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Exponential equivalence for misanthrope processes in contact
with weak reservoirs and applications to totally asymmetric

exclusion processes
Julian Kern

Abstract

We provide a short proof for the exponential equivalence between misanthrope processes in
contact with weak reservoirs and those with impermeable boundaries. As a consequence, we can
derive both the hydrodynamic limit and the large deviations of the totally asymmetric exclusion
process (TASEP) in contact with weak reservoirs. This extends a recent result which proved the
hydrodynamic behaviour of a vanishing viscocity approximation of the TASEP in contact with
weak reservoirs. Furthermore, applications to a class of asymmetric exclusion processes with
long jumps is discussed.

1 Introduction

The recent work [Xu22] makes use of the method of compensated compactness to investigate the
hydrodynamic behaviour of the totally asymmetric exclusion process (TASEP) in contact with weak
boundaries. An immediate drawback of this approach is that it can only be applied to a vanishing
viscocity approximation of the model. In [GKX23+], a variant of the model with long jumps from [SS18]
in contact with weak reservoirs has been proposed. In the regime of jumps with infinite mean, the
hydrodynamic limit has been derived therein, but the case of jumps with finite mean remains open and
is expected to be tightly linked to the TASEP studied in [Xu22],

In this paper, we provide a short proof of the exponential equivalence between processes in contact
with weak reservoirs and with impermeable boundaries respectively for a large class of models. As
an immediate consequence, we can extend the result from [Xu22] to the TASEP without vanishing
viscocity and derive the hydrodynamic behaviour of the model studied in [GKX23+].

The remainder of the paper is divided into three sections: the presentation of the main result, its
applications, and the proof. A generalization is discussed in Appendix A.

2 Notation and main result

In this section, we will restrict ourselves to the special case of exclusion processes on Z. For the more
general case, see Appendix A.

Write ΛN := {1, . . . , N − 1} for the bulk and ΩN := {0, 1}ΛN for the space of configurations. We
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J. Kern 2

denote by ηx,y the exchange of the sites x and y, and by ηx the flip of the site x in the sense that

ηx,yz :=


ηy if z = x

ηx if z = y

ηz otherwise

and ηxz :=

{
1− ηx if z = x

ηz otherwise
.

Next, define the generators

LN
bulkf(η) :=

∑
x,y∈ΛN

p(x, y) · ηx(1− ηy) ·
(
f(ηx,y)− f(η)

)
,

LN
influxf(η) :=

∑
x 6∈ΛN

∑
y∈ΛN

p(x, y) · α(x)(1− ηy) ·
(
f(ηx)− f(η)

)
,

LN
outfluxf(η) :=

∑
x∈ΛN

∑
y 6∈ΛN

p(x, y) · ηxβ(y) ·
(
f(ηx)− f(η)

)
,

where p : Z2 → [0,+∞) is a jump kernel and α, β : Z → [0,+∞) are bounded. Here and in the
following, we will use the shortcut x 6∈ ΛN to mean x ∈ Z \ ΛN .

Definition 2.1. 1 An exclusion process in contact with impermeable boundaries is an ΩN -valued
Markov process with generator LN

bulk.

2 An exclusion process in contact with weak reservoirs is an ΩN -valued Markov process with
generator LN := LN

bulk + θ(N)
(
LN

influx + LN
outflux

)
for some θ(N) = o(1).

In the following, we will identify ΩN -valued processes with the corresponding measure-valued process
via the map

πN : ΩN → MF ([0, 1]), η 7→ 1

N − 1

∑
x∈ΛN

ηxδx/N ,

where MF ([0, 1]) denotes the space of finite measures on [0, 1]. To compare the different processes,
we endow the space of measure-valued càdlàg processes D[0,T ]

(
MF ([0, 1])

)
with the Skorokhod

topology induced by the weak topology on MF ([0, 1]). In the following, we will write dJ1 for any
complete metric inducing this topology.

