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Weighted sparsity and sparse tensor networks for least squares
approximation

Philipp Trunschke, Martin Eigel, Anthony Nouy

Abstract

The approximation of high-dimensional functions is a ubiquitous problem in many
scientific fields that is only feasible practically if advantageous structural properties can be
exploited. One prominent structure is sparsity relatively to some basis. For the analysis of
these best 𝑛-term approximations a relevant tool is the Stechkin’s lemma. In its standard
form, however, this lemma does not allow to explain convergence rates for a wide range of
relevant function classes. This work presents a new weighted version of Stechkin’s lemma
that improves the best 𝑛-term rates for weighted ℓ𝑝-spaces and associated function classes
such as Sobolev or Besov spaces. For the class of holomorphic functions, which for example
occur as solutions of common high-dimensional parameter dependent PDEs, we recover
exponential rates that are not directly obtainable with Stechkin’s lemma.

This sparsity can be used to devise weighted sparse least squares approximation algorithms
as known from compressed sensing. However, in high-dimensional settings, classical
algorithms for sparse approximation suffer the curse of dimensionality. We demonstrate
that sparse approximations can be encoded efficiently using tensor networks with sparse
component tensors. This representation gives rise to a new alternating algorithm for best
𝑛-term approximation with a complexity scaling polynomially in 𝑛 and the dimension.

We also demonstrate that weighted ℓ𝑝-summability not only induces sparsity of the
tensor but also low ranks. This is not exploited by the previous format. We thus propose a
new low-rank tensor train format with a single weighted sparse core tensor and an ad-hoc
algorithm for approximation in this format. To analyse the sample complexity for this new
model class we derive a novel result of independent interest that allows to transfer the
restricted isometry property from one set to another sufficiently close set. We then prove
that the new model class is close enough to the set of weighted sparse vectors such that the
restricted isometry property transfers. Numerical examples illustrate the theoretical results
for a benchmark problem from uncertainty quantification.

Although our contributions on a weighted Stechkin lemma and the restricted isometry
property lead to the analysis of a sparse tensor model class, the results are of independent
interest and can be read independently.

1 Introduction

Approximating an unknown function from data is a fundamental problem in computational
science and machine learning. In many applications, the sought function may depend on a large
number of parameters, rendering the approximation task susceptible to the curse of dimensionality
(CoD), i.e. an exponential complexity in the dimension of the problem or the amount of sample
points required to obtain an accurate approximation. This is particularly problematic when the
amount of data available is limited due to practical constraints. Nevertheless, many practically
relevant functions can be approximated efficiently using a judiciously chosen set of functions.
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P. Trunschke, M. Eigel, A. Nouy 2

Given a function that can be well approximated by a sparse expansion on some basis, results
in compressive sensing guarantee an accurate approximation from a small number of sample
points. The required sets (or dictionaries) can be found by exploiting regularity properties of the
sought function. A common characterisation of smooth functions is given in terms of the decay
of their Fourier series. This can be viewed as promoting a structured sparsity where low-order
Fourier modes are more likely to contribute to the total norm of the function. As a consequence,
smooth functions admit approximately sparse representations, enabling an efficient numerical
reconstruction.

Another form of low-dimensional structure induced by smoothness is low-rank approximability.
This structure is exploited e.g. in reduced basis methods or proper orthogonal decomposi-
tion [CD15; Nou17] and in a more general form in hierarchical tensor formats such as the popular
tensor trains (TT) [Ose11].

The aim of this paper is to develop a sparse approximation algorithm which simultaneously
exploits sparsity and low-rank properties, thus enabling an efficient approximation of large
function sets. Central tools for this are a new weighted version of the well-known Stechkin’s
lemma and a novel analysis of the restricted isometry property which allows to accommodate any
space which can be approximated by weighted sparse expansions. These developments should be
of independent interest in the study of sparse and general nonlinear least squares approximations.
We carry out the theoretical analysis of convergence rates for weighted ℓ𝑝 functions. Moreover,
we present representations of these sparse vectors (or sequences) in sparse low-rank formats and
discuss the application to parametric PDEs.

This is not the first work that proposes the utilisation of sparsity in the component tensors
of a tensor network. In [GNC19] and [MN21], the authors consider the abstract setting of
empirical risk minimisation on bounded model classes of potentially sparse tensor networks.
They present model selection strategies for the network topology and sparsity pattern. Due
to the use of empirical risk minimisation, they obtain standard error bounds for arbitrary risk
functions satisfying boundedness and Lipschitz continuity assumptions (cf. [MN21], which relies
on approximation results from [AN21a; AN23]). However, in the case of least squares risk, these
strong assumptions restrict the application to bounded model classes. Moreover, they do not
guarantee an equivalence of errors, which translates to the error decreasing with a slow Monte
Carlo rate. This is intolerable when striving for small relative errors, which is often the case in
numerical schemes.

