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Pontryagin’s principle for some probabilistic control problems

Wim van Ackooij, René Henrion, Hasnaa Zidani

Abstract

In this paper we investigate optimal control problems perturbed by random events. We assume that the
control has to be decided prior to observing the outcome of the perturbed state equations. We investigate
the use of probability functions in the objective function or constraints to define optimal or feasible controls.
We provide an extension of differentiability results for probability functions in infinite dimensions usable in this
context. These results are subsequently combined with the optimal control setting to derive a novel Pontryagin’s
optimality principle.

1 Introduction

Many physical or engineering systems are usually described by complex models including inherent uncertainties
related to the evolution of the system or to the environment in which this evolution takes place. This is the case
for example in finance or in energy management where uncertainties about the price of commodities, demand or
supply must be taken into account in the mathematical formulation.

Stochastic optimization provides a general and convenient framework for the optimization of uncertain systems. In
this context, it is relevant to consider optimal solutions that are robust in the sense of probability with respect to the
model’s uncertainties. This notion distinguishes from the “worst caseäpproach by the fact that it aims to define a
robust solution against the uncertainties for a reasonable level of probability set by the decision-maker, while the
worst-case problem, which aims for a robust solution against all uncertainties, may admit no feasible solution (and
even when an admissible strategy exists, it is generally too pessimistic).

Optimization under probability constraints, introduced in the 1950s, is currently featured as a predominant model
of stochastic optimization. The traditional framework is set up by finite dimensional decisions and systems of finite
random inequalities. We refer to the classic monograph [29] and the more recent presentation [31] for an overview
of the theory, algorithms and applications of this model. The traditional framework is already seen as both a theo-
retical and a numerical challenge. Driven by the need to handle probabilistic constraints in important engineering
applications, substantial algorithmic advances have been made over the past two decades, e.g., [6, 8, 26]. These
and various other popular approaches rely either on sampling approaches that replace the underlying random
vector with a discretized version or on some reformulation of the probability function. A very popular trend is the
replacement of the probability function by a substitute, often derived from some approximation of the indicator func-
tion inside the expectation, e.g., [14, 19]. Recent investigations along such lines consist in replacing the probability
function with it’s inverse: quantile approximations, e.g., [28]. Traditionally however resolution methods have relied
on the observation that probability functions are a special kind of nonlinear mapping. In principle therefore classic
nonlinear programming solvers would be appropriate. This line of investigation has also shown great potential, e.g.,
[4]. Although a thorough investigation of various alternatives - trying to investigate pros and cons honestly - has of
yet still to be carried out, it would seem that classic approaches are not only competitive, but offer advantages in
obtaining feasible solutions. Now in order to put the classic approaches to work, first-order information of probability
functions is usually required. This was recognized a long time ago and different strategies pursued: a generalistic
one, of which, e.g., [32] offers a description and a more practical one starting from specific structures, such as those

DOI 10.20347/WIAS.PREPRINT.3050 Berlin 2023



W. van Ackooij, R. Henrion, H. Zidani 2

arising in concrete engineering applications, e.g., [16]. Some examples of the latter investigations are [35–37] and
we refer the reader to [33] for a recent survey and overview.

The infinite-dimensional setting poses a lot of new theoretical questions on the structure of probabilistic constraints.
Some fundamental structural analysis (weak semi-continuity, convexity, existence of solutions, stability of solutions
with respect to perturbations of the probability measure) have been carried out for infinitely many probabilistic
constraints in a Banach space and applied to PDE-constrained optimization problems [10, 15]. By using generalized
differential calculus, sub-differential or differential formulas have been derived in the case of a single Lipschitzian
random inequality with infinite-dimensional decisions and in the case of a finite-dimensional setting with infinite
random inequality systems [18, 38].

Recently, the interest in applying probabilistic constraints (or Value-at-Risk models) in the context of optimal con-
trol setting has increased considerably (e.g., [2, 5, 9, 11, 12, 17, 20, 21, 30]). Optimal control problems consist
in analysing the evolution of complex systems which, under the effect of a control input, can give the best perfor-
mance while respecting the constraints of the system. This class of problems arise in many technological fields
(aeronautics, mobile robotics, power management, gas transport, ...).

The present work is devoted to a class of control problems with uncertainties. Let H and U be two Hilbert spaces,
let T be a given finite horizon, and let (Ω,F ,P) be a probability space, where Ω represents the sample space, F
is the σ-algebra of events, and P : Ω → [0, 1] is a probability measure. Consider an ensemble of controlled state
equations parametrized by the random event ω on the probability space (Ω,F ,P)

ẋω(t) = Axω(t) +B(ω)u(t) + E(ω) for a.e. t ∈ [0, T ],

xω(0) = x0,

u(t) ∈ U, for a.e. t ∈ [0, T ],

(1)

where U is a closed metric space, x0 is an initial data, A, and B are linear operators (the assumptions on these
operators will be made precise later). An admissible control input u : [0, T ]→ U is a measurable function assumed
to be ω-independent, which means that the states of the ensemble (the parametrized family) are driven by the same
control. The optimal control problems consists of an optimization problem governed by the uncertain system (1) with
a cost function composed of an expectation term and a probability of success for the terminal state. The latter has
the following form

P
(
Ψ(xω(T )) ≤ 0

)
, (2)

where Ψ : H → R is a given function. This cost function evaluates the probability that the ensemble of controlled
states verify a constraint at the final time. The control problem may alternatively include such a probability of success
as a "target constraintät the final time.

The problems of designing a single ω-independent control strategy u for controlling an ensemble of nonlinear
systems arise in many real applications. Questions of controllability (i.e., steering the ensemble systems from an
initial configuration to a prescribed final state) have been addressed in [1], where a criterion for controllability has
been derived for a large class of control-linear systems in finite-dimensional space H = RN (Ensemble version of
Rashevsky-Chow theorem).

The aim of this work is to obtain strong optimality conditions for the control problem with a cost functional (and with
a final constraint) in probabilistic form. In the deterministic setting, optimality conditions are usually derived in the
form of a so-called Pontryagin’s principle, [7, 40]. This principle states that any optimal control and its corresponding
state, satisfies a Hamiltonian system, which is a two-point boundary value problem, plus a maximum condition of
the control Hamiltonian. These necessary conditions become sufficient under certain convexity conditions on the
objective and constraint functions. In presence of uncertainties, KKT-type optimality conditions have been studied
in [11, 13] for control problems with uncertainties and almost-sure constraints. Here, we consider a different setting
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Pontryagin’s principle for some probabilistic control problems 3

where the risk is defined in terms of probability of success. The proof of Pontryagin principle relies on differentiability
properties of the probability functions. As mentioned earlier, differentiability of probability functions has received
quite some attention. Results relevant for the structures appearing in this work are [10, 18, 34–36]. However, in
this work we are dealing with an infinite dimensional “decision vector space", unlike most of the previous references
where the decision vector w.r.t. which the derivative was to be computed was simply Rn. The work [18] does present
“first order"results in infinite dimensions, but of a more abstract kind and not immediately applicaple to our setting.
For this reason, in section 3 we have undertaken the task of laying down the various pieces in a consistently and
clearly presented framework. This effectively extends the previous investigations to the infinite dimensional setting,
all while providing easy to verify conditions ensuring the applicability of the results.

The paper is organized as follows. The control problem is described in Section 2 where some concrete examples
are presented. Section 3 is devoted to the analysis of differential calculus of probability functions. In Section 4,
we study optimality conditions for some control problems governed by ordinary differential equations or by Partial
differential equations. Finally, we discuss a simple numerical example.

2 Formulation of the problem

Throughout the paper, we assume that we are given a complete probability space (Ω,F ,P). For any Banach
space (X, ‖ · ‖X) and for any r ∈ [0,+∞], the Bochner space Lr(Ω;X) consists of all measurable functions
y : Ω −→ X whose norm

‖y‖Lr(Ω;X) :=


(∫

Ω
‖y(ω)‖rX dP(ω)

) 1
r

if r <∞,

ess supω∈Ω‖y(ω)‖X if r =∞

is finite, and where functions which agree almost everywhere (a.e.) are identified. For anyX-valued random variable
y : Ω −→ X that is Bochner integrable, the expectation of y, denoted by E[y], is defined by

E[y] =

∫
Ω
y(ω)dP(ω).

It is worth noting that E[y] defines an element of X , whenever y : Ω −→ X is Bochner integrable.

A real function L : X × ω ←→ R is said to be Carathéodory if L(x, ·) is measurable with respect to (w.r.t.) the
variable ω for every x ∈ X and if L(·, ω) is continuous w.r.t. x for every ω ∈ Ω. For any measurable function,
y : Ω −→ X , and any Carathéodory function L : X × ω −→ R, the composition ω 7−→ L(y(ω), ω) is also a
measurable function.

Let T > 0 be a fixed time horizon, we shall denote by C([0, T ];X) the Banach space that consists of all continu-
ous functions y : [0, T ] −→ X . This space is endowed with the usual norm

‖y‖C([0,T ];X) := max
t∈[0,T ]

‖y(t)‖X .

In the same way, for r ≥ 1, we define the Lebesgue space Lr(0, T ;X) of all measurable functions y : [0, T ] −→
X for which the function t 7−→ ‖y(t)‖rX is Lebesgue integrable and where functions which agree a.e. are identified.
This space is a Banach space when endowed with the norm ‖ · ‖Lr(0,T ;X) defined by

‖y‖Lr(0,T ;X) :=

(∫ T

0
‖y(s)‖rXds

) 1
r

.
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Finally, for any Banach spaces X and Y , we shall denote L(X,Y ) the space of linear continuous operators from
X into Y . This space will be simply denoted by L(X) when Y = X . The dual of X will be denoted X ′.