Definition 2.2 (Exponential equivalence). We say that two sequences of probability measures QN
1

and QN
2 on D[0,T ]

(
MF ([0, 1])

)
are exponentially equivalent if there exists

i) a sequence of (abstract) probability spaces (XN ,FN ,QN) and

ii) a sequence of random variables πN
1 , πN

2 : XN → D[0,T ]

(
MF ([0, 1])

)
with respective laws

QN
1 and QN

2

such that the sets {dJ1(πN
1 , πN

2 ) > ε} are FN -measurable and

lim sup
N

1

N
lnQN

{
∆(πN

1 , πN
2 ) > ε

}
= −∞

for all ε > 0.
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Exponential equivalence for misanthrope processes in contact with weak reservoirs 3

In order to state the main result, we introduce the notion of a time change. We say that we speed up
a process (πt)t≥0 by a factor ϑ if we consider the process (πϑt)t≥0 instead. In the case of a Markov
process with generator L, this is equivalent to considering the Markov process with generator ϑL.

Theorem 2.3. If both process are sped up by some factor ϑ(N), then the exclusion processes in
contact with impermeable boundaries is exponentially equivalent to the exclusion process in contact
with weak boundaries provided

ϑ(N)θ(N)
∑

x∈ΛN ,y 6∈ΛN

(
p(x, y) + p(y, x)

)
= o(N).

Under the assumptions of the theorem, the two processes are indistinguishable at the level of large
deviations. In particular, both have the same hydrodynamic behaviour.

3 Applications

In this section, we discuss applications of the exponential equivalence to prove the hydrodynamic
behaviour and the large deviations for asymmetric exclusion processes.

3.1 The TASEP in contact with weak reservoirs

The recent paper [Xu22] considers the nearest-neighbour TASEP in contact with weak reservoirs
given by the above through the choice p(x, y) = 1y=x+1, and α, β some (possibly time-dependent,
but locally) bounded rates. Due to the asymmetry, the process evolves on the timescale ϑ(N) = N .
This means in particular that

θ(N)ϑ(N)
∑

x∈ΛN ,y 6∈ΛN

(
p(x, y) + p(y, x)

)
= O

(
Nθ(N)

)
= o(N),

verifying the condition of Theorem 2.3. To include time-dependent rates, we make use of the more
general result discussed at the end of Appendix A.

Theorem 2.3, then, ensures that the process is exponentially equivalent to the (nearest-neighbour)
TASEP with impermeable boundaries. We can extend the latter to the left by zeros and to the right by
ones without changing the dynamics, transforming it into the TASEP on Z. Using [Sep98] (see also
[Var04, Theorem 2.1]), we obtain the hydrodynamic behaviour. The large deviations are considered in
[Var04] and completed in [QT22, Main Theorem]. Through the exponential equivalence, this translate
directly to the TASEP in contact with weak reservoirs.

In contrast to [Xu22], this result does not necessitate the addition of a vanishing viscocity to the model
in order to prove the hydrodynamic behaviour.

3.2 The ALJEP in contact with weak reservoirs

Similarly, we may consider the jump kernel

p(x, y) =
1y>x

|y − x|1+γ
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for some γ > 0. As a process on Z, this is a special case of the model from [SS18]. This Asym-
metric Long Jump Exclusion Process (ALJEP) in contact with reservoirs has first been introduced in
[GKX23+].

The ALJEP on the whole of Z undergoes a phase transition at γ = 1: for γ ∈ (0, 1), the mean
jump size is infinite and the long range effects remain at the macroscopic level; for γ > 1, the mean
becomes finite and the model behaves like the TASEP. The phase transition can also be read off of
the correct time scales given by

ϑ(N) =


Nγ if γ < 1
N

lnN
if γ = 1

N if γ > 1

,

see [SS18] for details. In the setting with reservoirs, more phase transitions (depending on the reser-
voir strength) are expected, see [GKX23+, Figure 1].

