective heat conductivity, permeability, elastic constants, etc.) of each grid block.
In the global approach, Ω is treated as a reasonably large heterogeneous volume consisting of the
union of smaller, but possibly different blocks. Then auxiliary fine-scale problems are solved on Ω, and
thereafter, the upscaled property is assigned to each block based on the local averaging of solutions
to these fine-scale problems. The global approach is computationally very demanding due to its ne-
cessity for solving fine-scale problems across the entire Ω, but it has the potential to offer improved
scale-up accuracy by minimizing the impact of local boundary conditions used in the local approach
[25]. Problem (1) can then be regarded as a special case of our global neural upscaling procedure,
given a specific choice of boundary conditions and isotropic material.

The paper is organized as follows. In Section 2, we introduce an abstract framework for our learning-
informed optimization problem. We recall specific details regarding physics-informed neural networks
and introduce a compression operator, which embeds information on weak convergence into our loss
function. We fit (1) into a function space framework and propose a numerical algorithm for its solution.
Section 4 presents a numerical homogenization technique based on averaging. We then integrate our
upscaling process into the learning-informed PDE-constrained optimization setting and apply it to the
heat transfer problem with oscillating coefficients.

2 A hybrid multiscale approach

In this section, we define a function space and a coupling framework for two PDEs, the fine-scale
and the coarse-scale problem, respectively. For the treatment of the associated PINNs, we closely
follow [33]. For the bounded domain Ω ⊂ Rd with Lipschitz boundary ∂Ω let Lp(Ω), H1(Ω), H1

0 (Ω),
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Hk(Ω), etc. denote the standard Lebesgue and Sobolev spaces; see, e.g., [39]. We also set R+ :=
{x ∈ R : x > 0} and R≥0 := {x ∈ R : x ≥ 0}.

2.1 Function spaces and PDEs

Let (U, ∥·∥U), (H, ∥·∥H) be Hilbert spaces, (X, ∥·∥X) be a normed vector space, (Z, ∥·∥Z) be a
Banach space, and X a dense subspace of U . Suppose also that U is continuously embedded into
H , i.e., U ↪→ H , and X ↪→ U . For given f ∈ H , we consider the following partial differential
equation

Aεu = f, in Ω, Bu = 0, on ∂Ω, (2)

with Aε : X → H a bounded linear partial differential operator, i.e., Aε ∈ L(X,H), depending on
the fine-scale length ε > 0, and B ∈ L(X,Z) defining boundary conditions. These operators are
understood up to extensions given in the following theorem [40, Theorem 1.7].

Theorem 2.1. Suppose that (X, ∥·∥U) is a dense subset of (U, ∥·∥U) and Aε ∈ L(X,H). Then
there exists a unique extension Āε ∈ L(U,H) of Aε with Aεv = Āεv for all v ∈ X and ∥Aε∥ =
∥Āε∥, where ∥·∥ is the operator norm. The analogous assertion holds true for B with B̄ ∈ L(U,Z).

To continue, we need the following.

Assumption 2.1. For every ε > 0, (2) admits a unique solution uε ∈ U in the following sense:

lim
k→∞

∥uε
k − uε∥U = 0, lim

k→∞
∥Aεuε

k − f∥H + ∥Buε
k∥Z = 0, (3)

where {uε
k} ⊂ X (in a slight misuse of notation) is an approximating sequence of uε

Remark 2.1. Let g ∈ Z and assume that there exists ug ∈ U such that Āεug = 0 in Ω and B̄ug = g
on ∂Ω. If uε ∈ U satisfies Assumption 3, then vε := uε + ug ∈ U corresponds to (2) with Bu = g
on ∂Ω.

Throughout this work, we assume that Assumption 2.1 holds true, whenever this is needed. Note that
if uε ∈ U is the solution to (2), then uε ∈ U0 := {uε ∈ U : Buε = 0} ⊆ U , and we some-
times use ∥·∥U0 instead of ∥·∥U . The following stability estimate is standard for least-squares residual
minimization, including the least-squares finite element method [41], [42] and physics-informed neural
networks [33].

Assumption 2.2 (Stability). There exist a stability bound Cs ∈ R+ and an upper bound Cb ∈ R+

such that

Cs∥u∥U ≤ ∥Aεu∥H + ∥Bu∥Z ≤ Cb∥u∥U , ∀u ∈ U, (4)

where Cs and Cb may depend on ε.

The stability bound (4) is well-suited for PINN problems with a soft penalization of boundary conditions,
including boundary residual penalty terms in the least-squares loss. Boundary conditions can also be
imposed exactly, i.e. as direct (hard) constraints, for PINNS [43]. Then, one may ask for a stability
bound on U0, which does not include the boundary term ∥Bu∥Z and is often easier to prove [44]. We
demonstrate the latter approach in our example section and use (4) for our abstract formulation.
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Let (Y, ∥·∥Y ) be a reflexive Banach space with U0 ⊆ Y , Y ∗ the topological dual space of Y and
Y ↪→ H ∼= H∗ ↪→ Y ∗ a Gelfand triple with the compact embedding Y ↪→ H . Let L[u] ∈ L(Y, Y ∗)
be parameterized by u ∈ U . The corresponding bilinear form bL[u] : Y ×Y → R is defined as usual
by

bL[u](v, w) := ⟨L[u]v, w⟩Y ∗,Y . (5)

Assumption 2.3 (Sequential uniformity). Let uε ∈ U be the solution of (2) and {uε
k} ⊂ X the

associated approximating sequence. We assume that the forms (5), with u = uε
k for k ≥ Nε and

Nε ≥ 1, are uniformly bounded and uniformly coercive, i.e., there exist Cb, Cc ∈ R+ such that

bL[u
ε
k](v, w) ≤ Cb∥v∥Y ∥w∥Y , and bL[u

ε
k](v, v) ≥ Cc∥v∥2Y , (6)

for all v, w ∈ Y . In addition, (6) holds particularly for uε.

For the ease of exposition, we set Nε = 1 in Assumption 2.3. In our example section we show that
Nε ≥ 1 and Assumption 2.3 holds, in general, for the truncated approximating sequence only. For
given (uε, f) ∈ U × H , we consider the following partial differential equation, which we refer to as
the coarse-scale problem: Find y := y(uε) ∈ Y such that

bL[u
ε](y, v) = ⟨f, v⟩Y ∗,Y ∀v ∈ Y. (7)

The coarse-scale problem (7) is well-posed by the Lax–Milgram lemma. Indeed, there exists a unique
solution y ∈ Y and a bound C ∈ R+ such that ∥y∥Y ≤ C∥f∥Y ∗ , with C independent of uε due to
(6).

2.2 Physics-informed neural networks

For L ∈ N, an L-layer feed-forward neural network (NN) is a recursively defined function fL : Rn0 →
RnL with

fL(x) = zL(x), zl(x) = W lσ(zl−1(x)) + bl, 2 ≤ l ≤ L, z1(x) = W 1x+ b1,

where W l ∈ Rnl×nl−1 is the l-th layer weight matrix, bl ∈ Rnl is the l-th layer bias vector and
σ : R → R is the activation function, which is applied component-wise in case of input arguments
in Rnl . The network architecture is represented by the vector n⃗ = (n0, ..., nL), and the set of all
possible parameters for the fixed architecture n⃗ is defined by

Θn(n⃗) =
{
{(Wj, bj)}Lj=1 : Wj ∈ Rnj×nj−1 , bj ∈ Rnj

} ∼= Rn,

where n denotes the total number of parameters. We refer to a network θ ∈ Θn(n⃗) and to its real-

ization as vθ,n(x) := fL(x). For two architectures n⃗1 = (n
(1)
0 , ..., n

(1)
L ) and n⃗2 = (n

(2)
0 , ..., n

(2)
L )

with possibly different number of parameters n1 and n2, we write n⃗1 ⊂ n⃗2 if for any θ1 ∈ Θn1(n⃗1),
there exists θ2 ∈ Θn2(n⃗2) such that vθ1,n1(x) = vθ2,n2(x) for x ∈ Rn0 . For n ∈ N and a given
architecture n⃗, we define the neural network class Nθ,n := {vθ,n : θ ∈ Θn(n⃗)} and the related map

Fn : Rn → Nθ,n, θ 7→ vθ,n. (8)

Note that the regularity of Fn depends on the one of the underlying activation function in Nθ,n. From
the approximation viewpoint, we are interested in neural network classes that can well approximate
elements in X ; compare, e.g., [9]–[13].
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M. Hintermüller, D. Korolev 6

Assumption 2.4 (Uniform NN approximation of elements in X). There exists a sequence of neural
network classes {Nθ,n} with Nθ,n ⊂ X and Nθ,n ⊂ Nθ,n+1 for all n ∈ N, and X ⊂ ∪nNθ,n in the
topology of (X, ∥ · ∥X).

The residual minimization of the fine-scale PDE over the class of neural networks leads to the following
PINN optimization problem:

inf J (vθ,n) := ∥Aεvθ,n − f∥2H + τ1∥Bvθ,n∥2Z over vθ,n ∈ Nθ,n ∩ U, (9)

where τ1 > 0 is fixed. We observe that J (u) ≥ 0 for all u ∈ U , and J (uε) = 0 for the solution
uε to (2). It is well-known that Sobolev functions can be well approximated via deep ReLU neural
networks; see, e.g. [10]. However, the ReLU activation function σ(x) = max(0, x) admits only one
weak derivative, which makes it not feasible when utilizing the standard least-squares loss with H =
L2(Ω) in the presence of the differential operator Aε involving higher-order (weak) derivatives. To
ensure that the L2(Ω) loss value J (uε) is well-defined requires uε ∈ U = H2(Ω), assuming
here that Aε is of the second order. The hyperbolic tangent function tanh(x) can then be used to
approximate functions from Sobolev spaces Hk(Ω), k ≥ 3, in the norm of U (see [45, Theorem
B.7]). Such regularity of uε is not guaranteed, e.g., for elliptic PDEs on domains with a Lipschitz
boundary or a source term f ∈ L2(Ω) [46]. The regularity requirements can be relaxed by adopting
a variational loss function [47], [48]. This involves multiplying the residuals of (2) by suitably smooth
test functions and integrating by parts, thereby reducing the order of Aε. Then, the respective weak
residual is minimized over a (discrete) trial class of neural networks. In addition, a discretization of
the test space is required. Typically, piecewise polynomials of low order, leading to a Petrov-Galerkin
discretization, are preferred; see [49] for a stability analysis.