Let (H, 〈·, ·〉H) and (U, 〈·, ·〉U) be two Hilbert spaces, which are accordingly identified with their duals. Let U be
a closed convex subset of U and consider the set of square integrable functions u : [0, T ] −→ U satisfying
u(s) ∈ U for almost every (a.e.) s ∈ [0, T ]

U := {u ∈ L2(0, T ;U) and u(s) ∈ U a.e. on [0, T ]}.

In the sequel U will be referred to as the set of admissible control functions.

For every parameter z ∈ Rn, we consider the differential equation

Ẋz(t) = AXz(t) +B(z)u(t) + E(t, z), Xz(0) = x0, (3)

where the control input u belongs to U and x0 ∈ H. Here, A : D(A) ⊂ H −→ H is a linear (unbounded)
operator generating a strongly continuous analytic semi-group, denoted eAt, on the Hilbert space H. The mapping
B(z) : U −→ [D(A)]′ is a linear operator, and E : [0, T ]× Rn 7−→ H is a given source term.

In the sequel, we will assume that H and U are either of finite or infinite dimension. In both cases, the operator A
and B and the source term E are supposed to satisfy some standing assumptions (that will be made precise later)
in order to guarantee, for every u ∈ L2(0, T ;U) and for every z ∈ Rn, the existence and well posedness of a
solution Xu

z ∈ C(0, T ;H) to the state equation (3). This solution is considered in the mild sense, meaning that
Xu
z (0) = x0 and, for t ∈ [0, T ],

Xu
z (t) = eAtx0 +

∫ t

0
eA(t−s)B(z)u(s) ds+

∫ t

0
eA(t−s)E(s, z) ds. (4)

We introduce the mapping G : L2(0, T ;U)× Rn −→ C([0, T ];H) defined, for u ∈ z ∈ Rn, by

G(u, z) := eA·x0 +

∫ ·
0
eA(·−s)B(z)u(s) ds+

∫ ·
0
eA(·−s)E(s, z) ds.

With this notation, the solution Xu
z is given by Xu

z = G(u, z).

Now, Let ξ be a given n-dimensional random variable in the probability space (Ω,F ,P), and consider the controlled
system subject to uncertainties:

ẋω(t) = Axω(t) +B(ξ(ω))u(t) + E(t, ξ(ω)), xω(0) = x0. (6)

The state equation associated with a control u ∈ L2(0, T ;H) is then given by xu
ω = G(u, ξ(ω)), for every

ω ∈ Ω. We will also use the notation xu for the bundle of trajectories {xu
ω | ω ∈ Ω}.

In the sequel, we will assume that the uncertainty enters in the operator B and the source term E in a structured
manner. In particular, we assume that B and E are affine with respect to the variable z

B(z) = B0 +B1(z) and E(t, z) = E0(t) + E1(t, z), (7)

whereE1(t, ·) andB1(·) are linear maps. Hereafter, we outline the assumptions that will be considered throughout
the paper concerning the mappings B and E as well as the operator A.

(HS) (a) If H = Rd and U = Rr are finite dimensional spaces: A is a d× d-matrix.

The mapping B0 is a real matrix in Rd×r. Moreover, the application z 7−→ B1(z) is linear from Rn
into Rd×r.
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If H and U are infinite dimensional spaces. We assume that 0 belongs to the resolvent of A. Then the
fractional powers (−A)γ , 0 < γ < 1, are well defined, and we have ‖(−A)γeAt‖L(H) ≤ Cγt−γ for
t > 0 (see [27, p. 74]), where Cγ > 0 denotes a positive constant.

For every z ∈ Rn, the mapping B(z) : U → [D(A)]′ is a linear continuous operator1, such that
A−ᾱB(z) ∈ L(U,H) for some ᾱ ∈ [0, 1

2 [:

‖A−ᾱB(z)‖L(U,H) = ‖B∗(z)(A∗)−ᾱ‖L(H,U) ≤ cᾱ(1 + ‖z‖), (8)

for some cᾱ > 0, and where 〈B(z)u, y〉H = 〈u,B∗(z)y〉U (B∗ being the H-adjoint operator).
Moreover, the mapping z 7−→ B1(z) is linear and continuous on Rn. We assume also that both
components B0 and B1(z) also independently verify the same estimate (8).

(b) E : [0, T ]×Rn → H is a continuous function. For every t ∈ [0, T ], the mapping E1(t, ·) is a linear
continuous operator from Rn into H.

Let us emphasize that by requiring, in (HS), that ᾱ belongs to [0, 1
2 [, we ensure that for every z ∈ Rn and for

every control input u ∈ U , equation (3) admits a unique mild solution G(u, z) ∈ L2(0, T ;H) ∩ C([0, T ];H)
(see [24, Chapter 3]).

Now, consider a finale cost function Ψ : H→ R that satisfies the following assumption.

(HΨ) Ψ is convex and continuously Fréchet differentiable on H into R There exists CΨ > 0 such that

|Ψ(x)| ≤ CΨ‖x‖mH and ‖∇Ψ(x)‖ ≤ CΨ‖x‖m−1
H ,

for some m ≥ 1.

Consider also a distributed cost function ` : [0, T ]×H×U×Rn → Ω that is a Carathéodory function satisfying
the following requirement

(H`) For every (t, x, u) ∈ [0, T ]×H× U, the function `(t, x, u, ·) is mesurable on Ω,

For every ω ∈ Ω, `(·, ·, ·, ω) is continuous on [0, T ]×H× U
For every (t, ω) ∈ [0, T ]× Ω, `(t, ·, ·, ω) is continuously Fréchet differentiable on H× U.
Moreover, there exists C` : Ω→ R+ such that

|`(t, x, u, ω)| ≤ C`(ω)(‖x‖mH + ‖u‖mU ),

‖`′x(t, x, u, z)‖+ ‖`′u(t, x, u, ω)‖ ≤ C`(ω)(‖x‖m−1
H + ‖u‖m−1

U ),

where the real function C` : Ω→ R+ is Bochner integrable (i.e., E[C`] <∞).

The control problem aims at determining a unified control law u(·) ∈ U that optimizes a cost function. This cost
function encompasses a distributed cost over the time interval [0, T ] as well as the probability of a specific event
occurring at the final time T and is defined defined over a set of trajectories parametrized by the uncertainty ω ∈ Ω.

Maximize
{
E
[ ∫ T

0
`(t,xu(t),u(t), ·) dt

]
+ P

[
Ψ(xu(T )) ≤ 0

]
, u ∈ U

}
. (9)

By the control re-parametrization, the control problem can be also formulated as

Maximize
{
E
[ ∫ T

0
`(t,G(u, ξ)(t),u(t), ·) dt

]
+ P

[
Ψ(G(u, ξ)(T )) ≤ 0

]
, u ∈ U

}
.

1B(z) may be unbounded as an operator from U to H
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Therefore, the control problem can be seen as an optimisation problem with a probability cost in a Banach space.
The main focus in this paper is to derive the optimality conditions of (9) in the form of Pontryagin’s principle. As
we will see the main difficulty in this problem comes from the probabilistic term, and more precisely from the
differentiability of this term with respect to the state and control variables. The differentiability tools that will be
developed in this paper also allow us to consider problems with a probability constraint

Maximize
{
E
[ ∫ T

0
`(t,G(u, ξ)(t),u(t), ·) dt

]
, u ∈ U and P

[
Ψ(G(u, ξ(T )) ≤ 0

]
≥ p0

}
, (10)

where the level of success p0 is a given number in [0, 1]. A discussion on this problem will also be given in this
paper.

Before, we start the discussion about the optimality conditions, let us mention that the setting described in this
section includes finite-dimensional control systems governed by linear equations (in this case, H = Rd and U =
Rr for some d, r ≥ 1,A is a d×dmatrix andB is a d×r matrix). Additionally, our framework accommodates some
systems governed by partial differential equations (PDEs). Here are some examples of PDEs where assumption
(HS) holds.

Example 2.1 (Heat equation with Neumann Boundary control). Let O be an open bounded subset of RN (for
N ≥ 1) of class C2,β , for some β > 0 (that is, the boundary ∂O of O is an (N − 1)-dimensional manifold of
class C2,β such that O lies on one side of ∂O). Consider the parabolic system where the control input acts in the
Neumann boundary condition:

∂tx(t) = ∆x(t) + ax(t) + E(t, z) in Q := (0, T )×O,
∂x
∂ν

∣∣∣
Σ

= b(z)u(t) in Σ := (0, T )× ∂O,

x(0) = x0 inO,

(11)

where a > 0 is a constant, b is an affine function defined on Rn by b(z) = b0 +

n∑
i=1

bizi, with b0, · · · bn are given

constants. The functionE : [0, T ]×R→ L2(O) is defined asE(t, z) = E0(t)+
∑
i

Ei(t)zi withE0, · · · , En

are given functions in L2(O). The initial condition is supposed to be a given function x0 ∈ L2(O). We assume
that a is not an eigenvalue of the Laplacian operator.

To put this example in the abstract setting, we introduce

Ay = ∆y + ay, D(A) =

{
y ∈ H2(O),

∂y

∂ν

∣∣∣
∂O

= 0

}
.

We select the spaces and operator B as follows: H = L2(O),U = L2(∂O) and B is defined by

B(z) : U→ [D(A)]′, B(z)u = −b(z)ANu, (12)

where N is the Neumann operator defined as

Nf = g −→ ∆g + ag = 0 inO, ∂g

∂ν

∣∣∣
∂O

= f.

In the light of elliptic equations theory (see [25, p. 187]), the linear operator N is well defined and is continuous as

N : U→ H
3
2 (O) and more generally N : Hs(∂O)→ Hs+ 3

2 (O), s ∈ R.