In the case of weak boundaries, we may check that for every γ > 0 and the above choice of ϑ(N),
one has

ϑ(N)θ(N)
∑

x∈ΛN ,y 6∈ΛN

(
p(x, y) + p(y, x)

)
= o(N),

so that Theorem 2.3 is applicable. As in the case of the TASEP, we can extend the ALJEP with imper-
meable boundaries to the left with zeros and the right with ones to recover the ALJEP on Z. However,
this does not yet allow us to deduce the hydrodynamical behaviour of the ALJEP with weak bound-
aries. Indeed, the proof in [SS18] relies on the fact that the initial profile has the same asymptotic
density ρ∗ ∈ (0, 1) in both directions. This is violated here in multiple ways as the asymptotic density
to the left is 0 and the asymptotic density to the right is 1.

In the long-range regime γ ∈ (0, 1), we can instead use the reciprocal direction and deduce the
hydrodynamical behaviour of the ALJEP on Z for any initial profiles ρ0 with compact support. Indeed,
this follows from the study of the ALJEP in contact with weak reservoirs in [GKX23+]. For the short-
range regime γ > 1, no results are available for the case with weak reservoirs. Instead, we will
make use of the finite speed of propagation of mass in the Burger’s equation to extend the result from
[SS18] to suitable initial profiles. This is enough to deduce the hydrodynamic behaviour of the ALJEP
in contact with weak reservoirs at least when a) the initial profile ρ0 is continuous on [0, 1] and satisfies
ρ0(0) = 0 and ρ0(1) = 1, and b) the initial configuration is distributed as a product measure with
profile ρ0.

Lemma 3.1. Let ρ0 ∈ C(R; [0, 1]) be a continuous profile satisfying ρ0(x) = 0 (resp. ρ0(x) = 1)
for x small (resp. large) enough, and let µN

0 be the product measure on Z with marginals µN
0 (ηx =

1) = ρ0(x/N). Then, the ALJEP on Z with initial configuration distributed as µN
0 satisfies a law of

large numbers with hydrodynamic limit given by the solution ρ to Burger’s equation [SS18, Equation
(3.2)] with initial value ρ0.

Proof. See Appendix B.

4 Proof of the main result

For every N ∈ N, let µN be a measure on ΩN . An adaptation of the usual misanthrope (or: attractive)
coupling constructs processes ηN , η̃N and η̂N with initial distribution µN and respective generators

ϑ(N)LN
bulk, ϑ(N)LN

bulk + θ(N)ϑ(N)LN
influx and ϑ(N)LN
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Exponential equivalence for misanthrope processes in contact with weak reservoirs 5

satisfying
ηNt ≤ η̃Nt and η̂Nt ≤ η̃Nt

for all t ≥ 0. See [Coc85] for details of this coupling, or e.g. [SS18, Section 9] for an English version.

Write πN
t := πN(ηNt ), π̃N

t := πN(η̃Nt ) and π̂N
t := πN(η̂Nt ) for the corresponding measure-valued

processes. Since they are all atomic, the ordering implies

N‖π̃N
t − πN

t ‖TV = |η̃Nt | − |ηNt | and N‖π̃N
t − π̂N

t ‖TV = |η̃Nt | − |η̂Nt |,

where we write |η| :=
∑

x∈ΛN
ηx for the total mass of a configuration η ∈ ΩN .

Next, note that the Lévy-Prokhorov metric induces the topology of weak convergence and can be
bounded from above by the distance in total variation, see e.g. [GS02, Figure 1]. In particular, using
the fact that π̃ takes into account the influx of particles, we have{

dJ1(π̃
N , πN) > ε

}
⊆

{
sup

t∈[0,T ]

|η̃Nt | − |ηNt | > εN

}
=
{
|η̃NT | − |ηNT | > εN

}
and similarly for {dJ1(π̃N , π̂N) > ε}. Hence, the proof reduces to the following lemma.

Lemma 4.1 (No loss of mass). The events {|η̃NT | − |ηNT | ≥ εN} and {|η̃NT | − |ηNT | ≥ εN} are
superexponentially unlikely for every ε > 0.