In our work, we focus on approximations using smooth activation functions. Instead of imposing as-
sumptions on the high number of admissible weak derivatives of our PDE solution, we work within a
dense subspace X of U , where the approximation in the sense of Assumption 2.4 is less restrictive,
such as X = Ck(Ω̄), which motivates the triplet of spaces Nθ,n ⊂ X ⊂ U and our definition of
solution (3).

2.3 Weak convergence-based regularization

Let H = L2(Ω) and Hδ := L2(Ωδ), where Ωδ := {z ∈ Ω : dist(z, ∂Ω) > δ
2
} ⊂ Ω for δ > 0. The

following weak convergence assumption is common in the context of homogenization.

Assumption 2.5 (Weak convergence). Assume that uε ⇀ y in H as ε→ 0, where uε is the solution
to (2) and y is the solution to (7).

Set Qδ : H → Hδ as follows: For v ∈ H , x ∈ Ωδ and Vδ(x) = {z : ∥z − x∥Rd ≤ δ
2
} ⊂ Ω, let

(Qδv)(x) =
1

|Vδ(x)|

∫
Vδ(x)

v(z) dz.

We define the compression operator

(Q̄δv)(x) =

{
(Qδv)(x), x ∈ Ωδ,

v(x), x ∈ Ω \ Ωδ.
(10)
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Let us introduce the coupling termRδ : Y × U → R≥0 as follows:

Rδ(y, u
ε) := ∥Q̄δu

ε − y∥2H . (11)

The purpose of (11) is to equip the optimization problem (9) with information on weak convergence of
the fine-scale solution to the coarse-scale one.

Next we study (11). For this purpose we also invoke the following.

Assumption 2.6. There exists C ∈ R+ such that ∥uε∥H ≤ C∥f∥H for all ε > 0.

Then we have the following result.

Lemma 2.1. The operator Qδ : H → Hδ has the following properties:

1 Suppose that Assumption 2.6 holds. Then Q̄δ ∈ L(H) := L(H,H).

2 Suppose that Assumptions 2.5 and 2.6 hold. Then, lim
ε→0
∥Qδu

ε −Qδy∥Hδ = 0.

Proof. The linearity of Qδ is obvious. For x ∈ Ωδ, using the Cauchy–Schwarz inequality and Assump-
tion 2.6, we obtain the estimate

|(Qδu
ε)(x)| ≤ |Vδ(x)|−1/2∥uε∥H ≤ |Vδ(x)|−1/2C∥f∥H . (12)

Since |Vδ(x)| is constant for all x ∈ Ωδ, the estimate is uniform. By integrating the intermediate in-
equality in (12) over Ωδ, we get ∥Qδu

ε∥Hδ ≤ C∥uε∥H , where C ∈ R+. Therefore, Qδ ∈ L(H,Hδ)
and we readily establish that Q̄δ ∈ L(H).

Assumption 2.5 implies that for all test functions v ∈ H it holds that∫
Ω

uε(x)v(x) dx→
∫
Ω

y(x)v(x) dx as ε→ 0. (13)

Consider the normalized characteristic function

χ̄Vδ(x)(z) :=

{
1

|Vδ(x)|
, z ∈ Vδ(x),

0, z /∈ Vδ(x),

as the test function in (13). Then one obtains the pointwise convergence of averages (Qδu
ε)(x) →

(Qδy)(x) as ε → 0 for x ∈ Ωδ. The L2 - convergence then follows from the uniform estimate (12)
and Lebesque’s Dominated Convergence Theorem.

Since Y ↪→ H , for a given y ∈ Y , almost every x ∈ Ωδ is a Lebesgue point, i.e.,

lim
δ→0

1

|Vδ(x)|

∫
Vδ(x)

y(z) dz = y(x). (14)

For small δ > 0, we consider the following approximation of the above limit:

1

|Vδ(x)|

∫
Vδ(x)

y(z) dz ≈ lim
δ→0

1

|Vδ(x)|

∫
Vδ(x)

y(z) dz = y(x).

Additional integrability of∇y provides a rate for such an approximation.
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Lemma 2.2. Suppose that ∥∇y∥Lp(Ω) <∞ with Ω ⊂ Rd and d < p <∞. Then

∥y −Qδy∥Hδ = O(δ1−d/p),

whereO stands for the big-O Landau notation.

Proof. First, we use a well-known trick that controls the deviation of a function from its average on
convex sets (see e.g. [39, Lemma 4.28]). Let x ∈ Ωδ and define the convex ball Vδ(x) ⊂ Ω. For
z ∈ Vδ(x) and for all t ∈ [0, 1], we get

y(z)− y(x) =

∫ 1

0

d

dt
y(x+ t(z − x))dt =

∫ 1

0

∇y(x+ t(z − x)) · (z − x)dt.

Integrating the above equality over Vδ(x) and performing the change of variables ξ = x+ t(z − x),
we obtain ∣∣∣ ∫

Vδ(x)

y(z)dz − |Vδ(x)| y(x)
∣∣∣ ≤ ∫ 1

0

dt

td

∫
Vtδ(x)

|∇y(ξ)||ξ − x

t
| dξ.

Hölder’s inequality with 1
p
+ 1

q
= 1, in conjunction with the fact that Vtδ(x) ⊆ Vδ(x), yields the

following estimates:∫ 1

0

dt

td+1

∫
Vtδ(x)

|∇y(ξ)||ξ − x|dξ ≤ ∥∇y∥Lp(Vδ(x))

∫ 1

0

dt

td+1

(∫
Vtδ(x)

|ξ − x|qdξ
) 1

q

≤ ∥∇y∥Lp(Vδ(x))

∫ 1

0

dt

t
d
p

(∫
Vδ(x)

|x− z|qdz
) 1

q ≤ δ

1− d
p

∥∇y∥Lp(Vδ(x))|Vδ(x)|
1
q ,

where we used the bound |x − z| ≤ δ and boundedness of the dt-integral for d
p
< 1. Dividing by

|Vδ(x)|, we get

|y(x)−Qδy(x)| ≤
δ

1− d
p

|Vδ(x)|−
1
p∥∇y∥Lp(Vδ(x)) ≤ C

δ

|Vδ(x)|
1
p

∥∇y∥Lp(Ω),

where C < ∞ is some δ-independent constant. Since |Vδ(x)| = πd/2

Γ( d
2
+1)

δd, where Γ is Euler’s

gamma function, we get the estimate |y(x) − Qδy(x)| ≤ Cδ1−d/p, from where we readily get the
desired result.

Under a mild assumption on the regularity of y ∈ Y , we prove the following result.

Theorem 2.2 (Upscaling consistency). Suppose that Assumptions 2.5, 2.6 hold, δ = O(ε) and
Y ⊂ H2(Ω) with Ω ⊂ Rd, d ≤ 3. Then, lim

ε→0
Rδ(y, u

ε) = 0.

Proof. The triangle inequality and Young’s inequality yield

∥Q̄δu
ε − y∥2H ≤ 2∥Qδu

ε −Qδy∥2Hδ + 2∥y −Qδy∥2Hδ + ∥uε − y∥2L2(Ω\Ωδ)
. (15)

Assumption 2.5 and Lemma 2.1 imply that the first term on the right-hand side of (15) vanishes as ε→
0. Since∇y ∈ H1(Ω) due to Y ⊂ H2(Ω), and d ≤ 3, Sobolev embedding yields ∥∇y∥Lp(Ω) <∞
for p ≤ 6. As δ = O(ε) and thus δ → 0 as ε → 0, Lemma 2.2 guarantees that the second term
in (15) vanishes as ε → 0. Since U0 ⊂ Y , the same Sobolev embedding and the Cauchy–Schwarz
inequality imply ∥uε − y∥2L2(Ω\Ωδ)

≤ |Ω \ Ωδ|
1
2∥uε − y∥2L4(Ω) → 0 as ε→ 0.
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Hybrid multiscale NN based solver as a PDE-constrained problem 9

Suppose that Y ⊂ H1(Ω), but Y ̸⊂ H2(Ω). Then Lemma 2.2 is not applicable. In this case, the
coupling term (11) can be modified as follows:

Rδ(y, u
ε) := ∥Q̄δu

ε − Q̄δy∥2H . (16)

Then the upscaling consistency in the sense of Theorem 2.2 is preserved.

3 Learning-informed PDE-constrained optimization

We cast our hybrid physics-informed neural network based multiscale approach into the following
learning-informed PDE-constrained optimization problem:{

inf J(y, vθ,n) := J (vθ,n) + τ2Rδ(y, vθ,n), over (y, vθ,n) ∈ Y ×Nθ,n ∩ U,

s.t. e(y, vθ,n) = 0,
(17)

where J : Y × U → R+ with τ1, τ2, δ ∈ R≥0 fixed, e : Y × U → Y ∗ is given by e : (y, u) 7→
e(y, u) := bL[u](y, ·)− ⟨f, ·⟩Y ∗,Y and the coupling term (16). The fine-to-coarse scale map is

S : U → Y, u 7→ y(u) := S(u), (18)

with e(y(u), u) = 0. Indeed, Assumption 2.3 implies that S(u) ∈ Y is well-defined for u = uε and
u = uε

k, k ∈ N. We also need the following.