From [23, p. 196] and [24, p. 364], B satisfies assumption (HS)(a) with α = 1
4 + ε for ε > 0.
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Example 2.2 (A heat equation with pointwise control - dimension 1). Consider now the case when the control input
is concentrated at fixed space points s1, · · · , sn ∈ O, whereO is an open interval of R. Let Here δ(· − si) be the
Dirac δ-function concentrated at si. The controlled system is

∂tx(t) = ∆x(t) + ax(t) +
∑n

i=1 ziui(t)δ(· − si) in Q := (0, T )×O,
x|Σ = 0 in Σ := (0, T )× ∂O,
x(0) = x0 inO.

(13)

In this new setting, we select the spaces H = L2(O) and U = Rn. The operator A : D(A)→ H is defined as

Ay = ∆y + ay, D(A) = H2(O) ∩H1
0 (O).

The constant a > 0 is assumed not to be an eigenvalue of the Laplacian. We define the operator B(z) =
n∑
i

ziδ(· − si). From [24, p. 365], the operator B satisfies assumption (HS)(a) with α = 1
4 + ε for ε > 0.

3 Values and derivatives of probability functions

In this section, we shall derive a representation as a spheric integral of probability functions and their derivative
associated with a single random inequality. More precisely, we introduce the probability function

ϕ (x) := P [g (x, ξ) ≤ 0] , (14)

where g : X × Rn → R, X is a Banach space and ξ is an n-dimensional random vector, i.e., ξ : Ω → Rn a
measurable function.

3.1 Elliptical distributions

We recall the definition of an elliptical distribution:

Definition 3.1. An n-dimensional random distribution is called elliptical, if it admits a density of the form

f (z) = c · k
(

(z − µ)T Σ−1 (z − µ)
)

(z ∈ Rn) ,

where c is some normalizing constant, µ ∈ Rn, Σ is a positive definite matrix of order (n, n) and k : R+→ R+ is
a generator function. We shall write E (µ,Σ, k) for an elliptical distribution with parameters µ and Σ.

We note that µ is the expectation of the distribution (if it exists) and Σ is proportional to the covariance matrix of the
distribution (if it exists). The class of elliptical distributions includes many prominent multivariate distributions such
as Gaussian, Student or t-, symmetric Laplace or logistics distributions. Moreover, the following presentation of
values and gradients for the probability function (14) can be extended to related non-elliptical distributions like log-
normal, truncated Gaussian or Gaussian mixture upon performing a corresponding transformation of the inequality
g. For example, a multivariate Gaussian distribution with expectation µ and covariance matrix Σ has an elliptical
distribution E (µ,Σ, k) with generator k (t) := e−t/2. We shall then use the common notation N (µ,Σ) rather
than E (µ,Σ, k). It is well known (e.g.,[39, eq. (11) and (13)]) that the probability of an elliptical random vector
ξ ∼ E (µ,Σ, k) to take values in a Lebesgue-measurable set M can be represented as the spherical integral

P (ξ ∈M) =

∫
w∈Sn−1

ν̃ ({r ≥ 0|µ+ rLw ∈M}) dνU (w) ,
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where L is a Cholesky factor of Σ (i.e., Σ = LLT ), νU is the uniform distribution on the unit sphere Sn−1 of Rn
and ν̃ is a one-dimensional probability distribution with density

f̃ (t) := c̃ · tn−1k
(
t2
)

(t ≥ 0) , (15)

with another normalizing constant c̃. For instance, if ξ ∼ N (µ,Σ), then

f̃ (t) = c̃ · tn−1e−t
2/2 (t ≥ 0) ,

which is the density of the Chi-distribution with n degrees of freedom. Applying the spherical representation above
to (14), where g is supposed to be Lebesgue measurable in its second argument, we infer that

ϕ (x) =

∫
w∈Sn−1

ν̃ ({r ≥ 0|g (x, µ+ rLw) ≤ 0}) dνU (w) . (16)

3.2 Continuity of the probability function and representation as a spherical integral

As an application of (16), we obtain the following result on the probability function:

Proposition 3.1. In (14), let g be a continuous function which in addition is convex in its second variable. Let ξ
have an elliptic distribution according to ξ ∼ E (µ,Σ, k). Assume that g (x̄, µ) < 0 for some given x̄ ∈ X . Then,
the probability function in (14) is continuous at x̄ and has the representation

ϕ (x̄) =

∫
w∈Sn−1

e (x̄, w) dνU (w) , (17)

where the radial probability function e : X × Rn → R is defined as

e (x,w) :=

{
1 if g (x, µ+ rLw) < 0 ∀r ≥ 0

F̃ (ρ (x,w)) else
.

via the cumulative distribution

F̃ (t) =

∫ t

−∞
f̃ (s) ds, (18)

associated with the density f̃ from (15) and the radius function ρ : X × Rn → R̄ defined by

ρ (x,w) := sup
r≥0
{r ≥ 0|g (x, µ+ rLw) ≤ 0} .

Proof. Whenever (x,w) ∈ X × Rn are such that g (x, µ) < 0 and ρ (x,w) < ∞, then, by convexity
in the second variable of the continuous function g, ρ (x,w) is the unique solution in r ≥ 0 of the equation
g (x, µ+ rLw) = 0 and it holds that

{r ≥ 0|g (x, µ+ rLw) ≤ 0} = [0, ρ (x,w)] .

On the other hand, if g (x, µ) < 0 and ρ (x,w) =∞, then

{r ≥ 0|g (x, µ+ rLw) ≤ 0} = R+.

Since in (15), the density f̃ of the probability measure ν̃ is nonzero only on R+, it follows that

ν̃ ({r ≥ 0|g (x, µ+ rLw) ≤ 0}) =

{
F̃ (ρ (x,w)) if ρ (x,w) <∞
1 if ρ (x,w) =∞ .
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Pontryagin’s principle for some probabilistic control problems 9

Combining this with (16), we arrive at the representation (17).

It has been shown in [35, Corollary 3.4] that the radial probability function e is continuous at all (x,w) ∈ X×Sn−1

with g(x, µ) < 0. While this result and the auxiliary result it relies on ( [35, Lemma 3.3]), were formulated in
a setting where X is finite-dimensional and ξ has a Gaussian distribution, their proofs do nowhere exploit these
properties and, hence, remain valid in our framework of X being a Banach space and ξ having a general elliptical
distribution. Now, in order to verify the continuity of ϕ at x̄, consider a sequence xk → x̄. By continuity of g, we
have that g(xk, µ) < 0 for k sufficiently large. Therefore, the assumption of this lemma is satisfied at xk as well
and, hence, the representation (17) holds true with x̄ replaced by xk as well. From the stated continuity of e, it
follows that e(xk, w) → e(x̄, w) for all w ∈ Sn−1. Moreover e(xk, w) ≤ 1 for all k and w ∈ Sn−1. Since the
dominating function 1 is integrable with respect to the uniform measure νU on the sphere, Lebesgue’s dominated
convergence theorem yields the asserted continuity of ϕ:

lim
xk→x̄

ϕ(xk) = lim
xk→x̄

∫
w∈Sn−1

e (xk, w) dνU (w) =

∫
w∈Sn−1

(
lim
xk→x̄

e (xk, w)

)
dνU (w) = ϕ(x̄).

For a numerical approximation of ϕ (x̄), one would replace the spherical integral in (17) by a finite sum

ϕ (x̄) = K−1
K∑
k=1

e
(
x̄, w(k)

)
,

where
{
w(k)

}K
k=1

is a sample of the uniform distribution on the sphere Sn−1. We conclude this section with the
remark that the additional condition g (x̄, µ) < 0 is not very restrictive. Indeed, as shown in [35, Prop. 3.11], it will
always hold true if there exists at all some z ∈ Rn with g (x̄, z) < 0 (Slater point) and if, in addition, the value
ϕ (x̄) of the probability function in x̄ is not smaller than 0.5 (note that one is usually interested in probabilities close
to one). In particular, according to Proposition 3.1, the condition g (x̄, µ) < 0 already implies that the probability
function ϕ is (strongly) continuous. However, it does not have to be differentiable yet, despite the fact that the
function g is supposed to be so [35, Prop. 2.2].

3.3 Differentiability of the radial probability function

A crucial step in showing that ϕ is continuously differentiable consists in verifying the same property for the radial
probability function e with respect to its first argument. We recall that the matrix L occuring in (16) is regular as a
root of the positive definite matrix Σ.

Lemma 3.1. In (14), let g be a continuously differentiable function which in addition is convex in its second variable.
Let ξ have an elliptic distribution according to ξ ∼ E (µ,Σ, k) with continuous generator k. At some (x̄, w̄) ∈
X × Sn−1, assume that g (x̄, µ) < 0 and ρ (x̄, w̄) < ∞. Then, the radial probability function e is continuously
differentiable with respect to its first argument in a neighbourhood of (x̄, w̄) and it holds that

Dxe (x,w) · h = − f̃ (ρ (x,w))

Dzg (x, µ+ ρ (x,w)Lw) (Lw)
Dxg (x, µ+ ρ (x,w)Lw) (19)

for (x,w) locally around (x̄, w̄).

Proof. According to [35, Lemma 3.1], the continuous differentiability of g and its convexity (in the second argument)
imply the inequality

Dzg (x̄, µ+ rLw̄) (Lw̄) ≥ −g (x̄, µ)

r
> 0 (20)
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for the unique r > 0 satisfying the equation g (x̄, rLw̄) = 0 (i.e., r = ρ (x̄, w̄)). The inequality has been
established in the reference for the centered case µ = 0, but is evident for arbitrary µ as well. Now, (20) allows
one to apply the implicit function theorem in order to derive that ρ is continuously differentiable in a neighbourhood
of (x̄, w̄) with derivative

Dxρ (x,w) = − 1

Dzg (x, µ+ ρ (x,w)Lw) (Lw)
Dxg (x, µ+ ρ (x,w)Lw) . (21)

for (x,w) locally around (x̄, w̄). By definition, e in Proposition 3.1 has the representation e = F̃ ◦ρ locally around
(x̄, w̄). Since k is a continuous generator, the function f̃ in (15) is continuous too and, hence, F̃ is continuously
differentiable with F̃ ′ = f̃ by (18). It follows along with (21) that e is continuously differentiable with respect to its
first argument in a neighbourhood of (x̄, w̄) with derivative (19).