In [CLNR15] the authors propose an algorithm that computes a sparse best approximation in
the model class of sparse rank-1 tensors. Conceptually, this algorithm is very similar to our
Algorithm 2 but is restricted to a sum of unweighted sparse rank-1 tensors. The restriction to a
sum of rank-1 tensors implies a suboptimal convergence with respect to the rank and the use of
unweighted sparsity means that, in the worst case, vastly more sample points may be required
than are actually necessary.

A very similar (𝑠2-PGD) method is also proposed in [SCDCC21]. The method optimises with
regard to the same model class as our Algorithm 2 but does not orthogonalise the component
tensors in between the micro steps. It is not clear if this lack of orthogonalisation can result
in numerical instabilities as it would in the classical ALS method. Moreover, the lack of
orthogonalisation prevents the use of the correct weight sequence in the micro steps of their
sparse ALS and does not allow for the same automatic rank adaptation as our algorithm.

Finally, block-sparse tensor networks are a well-known tool in the numerics of quantum
mechanics [SPV10] and were recently introduced to the mathematics community by [BGP22].
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Weighted tensor sparsity 3

This theory is already used in [GST21] to perform least squares regression in a model class of
tensor trains restricted to subspaces of homogeneous polynomials of fixed degree. The basis
selection performed in our second algorithm is conceptually very similar to the restriction to
eigenspaces used in [BGP22] to ensure block-sparsity. We believe that our algorithm can be
interpreted as a generalisation of the regression on block-sparse tensor trains. In contrast to this
approach, where the sparsity structure has to be known in advance, our algorithms explores the
sparsity automatically.

1.1 Weighted sparsity

Sparse approximability of a function can be expressed by the ℓ𝑞-summability of the coefficients
sequence of its basis or frame representation. The following central result, commonly attributed to
Stechkin [CDS11; DeV98], is a key tool to provide convergence rates for sparse approximations.

Lemma 1 (Stechkin). Let 0 < 𝑞 < 𝑝 ≤ ∞ and let 𝒗 ∈ ℓ𝑞. Define 𝐽𝑛 as the set of indices
corresponding to the 𝑛 largest elements of the sequence |𝒗 | and 𝑃𝐽𝑛𝒗 =

∑
𝑗∈𝐽𝑛 𝒗 𝑗 𝒆 𝑗 , where

𝒆 𝑗 is the sequence with 1 at index 𝑗 and 0 everywhere else. Then

∥𝒗 − 𝑃𝐽𝑛𝒗∥ℓ𝑝 ≤ (𝑛 + 1)−𝑠∥𝒗∥ℓ𝑞 , 𝑠 :=
1
𝑞
− 1

𝑝
.

Given a normalized basis (or frame) {𝐵𝑘 }𝑘∈N of a Banach space 𝑉 of functions, each element 𝑢
of 𝑉 can be identified with its coefficient sequence 𝒖 with respect to this basis. Lemma 1 hence
yields the convergence estimate for the best 𝑛-term approximation 𝑢𝑛 of 𝑢:

∥𝑢 − 𝑢𝑛∥𝑉 ≤ ∥𝒖 − 𝑃𝐽𝑛𝒖∥ℓ𝑝 ≤ (𝑛 + 1)−𝑠∥𝒖∥ℓ𝑞 , 𝑠 = 1/𝑞 − 1/𝑝,

for 𝑝 = 1 > 𝑞 in the general Banach case, or 𝑝 = 2 > 𝑞 when 𝑉 is a Hilbert space and {𝐵𝑘 }𝑘∈N
is an orthonormal basis of 𝑉 . A disadvantage of the standard Stechkin’s lemma is that it can only
predict algebraic approximation rates, and these rates are suboptimal for some relevant classes of
functions.

Contributions To overcome these issues, we introduce for any sequence 𝝎 ∈ [0,∞]N the
𝝎-weighted sequence space

ℓ
𝑞
𝝎 := {𝒗 ∈ RN : ∥𝒗∥ℓ𝑞𝝎 := ∥𝝎𝒗∥ℓ𝑞 < ∞},

where 𝝎𝒗 = (𝝎𝜈𝒗𝜈)𝜈 denotes the element-wise multiplication of the two sequences 𝝎 and 𝒗. With
these spaces, a corresponding weighted version of Stechkin’s lemma is derived, which enables to
better exploit classical regularity in terms of convergence rates, significantly improving results of
the classical lemma. Indeed, in Section 2 we recall that the weighted ℓ