Assumption 3.1 (Continuity). Let uε ∈ U be the solution of (2) and {uε
k} ⊂ X the associated

approximating sequence. Then S(uε
k) ⇀ S(uε) in Y as k →∞.

Eliminating y from the set of independent variables in (17) results in the reduced optimization problem

inf Ĵ(vθ,n) := J(S(vθ,n), vθ,n), over vθ,n ∈ Nθ,n ∩ U. (19)

Note that Assumption 2.3 is only invoked for the approximating sequence {uε
k}. Thus, poor choices

of θ may lead to the loss of coercivity or boundedness of the coarse-scale forms (5) for u = vθ,n.
In such a situation, it is not guaranteed that S(vθ,n) is well-defined. In order to cope with this, the
continuous dependence of (5) on u is crucial. Such a continuity property, however, depends on the
specific underlying problem and the parameterization of L

[
uθ,n

]
by uθ,n. It, thus, needs to be studied

case by case with respect to concrete applications. Observe further that Assumption 2.3 guarantees
that for each k ≥ Nε, there exists rk ∈ R+ such that we get the existence of S(vθ,n) for vθ,n ∈
Brk(u

ε
k) := {v ∈ Nθ,n : ∥uε

k − v∥U ≤ rk}. Assumption 2.4 and the embedding X ↪→ U imply
that the balls Brk(u

ε
k) are non-empty for n ≫ 1. For more details, we refer to Proposition 4.5 and

the accompanying discussion in our example section below. In addition, we note that guaranteeing
the existence of minimizers in Nθ,n ∩ U for (19) is not possible, in general, as Nθ,n may not be
topologically closed in U . In order to cope with this, we resort to the notion of quasi-minimization; cf.
[33], see also [30]. The latter only requires the existence of an infimum of Ĵ over Nθ,n ∩ U .

Clearly, since Ĵ(·) ≥ 0, inf Ĵ exists over Nθ,n∩U for every n ∈ N. Now let {γn} be a real sequence
with γn > 0 for all n ∈ N and γn ↓ 0 as n → ∞. Then, for every n ∈ N, there exists uθ,n ∈ Nθ,n

such that
Ĵ(uθ,n) ≤ inf

vθ,n∈Nθ,n∩U
Ĵ(vθ,n) + γn.

We refer to {uθ,n}n∈N as a sequence of quasi-minimizers of (19). In the following result, we consider
J with the coupling term (16), but extending it to (11) is straightforward.
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M. Hintermüller, D. Korolev 10

Theorem 3.1. Suppose that Assumptions 2.3, 2.4, 2.6, and 3.1 hold. Let {uε
θ,n} be a quasi-

minimizing sequence for Ĵ : U → R≥0. Then, lim
n→∞

Ĵ(uε
θ,n) ≤ τ2Rδ(y, u

ε) and lim
n→∞
∥uε

θ,n −
uε∥U = 0, where uε is the solution to (2) according to Assumption 2.1, and y = y(uε).

Proof. Let uε be the solution to (2) and {uε
k}, uε

k ∈ X for all k, be its approximating sequence (3).
Assumption 2.4 and the density of X in U imply that for each k, there exists a sequence {vεk,n}n∈N,
with vεk,n ∈ Nθ,n∩X , such that vεk,n → uε

k in X as n→∞. Then the diagonal sequence1 {vεk,k}k∈N
satisfies vεk,k → uε in U as k → ∞. Here, we also used the dense embedding X ↪→ U and the
estimate

∥vεk,k − uε∥U ≤ C∥vεk,k − uε
k∥X + ∥uε

k − uε∥U → 0 as k →∞,

with some embedding constant C > 0. The same embedding, the boundedness of Aε and B, re-
spectively, and the upper bound in (4) result in the existence of C > 0 such that

∥Aεvεk,k − f∥H + ∥Bvεk,k∥Z ≤ C∥vεk,k − uε
k∥X + ∥Aεuε

k − f∥H + ∥Buε
k∥Z → 0

as k → 0. Therefore, {vεk,k}k∈N is also an approximating sequence (3).

Since Nθ,n ⊂ Nθ,n+1, for all n ∈ N it holds that

Ĵ(uε
θ,n) ≤ inf

v∈Nθ,n∩U
Ĵ(v) + γn ≤ J (vεn,n) + τ2Rδ(S(v

ε
n,n), v

ε
n,n) + γn (20)

with γn > 0 for all n ∈ N and γn ↓ 0. Observe next that J (vεn,n) → 0 as n → ∞ by (3). Invoking
the triangle inequality and Q̄δ ∈ L(H), we get

Rδ(S(v
ε
n,n), v

ε
n,n) ≤∥Q̄δv

ε
n,n − Q̄δy∥2H + ∥Q̄δ∥2∥S(vεn,n)− y∥2H (21)

+2∥Q̄δ∥∥Q̄δv
ε
n,n − Q̄δy∥H∥S(vεn,n)− y∥H .

Then, we use Assumptions 2.3, 3.1 and the compact embedding Y ↪→ H to obtain lim
n→∞
∥S(vεn,n)−

y∥2H = 0. In addition, lim
n→∞
∥Q̄δv

ε
n,n − Q̄δy∥2H = Rδ(y, u

ε). The first limit claim then follows from

(20) and (21).

The stability estimate (4), τ1 > 0 and the inequality (a+ b) ≤ 21/2(a2 + b2)1/2 imply that

Cs∥uε
θ,n − uε∥U ≤ ∥Aεuε

θ,n −Aεuε∥H +
√
τ1∥Buε

θ,n − Buε∥Z ≤
(
2J (uε

θ,n)
) 1

2 . (22)

An argument identical to the above in (20) while replacing Ĵ(uε
θ,n) byJ (uε

θ,n), we get lim
n→∞
J (uε

θ,n) =

0. The convergence result then follows from (22).

If the assumptions of Theorem 2.2 are satisfied in addition to those of Theorem 3.1, then it follows
that Rδ(S(u

ε), uε) → 0 as ε → 0. Theorem 3.1 suggests that Rδ acts as a regularizer in the
training process, and one might expect from Theorem 2.2 that its efficiency increases with decreasing
ε. However, as ε → 0, potential stability issues may arise, since Cs and Cb, in general, may depend
on ε.

1We denote it also by {vεn,n}n∈N, depending on the importance of the index k or n in the limit.
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Hybrid multiscale NN based solver as a PDE-constrained problem 11

3.1 Discrete approximation

The (fully) discrete version of (17) comes in two steps: (i) First, we consider θ → vθ,n, reducing every
NN-function to its finite set of generating parameters belonging to Rn; (ii) then, we replace the state
y by a finite dimensional approximation yh, with h indicating the associated discretization parameter
such as, e.g., the mesh width in a finite element method [50].

Let us start with item (i) and define, in a slight mis-use of earlier notation,

Sn := S ◦ Fn : Rn → Y, θ 7→ y(θ) := Sn(θ), (23)

where Fn comes from (8). We invoke the following assumptions on differentiability and invertibility.

Assumption 3.2 (Fréchet differentiability). The fine-to-coarse scale map (18) is continuously Fréchet
differentiable and Fn ∈ C∞(Rn,Nθ,n).

Assumption 3.3. The operators L[vθ,n] ∈ L(Y, Y ∗) and ey(y, vθ,n) ∈ L(Y, Y ∗) have bounded
inverses for all vθ,n ∈ Br(u

ε) := {v ∈ Nθ,n : ∥uε − v∥U ≤ r}, where r ∈ R+ depends on L, uε

and n ∈ N.

Assumption 3.2 and the chain rule imply that Sn is continuously Fréchet differentiable. We also note
that Fn satisfies Assumption 3.2 for smooth activation functions in a neural network, i.e., σ ∈ C∞(R).
Accordingly, the differentiability requirement can be reduced via reducing the one on σ. For vθ,n ∈
Nθ,n and again in a slight mis-use of notation, we set e(y,θ) := e(y, vθ,n). Via the implicit function
theorem for e(y(θ),θ) = 0 we obtain

ey(y(θ),θ)y
′(θ) + eθ(y(θ),θ) = 0, (24)

where we have y′(θ) ∈ L(Rn, Y ) and, upon obvious identification, y′(θ)∗ ∈ L(Y ∗,Rn). By apply-
ing the chain rule, we find the gradient of (19):

∇Ĵ(θ) = y′(θ)∗∂yJ(y(θ),θ) +∇θJ(y(θ),θ), (25)

In practical realizations of PINNs, the second summand in (25) is typically produced by automatic
differentiation, and the first summand is realized via the adjoint method [32]. Concerning the latter,
Assumption 3.3 and (24) yield the adjoint equation

ey(y(θ),θ)
∗p = −∂yJ(y(θ),θ) = 2τ2Q̄

∗
δ(Q̄δvθ,n − Q̄δy(θ)), (26)

where p ∈ Y denotes the adjoint variable (or adjoint state, sometimes also called co-state).