The analogous result of Lemma 3.1 in the alternative case of ρ (x̄, w̄) =∞ is more delicate to handle. Here, one
has to impose an additional growth condition.

Definition 3.2. In (14) let g be continuously differentiable and ξ ∼ E (µ,Σ, k). We say that the function g satisfies
a distribution-adapted growth condition at x̄ ∈ X if there exists a non-decreasing function ψ : R+ → R+ and a
constant c > 0 such that the following hold true:

limr→∞ r
nk
(
r2
)
ψ (δr) = 0 ∀δ ≥ 0 (22a)

‖Dxg (x, z)‖X′ ≤ cψ (‖z‖) ∀x : ‖x− x̄‖X ≤ c−1 ∀z : ‖z‖ ≥ c. (22b)

Observe that the growth condition (22b) requires the inequality to hold with possibly large modulus and for possibly
large norm of z in a sufficiently small neighbourhood of x̄.

Example 3.1. Assume that ξ ∼ N (µ,Σ). Then, k (r) = e−r/2 and condition (22b) reduces to

lim
r→∞

rne−r
2/2ψ (δr) = 0 ∀δ ≥ 0.

A possible candidate for ψ is then ψ (r) := er for r ≥ 0 which is non-decreasing and satisfies

lim
r→∞

rne−r
2/2ψ (δr) = lim

r→∞
rneδr−r

2/2 = 0 ∀δ ≥ 0.

Hence, in the Gaussian case, it is sufficient to verify the exponential growth condition

‖Dxg (x, z)‖X′ ≤ ce
‖z‖ ∀x : ‖x− x̄‖X ≤ c

−1 ∀z : ‖z‖ ≥ c.

This growth condition allows us to formulate the following technical result:

Lemma 3.2. In (14), let g be a continuously differentiable function which in addition is convex in its second variable.
Let ξ have an elliptic distribution according to ξ ∼ E (µ,Σ, k) with continuous generator k. At some (x̄, w̄) ∈
X × Sn−1, assume that g (x̄, µ) < 0 and ρ (x̄, w̄) = ∞. Suppose, moreover, that g satisfies a distribution-
adapted growth condition at x̄. Then, for every sequence {(xk, wk)} ⊆ X × Rn with (xk, wk) →k (x̄, w̄) and
ρ (xk, wk) <∞ it holds that Dxe(xk, wk)→ 0.

Proof. Observe first that g (xk, µ) < 0 for k sufficiently large and ρ (xk, wk) < ∞ by assumption. Hence, we
may apply Lemma 3.1 to the points (xk, wk) rather than (x̄, w̄) and verify that not only Dxe(xk, wk) exists and
calculates as

Dxe (xk, wk) = − f̃ (ρ (xk, wk))

Dzg (xk, µ+ ρ (xk, wk)Lwk) (Lwk)
Dxg (xk, µ+ ρ (xk, wk)Lwk) , (23)
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but also the relation corresponding to (20) holds true:

Dzg (xk, µ+ ρ(xk, wk)Lwk) (Lwk) ≥ −
g (xk, µ)

ρ(xk, wk)
> 0. (24)

By continuity, g (xk, µ) < g (x̄, µ) /2 < 0 for large enough k and it follows from (24) that

Dzg (xk, µ+ ρ(xk, wk)Lwk) (Lwk) ≥
|g (x̄, µ) |

2ρ(xk, wk)
. (25)

Exploiting the facts that ρ(xk, wk) < ∞, xk →k x̄ and ρ(x̄, w̄) = ∞, we may refer to [35, Lemma 3.3] in
order to derive that ρ(xk, wk) →k ∞. Then, with L regular and ‖wk‖ ≥ 1/2 for k large enough, it follows that
‖µ+ ρ (xk, wk)Lwk‖ →k ∞. Consequently,

‖xk − x̄‖X ≤ c
−1, ‖µ+ ρ (xk, wk)Lwk‖ ≥ c

hold true for the constant c from (22b) and all k large enough. This allows us to combine (23), (25) and (22b), in
order to verify that, for k large enough,

‖Dxe(xk, wk)‖X′ ≤ 2c
f̃ (ρ (xk, wk)) ρ (xk, wk)

|g(x̄, µ)|
ψ(‖µ+ ρ (xk, wk)Lwk‖).

From ‖ρ (xk, wk)Lwk‖ →k ∞ and ‖wk‖ ≤ 2 for k large enough infer that

‖µ+ ρ (xk, wk)Lwk‖ ≤ 2ρ (xk, wk) ‖Lwk‖ ≤ 4ρ (xk, wk) ‖L‖

for k large enough. Therefore, we may exploit (15) along with the fact that ψ is required to be non-decreasing, in
order to verify that, for k large enough,

‖Dxe(xk, wk)‖X′ ≤ 2cc̃
ρn (xk, wk) k(ρ2 (xk, wk))

|g(x̄, µ)|
ψ(4 ‖L‖ ρ (xk, wk)).

Since ρ(xk, wk)→k ∞, the right-hand side of the inequality above tends to zero thanks to (22b) and the assertion
of the lemma follows.

We are now in a position to formulate the complementary result to Lemma 3.1:

Lemma 3.3. Under the assumptions of Lemma 3.2, e is differentiable with respect to its first argument at (x̄, w̄)
and it holds that Dxe(x̄, w̄) = 0.

Proof. Due to ρ (x̄, w̄) =∞, the definition of e implies that e(x̄, w̄) = 1. We show first that e is differentiable with
respect to its first argument at the point (x̄, w̄) itself withDxe(x̄, w̄) = 0. Indeed, should this not be the case, then
we find ε > 0 and a sequence xk → x̄ such that

e(xk, w̄)− e(x̄, w̄)

‖xk − x̄‖X
< −ε ∀k, (26)

since e(x̄, w̄) = 1 is a maximum for the probability function e. This entails e(xk, w̄) < 1 and, hence, ρ(xk, w) <
∞ for all k. By continuity of g, our assumption g(x̄, µ) < 0 implies that g(x, µ) < 0 for all x in some δ-ball Bδ(x̄)
around x̄. For k large enough, the whole line segment [xk, x̄] is contained in the ball Bδ(x̄). Fix an arbitrary such
k and define

α := inf {τ ≥ 0 | e(xk + τ(x̄− xk), w̄) = 1} .
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Clearly, α ∈ [0, 1]. As stated in the proof of Proposition 3.1, the function e is continuous at all (x,w) ∈ X ×Sn−1

with g(x, µ) < 0. Hence, it is continuous at (x, w̄) for all x ∈ [xk, x̄]. Along with e(xk, w̄) < 1, this entails that
α > 0 and

e(xk + α(x̄− xk), w̄) = 1. (27)

Therefore, the interval (0, α) is nonempty and

g(xk + τ(x̄− xk), µ) < 0, e(xk + τ(x̄− xk), w̄) < 1 ∀τ ∈ (0, α). (28)

The second relation implies by definition of e that ρ(xk + τ(x̄ − xk), w̄) < ∞ for all τ ∈ (0, α). Along with the
first relation above, this entails that for all τ ∈ (0, α) the point xk + τ(x̄ − xk) satisfies the same assumptions
as did the point x̄ in the proof of Lemma 3.1. We may thus conclude that the function e(·, w) is continuously
differentiable at the points xk + τ(x̄ − xk) for all τ ∈ (0, α). Since it is also continuous at these points even
for the closed interval τ ∈ [0, α] (by continuity of e at (x,w) for all x ∈ [xk, x̄]), we infer that the real function
τ 7→ e(xk + τ(x̄− xk), w̄) is continuous on τ ∈ [0, α] and continuously differentiable on (0, α). Now, the mean
value theorem allows us to identify some τk ∈ [0, α] (in particular, τk ≤ 1) such that, along with (27),

Dxe(xk + τk(x̄− xk), w̄)(x̄− xk) =
e(xk + α(x̄− xk), w̄)− e(xk, w̄)

α
=

1− e(xk, w̄)

α
.

Recalling that e(x̄, w̄) = 1, we derive from (26) that

‖Dxe(xk + τk(x̄− xk), w̄)‖X′ ‖x̄− xk‖X ≥
ε

α
‖x̄− xk‖ ≥ ε ‖x̄− xk‖ ,

Since k had been fixed arbitrarily, we have thus shown that, for all k sufficiently large,

‖Dxe(yk, w̄)‖ ≥ ε > 0 (yk := xk + τk(x̄− xk)). (29)

From ρ(yk, w̄) <∞ and yk →k x̄ due to τk ≤ 1, we infer that the sequence (yk, w̄) satisfies the assumptions of
the sequence (xk, wk) in Lemma 3.2. Accordingly, we derive the contradiction Dxe(yk, w̄) →k 0 with (29). This
shows our assertion Dxe(x̄, w̄) = 0.

Corollary 3.2. In (14), let g be a continuously differentiable function which in addition is convex in its second
variable. Let ξ have an elliptic distribution according to ξ ∼ E (µ,Σ, k) with continuous generator k. At some
x̄ ∈ X , assume that g (x̄, µ) < 0 and that g satisfies a distribution-adapted growth condition at x̄. Then, there
exists a neighbourhood V of x̄ such that e is differentiable with respect to its first argument in V × Sn−1 with the
respective derivatives Dxe indicated in Lemmas 3.1 and 3.3. Moreover, Dxe is continuous on V × Sn−1.