Proof. As both are analogous, we will concentrate on the first set only. Since the change in mass can
come only from the influx of particles, it suffices to prove that the probability of εN particles entering
up to time T is superexponentially small. Note that the number of particles is bounded from above by
a Poisson number P with parameter

λN := T‖α‖∞ · θ(N)ϑ(N)
∑

x∈ΛN ,y 6∈ΛN

p(y, x) = o(N).

The usual Chernoff bound provides us with the estimate

P(P ≥ λN + x) ≤ exp

(
− x2

λN

· h
(

x

λN

))
for some function h(u) = (1+u) ln(1+u)−u

u2 , vanishing at infinity like lnu
u

, see e.g. [Can19]. In particular,

P
(
∃t ∈ [0, T ] : |η̃Nt | − |ηNt | ≥ εN

)
≤ exp

(
−Θ

(
εN · ln

(
εN

o(N)

)))
which is superexponentially small.

A Generalization to misanthrope processes

The proof in Section 4 relies heavily on the attractive coupling of the different processes. From [Coc85],
it is known that this coupling can be constructed for the large class of misanthrope processes. These
cover many models of interest, including the exclusion and zero range processes.

Let k ∈ N∪{∞} denote the maximal number of particles allowed at a site and set Sk := {0, . . . , k}
or S∞ := N0 accordingly.

For N ∈ N, N ≥ 2, define the bulk ΛN := {1, . . . , N − 1} and the space of configurations ΩN :=
SΛN
k . For a configuration η ∈ ΩN and sites x, y ∈ ΛN , we define the three actions η 7→ ηx→y,

η 7→ ηx↑ and η 7→ ηx↓ as follows:
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1 if ηx = 0 or ηy = k, set ηx→y := η, otherwise set ηx→y := η − δx + δy, i.e.

ηx→y
z :=


ηx − 1 if z = x

ηy + 1 if z = y

ηz otherwise

;

2 if ηx = k, set ηx↑ := η, otherwise set ηx↑ := η + δx;

3 if ηx = 0, set ηx↓ := η, otherwise set ηx↓ := η − δx.

For functions f : ΩN → R, define the generators

LN
bulkf(η) :=

N−1∑
x,y∈ΛN

p(x, y) · bbulk(ηx, ηy) ·
(
f(ηx,y)− f(η)

)
and

LN
influxf(η) :=

∑
x∈ΛN

∑
y 6∈ΛN

p(y, x) · binflux(y, ηx) ·
(
f(ηx↑)− f(η)

)
,

LN
outfluxf(η) :=

∑
x∈ΛN

∑
y 6∈ΛN

p(x, y) · boutflux(ηx, y) ·
(
f(ηx↓)− f(η)

)
,

where

i) p is a jump kernel,

ii) bbulk : S2
k → [0,+∞) is non decreasing in its first variable, non increasing in its second

variable and satisfies b(n,m) = 0 if and only if n = 0 or m = k,

iii) binflux : Z× Sk → (0,+∞) and boutflux : Sk × Z → [0,+∞) are bounded.

We will assume that bbulk is such that the following Markov processes exist. This is trivially satisfied
when bbulk is bounded, e.g. if k 6= ∞.

Definition A.1. A misanthrope process in contact with impermeable boundaries is defined through the
generator LN

bulk, whereas a misanthrope process in contact with weak reservoirs has the generator

LN := LN
bulk + θ(N)

(
LN

influx + LN
outflux

)
for some θ(N) → 0.

As before, we will identify processes with values in the space of configurations ΩN with the corre-
sponding process with values in the space of measures via the map

πN : ΩN −→ MF ([0, 1]), η 7→ 1

N

∑
x∈ΛN

ηxδx/N .

Theorem A.2. If both processes are sped up by a factor ϑ(N), then the misanthrope process in
contact with weak reservoirs is exponentially equivalent to the misanthrope process in contact with
impermeable boundaries provided

ϑ(N)θ(N)
∑

x∈ΛN ,y 6∈ΛN

(
p(x, y) + p(y, x)

)
= o(N).
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Exponential equivalence for misanthrope processes in contact with weak reservoirs 7

Proof. The proof is exactly as in Section 4. The only difference is that we replace ‖α‖∞ by ‖binflux‖∞.