Now we come to the second step of discretization. Here we use the finite element (FE) method applied
to the coarse-scale equation. More specifically, let Yh := span{ϕj, 1 ≤ j ≤ Nh} ⊂ Y , Nh ∈ N,
be the standard finite dimensional space of piecewise-linear and globally continuous functions over
a domain Ω ⊂ Rd, possibly including boundary conditions [50]. Of course, other choices of Yh are
possible as well. The finite element approximation of (7), which involves the neural network based
function vθ,n as data, is then obtained by a standard Galerkin projection: Find yh := yh(vθ,n) ∈ Yh

such that

bL[vθ,n](yh, vh) = ⟨f, vh⟩Y ∗,Y ∀vh ∈ Yh. (27)

Assumption 3.3 implies that (27) admits a unique solution yh(vθ,n) ∈ Yh for all vθ,n ∈ Nθ,n. The
adjoint equation is discretized similarly: Find ph ∈ Yh such that

⟨ey(yh(θ),θ)∗ph, vh⟩Y ∗,Y = 2τ2⟨Q̄δvθ,n − Q̄δyh(θ), Q̄δvh⟩H ∀vh ∈ Yh. (28)
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Both FE discretized equations result in the following algebraic system:

Bh[θ]yh = Fh, Bh[θ]
⊤ph = 2τ2(Ph[θ]− Ph[yh]), (29)

where yh ∈ RNh and ph ∈ RNh are the coefficients of the FE functions yh =
∑Nh

i=1(yh)iϕi

and ph =
∑Nh

i=1(ph)iϕi. Moreover, we have Bh[θ] ∈ RNh×Nh , (Bh[θ])ij := bL[vθ,n](ϕi, ϕj),
Fh ∈ RNh , (Fh)j := ⟨f, ϕj⟩Y ∗,Y , Ph[θ] ∈ RNh , (Ph[θ])j := ⟨Q̄δvθ,n, Q̄δϕj⟩H .

The loss function J is usually discretized by quadrature rules. Assuming H = L2(Ω) and Z =
L2(∂Ω), for example, a straight forward approach results in

ĴM,h(θ) := ∥AεvMθ,n − f∥2HMr
+ τ1∥BvMθ,n − g∥2ZMb

+ τ2∥Q̄δv
M
θ,n − Q̄δyh(θ)∥2Hh

,

where, for a sufficiently regular finite dimensional approximating function vh, we use

∥vh∥2HMr
:=

Mr∑
i=1

wr
i v

2
h(x

r
i ), ∥vh∥2ZMb

:=

Mb∑
i=1

wb
iv

2
h(x

b
i), ∥vh∥2Hh

:=
Nr∑
i=1

wh
i v

2
h(x

h
i ),

with {xr
i , w

r
i }Mr

i=1 is a set of collocation points and weights in Ω, {xb
i , w

b
i}

Mb
i=1 is a set of collocation

points and weights on ∂Ω, {xh
i , wh

i }
Nh
i=1 are our finite element nodes and quadrature weights. Above,

M := Mr +Mb is the total number of collocation points.

Algorithmically and assuming that ∇ĴM,h(θ) is a sufficiently accurate approximation of ∇Ĵ(θ) (i.e.
securing descent properties with respect to Ĵ at θ) we use the discrete gradient, e.g., in the Adam
optimizer [51] to minimize ĴM,h(θ). Next we summarize our overall computational procedure in Al-
gorithm 1. Upon successful termination it produces neural network parameters and other outputs by
setting ît := it + 1. In Algorithm 1, gradθ refers to automatic differentiation with respect to the NN

Algorithm 1 Hybrid physics-informed NN training

Input: Max. number of iterations itmax, initial NN parameters θ(0), initial state FEM coefficients
yh(θ

(0)), optimizer hyperparameters.

Output: NN parameters θ̂ := θ(ît), control variable vM
θ̂,n
≈ uε,M

θ,n , the state variable yh(θ̂) ∈
RNh .

1: while 0 ≤ it ≤ itmax − 1 do
2: Solve the adjoint system Bad

h [θ
(it)]ph = 2τ2(Ph[θ

(it)]− Ph[yh(θ
(it))])

3: Compute∇θĴ
M,h(yh(θ

(it)),θ(it)) := gradθ(Ĵ
M,h(θ(it)))

4: Assemble the total gradient∇ĴM,h(θ(it))

5: Update weights θ(it+1) ← Optimizer
(
∇ĴM,h(θ(it)), optimizer hyperparameters

)
6: Update control variable vθ(it+1),n ← vθ(it),n

7: Solve the state system Bh[θ
(it+1)]yh(θ

(it+1)) = Fh

8: it← it+ 1
9: end while

parameters. The typical optimizer of choice also depends on hyper-parameters. For the Adam opti-
mizer, these include selecting a learning rate lr ∈ R+ or a schedule of learning rates lr : N → R+

with it 7→ lr(it), as well as specifying values for βAd
1 ∈ R+ and βAd

2 ∈ R+ for the moving average
update, and setting a batch size. We initialize θ(0) using the Glorot scheme [52], but θ(0) can also be
obtained by solving a neighboring, yet simpler problem [14], [15]. For a comprehensive overview of
standard NN optimization techniques, we refer exemplarily to [53] and the references therein.
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4 An application in heat conduction

In this section, we focus on the example of heat conduction with respect to both, the coarse and the
fine scale, respectively. For this purpose let uθ,n denote the parameterization of L

[
uθ,n

]
. Specifically,

we study our hybrid approach in view of its embedded upscaling process.

4.1 Upscaling-based parameterization

Our exemplary stationary heat transfer problem in Ω̄ = [0, 1]2 is defined as follows:

−∇ · (Kε∇wε) = q, in Ω, and wϵ = 0, on ∂Ω, (30)

where wε is the temperature field, q ∈ L2(Ω) is the source term, Kε ∈ C0,1(Ω̄,R+) is a Lipschitz
continuous coefficient and ε = min(ε1, . . . , εI), where ε1, . . . , εI ∈ R+ are small parameters
indicating the lengths of small scales. In addition, it holds that

∃α, β ∈ R+ : α ≤Kε(x) ≤ β, ∀x ∈ Ω̄, (31)

We assume further that ∥∇Kε∥L∞(Ω) ≤ cK
ε

, where cK ∈ R+ is ε-independent.

Solving (30) using finite elements can be computationally demanding due to the requirement h ≪ ε
for a mesh size h ∈ R+ and ε ≪ 1 in order to resolve the fine scale behaviour numerically. We aim
to efficiently characterize material properties of Ω and determine a computationally feasible coarse-
scale (homogenized) counterpart of (30). In this vein, the concept of G-convergence is employed to
formalize the notion of a homogenized equation and the related effective material; see, e.g., [54].

Definition 4.1. A coefficient sequence {Kε(·)} is said to G-converge to K∗(·) as ε→ 0, if for any
q ∈ H−1(Ω) the sequence of solutions {wε} of (30) satisfies

wε ⇀ w0 in H1
0 (Ω), Kε∇wε ⇀ K∗∇w0 in L2(Ω), (32)

where w0 is the solution to the homogenized equation

−∇ · (K∗∇w0) = q, in Ω, and w0 = 0, on ∂Ω.

Various techniques exist to find the G-limit. Their respective applicability, however, depends on the
specific problem and properties of the underlying medium. If such a G-limit exists, then it does not
depend on q and on the boundary data on ∂Ω. We also note that the existence of K∗ for general
heterogeneous media still remains an open problem. Often, the representative volume element (RVE)
technique can be applied to find an approximation of K∗. This approach is widely utilized in engi-
neering applications; see, e.g., [23], [24], [55], [56]. Here we state its equivalent characterization via
weak convergence of gradients and fluxes in (32): For any measurable set V ⊆ Ω of positive measure
|V | > 0 and ⟨ · ⟩V = 1

|V |

∫
V
· dx (understood component-wise), one has

lim
ε→0
⟨∇wε⟩V = ⟨∇w0⟩V , lim

ε→0
⟨Kε∇wε⟩V = ⟨K∗∇w0⟩V . (33)

The existence of the above limits for general heterogeneous media is difficult to verify. Thus, here
we only assume that these limits exist; see also Assumption 2.5. Further, we introduce the following
approximations:

⟨∇wε⟩V ≈ lim
ε→0
⟨∇wε⟩V = ⟨∇w0⟩V , ⟨Kε∇wε⟩V ≈ lim

ϵ→0
⟨Kε∇wε⟩V ≈ K̃⟨∇wε⟩V ,

where K̃ is defined as follows.
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Definition 4.2 (Upscaled coefficient). The upscaled coefficient K̃ satisfies

⟨Kε∇wε⟩V = K̃(x)⟨∇wε⟩V , for all x ∈ V, (34)

where K̃ is a 2× 2 tensor on V approximating K∗ on V .

Remark 4.1. The upscaling process of this section admits a straighforward generalization for the
matrix coefficient Kε; cf. [25]. In our setting, Kε and K∗ are scalar-valued coefficients, but it is
beneficial to consider K̃ as a tensor for anisotropic materials; see Example 4.1.

Note that K̃ is constant on V as a consequence of its definition. Further we observe that in our
concrete setting, two solutions of the fine-scale problem are required to obtain K̃ from (34). In contrast
to K∗, boundary conditions may then affect K̃. Of course, it is very desirable to identify a set of
boundary conditions such that the dependence of K̃ on them is weak. In our application context,
we choose the linear temperature drop boundary conditions wε

i = xi on ∂Ω, i = 1, 2, but periodic
boundary conditions or temperature drop no-flow conditions can be applied as well. Their related
analyses are similar; compare [25], [55], [57]. The calculation of the upscaled thermal conductivity
coefficient then leads to the following fine-scale problems: For i ∈ {1, 2}, find wε

i : Ω→ R with

−∇ · (Kε∇wε
i ) = q, in Ω, and wε

i = xi, on ∂Ω. (35)

We note that q = 0 is typically chosen to prevent any influence of the source term on K̃. However, our
multiscale solver is designed for computations of fine-scale solutions with q ̸= 0, and setting q = 0
defines a special case for our NN-based homogenization scheme below. Therefore, a more general
form of (35) is considered, but the influence of q on K̃ is assumed to be weak. The upscaling process
is described in Algorithm 2; cf. [25, Section 4].

Algorithm 2 Upscaling algorithm

Input: Ω =
⋃N

j=1 Vj with Vi ∩ Vj = ∅, i ̸= j, the solutions wε = {wε
1, w

ε
2} of (35).

Output: The upcaled coefficient K̃.