Proof. Observe first that the assumptions of Lemmas 3.1 and 3.3 are stable, i.e., the conditions g(x̄, µ) < 0 and
the distribution-adapted growth condition at x̄ pertain to hold in a neighbourhood V of x̄. Hence, the differentiability
of e with respect to its first argument in V × Sn−1 follows from these two Lemmas along with the corresponding
formulae for Dxe. We check the continuity of the derivative Dxe at a point (x′, w′) in V × Sn−1. This is clear
from Lemma 3.1 in case of ρ (x′, w′) < ∞ because then Dxe is continuous locally around (x′, w′). Otherwise,
ρ (x′, w′) =∞. Lemma 3.3 entails that Dxe(x

′, w′) = 0. If continuity of Dxe at (x′, w′) failed, then there would
exist some ε > 0 along with a sequence (xk, wk) →k (x′, w′) such that ‖Dxe(xk, wk)‖ ≥ ε. Then, xk ∈ V
for k large enough and ρ(xk, wk) < ∞, because otherwise Dxe(xk, wk) = 0 by Lemma 3.3. Now, Lemma 3.2
yields the contradiction Dxe(xk, wk)→ 0.
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3.4 Differentiability of the probability function and representation of the derivative as a spherical
integral

Theorem 3.3. In (14), let g be a continuously differentiable function which in addition is convex in its second
variable. Let ξ have an elliptic distribution according to ξ ∼ E (µ,Σ, k) with continuous generator k. Assume that
g (x̄, µ) < 0 for some given x̄ ∈ X and that g satisfies a distribution-adapted growth condition at x̄. Then, ϕ is
continuously differentiable in a neighbourhood of x̄ and its derivative applied to an arbitrary h ∈ X is given by

Dϕ (x̄) (h) = −
∫

{w∈Sn−1|ρ(x̄,w)<∞}

f̃ (ρ (x̄, w))

Dzg (x̄, µ+ ρ (x̄, w)Lw) (Lw)
Dxg (x̄, µ+ ρ (x̄, w)Lw) (h) dνU (w)

(30)
with f̃ from (15).

Proof. Let V be some convex neighbourhood of x̄ such that the (open) conditions of the Theorem persist to hold,
i.e., g(x, µ) < 0 and g satisfies a distribution-adapted growth condition at x for all x ∈ V . By the continuity of
Dxe on V × Sn−1 (see Corollary 3.2), the maximum K := max

w∈Sn−1
‖Dxe(x̄, w)‖ is attained and, moreover, after

possibly shrinking V ,
max
w∈Sn−1

‖Dxe(x,w)‖ ≤ K + 1 ∀x ∈ V.

We show first that ϕ is differentiable at x̄. Observe that the operator P defined by

P (h) :=

∫
w∈Sn−1

Dxe(x̄, w)(h) dνU (w) (h ∈ X) (31)

is evidently linear and also continuous due to |P (h)| ≤ K ‖h‖ for all h ∈ X . We claim that Dϕ (x̄) = P which
at the same time would establish the asserted derivative formula thanks to Lemmata 3.1 and 3.3. To proceed, let
xk → x̄ be an arbitrary sequence and define the sequence of functions αk : Sn−1 → R as

αk(w) :=
e(xk, w)− e(x̄, w)−Dxe(x̄, w)(xk − x̄)

‖xk − x̄‖
(w ∈ Sn−1).

Then, αk(w)→k 0 for all w ∈ Sn−1 by Corollary 3.2. Clearly, for k sufficiently large,

|Dxe(x̄, w)(xk − x̄)|
‖xk − x̄‖

≤ K ∀w ∈ Sn−1.

On the other hand, the Mean-Value-Theorem yields the existence of a sequence x̃k ∈ [xk, x̄] ⊆ V (by convexity
of V) such that

|e(xk, w)− e(x̄, w)|
‖xk − x̄‖

=
|Dxe(x̃k)(xk − x̄)|
‖xk − x̄‖

≤ K + 1 ∀w ∈ Sn−1.

Altogether, this yields that |αk| ≤ 2K + 1 for all w ∈ Sn−1. Since constant functions are integrable with respect
to the uniform distribution on the sphere, we may apply Lebesgue’s dominated convergence Theorem in order to
derive along with Proposition 3.1 that

0 =

∫
w∈Sn−1

(
lim
k→∞

αk(w)

)
dνU (w) = lim

k→∞

∫
w∈Sn−1

αk(w) dνU (w)

= lim
k→∞

ϕ(xk)− ϕ(x̄)− P (xk − x̄)

‖xk − x̄‖
.
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This shows that ϕ is differentiable at x̄ with derivative Dϕ (x̄) = P . From the representation of P the asserted
derivative formula follows from Lemmas 3.1 and 3.3. Moreover, since the assumptions of the Theorem persist to
hold for all x ∈ V , we conclude from (31) that

Dϕ(x)(h) =

∫
w∈Sn−1

Dxe(x,w)(h) dνU (w) ∀x ∈ V ∀h ∈ X. (32)

It remains to verify the continuous differentiability of ϕ in a neighbourhood of x̄. To this aim, consider an arbitrary
sequence xk → x̄ and define the function

β(x,w) := ‖Dxe(x,w)−Dxe(x̄, w)‖ (x ∈ V; w ∈ Sn−1).

Then, β is continuous, thanks to Corollary 3.2 and it holds that β(x̄, w) = 0 for all w ∈ Sn−1. Now, defining the
maximum function

βmax(x) := max
w∈Sn−1

β(x,w) (x ∈ V),

we observe that βmax is continuous and βmax(x̄) = 0. Consequently, for some arbitrarily given ε > 0 one has
that βmax(xk) ≤ ε for k large enough. It follows from (32) that

|Dϕ(xk)(h)−Dϕ(x̄)(h)| ≤ ‖h‖
∫

w∈Sn−1

β(xk, w) dνU (w) ≤ ‖h‖βmax(xk) ≤ ‖h‖ ε ∀h ∈ X.

Hence, ‖Dϕ(xk)−Dϕ(x̄)‖ ≤ ε for k large enough and, because ε had been chosen arbitrarily, we arrive at
Dϕ(xk)→k Dϕ(x̄).

Corollary 3.4. The statement of Theorem 3.3 remains true if the growth condition is replaced by the assumption
that the set {z ∈ Rn : g(x̄, z) ≤ 0} is compact.

Proof. First we observe that the multifunction M(x) := {z ∈ Rn : g(x, z) ≤ 0} is upper semicontinuous as a
consequence of our assumptions [3, Theorem 3.2.1]. Then, with M(x̄) required to be compact, there exist some
R ≥ 0 such that M(x) ⊆ B(0, R) for x near x̄. As a result, ρ(x,w) < ∞ holds true for x sufficiently close to
x̄ and for all w ∈ Sn−1. Hence, the proof of Corollary 3.2 (and thus of Theorem 3.3) does not require the growth
condition (by appealing to Lemmas 3.2 and 3.3) but follows directly from Lemma 3.1.

The previous observation allows us to adapt Theorem 3.3) to truncated elliptical distributions.

Definition 3.3. A n-dimensional random vector ξ is said to be truncated elliptical with parameters (µ,Σ, k, C) if
C ⊆ Rn is a Lebesgue measurable set of positive measure and there exists η ∼ E(µ,Σ, k) such that the density
of ξ relates with that of η via

fξ(z) = fη(z) · 1C(z)/P(η ∈ C),

where 1C denotes the characteristic function of C . Note that P(η ∈ C) > 0. As a consequence,

P(ξ ∈M) =
P(η ∈M ∩ C)

P(η ∈ C)
,

for all Lebesgue measurable sets M ⊆ Rn.
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Corollary 3.5. In (14), let g be a continuously differentiable function which in addition is convex in its second
variable. Let ξ have a truncated elliptic distribution with parameters (µ,Σ, k, C), with continuous generator k and
compact set C having nonempty interior. Assume that, for some given x̄ ∈ X , it holds that g (x̄, µ) < 0 and

{z ∈ Rn : g(x̄, z) ≤ 0} ⊆ intC. (33)

Then, ϕ is continuously differentiable in a neighbourhood of x̄ and its derivative applied to an arbitrary h ∈ X is
given by

Dϕ (x̄) (h) = −1

c

∫
Sn−1

f̃ (ρ (x̄, w))

Dzg (x̄, µ+ ρ (x̄, w)Lw) (Lw)
Dxg (x̄, µ+ ρ (x̄, w)Lw) (h) dνU (w) (34)

with f̃ from (15) and c = P(η ∈ C) for η ∼ E(µ,Σ, k).

Proof. Inclusion (33) enforces the compactness of the left-hand side. Then, with the upper semicontinuity argument
already employed in the proof of Corollary 3.4, we infer the existence of some neighbourhood V of x̄ such that

{z ∈ Rn : g(x, z) ≤ 0} ⊆ intC ∀x ∈ V.

This inclusion implies along with Definition 3.3 that

ϕ(x) = P(g(x, ξ) ≤ 0) =
1

c
P(η ∈ C, g(x, η) ≤ 0) =

1

c
P(g(x, η) ≤ 0) ∀x ∈ V.

On the other hand, the probability function ϕ(η) := P(g(x, η) ≤ 0) satisfies the assumptions of Corollary 3.4 at
x̄, so that the assertion follows from Theorem 3.3 upon observing that Dϕ(x) = c−1Dϕ(η)(x) for all x ∈ V .

In some models, the random variable takes values in a compact set. The following result indicates a sufficient
condition under which the function ϕ is still differentiable.