𝑞
𝝎-spaces correspond to a

variety of function spaces such as Barron, Besov and Sobolev spaces. This makes possible to
relate the summability 𝒖 ∈ ℓ𝑞 directly to more natural regularity assumptions such as 𝑢 being in
the Sobolev space 𝐻𝑘 (cf. Example 17). We compare the obtained results to previous works and
discuss the relation of the weighted ℓ𝑝 spaces to unweighted and monotone ℓ𝑝 spaces (cf. [AB22]).
If the employed weight sequence increases super-algebraically, the new weighted bound has a
significantly faster decay than the corresponding unweighted bound. Moreover, there are also
improvements for algebraically increasing weight sequences, namely a significant reduction of
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P. Trunschke, M. Eigel, A. Nouy 4

multiplicative constants in the approximation estimate. Because of this, the analysis provides
immediate convergence bounds even in the non-asymptotic setting, i.e. for finite-dimensional
linear spaces.

1.2 Application to parametric partial differential equations

The numerical solution of high-dimensional parametric operator equations has become a highly
active research field in the last decade, particularly in the area of Uncertainty Quantification
(UQ) and in relation to modern (scientific) machine learning, see for instance [CD15; SG11] and
references therein. The parameter domain is often high- or even infinite-dimensional, making it
computationally challenging to approximate the solution in linear spaces due to the CoD. It hence
is mandatory to exploit structural properties of the respective functions. When relying on sparsity
as we do, the required summability constraints can be deduced from smoothness. Indeed, it is
shown in Section 2 that weighted summability with algebraically increasing weight sequences
can often be derived from standard regularity assumptions. Morevover, certain assumptions on
the data allow us to derive even stronger summability properties for the solution of parametric
PDEs as shown e.g. in [BCDM16; BCM16].

We recall a prototypical parametric linear second order elliptic problem and its solution properties
as a motivation for the results of this work. For a given bounded Lipschitz domain 𝐷 ⊆ R𝑑 with
𝑑 ∈ N and some source function 𝑓 ∈ 𝐿2(𝐷), consider the linear elliptic PDE

− div𝑥 (𝑎(𝑥, 𝑦)∇𝑥𝑢(𝑥, 𝑦)) = 𝑓 (𝑥), in 𝐷,

𝑢(𝑥, 𝑦) = 0, on 𝜕𝐷,
(1)

where 𝑦 ∈ R𝐿 is a high-dimensional (𝐿 ∈ N) or infinite-dimensional (𝐿 = ∞) parameter vector
determining the coefficient field 𝑎 and hence the solution 𝑢. With typical applications in modelling
stochastic flow through porous media (such as groundwater flow [WA95]), the diffusion coefficient
is often defined by a Karhunen–Loève type expansion [LPS14; TS07], which can be constructed
to represent random fields with bounded variance and typically takes the form

𝑎(𝑥, 𝑦) =
𝐿∑︁
𝑗=1

𝑎 𝑗 (𝑥)𝑦 𝑗 + 𝑎0(𝑥) with 𝑦 ∼ U([−1, 1])⊗𝐿 or (2)

ln(𝑎(𝑥, 𝑦)) =
𝐿∑︁
𝑗=1

𝑎 𝑗 (𝑥)𝑦 𝑗 with 𝑦 ∼ N(0, 1)⊗𝐿 . (3)

In these applications, the functions 𝑎 𝑗 : 𝐷 → R are scaled 𝐿2(𝐷)-orthogonal eigenfunctions of
the covariance operator of 𝑎 or ln(𝑎). This specific choice is not necessary for the application of
our theory and other more advantageous expansions (cf. [BCM17]) may be considered as well.

We recall some results from [BCDM16; BCM16] on the analysis and approximation of the
parameter-to-solution map

𝑦 ↦→ 𝑢(𝑦) := 𝑢( • , 𝑦),
induced by the model (1)–(3). For (2), the following result was shown recently.
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Weighted tensor sparsity 5

Theorem 2 (Theorem 3.1 in [BCM16]). Consider problem (1) with affine coefficients (2).
Assume that there exists a sequence 𝝆 ∈ (1,∞)𝐿 such that

sup
𝑥∈𝐷

1
𝑎0

∑︁
𝑗∈[𝐿]

𝝆 𝑗 |𝑎 𝑗 (𝑥) | < 1.