1: for j ∈ {1, . . . , N} do
2: Compute F̃ j

i := ⟨Kε∇wε
i ⟩Vj
∈ R2, T̃ j

i := ⟨∇wε
i ⟩Vj
∈ R2 for i ∈ {1, 2}.

3: Insert F̃ j
i and T̃ j

i into (34) and find K̃
j
∈ R2×2 by solving the respective matrix equation:(

K̃
j

11 K̃
j

12

K̃
j

21 K̃
j

22

)(
(T̃ j

1 )1 (T̃
j
2 )1

(T̃ j
1 )2 (T̃

j
2 )2

)
=

(
(F̃ j

1 )1 (F̃
j
2 )1

(F̃ j
1 )2 (F̃

j
2 )2

)
. (36)

4: end for
5: Get K̃ with K̃(x) = K̃

j
for x ∈ Vj

Clearly, we need to ensure that the matrix of averaged gradients in (36) is invertible. This requires
the partition {Vj} to be sufficiently heterogeneous with each Vj of “reasonable” size to prevent linear

dependence between T̃ j
1 and T̃ j

2 . Algorithm 2 is based on the insertion of averaged quantities into
problem-dependent constitutive relations. In our case, we apply Fourier’s law of heat conduction; cf.
[56], [57]. In view of other applications, let us note that Darcy’s law is used for porous media flows
[25], [58], [59] as the relation between fluid velocity and pressure, and Hooke’s law is applied [60] in
elasticity theory to relate stress and strain fields.
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4.2 Analysis of the model equations

Next we show that the assumptions of Section 2 are satisfied by our fine- and coarse-scale model
problems. For this purpose, let X := Ck(Ω̄) ∩ C0(Ω̄) for some k ≥ 2, and U = U0 := H2(Ω) ∩
H1

0 (Ω) be equipped with the norms

∥v∥X =
∑
|a|≤2

sup
x∈Ω
|∂a

xv(x)|, ∥v∥U =
(∑
|a|≤2

∥∂a
xv∥2L2(Ω)

) 1
2 , (37)

respectively. Recall that X is dense in U and ∥u∥U ≤ |Ω|1/2∥u∥X for v ∈ X , i.e, X ↪→ U . Neural
network maps vθ,n ∈ Nθ,n in Section 2 do not vanish on ∂Ω and X ̸⊂ Nθ,n for the chosen X ;
Nθ,n is later modified to guarantee that Assumption 2.4 holds. Let H := L2(Ω), Z := L2(∂Ω),
Y := H1

0 (Ω), Y
∗ = H−1(Ω) with Y ↪→ H ↪→ Y ∗, where Y is compactly embedded into H by

the Rellich–Kondrachov Theorem. For u = (u1, u2) with u1, u2 ∈ U , we set U = U × U with
∥u∥U := (∥u1∥2U + ∥u2∥2U)

1
2 and X := X×X with ∥u∥X := ∥u1∥X + ∥u2∥X . For the discussion

below, the sub-index i ∈ {1, 2} is fixed for the fine-scale solution uε
i and the coarse-scale solution yi.

It is convenient to study problem (35) as a problem with homogeneous Dirichlet boundary conditions.
For this purpose, let Gi := xi be the extension of our boundary conditions to Ω, and set wε

i :=
uε
i +Gi, where uε

i satisfies

−∇ · (Kε∇uε
i ) = f ε

i , in Ω, and uε
i = 0, on ∂Ω, (38)

with f ε
i := q + ∂xi

Kε ∈ L2(Ω) = H . By the Lax–Milgram lemma the fine-scale problem (38) has
a unique solution uε

i ∈ Y . The following proposition shows that Assumption 2.1, Assumption 2.2 and
Assumption 2.6 are satisfied, respectively.

Proposition 4.1. LetAε : Ũ → H with v 7→ Aεv = −∇ · (Kε∇v), and q ∈ H . Then

Cs(ε)∥u∥U ≤ ∥Aεu∥H ≤ Cb(ε)∥u∥U , ∀u ∈ Ũ , (39)

where Cs(ε) > 0, Cb(ε) > 0 with Cs(ε)→ 0, Cb(ε)→∞ as ε→ 0, and ∥uε
i∥H ≤ C(1+∥q∥H),

with C ∈ R+ ε-independent.

Proof. We multiply (38) by uε
i and integrate by parts to get

α

∫
Ω

|∇uε
i |2 dx ≤

∫
Ω

Kε∇uε
i · ∇uε

i dx = −
∫
Ω

Kεei · ∇uε
i + quε

i dx.

Using the Cauchy-Schwarz and Poincaré inequalities, we get

∥∇uε
i∥H ≤

β + cp∥q∥H
α

, (40)

where the Poincaré constant cp ∈ R+ depends only on Ω, and β is according to (31). Note that
problem (38) can be written as follows:

−∆uε
i = gεi :=

f ε
i +∇Kε · ∇uε

i

Kε , in Ω, and uε
i = 0, on ∂Ω.

Invoking a standard H2(Ω) regularity result for convex domains [46], we get the existence of Ĉ =

Ĉ(Ω) ∈ R+ with

∥uε
i∥U ≤ Ĉ∥gεi ∥H ≤

Ĉ

α

(
∥q∥H + (∥∇uε

i∥H + 1)∥∇Kε∥L∞(Ω)

)
. (41)
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Using (40) and ∥∇Kε∥L∞(Ω) ≤ cK
ε

, we obtain the estimate

∥uε
i∥U ≤

Ĉ

α

(
(1 +

β

α
)
cK
ε

+ (1 +
cK
ε

cp
α
)∥q∥H

)
≤ (1 +

C

ε
)∥q∥H , (42)

where C ∈ R+ is ε-independent. The bound (42) implies that Aε has a bounded inverse (Aε)−1 :
H → U , i.e., ∥(Aε)−1∥ ≤ (1 + C

ε
) < ∞ for ε > 0, and the lower bound in (39) readily follows.

Using the Young and the Cauchy–Schwarz inequalities, for u ∈ U , we get

∥Aεu∥2H ≤ 2
(
∥∇Kε · ∇u∥2H + ∥Kε∆u∥2H

)
≤
(
C

ε2
+ β2

)
∥u∥2U ,

where C ∈ R+ is ε-independent. This proves the upper bound in (39).

Applying the Poincaré inequality to (40), we get ∥uε
i∥H ≤ cp

β
α
+

c2p
α
∥q∥H ≤ C(1 + ∥q∥H), where

C ∈ R+ is chosen sufficiently large and independently of ε.

The next result, taken from [12, Theorem 3.3], shows that NNs with smooth activation functions are
universal approximators of Ck(Ω̄).

Proposition 4.2. Suppose that σ ∈ C∞(R), σ(s)(0) ̸= 0 for s = 0, 1, ..., and Ω̄ := [0, 1]d. If
v ∈ Ck(Ω̄), then there exists an architecture n⃗ with one hidden layer and v̄θ,n ∈ Nθ,n such that

sup
x∈Ω
|∂a

xv(x)− ∂a
xv̄θ,n(x)| = O

(
1

n(k−|a|)/dω
(
∂b
xv,

1

n1/2

))
holds for all multi-indices a, b with |a| ≤ k, |b| = k, where, for δc > 0, ω(v, δc) = sup{|v(x) −
v(y)| : |x− y| ≤ δc, x, y ∈ Ω̄} is the modulus of continuity of v.

In order to attain homogeneous Dirichlet boundary conditions, the neural network class Nθ,n in Propo-
sition 4.2 requires modification: for v̄θ,n ∈ Nθ,n, we set vθ,n := l(x)v̄θ,n, where l ∈ C∞(Ω̄) with
l(x) = 0 for x ∈ ∂Ω and l(x) > 0 for x ∈ Ω.

Remark 4.2. Signed distance functions l ∈ C∞(Ω̄) are readily constructed for simple boundaries
[43], [61] or can be approximated for complicated geometries using splines [62] or neural networks
[63]. If l(x) is (partially) unknown on Γ ⊆ ∂Ω, using the penalization term ∥Bu∥2L2(Γ) in the loss (9) is
necessary, making implementation easily feasible, but typically increasing optimization difficulty [64].

With a slight misuse of notation, the modified class is still denoted by Nθ,n with vθ,n ∈ Nθ,n. Then we
have Nθ,n ⊂ X verifying Assumption 2.4. We note that the swish function σ(x) = x sigmoid(bx) with
b ∈ R+ being a hyperparameter, satisfies the assumptions of Proposition 4.2. However, the widely-
used tanh(x) does not satisfy σ(2)(0) ̸= 0 rendering Proposition 4.2 non-applicable. The following
result [9, Theorem 5.1] is then useful.

Proposition 4.3. Suppose that σ(x) = tanh(x) and Ω̄ := [0, 1]d. If v ∈ Ck(Ω̄), then there exists an
architecture n⃗ with two hidden layers and v̄θ,n ∈ Nθ,n such that ∥v− v̄θ,n∥Wm,∞(Ω̄) = O(n−(k−m))
holds2, where ∥w∥Wm,∞(Ω̄) = max

|a|≤m
sup
x∈Ω
|∂a

xw(x)|.

2We state the asymptotic convergence rate, but explicit constants are estimated in [9].
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From the prerequisites of Proposition 4.3 we infer X := Ck(Ω̄) ∩ C0(Ω̄) with k > 2 as m = 2 in
our example. Next, Nθ,n is modified as above using the transformation l(x). Clearly, Nθ,n ⊂ X and
∥v∥X ≤ C∥v∥W 2,∞(Ω̄) for v ∈ X and some C ∈ R+. The latter implies X ⊂ ∪nNθ,n, thereby
verifying Assumption 2.4 for the hyperbolic tangent activation function.

Next, we derive a simplified formula for the upscaled coefficient; cf. [25].