Corollary 3.6. In (14), let g be a continuously differentiable function which in addition is convex in its second
variable. Let ξ have a truncated elliptic distribution with parameters (µ,Σ, k, C), with continuous generator k and
compact convex set C , itself representable as C = {z ∈ Rn : ĝ(z) ≤ 0}, with ĝ : Rn → R convex and
continuously differentiable. Assume that, for some given x̄ ∈ X , it holds that g (x̄, µ) < 0 and

rank {∇zg(x, z),∇ĝ(z)} = 2, ∀z s.t. ĝ(z) = 0 = g(x̄, z). (35)

for x in a neighbourhood of x̄. Then, ϕ is continuously differentiable in a neighbourhood of x̄ and its derivative
applied to an arbitrary h ∈ X is given by

Dϕ (x̄) (h) = −1

c

∫
Iρ

f̃ (ρ̂ (x̄, w))

Dzg (x̄, µ+ ρ̂ (x̄, w)Lw) (Lw)
Dxg (x̄, µ+ ρ̂ (x̄, w)Lw) (h) dνU (w) (36)

with f̃ from (15), c = P(η ∈ C) for η ∼ E(µ,Σ, k), Iρ =
{
w ∈ Sn−1 : µ+ ρ(x,w)Lw ∈ C

}
and ρ̂(x,w) =

min
{
ρ(x,w), supr :µ+rLw∈C r

}
.

Proof. Condition (35) is called the rank-2 constraint qualification condition in [36], which as a result of Lemma 4.3
therein (relying on convexity and arguments in Rn) enables us to establish

µζ(
{
w ∈ Sn−1 : ĝ(µ+ ρ(x,w)Lw) = 0

}
) = 0.
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Since moreover C is bounded,Dom(ρ̂(x, .)) = Sn−1 and in fact ρ̂(x, .) is bounded uniformly in x. Now, together
with the just made observation we can employ Lemma 3.1 µζ almost everywhere. We can now distinguish over Iρ
and

{
w ∈ Sn−1 : µ+ ρ(x,w)Lw /∈ C

}
, on which Dxe(x,w) = 0. The arguments justifying the interchange

of integration and differentation of Theorem 3.3 can be used again, but this time simplified since there can be no
sequence on which ρ̂ becomes arbitrarily large. This then allows us to arrive at the desired formula.

Remark 3.1. In the just given result, condition (35) can be seen in the light of the well known LICQ condition.
Should however the set C be defined by multiple inequalities, condition (35) would essentially remain unchanged -
indeed it suffices to request linear independence of active gradients two by two. In that setting the given condition
is weaker than LICQ. This condition is largely preferable over the abstract zero-measure requirement that it entails.
It is not clear how one is to concretely verify the latter, whereas conditions, let alone constraint qualifications, on the
nominal data are reasonable.

4 Analysis of the control problem

The general framework described in the previous section will be now used to analyze the control problem (9). Under
assumption (HS), the mappings G : L2(0, T ;U)× Rn → C([0, T ];H) with

G(u, z) := eA·x0 +

∫ ·
0
eA(·−s)E(s, z) ds+

∫ ·
0
eA(·−s)B(z)u(s) ds (37)

is well defined. Observe that for every z ∈ Rn, the operator G(·, z) is affine and continuous. Indeed, if we set
Yz = G(u, z)−G(v, z), then it comes that Yz satisfies the equation Ẏz(t) = AYz(t) +B(z)(u(t)−v(t)) with
Yz(0) = 0. Then, assumption (HS) guarantees that there exists a constant C0 > 0 such that, for every z ∈ Rn,
for every u,v ∈ L2(0, T ;U) we have (see [24] for instance)

‖G(u, z)− G(v, z)‖C(0,T ;H) ≤ C0(1 + ‖z‖Rn)‖u− v‖L2(0,T ;U). (38)

Now, define G : L2(0, T ;U)× Rn −→ R by

G(u, z) := Ψ(G(u, z)(T )) ∀z ∈ Rn,∀u ∈ L2(0, T ;U).

Lemma 4.1. Assume that (HS) and (HΨ) hold. For every z ∈ Rn, the mapping u 7−→ G(u, z) is continuously
differentiable and for every u,v ∈ L2(0, T ;U), we have:

DuG(u, z) · v =

∫ T

0
〈B∗(z)yu

z (s),v(s)〉 ds

whereyu
z ∈ C([0, T ;H) is the unique solution of the equation−ẏu

z (s) = A∗yu
z (s) andyu

z (T ) = ∇Ψ(G(u, z)(T )).

Proof. As mentioned earlier,for every z ∈ Rn, the mapping u 7−→ G(u, z) is affine and continuous. The derivative
DuG(u, z) : L2(0, T ;U)→ C([0, T ];H) is well defined and is given by

DuG(u, z) · v =

∫ ·
0
eA(·−s)B(z)v(s) ds ∀v ∈ L2(0, T ;U).

Since Ψ is differentiable, by the chain rule argument and a straightforward calculus, we get that

DuG(u, z) · v = 〈∇Ψ(G(u, z)(T )),

∫ T

0
eA(T−s)B(z)v(s) ds〉H.
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Pontryagin’s principle for some probabilistic control problems 17

This equality leads to

DuG(u, z) · v =

∫ T

0
〈∇Ψ(G(u, z)(T )), eA(T−s)B(s, z)v(s)〉H ds

=

∫ T

0
〈B∗(z)eA∗(T−s)∇Ψ(G(u, z)(T )),v(s)〉U ds (39)

Now, introduce the solution yu
z ∈ C([0, T ;H) of the equation −ẏu

z (s) = A∗yu
z (s) with the final condition

yu
z (T ) = ∇Ψ(G(u, z)(T )). This solution is explicitly given by yu

z (s) = eA
∗(T−s)∇Ψ(G(u, z)(T )), which

combined to (39) concludes the proof.

Lemma 4.2. Assume that (HS) and (HΨ) hold. Then, the function G is convex w.r.t its second variable.

Moreover, for every u ∈ L2(0, T ;U), the mapping G(u, ·) is continuously differentiable and for every z, h ∈ Rn,
we have

DzG(u, z) · h = 〈∇Ψ(G(u, z)(T )),Zh(T )〉H,

where Zh ∈ C([0, T ];H) is the unique solution of the linear system:

Żh(t) = AZh(t) +B1(h)u(s) + E1(t, h) for t ∈ [0, T ], Zh(0) = 0 (40)

(or equivalently,

Zh(t) =

∫ t

0
eA(t−s)

(
B1(h)u(s) + E1(s, h)

)
ds).

Proof. By its definition and by assumptions (HS), the mapping z 7−→ G(u, z)(T ) is affine. Hence, the functionG
is a composition of the convex function Ψ (by (HΨ)) and the affine function G, which implies that G is convex on
its second variable (and even separately in its both variables). Moreover, using the linearity of the maps B1(·) and
E1(s, ·), for every s ∈ [0, T ], we get G(u, z + h)− G(u, z) = Zh, where Zh is the solution of (40). Therefore,
the mapping z 7−→ G(u, z) is continuously differentiable. Finally, by using the chain rule argument, we conclude
the proof.

Recall that the uncertainty enters in the controlled system in a structured manner (see (7)) through a n-dimensional
random vector ξ that is distributed according to

ξ ∼ E (µ,Σ, k) , µ ∈ Rn, Σ ∈ Rn×n,

with Σ positive definite. For every u ∈ L2(0, T ;U) and every η ∈ Sn−1, we define the possibly extended valued
radius function ρ(u, η) by

ρ (u, η) := sup
r≥0
{r ≥ 0|Ψ (G(u, µ+ rLη)(T )) ≤ 0} .

Introduce the cost function J1 : L2(0, T ;U)→ R defined by

J1(u) := P
[
Ψ(xu

ω(T )) ≤ 0

]
= P

[
Ψ(G(u, ξ(ω))(T )) ≤ 0

]
for every u ∈ L2(0, T ;U).

In the sequel, we make the following hypothesis

(HG) The model uncertainty ξ has an elliptical distribution according to E(µ,Σ, k) such G satisfies a distribution
adapted growth condition at all u ∈ L2(0, T ;U).
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Assumption (HG) is not a restrictive requirement. It indicates that there must be an interplay between the growth
of the cost function ∇Ψ(x) and the decay of the kernel k. Under assumption (HΨ), ∇Ψ(x) has a polynomial
growth of degree m − 1, then one can consider any choice of distribution whose kernel κ(r) decays faster than
the function r−q with 2q > n+m. Indeed, recall that from (39), we have

∇uG(u, z)(s) = B∗(z)eA
∗(T−s)∇Ψ(G(u, z)(T )) ∀u ∈ L2(0, T ;Rm) ∀z ∈ Rn ∀s ∈ [0, T ]

By hypothesis (HS), there exists some constant C1 > such that

‖∇uG(u, z)‖L2(0,T ;U) ≤ C1(1 + ‖z‖)‖∇Ψ(G(u, z)(T ))‖H.

Combining this with our assumed growth condition for Ψ, one obtains that

‖∇uG(u, z)‖L2(0,T ;U) ≤ C1CΨ(1 + ‖z‖)‖G(u, z)(T )‖m−1
H .

Then, using the estimate (38), one obtains that

‖∇uG(u, z)‖L2(0,T ;U) ≤ C(1 + |z|)m(1 + ‖u‖L2(0,T ;U))
m−1 ∀u ∈ L2(0, T ;Rm), ∀z ∈ Rn

for some constant C > 0. Assumption (HG) is then satisfied whenever the generator function k satisfies

lim
r→∞

rnk(r2)(1 + |r|)m = 0.

Remark 4.1. The multivariate Gaussian distribution has generator k(t) = exp(−t/2)/(2π)
n
2 and evidently the

growth condition will then hold true. Likewise the logistic and “exponential power"families are readily seen to be
compatible. One can easily verify that if ξ follows a multivariate Student distribution that the above growth condition
will hold true whenever the degrees of freedom ν > m. Indeed, the multivariate student random vector has as
generator:

k(t) =
Γ(n+ν

2 )

Γ(ν2 )
(πν)−n/2(1 +

t

ν
)−

n+ν
2 .

Finally, let us mention that assumption (HG), along with the convexity property ofG stated in Lemma 4.2, is needed
to ensure that function J1 is differentiable. A precise statement is given in the next Theorem.

Theorem 4.1. Assume (HS), (HΨ) and (HG). Let u ∈ L2(0, T ;U) be such that

G(u, µ) = Ψ(G(u, µ)(T )) < 0.