Note that the proof does not depend on the underlying space. In particular, the result can be extended
to misanthrope processes on any lattice, including Zd. Furthermore, it can be generalized to time-
dependent interactions with the reservoirs as long as they are locally L1 in time in the sense that
binflux ∈ L1

loc([0,+∞);L∞(Z × Sk)) and similarly for boutflux. In this case T‖binflux‖∞ is to be

replaced by
∫ T

0
‖binflux(t)‖∞ dt.

Although pathological counter-examples can be constructed, the statement of Appendix A.2 is sharp
in most situations. This includes also the symmetric case, see for example [Sco21] (and particularly
[BCG+23] therein) for the treatment of the symmetric exclusion process with long jumps in contact
with reservoirs. Unfortunately, it is generally equally hard to derive the hydrodynamic behaviour of the
process in contact with weak reservoirs or in contact with impermeable boundaries, so that the result
only shortens proofs by providing a general argument for ignoring boundary terms.

In the context of totally asymmetric processes, however, Appendix A.2 provides a shortcut for prov-
ing the hydrodynamic behaviour (and even higher order behaviour as the fluctuations or the large
deviations) as shown in Section 3.

B Proof of Lemma 3.1

For simplicity, assume that ρ0(x) = 0 for x ≤ 0 and ρ0(x) = 1 for x ≥ 1. Let (ρm,`
0 )m,`∈N be a

family of continuous functions satisfying ρm,`
0 |[−m,`] = ρ0|[−m,`] and ρm,`

0 (x) = 1
2

on R \ [−2m, 2`].
We may choose the family such that it is pointwise non increasing in m and pointwise non decreasing
in `. Write µN,m,`

0 for the corresponding product measure on {0, 1}Z. Furthermore, denote by µN,`
0

the measures obtained from the pointwise limit limm ρm,`
0 which is vanishes to the left of 0.

Using the attractive coupling, we may construct the ALJEPs ηN,m,` and ηN,` on Z started from µN,m,`
0

on a common probability space such that

ηN,`
t ≤ ηN,m,`

t ≤ ηN,m′,`
t and ηN,`

t ≤ ηN,`′

t ≤ ηNt ,

for any m′ ≤ m, ` ≤ `′ and t ≥ 0, a.s.

Similarly to the proof of Theorem 2.3, it is enough to show that both

lim
m

sup
`

lim sup
N

PN

(∑
x≥1

ηN,m,`
T (x)− ηN,`

T (x) > εN

)
= 0

and

lim
`
lim sup

N
PN

(
N−1∑
x=1

ηNT (x)− ηN,`
T (x) > εN

)
= 0.

As both quantities are similar, we will concentrate on the former. By construction,
∑

x≥1 η
N,`
t (x) =

WIAS Preprint No. 3051 Berlin 2023
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∑
x≥1 η

N,`
0 (x) =

∑
x≥1 η

N,m,`
0 (x). In particular, it is enough to bound

PN

(∑
x≥1

ηN,m,`
T (x)− ηN,m,`

0 (x) > εN

)

≤
EN
[∑

x≥1 η
N,m,`
T (x)− ηN,m,`

0 (x)
]

εN

≤ 1

εN

∫ T

0

EN

[
N
∑
x≥1

∑
y≤0

p(y, x) · ηN,m,`
t (y)

(
1− ηN,m,`

t (x)
)]

dt

= O

(
1

ε

∫ T

0

∑
y≤0

1

|y|γ
· EN

[
ηN,m,`
t (y)

]
dt

)

= O

(
T

ε

(
mN

2

)1−γ

+
mN

2ε

∫ T

0

∫ 0

−m/2

ρm,`
t (u) du dt

)
,

where ρm,` is the hydrodynamic limit of the family (ηN,m,`
t )N≥2, which is a solution to Burger’s equation

with initial profile ρm,`
0 , see [SS18]. The first term vanishes inN , whereas the latter becomes constantly

0 independently of N and ` for m large enough depending only on T .
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