Proposition 4.4 (Upscaling formula). Let V = Ω = (0, 1)2 and wε = {wε
1, w

ε
2}, uε = {uε

1, u
ε
2}

be the solutions to (35) and (38), respectively. Then the upscaled coefficient K̃[uε] ∈ R2×2 is given
by

K̃[uε]ei =

∫
Ω

Kε∇wε
i dx =

∫
Ω

Kε(∇uε
i + ei) dx, (43)

where ei ∈ R2 denotes the i-th unit vector. In addition,

K̃[uε]ij = ⟨∇wε
i ·Kε∇wε

j⟩Ω −
∫
Ω

quε
i dx. (44)

Proof. We apply Algorithm 2 to F̃i := ⟨Kε∇wε
i ⟩Ω and T̃i := ⟨∇wε

i ⟩Ω. Since wε
i = uε

i + Gi with
∇Gi = ei, the divergence theorem yields

⟨∇wε
i ⟩Ω =

∫
∂Ω

uε
i η ds+

∫
Ω

ei dx = ei, (45)

where η(x) is the outward unit normal at x ∈ ∂Ω. Inserting F̃i and T̃i into (36), we get (43). From
(43), we deduce

ei · K̃[uε]ej = ⟨∇wε
i ·Kε∇wε

j⟩Ω − ⟨∇uε
i ·Kε∇wε

j⟩Ω. (46)

Integrating the last term in (46) by parts gives (44), since∫
Ω

∇uε
i ·Kε∇wε

jdx =

∫
∂Ω

uε
i (K

ε∇wε
j · η) ds−

∫
Ω

∇ · (Kε∇wε
j)u

ε
i dx, (47)

where uε
i |∂Ω = 0 and −∇ · (Kε∇wε

j) = q in Ω.

The weak form of our model coarse-scale problem reads: Find yi ∈ Y such that

bL[u
ε](yi, v) = ⟨f̃i, v⟩Y ∗,Y ∀v ∈ Y, (48)

where f̃i := q +∇ · (K̃[uε]∇Gi), K̃[u] ∈ R2×2 is computed by using (43) and

bL[u
ε](yi, v) :=

∫
Ω

K̃[uε]∇yi · ∇v dx, ⟨f̃i, v⟩Y ∗,Y =

∫
Ω

qv dx−
∫
Ω

K̃[uε]ei · ∇v dx.

We note that compared to Section 2, f̃i ̸= fi. Since K̃[uε] is a constant matrix, for i ∈ {1, 2} it
holds that ∫

Ω

K̃[uε]ei · ∇v dx =
2∑

j=1

K̃[uε]ji

∫
Ω

∂v

∂xj

dx = 0, (49)

where
∫
Ω

∂v
∂xj

dx = 0 for j ∈ {1, 2} and v ∈ Y . Therefore, y1 = y2 and the sub-index i is omitted in
(48).
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Example 4.1. Let Kε
1(x) = 3 + sin(2πx1

ε ) + sin(2πx2
ε ) (ε = 1/32), Kε

2(x) = 3 + sin(2πx1
ε1

) +

1.5 cos(2πx2
ε2

) (ε1 = 1/16, ε2 = 1/32) and Kε
3(x) = 1/[2 + 1.8 sin(2π(2x1−x2)

ε )] (ε = 1/16). For

q = exp(−∥x − 0.5∥22), we discretize (38) using finite elements with a mesh size h ≪ ε and use (43) to
calculate the upscaled coefficients

K̃1 =

(
2.85 0.00
0.00 2.85

)
, K̃2 =

(
2.83 0.00
0.00 2.59

)
, K̃3 =

(
0.65 0.25
0.25 1.02

)
. (50)

The influence of q on K̃1, K̃2, K̃3 is rather weak due to the rotational symmetry and the moderate amplitude
of q. In Fig. 1, we depict the FEM approximation of the respective fine-scale solution uε1, uε2 used to calculate
each of the coefficients (50), as well as the FEM approximation of y(uε1, u

ε
2). Note that the coarse-scale solution

is similar to its fine-scale counterparts uε1 and uε2 for all three examples, but it does not contain the fine-scale
oscillations of the latter. Since (49) holds true, only one approximation of (48) is available.

Figure 1: Two respective FEM approximations of problem (38) for the coefficients in (50) (left, middle), and one
respective approximation of (48) (right): (a) isotropic media Kε

1(x), (b) anisotropic media with principal axis
anisotropy Kε

2(x), (c) fully anisotropic media Kε
3(x).

Lemma 4.1. The mapping u ∈ U 7→ K̃[u] ∈ R2×2 defined by (43) is Lipschitz continuous, i.e., for
u1,u2 ∈ U we have

∥K̃[u1]− K̃[u2]∥ ≤ β∥u1 − u2∥U , (51)

with β > 0 from (31), and the Frobenius norm ∥K̃[u]∥ :=
(∑2

i,j=1 |K̃[u]ij|2
) 1

2 of K̃[u].
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Proof. From (43) note that K̃[u]ij =
∫
Ω
Kε(∂xi

uj+δij) dx, where δij denotes the Kronecker delta.
The Cauchy–Schwarz inequality yields

|K̃[u1]ij − K̃[u2]ij| ≤ β∥∂xi
(u1)j − ∂xi

(u2)j∥H . (52)

After some straightforward computations, we get

2∑
i,j=1

|K̃[u1]ij − K̃[u2]ij|2 ≤ β2
(
∥∇(u1)1 −∇(u2)1∥2H + ∥∇(u1)2 −∇(u2)2∥2H).

The result then follows from the above estimate.

Next, we establish the uniformity conditions of Assumption 2.3. Assuming momentarily that the off-
diagonal values in (44) are negligible compared to the main diagonal values, and that the influence
of q is rather weak, we show that the coefficients in (44) are uniformly bounded for q = 0. Moreover,
these bounds hold even for q ̸= 0, potentially with adjusted constants. This results then extends to the
truncated approximating sequence due to the Lipschitz dependence (52) of our upscaled coefficient
on u ∈ U .

Proposition 4.5. Suppose that ∥q∥H ≤
α(ν+∥∇uε∥2H)

∥uε∥H
for i ∈ {1, 2}, some 0 < ν < 1, and α ∈ R+

from (31). Let {uε
k} ⊂ X be the approximating sequence (component-wise) of uε ∈ U in the sense

of (3) and K̃[uε] be given by (44) with K̃[uε]ij = 0 for i ̸= j. Then, there exists Nϵ ∈ N such that

C̃α ≤ K̃[uε
k]ii ≤ C̃β for all k ≥ Nε, and C̃α, C̃β ∈ R+ are independent of u = uε

k, u = uε.

Proof. Set vε
1 = (uε

1, 0) and vε
2 = (0, uε

2). Then∇ · vε
i =

∂uε
i

∂xi
and the divergence theorem yield∫

Ω

∂uε
i

∂xi

dx =

∫
Ω

∇ · vε
i dx =

∫
∂Ω

vε
i · η dx = 0, (53)

since uε
i |∂Ω = 0. From (44) and (53) we obtain

K̃[uε]ii = ⟨∇wε
i ·Kε∇wε

i ⟩Ω −
∫
Ω

quε
i dx ≥ α

∫
Ω

|∇wε
i |2dx−

∫
Ω

quε
i dx

= α

∫
Ω

(|∇uε
i |2 + 2

∂uε
i

∂xi

+ 1)dx−
∫
Ω

quε
i dx ≥ α + α∥∇uε

i∥2H −
∫
Ω

quε
i dx.

Applying the Cauchy–Schwarz inequality and our (amplitude) assumption on q, we get

K̃[uε]ii ≥ α + α∥∇uε
i∥2H − ∥q∥H∥uε

i∥H ≥ (1− ν)α =: Cα.

Integration by parts, using the equation satisfied by uε
i , the Cauchy–Schwarz inequality, and (40) result

in the estimate

|K̃[uε]ii
∣∣ ≤ β + β∥∇uε

i∥H ≤ β + β(
β + cp∥q∥H

α
) =: Cβ.

Let Nε be the smallest integer such that ∀k ≥ Nε we have ∥uε − uε
k∥U ≤

ϵk
β

with 0 < ϵk ≤
ν(1− ν)α and ϵk → 0 as k →∞. The continuity (52) for k ≥ Nε implies

0 < (1− ν)2α ≤ K̃[uε]ii − ϵk ≤ K̃[uε
k]ii ≤ K̃[uε]ii + ϵk ≤ Cβ + ν(1− ν)α. (54)

We set C̃α := (1− ν)2α and C̃β := Cβ + ν(1− ν)α to complete the proof.
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The Lax–Milgram lemma and Proposition 4.5 imply that for uε ∈ U and the truncated sequence
{uε

k′} ⊂ X with k′ = k + Nε − 1, there exists, for every k′, a unique solution y(uε
k′) ∈ Y of (48)

with ∥y(uε
k′)∥Y ≤ C∥q∥H , where C ∈ R+ is independent of the fine-scale data. Let n in Nθ,n×Nθ,n

be chosen sufficiently large such that for each k ≥ Nε, there exists 0 < rk ≤ να, 0 < ν < 1, with
∥vθ,n − uε

k∥U ≤ να for some vθ,n ∈ Nθ,n ×Nθ,n. Invoking an argument identical to (54), we get
a unique solution y(vθ,n) ∈ Y . Then, Proposition 4.5 suggests that a significant deviation of vθ,n

from uε in Algorithm 1 may lead to non-existing coarse-scale solutions due to the loss of coercivity
of bL[vθ,n](·, ·). The positive-definiteness of K̃[vθ,n] can also be checked once vθ,n is computed.

In fact, we can then directly evaluate K̃[vθ,n] and check its positive-definiteness. This ensures the
well-posedness of (48) and guarantees that Assumption 3.3 is satisfied. In case the latter does not
hold true and y(vθ,n) is not well-defined, then we update θ using the standard PINN approach without
coarse-scale constraints.