Introduce the set Iρ := {η ∈ Sn−1 | ρ(u, η) < ∞} and the function α(η) := µ+ ρ (u, η)Lη. Then, J1 is
continuously differentiable at u and its derivative is given by

DJ1 (u) · v =

∫ T

0

∫
Iρ

〈B∗(α(η))pu
η (s),v(s)〉U dνU(η)ds ∀v ∈ L2(0, T ;U),

where the adjoint state pu
η ∈ C([0, T ];H) is solution of the equation:

−ṗ(s) = A∗p(s), p(T ) = − f̃ (ρ (u, η))

〈∇Ψ(G(u, α(η))(T )),ZLη(T )〉H
∇Ψ(G(u, α(η))(T )),

with ZLη defined as in (40) (for h = Lη), and the density f̃ is given in (15).
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Proof. First, notice that by convexity of G(u, ·) and by definition of ρ(ν, η), for every η ∈ Iρ, it comes that

G(u, µ) ≥ G(u, α(η)) +DzG(u, α(η)) · (µ− α(η)) = −ρ(u, η)DzG(u, α(η)) · Lη.

Using the assumption that G(u, µ) < 0 and Lemma 4.2, we get that

〈∇Ψ(G(u, α(η))(T )),ZLη(T )〉H > 0 for every η ∈ Iρ.

Let v ∈ L2(0, T ;U) be given. A direct application of Theorem 3.3 leads to

DJ1 (u) · v = −
∫
Iρ

f̃ (ρ (u, η))

DzG (u, α(η)) · Lη
[DuG (u, α(η)) · v] dνU (η)

By using Lemmas 4.1 & 4.2, we obtain

DJ1 (u) · v =

−
∫
Iρ

f̃ (ρ (u, η))

〈∇Ψ(G(u, α(η))(T )),ZLη(T )〉H
〈∇Ψ(G(u, α(η))(T )), [DuG (u, α(η)) · v] (T )〉H dνU (η) =

∫
Iρ

〈
pu
η (T ), [DuG(u, α(η)) · v] (T )

〉
H dνU (η) =

Notice that, by assumption (HS), for every η, the functionpu
η belongs toC(0, T,H) andpu

· ∈ L2(Sn;C([0, T ];H)).
Besides, we have

DuG(u, α(η)) · v =

∫ ·
0
eA(·−s)B(α(η))v(s) ds.

Therefore,

DJ1 (u) · v =

∫
Iρ

∫ T

0
〈B∗(α(η))eA

∗(T−s)pu
η (T ),v(s)〉U dsdνU(η)

=

∫
Iρ

∫ T

0
〈B∗(α(η))pu

η (s),v(s)〉U dsdνU(η)

for every v ∈ L2(0, T ;U). Since the measure dνU × ds is σ-finite on the compact set Sn−1 × [0, T ], Tonelli-
Fubini’s theorem yields the asserted formula.

Theorem 4.1 indicates that the gradient of J1, at u, is given by the following expression

∇J1(u) :=

∫
Iρ

B∗(α(η))pu
η (·) dνU(η) ∈ L2(0, T ;U).

In this expression, we used the radial decomposition of the random variable ξ. Convexity with respect to uncertainty
is crucial here to determine the derivative expressed solely in terms of directions η belonging to the set Iρ, that is,
the directions η associated with a finite radius value ρ(u, η). The same calculus can be done if instead of (HG),
we assume that the random variable ξ has a truncated elliptical distribution with parameters (µ,Σ, k,B(0,M))
where M > 0. In this case, the differentiability can still be analysed by using Corollary 3.5 or 3.6.

In the control problem (??), the cost function is constituted by a sum of a probability cost J1 and the expectation of
a running cost that we will define as the cost J2 : L2(0, T ;U) −→ R given by

J2(u) := E
[ ∫ T

0
`(s,xu(s),u(s), ·) ds

]
∀u ∈ L2(0, T ;U).
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Theorem 4.2. Assume (HS), (HΨ) and (HG). Let u ∈ L2(0, T ;U) and its associated state xu (i.e., solution of
(6)). Then, J2 is continuously differentiable around u and its derivative is given by

DJ2 (u) · v = E
[ ∫ T

0
〈`u(t,xu(t),u(t), ·) +B∗(ξ)qu(t),v(t)〉U dt

]
∀v ∈ L2(0, T ;U),

where the co-state quω ∈ C(0, T ;H) is solution of the adjoint equation:

−q̇uω(s) = A∗quω(s) + `′x(s,xu
ω(s),u(s), ω), q(T ) = 0.

Proof. Notice that for u ∈ L2(0, T ;U)

J2(u) =

∫
Ω

∫ T

0
`(t,G(u, ξ(ω))(t),u(t), ω)dtdP(ω).

Since ` is of class C1 and satisfies (H`), by superposition principle, the function J2 is differentiable and, for every
v ∈ L2(0, T ;U), we have

DJ2(u) · v =

∫
Ω

∫ T

0

[
〈`x(t,G(u, ξ(ω))(t),u(t), ω),

∫ t

0
eA(t−s)B(ξ(ω))v(s) ds〉H

]
dtdP(ω)

+

∫
Ω

∫ T

0
〈`u(t,G(u, ξ(ω))(t),u(t), ω),v(t)〉U dtdP(ω).

By introducing the adjoint state quω (for every ω ∈ Ω), we notice that:∫ T

0
〈`x(t,xu

ω(t),u(t), ω),

∫ t

0
eA(t−s)B(ξ(ω))v(s) ds〉H dt =

∫ T

0
〈B∗(ξ(ω))quω(t),v(t)〉U dt,

which concludes the proof.

Unlike the cost function J1, the differentiability of the function J2 does not require any convexity property with
respect to the uncertainty. For this function, the gradient at any u ∈ U , is identified to the function defined on
[0, T ] by∇J2(u)(t) = E

[
`u(t,G(u, ξ)(t),u(t), ·) + B∗(ξ)qu(t)

]
. This function involves an expectation over

all uncertainties in Ω. Now, we can state the optimality condition for the control problem with uncertainties.

Theorem 4.3. Assume (HS), (HΨ), (H`) and (HG). Let u be an optimal control law and xu = G(u, ξ) its
associated optimal state. We assume that

G(u, µ) = Ψ(G(u, µ)(T )) < 0.

Introduce the set Iρ :=
{
η ∈ Sn−1 | ρ(u, η) <∞

}
and the function α(η) := µ+ ρ (u, η)Lη, for η ∈ Iρ.

There exist perturbed adjoint states p = {pη, η ∈ Iρ} ⊂ C([0, T ];H) and q = {qω, ω ∈ Ω} ⊂ C([0, T ];H)
satisfying

−ṗη(t) = A∗pη(t), pη(T ) = γ(η)∇Ψ(G(u, α(η))(T )), (41a)

−q̇ω(t) = A∗qω(t) + `x(t,G(u, ξ(ω))(t),u(t), ω), q̄ω(T ) = 0, (41b)

where for every η ∈ Iρ, γ(η) =
−f̃ (ρ (u, η))

〈∇Ψ(G(u, α(η))(T )),ZLη(T )〉
, and

ŻLη(t) = AZLη(t) +B1(Lη)u(t) + E1(t, Lη), ZLη(0) = 0. (41c)
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Moreover, for a.e t ∈ (0, T ) and for every v ∈ U , we have〈
E
[
`u(t,G(u, ξ)(t),u(t), ·) +B∗(ξ)q(t)

]
+

∫
Iρ

B∗(α(η))pη(t) dνU(η),u(t)− v
〉
U ≥ 0. (41d)

Proof. By combining Theorems 4.1 and 4.2, and by convexity of U , we obtain for every v ∈ U

0 ≤ D(J1 + J2)(u).(u− v)

≤
∫ T

0
E
[
〈`u(t,G(u, ξ)(t),u(t), ·) +B∗(ξ)q(t),u(t)− v(t)〉U

]
dt

+

∫ T

0

∫
Iρ

〈
B∗(α(η))pη(t),u(t)− v(t)

〉
U dνU(η)dt. (42)

To conclude the proof, we use the spike perturbation techniques. Let v ∈ U and denote by Γ0 ⊂ [0, T ] the set of
Lebesgue points of the function

t 7−→
〈
E
[
`u(t,G(u, ξ)(t),u(t), ·) +B∗(ξ)q(t)

]
+

∫
Iρ

B∗(α(η))pη(t) dνU(η),u(t)− v
〉
U.

This application being continuous on [0, T ], the set Γ0 is of full measure. Let t0 ∈ Γ0, for ε > 0, consider the
perturbation

vε(s) :=

{
v if s ∈ (t0 − ε, t0 + ε)

u(s) otherwise.

Using this perturbation in (42) and dividing by 2ε, we get

0 ≤ 1

2ε

∫ t0+ε

t0−ε

〈
E
[
`u(t,G(u, ξ)(t),u(t), ·) +B∗(ξ)q(t)

]
+

∫
Iρ

B∗(α(η))pη(t) dνU(η),u(t)− v
〉
dt.

By letting ε goes to 0, we obtain

0 ≤
〈
E
[
`u(t0,G(u, ξ)(t0),u(t0), ·) +B∗(ξ)p(t0)

]
+

∫
Iρ

B∗(t0, α(η))pη(t0) dνU(η),u(t0)− v
〉
,

for any to ∈ Γ0, which concludes the proof.

4.1 Chance-constrained control problems

The key point in deriving the optimality conditions for problem (9) is the derivation formula for the probability func-
tional. The same analysis can be extended to other control problems with chance constraints on the state at the
final time. For instance, consider the following control problem:

(P1) Maximize
{
J2(u) | u ∈ U and P

[
Ψ(xu

ω(T )) ≤ 0
]
≥ c,

}
.