Proposition 4.5 motivates the following rather general data assumption.

Assumption 4.1. For q ∈ H , Kε ∈ C0,1(Ω̄) and the truncated approximating sequence {uε
k′} with

k′ = k + Nε − 1, there exists Nϵ ∈ N such that y(uε
k′) ∈ Y and ∥y(uε

k′)∥Y ≤ C∥q∥H for each
k ∈ N, where C ∈ R+ is independent of uε

k′ and uε.

Note that Assumption 4.1 does not characterize q and Kε. For a precise characterization, it is nec-
essary to establish tight bounds on K̃[uε] which are independent of fine scale data. Here, Proposi-
tion 4.5 only serves the purpose of illustrating the underlying principle. If y(vθ,n) is well-defined, we
note that the constant coefficient in (48) implies that y(vθ,n) ∈ U and ∥∇y(vθ,n)∥Lp(Ω) <∞ for all
p > 1, which is relevant to Theorem 2.2 and concludes our discussion on regularity issues.

We verify Assumption 3.1 about the continuity of our fine-to-coarse scale map.

Proposition 4.6. Suppose that Assumption 4.1 holds true. Then S(uε
k′) ⇀ S(uε) in Y as k →∞,

where S : U → Y is the fine-to-coarse scale map.

Proof. Note that ∥y(uε
k′)∥Y ≤ C∥q∥H for {uε

k′}, C ∈ R+ and k′ ∈ N as stated in Assumption 4.1.
The reflexivity of Y and the Banach—Alaoglu theorem imply that {y(uε

k′)} admits a weakly conver-
gent subsequence (with its elements still denoted by y(uε

k′)). Let ŷ ∈ Y denote that weak limit.
Rearranging terms in (48), we obtain

bL[u
ε](y(uε), v) +

∫
Ω

(
K̃[uε

k′ ]− K̃[uε]
)
∇y(uε) · ∇v dx =

∫
Ω

qv dx, ∀v ∈ Y.

Note that bL[uε](y(uε
k′), v)→ bL[u

ε](ŷ, v) as k →∞ for all v ∈ Y , since L[uε] ∈ L(Y, Y ∗) and
hence it is weakly continuous. The continuity (51) and the Cauchy–Schwartz inequality yield∫

Ω

(
K̃[uε

k′ ]− K̃[uε]
)
∇y(uε

k′) · ∇v dx ≤ C∥uε
k′ − uε∥U∥q∥H∥v∥Y → 0 as k →∞,

since C ∈ R+ does not depend on uε
k′ and uε. This shows that ŷ = y(uε).

The continuity of S ′ : U → L(U , Y ) can be established through standard techniques, which we
briefly outline here by examining the sensitivity equation. The sensitivity z := S ′(u)h ∈ Y of S(·) at
u ∈ U in the direction h ∈ U is given as the solution of the linearized state equation

⟨ey(y(u),u)z, v⟩Y ∗,Y = −⟨eu(y(u),u)h, v⟩Y ∗,Y ∀v ∈ Y, (55)
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where the partial derivatives ey(y,u) : Y → Y ∗ and eu(y,u) : U → Y ∗ read

⟨ey(y,u)w, v⟩Y ∗,Y =

∫
Ω

K̃[u]∇w · ∇v dx, ⟨eu(y,u)h, v⟩Y ∗,Y =

∫
Ω

K̃u[h]∇y · ∇v dx,

respectively, and the coefficient K̃u[h] ∈ R2×2 is given by K̃u[h]ij =
∫
Ω
Kε∂xi

hj dx. Similar

to Lemma 4.1, we get ∥K̃u[h]∥ ≤ β∥h∥U for h ∈ U . For u1,u2 ∈ U , let z1 = S ′(u1)h and
z2 = S ′(u2)h. Invoking the well-posedness of (55) and (51) while estimating the right-hand side of
(55) provide us with the estimate

∥
(
S ′(u1)− S ′(u2)

)
h∥Y ≤ CS′∥u1 − u2∥U∥h∥U ,

where CS′ ∈ R+ generally depends on u. Therefore, S(u) is continuously Fréchet differentiable and
Assumption 3.2 holds true. In the above argument, the invertibility of ey(y,u) in (55) is required. In
our case, ey(y,u) coincides with e(y,u), where the invertibility of the latter depends on the coercivity
of bL[u](·, ·) and is only guaranteed for u = uε and u = uε

k with k ≥ Nε; see Assumption 2.3,
Proposition 4.5 and the related discussion.

4.3 Neural network-based upscaling

We present several applications of our hybrid multiscale solver to the upscaling for the heat transfer
problem (35). Firstly, we adapt Algorithm 2 to our hybrid approach. We set q = 0 in (38) to prevent
its influence on K̃[uε]. Therefore, f ε

i = ∂xi
Kε ∈ L∞(Ω) with i ∈ {1, 2}. Given Ω = ∪Nj=1Vj ,

we compute the upscaled coefficient on each grid block Vj by employing (36). Then, the right-hand
side f̃i of the coarse-scale equation (48) has a non-vanishing contribution (49) and y1 ̸= y2. For
y = (y1, y2), we define the space Y := Y × Y , equipped with the standard product norm. The loss
J : Y × U → R≥0 and the PDE-constraints ei : Y × U → Y ∗ are defined as follows:

J(y,u) :=
2∑

i=1

(
∥Aεui − f ε

i ∥2H + τ1∥Bui∥2Z + τ2Rδ(ui, yi)
)
,

ei(yi,u) := bL[u](yi, ·)− f̃i, 1 ≤ i ≤ 2.

The learning-informed optimal control problem for numerical homogenization reads:{
inf J(y,vθ,n) over (y,vθ,n) ∈ Y × (Nθ,n ×Nθ,n) ∩ U ,
s.t. ei(yi,vθ,n) = 0, 1 ≤ i ≤ 2.

(56)

The analysis of the fine-scale constituents of (56) and the related compression operator (10) remains
largely unchanged compared to the previous sections. However, K̃[uε] is now a piecewise-constant
tensor. Therefore, ∇yi ̸∈ H1(Ω) and Lemma 2.2 is not applicable. The coupling term (16) must be
used to preserve the upscaling consistency as stated in Theorem 2.2. The optimization algorithm for
(56) needs modification: it now requires solving two discrete state and adjoint equations, respectively,
for the gradient update.

Suppose that V = Ω. The coupling term is given by (11) and K̃ is computed via (43). For q = 0,
the coarse-scale problem admits only the trivial solution y ≡ 0, and (56) degenerates to the stan-
dard PINN problem due to the absence of non-trivial constraints. For q ̸= 0 we distinguish between
isotropic and anisotropic materials. We note that for isotropic materials and q with a weak influence
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on K̃ (moderate amplitude, rotational symmetry, etc), (K̃[uε])11 = (K̃[uε])22 and (K̃[uε])12 =

(K̃[uε])21 = 0; see also Example 4.1. Therefore, only one fine-scale problem must be solved to

determine (K̃[uε])11 and (56) corresponds to the abstract problem (17). For anisotropic coefficients,
we need to consider two fine-scale problems, leading to our sub-index notation adjustments, when
compared to the abstract setting of Section 2.

4.4 Implementation issues

We provide the implementation details of Algorithm 1 for the 1-D problem

−∂x(Kε∂xu
ε) = f, in Ω := (0, 1), and uε(0) = 0, uε(1) = 0, (57)

where Kε(x) = 1/(1.2 + sin(2πx
ε
)), f := q+ ∂xK

ε and q = −3(2x− 1). The bilinear and linear

forms for the coarse-scale problem are defined as in (48) with K̃[u] =
∫ 1

0
Kε(∂xu + 1) dx. The

derivative eθ(y,θ) ∈ L(Rn, Y ∗) is given by

⟨eθ(y,θ)s, v⟩Y ∗,Y =

∫ 1

0

K̃θ[s]∂xy · ∂xv dx, K̃θ[s] =

∫ 1

0

Kε⟨∇θ(∂xvθ,n), s⟩Rn dx

for s ∈ Rn. Our implementation is based on the JAX framework [65] as it appears well-suited for
obtaining derivatives such as∇θ(∂xvθ,n). Given the k-th unit vector ek ∈ Rn, one obtains

⟨y′(θ)∗∂yJ(y(θ),θ), ek⟩Rn = ⟨eθ(y(θ),θ)ek, p⟩Y ∗,Y . (58)

The formula (58) is useful for the assembly of the first summand in (25). We get ∂yJ(y(θ),θ) =
−2τ2(Q̄δvθ,n−y(θ)) for the chosen coupling term (11), and the right-hand side of the adjoint system
in (29) is given by 2τ2(Ph[θ]−Mhyh), Mh ∈ RNh×Nh , (Mh)ij := ⟨ϕi, ϕj⟩H .

The uniform quadrature rule is applied to discretize the PINN loss on the set of collocation points
{xr

i}Mi=1 with 1
M
≪ ε. Piecewise-linear finite elements on the uniform partition {xh

i }
Nh
i=1 with dimYh =

Nh are chosen for the discretization of the coarse-scale equation. The algebraic systems are de-
scribed in Section 2, but we note that Bh[θ] = K̃[vθ,n]Ah with (Ah)ij = ⟨∂xϕi, ∂xϕj⟩H . The
discrete counterpart of (58) is given by

⟨eθ(yh(θ),θ)ek, ph⟩Y ∗,Y = yT
hEh[θk] ph, 1 ≤ k ≤ n,

whereEh[θk] ∈ RNh×Nh , (Eh[θk])ij := ⟨eθ(ϕi,θ)ek, ϕj⟩Y ∗,Y . We get (Eh[θk])ij = k̃M [θ](Ah)ij ,

where k̃M [θ] ∈ Rn represents approximations of K̃θ[ek] using the uniform quadrature rule

(k̃M [θ])k =
1

M

M∑
i=1

Kε(xr
i )
∂2vMθ,n(x

r
i )

∂θk ∂x
, 1 ≤ k ≤ n.