Theorem 4.4. Consider the same setting as in Theorem 4.3. Let u be an optimal control law of (P1) and xu =
G(u, ξ) its associated optimal state. We assume that

G(u, µ) = Ψ(G(u, µ)(T )) < 0.
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Introduce the set Iρ :=
{
η ∈ Sn−1 | ρ(u, η) < ∞

}
and the function α(η) := µ+ ρ (u, η)Lη, for η ∈ Iρ.

There exist (λ0, λ) ∈ {0, 1} × R−, and perturbed adjoint states p = {pη, η ∈ Iρ} ⊂ C([0, T ];H) and
q = {qω, ω ∈ Ω} ⊂ C([0, T ];H) satisfying

(λ0, λ) 6= 0, (43a)

λ
(
P
[
Ψ(xu

ω(T )) ≤ 0
]
− c
)

= 0, and P
[
Ψ(xu

ω(T )) ≤ 0
]
≥ c, (43b)

−ṗη(t) = A∗pη(t), p̄η(T ) = λ0γ(η)∇Ψ(G(u, α(η))(T )), (43c)

−q̇ω(t) = A∗qω(t) + λ0`x(t,xω(t),u(t), ω), q̄ω(T ) = 0, (43d)

where for every η ∈ Iρ, γ(η) =
−f̃ (ρ (u, η))

〈∇Ψ(G(u, α(η))(T )),ZLη(T )〉
, with

ŻLη(t) = AZLη(t) +B1(Lη)u(t) + E1(t, Lη), ZLη(0) = 0. (43e)

Moreover, for a.e t ∈ (0, T ) and for every v ∈ U , we have

〈
λ0E

[
`u(t,xω(t),u(t), ω) +B∗(ξ(ω))qω(t)

]
+ λ

∫
Iρ

B∗(ξ(ω))pη(t) dνU(η),u(t)− v
〉
U ≥ 0.(43f)

Proof. By general results of optimization theory, the maximal solution u is associated with a non trivial pair of
multipliers (λ0, λ) ∈ {0, 1} × R+ such that for all v ∈ U

0 ≤ λ0DJ2(u).(u− v) + λDJ1(u).(u− v). (44)

The rest of the proof is based on the differentiability formulas for J1 (in Theorem 4.1) and for J2 (in Proposition 4.2)
and follows similar arguments as in the proof of Theorem 4.3.

At this stage the question can be raised whether the necessary optimality conditions are sufficient or not. In partic-
ular, could the probabilistic function J1 be a concave functional? Although the controlled system is linear and the
function Ψ is convex, the cost function J1 can not be expected to be convex in general. However, it could be the
case that some upper-level sets of J1 are convex. The following result provides an insight into the matter.

Proposition 4.1. Assume that the hypothesis (HS), (HΨ) and (HG) hold true. In addition assume that

� the mapping u 7→ ρ(u, η) is β-concave2 for each η (see, e.g., Definition 3.2 in [39]).

� the random vector ξ is multivariate Gaussian.

Then the upper level sets of J1 are convex for all levels beyond c∗ = Φ(
√
n− β). Moreover J1 is concave on

any of the latter upper level sets. Here Φ stands for the 1 dimensional standard Gaussian distribution function.

Proof. Notice that G is convex in its both arguments. Since the underlying space L2 is reflexive, the result of the
proposition is a direct application of [22, Theorem 11] along the lines of [39, Corollary 4.3 ]. The concavity of J
results from [39, Theorem 3.1].

2for β < 0, this means u 7→ ρβ(u, η) is convex
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Under the assumptions of Proposition 4.1 it is always true that ρ is quasi-concave, i.e., β = −∞. If G is jointly
convex in both arguments, then β = 1, i.e., ρ is concave. In other situations the specific structure of G has to
be explored to learn of an appropriate β value. However when G is jointly convex, one can leverage Prékopa’s
celebrated log-concavity results to ensure that all upper level sets of J1 are convex, not just beyond a given level
- J1 being log-concave itself. Proposition 4.1 does ensure however the stronger concavity of J1 on the exhibited
upper level sets.

Corollary 4.5. Assume the same setting as in Proposition 4.1. Assume that the distributed cost ` is concave.

Let u ∈ U be an admissible control law and xu = G(u, ξ) its associated optimal state. Assume that

G(u, µ) = Ψ(G(u, µ)(T )) < 0.

Assume also that the probability level c > c∗. Then, u is an optimal control of (P1) if and only if there exists a
nontrivial pair of multipliers (λ0, λ) 6= 0 such the optimality system (43) is satisfied.

Remark 4.2 (On Gaussian random vectors). The restriction to Gaussian random vectors in Proposition 4.1 is
only to make the statement less involved. A very similar result would indeed hold for essentially any Elliptically
symmetrically distributed random vector ξ. We refer the reader to Table 1 [39]. To provide an example, if ξ would be
multi-variate Student with ν degrees of freedom, then the resulting threshold would be:

c∗ = (
1

2
− q)Fn,ν

(
ν(n− α)

δ(q)2(nν − n)

)
+ q +

1

2

with δ(q) the unique solution (in δ) to the equation

Bi

(
n− 1

2
,
1

2
, 1− δ2

)
= (1− 2q)Bc

(
n− 1

2
,
1

2

)
,

where Bi (Bc) refers to the incomplete (resp. complete) Beta function, Fn,ν is the Fisher-Snedecor distribution
with n and ν degrees of freedom and q ∈ (0, 1

2) is a free parameter.

Remark 4.3 (On the threshold). The given threshold in the previous results is to be understood as a conservative
estimate - and is by no means tight. As a result, in concrete applications it may well be that the upper level sets of
J1 are convex beyond c∗ = 1

2 even though this can only be asserted theoretically for a much larger c∗.

4.2 Some examples

Example in finite dimensional space Here, we consider the case of finite dimensional spaces H = Rd and
U = Rm with assumptions (HS) and (HΨ) satisfied. For simplicity, we consider here the special case of a
multivariate Gaussian distribution for the random vector.

Let Ψ(x) := ‖x− x̄‖2 − c for some x̄ ∈ Rd and c > 0. Then, assumption (HΨ) is fulfilled.

Heat equation with Neumann Boundary control Consider the parabolic controlled system described in Example
2.1 

∂tx(t, y) = ∆x(t, y) + a(y)x(t, y) + E(t, z) in Q := (0, T )×O,
∂x
∂ν

∣∣∣
Σ

(t, y) = b(z)u(t, y) in Σ := (0, T )× ∂O,

x(0, y) = x0(y) inO.

(45)
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where x0 ∈ H1(O), a(y) ≥ 0. For simplicity, we assume here that b(z) = b1 · z, with b1 ∈ Rn is a given vector.
Similarly, we consider a functionE : [0, T ]×Rn → H2(O) given byE(t, z) = E1(t)·z withE1 : [0, T ] −→ Rn
is a known continuous function.

In this section, we shall use G(u, z) to denote the solution of (45) corresponding to a control u ∈ U and z ∈ Rn.

Consider the following control problem (P1)

Maximize E
[λQ

2

∫ T

0

∫
O
|G(u, ξ(ω))(t, y)− xQ(t, y)|2 dydt

]
+
λΣ

2

∫ T

0

∫
∂O
|u(t, y)|2 dydt

+P
[1

2
‖G(u, ξ(ω))(T )− xO‖2 −R2 ≤ 0

]
,

such that u ∈ L2(0, T ;L2(∂O)),

with λQ < 0, λΣ < 0, and the radius R > 0. In this example, the hypothesis (HS), (HΨ), (H`) hold true.
Assume that problem (P1) has an optimal solution u ∈ U such that

‖G(u, µ)(T )− xO‖2 < R2.

Then, Theorem 4.3 provides the first optimality optimality conditions stated in the next result.

Theorem 4.6. Introduce the set Iρ :=
{
η ∈ Sn−1 | ρ(u, η) < ∞

}
and the function α(η) := µ+ ρ (u, η)Lη,

for η ∈ Iρ.

There exist perturbed adjoint states pη ∈ L2(0, T ;H) and qω ∈ L2(0, T ;H) satisfying
−∂tpη(t, y) = ∆pη(t, y) + a(y)pη(t, y) in Q := (0, T )×O,
∂pη
∂ν

∣∣∣
Σ

(t, y) = 0 in Σ := (0, T )× ∂O,

pη(T, y) = γ(η)(G(u, α(η))(T, y)− xO(y)) inO,

(46a)


−∂tqω(t, y) = ∆qω(t, y) + a(y)qω(t, y)

+λQ(G(u, α(η))(t, y)− xQ(t, y)) in Q := (0, T )×O,
∂qω
∂ν

∣∣∣
Σ

(t, y) = 0 in Σ := (0, T )× ∂O,

qω(T, y) = 0 inO.

(46b)

where γ(η) =
−f̃ (ρ (u, η))

〈G(u, α(η))(T )− xO,G(u, Lη)(T )〉
, for every η ∈ Iρ. Moreover, for a.e t ∈ (0, T ) and for

every v ∈ U , we have

E
[ ∫

∂O
λΣ(u(t, y) + qω(t, y))(u(t, y)− v(y)) dy

]
+

∫
Iρ

∫
∂O

pη(t, y)(u(t, y)− v(y)) dydνU(η) ≥ 0.

5 Conclusion

In conclusion, in this paper we have investigated the optimality conditions for a control problem subject to a prob-
abilistic constraint or with a probabilistic cost. The key point is the differentiability of the probabilistic cost function.
The differentiability result that is derived in the present work depends on a convexity structure with respect to the
random variable. For a class of linear control problems, we show that the optimality conditions can be expressed
in the form of a Pontryagin principle. To the best of our knowledge, the results obtained in this paper are new in
the context of optimal control problems under uncertainties. The obtained result constitute a starting point for future
studies on optimality conditions and for developing efficient numerical methods for solving probabilistic constrained
optimal control problems.
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