Let ωav(δ) := ⌊Nhδ⌋ with δ = ε and ⌊·⌋ returns the greatest integer less than or equal its argument,
and consider the discrete sets of finite element mesh points V D

δ (xh
i ) := {xh

j : |j − i| ≤ ωav(δ)}
centered around xh

i . We use the approximation

Qδv
M
θ,n(x

h
i ) ≈

1

|V D
δ (xh

i )|
∑

xh
j ∈V D

δ (xh
i )

vMθ,n(x
h
j ) =: QD

δ v
M
θ,n(x

h
i ), (59)
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where |V D
δ (xh

i )| denotes the number of mesh points in V D
δ (xh

i ). The discretization (59) computes
the moving average of vMθ,n on our FEM mesh with nodes {xh

i }
Nh
i=1 with ωav denoting the window size.

Then, the discrete compression operator is given by

Q̄D
δ v

M
θ,n(x) =

{
QD

δ v
M
θ,n(x), x ∈ [ δ

2
, 1− δ

2
],

vMθ,n(x), x ∈ [0, δ
2
) ∪ (1− δ

2
, 1].

(60)

The oscillating coefficient and the spectral bias make it difficult to approximate (57) using a standard
feed-forward NN. Rather we apply a multiscale Fourier feature NN [34], which uses Fourier feature
mappings F (k) : R→ R2m:

F (k)(x) =
(
cos(2πB(k)x), sin(2πB(k)x)

)
, 1 ≤ k ≤ K,

where each entry of B(k) ∈ Rm×d is sampled from a Gaussian distribution N (0, ϱ2k) with ϱk > 0 a
specified hyperparameter. These features are used as inputs for the hidden layers, which are defined
for 1 ≤ k ≤ K and 2 ≤ l ≤ L− 1 as follows:

z
(k)
1 = σ(W1F (k)(x) + b1), z

(k)
l = σ(Wlz

(k)
l−1 + bl).

Next, we concatenate the above outputs within the linear layer as follows:

v̄Mθ,n = WL

[
z
(1)
L , ..., z

(K)
L

]
+ bL,

whereWL and bL are the weights and biases of the output layer. The boundary conditions are imposed
exactly by using vMθ,n = l(x)v̄Mθ,n with l(x) = x(1− x).

4.5 Numerical results

The numerical simulations are conducted for three values of ε, namely 1/16, 1/48, and 1/64, respec-
tively. The multi-scale Fourier feature network is used as the main architecture of choice, with the two
Fourier features initialized by ϱ1 = 1 and ϱ2 = 1/ε. Table 1 provides hyperparameters, the window
size ωav(δ), collocation points M , and “true” (i.e. numerically approximated) values of the upscaled

coefficient K̃[uε
h] obtained from finite element solutions uε

hu
. These solutions are computed on the

uniform mesh {xhu
i }

Nu
h

i=1 with Nu
h = 1000 points. This mesh is also used as the validation set to track

the relative discrete L2 error during training. The parameter τ2 is chosen without heavy fine-tuning
to approximately balance J and Rδ and to achieve good results in terms of the relative error. In the
neural networks, we use the hyperbolic tangent activation function for ε = 1/16 and ε = 1/48, and
the swish function with b = 1 for ε = 1/64, which outperforms tanh(x) for this value of ε in our
experiments. The collocation points {xr

i}Mi=1 are equidistantly sampled on [0, 1] with 1/M ≪ ε. The
exponential learning rate decay schedule is used for all experiments with the Fourier feature networks,
i.e., the learning rate is initialized as 5e − 4, with a decay-rate of 0.75 every 1000 training iterations.
The full batch is used to train the neural networks with the Adam algorithm [51], and the respective
parameters are chosen as βAd

1 = 0.9 and βAd
2 = 0.999. The weights and biases are initialized us-

ing the Glorot scheme [52]. The coarse-scale finite element discretization uses Nh = 50 degrees of
freedom for ε = 1/16, ε = 1/48 and Nh = 64 for ε = 1/64 with h = 1

Nh
. In addition, we compute

the “true” state yh using finite elements and the same coarse mesh as in the hybrid approach, as well
as the “true” values of K̃[uε

hu
]. The standard PINN is compared to the hybrid approach employing the

identical neural network architecture used in the hybrid solver.
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Table 1: Configuration of the simulation experiment

ε ωav(δ) Depth × [Width] M τ2 K̃[uε
hu
]

1/16 3 2 × [100] 280 10 0.834
1/48 1 2 × [100] 840 1000 0.842
1/64 1 2 × [150] 1000 1200 0.848

Table 2 summarizes our experimental results, including the relative (discrete) L2 error and the required
(approximate) number of iterations for each method. For ε = 1/16, the hybrid approach shows com-
parable convergence and accuracy to the Fourier feature PINN (Ms-PINN). For ε = 1/16, we also
used a standard feed-forward NN (vanilla, V-PINN) with two hidden layers (100 neurons each) in our
hybrid approach. We ran 14500 iterations of Algorithm 1 with τ2 = 5 · 105, followed by an additional
500 iterations with τ2 = 5 · 102, as depicted in Fig 2. For such a large value of τ2, the optimiza-
tion mostly focuses on minimizing the coupling term. On the other hand, we can see that the PINN
term also plays a role, as the expected gap between Q̄δu

ε
θ,n and yh is preserved (see Theorem 2.2

and Theorem 3.1). Good accuracy is achieved using our hybrid approach; however, despite multiple
attempts, we were unable to attain reasonable accuracy with the standard MLP

For ε = 1/48, the hybrid method requires about 30% fewer iterations compared to the PINN method,
while still achieving similar accuracy; see Fig 3. We obtained good accuracy for ε = 1/64 with the
hybrid solver, while Ms-PINN still has a higher relative error despite a larger number of iterations;
see Fig 4. Comparing with Fig 2, we note that the gap between Q̄δu

ε
θ,n and yh decreases with ε, as

Theorem 2.2 predicts. We refrain from reporting the computational time as the optimization algorithm
requires further development. We observe the stabilization of K̃[uε

θ,n] around K̃[uε
hu
] = 0.834 after

around 7500 iterations; see Fig 2(b). This suggests that once the coarse-scale component is approxi-
mated, it might be meaningful to deactivate the constraints and use yh(θ) solely as a regularizer.

Table 2: Convergence and accuracy results

ε Method # iterations Rel. L2 error
1/16 Ms-PINN 30000 0.034

Hybrid (Ms-PINN) 30000 0.036
Hybrid (V-PINN) 15000 0.062

1/48 Ms-PINN 73000 0.101
Hybrid (Ms-PINN) 53000 0.105

1/64 Ms-PINN 120000 0.124
Hybrid (Ms-PINN) 83500 0.101
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Figure 2: Results for ε = 1/16 (no Fourier features): (a) Hybrid fine-scale solution and FEM solution (left),
residual loss J , coupling lossRδ , relative L2 error vs iterations (right). (b) Predicted state yh(unn), true state

yh, compressed NN control Q̄δunn (left). K̃[uεnn] vs iterations. The red dashed line is K̃[uεhu
] = 0.834 (right).

Figure 3: Results for ε = 1/48: (a) Hybrid and FEM fine-scale solution (left). Predicted state yh(unn), true
state yh, compressed neural control Q̄δunn (center). Residual loss J , coupling loss Rδ , relative L2 error vs
iterations (right). (b) PINN and FEM fine-scale solution (left), residual loss J and relative L2 error vs iterations
(right).
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Figure 4: Results for ε = 1/64: (a) Hybrid and FEM fine-scale solution (left). Predicted state yh(unn), true
state yh, compressed neural control Q̄δunn (center). Residual loss J , coupling loss Rδ , relative L2 error vs
iterations (right). (b) PINN and FEM fine-scale solution (left), residual loss J and relative L2 error vs iterations
(right).

5 Conclusion

This paper focuses on the structural properties of a learning-informed PDE-constrained optimiza-
tion problem with a PINN based objective giving rise to a hybrid multiscale solver. Our approach
integrates conventional multiscale methodologies and deep learning techniques, and the proposed
PDE-constrained optimization setting seems particularly well-suited for this purpose. In this regard,
we have introduced an abstract two-scale coupling approach and a neural network based upscaling
technique. We show that incorporating coarse-scale information into the optimization has the poten-
tial to improve a fine-scale neural network approximation. In this context, selecting a suitable neural
network architecture and developing an efficient optimization algorithm, aimed at enhancing accuracy
while minimizing computational time, are both essential. This task requires taking into account recent
advancements in PINNs and the field of PDE-constrained optimization. Our future research aims to
develop hybrid coupling techniques along with efficient optimization algorithms to address more gen-
eral multiscale problems, where homogenization theory results are generally unavailable, and other
multiscale approximation techniques are generally inefficient.

From a technical perspective, it is worth noting that we use the standard L2(Ω) PINN loss for the
fine-scale problem and neural networks with smooth activation functions. Our example of (station-
ary) heat conduction demonstrates that despite its simple implementation, the natural appearance
of ε-dependence in the stability constant can slow down convergence of the PINN approximation in
the H2(Ω) norm for small values of ε. Alternatively, one could develop numerical schemes using
weaker residual norms (see e.g. [66]) in the objective or variational PINNs, with the intention of re-
laxing regularity requirements on uε and improving convergence rates. While such formulations are
also suitable for PDEs with non-smooth data, they may also introduce non-smoothness into the re-
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lated PDE-constrained optimization, e.g., due to a non-smooth activation functions. Such a setting
challenges both, the derivation of suitable stationarity conditions for the PDE-constrained multiscale
approach as well as its numerical solution. A comprehensive investigation of such a setting remains
part of our future work in this area.
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