Then the map 𝑦 ↦→ 𝑢(𝑦) belongs to 𝐿𝑘 ( [−1, 1]𝐿 , d𝛾; 𝐻1
0 (𝐷)) for all 𝑘 ∈ N ∪ {∞}, where 𝛾

is the uniform measure. Hence, there exists an expansion of 𝑢(𝑥, 𝑦) = ∑
𝜈∈F 𝑢𝜈 (𝑥)𝐿𝜈 (𝑦) in

terms of Legendre polynomials (𝐿𝜈)𝜈∈F , where F is the set of multi-indices in N𝐿 with finite
support. Moreover, the sequence of coefficients satisfies∑︁

𝜈∈F
𝝎2

𝜈∥𝑢𝜈∥2
𝐻1

0 (𝐷) < ∞,

with 𝝎𝜈 :=
∏

𝑗∈[𝐿] (2𝜈 𝑗 + 1)−1/2𝝆
𝜈 𝑗

𝑗
.

For the case of unbounded Gaussian parameters (3), we recall the following result.

Theorem 3 (Theorems 2.2, 3.3 and 4.2 in [BCDM16]). Consider the model (1) with affine
coefficients (3). Assume that there exists an 𝑟 ∈ N and a sequence 𝝆 ∈ (0,∞)𝐿 such that

sup
𝑥∈𝐷

∑︁
𝑗∈[𝐿]

𝝆 𝑗 |𝑎 𝑗 (𝑥) | <
ln 2
√
𝑟

and
∑︁
𝑗∈[𝐿]

exp(−𝝆2
𝑗 ) < ∞.

Then the map 𝑦 ↦→ 𝑢(𝑦) belongs to 𝐿𝑘 (R𝐿 , d𝛾; 𝐻1
0 (𝐷)) for all 𝑘 ∈ N, where 𝛾 is the

Gaussian measure on R𝐿 . Hence, there exists an expansion of 𝑢(𝑥, 𝑦) = ∑
𝜈∈F 𝑢𝜈 (𝑥)𝐻𝜈 (𝑦)

in terms of Hermite polynomials (𝐻𝜈)𝜈∈F , where F is the set of multi-indices in N𝐿 with
finite support. Moreover, the sequence of coefficients satisfies∑︁

𝜈∈F
𝜔2
𝜈∥𝑢𝜈∥2

𝐻1
0 (𝐷) < ∞,

with 𝝎𝜈 :=
∏

𝑗∈[𝐿] (
∑𝑟

𝑙=0
(𝜈 𝑗
𝑙

)
𝝆2𝑙
𝑗
)1/2.

Contributions Using the weighted sequence spaces and Stechkin’s lemma, we propose an
alternative method of proof for the summability of the solution of parametric PDEs in Section 3.
We show that in the case of a single parameter (𝐿 = 1), these summability properties already
follow from the analyticity of the parameter to solution map. The new derivation only relies on
the weighted version of Stechkin’s lemma and elementary techniques. This results in similar
bounds to those in Theorem 2 and 3 with exponential decay of the basis coefficients.

1.3 Numerical methods for weighted sparse approximation using sparse
tensor train format

Equally important as the approximation error analysis is the availability of actual computational
methods. For a probability measure 𝛾 on some set 𝑌 , let M ⊆ 𝐿2(𝑌, 𝛾) be a model class of
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P. Trunschke, M. Eigel, A. Nouy 6

functions in which 𝑢 ∈ V should be approximated. Defining the norms

∥ • ∥ := ∥ • ∥𝐿2 (𝑌,𝛾) and ∥ • ∥𝑤,∞ := ∥𝑤1/2 • ∥𝐿∞ (𝑌,𝛾) , (4)

where 𝑤 is some positive weight function, the problem of determining the best-approximation of
𝑢 in M can be formulated as

𝑢M ∈ arg min
𝑣∈M

∥𝑢 − 𝑣∥.

Since the 𝐿2-norm cannot be computed exactly in high-dimensional settings, a popular remedy
is to introduce an empirical estimator with samples 𝒚 := {𝑦𝑖}𝑛

𝑖=1 and the respective weighted
least-squares minimisation, namely

𝑢M,𝑛 ∈ arg min
𝑣∈M

∥𝑢 − 𝑣∥𝑛 with ∥𝑣∥𝑛 :=

(
1
𝑛

𝑛∑︁
𝑖=1

𝑤(𝑦𝑖) |𝑣(𝑦𝑖) |2
)1/2

. (5)

A natural choice is to take 𝑤 such that
∫
𝑌
𝑤−1 d𝛾 = 1, and to draw the points 𝑦𝑖 independently

from the measure 𝑤−1𝛾 for all 𝑖 = 1, . . . , 𝑛. This approach results in approximations with
guaranteed error bounds when assuming the restricted isometry property (RIP) that is known
from compressed sensing [ABW22; Can08]. It is defined for a given set of functions 𝐴 by

RIP𝐴 (𝛿) :⇔ (1 − 𝛿)∥𝑢∥2 ≤ ∥𝑢∥2
𝑛 ≤ (1 + 𝛿)∥𝑢∥2 ∀𝑢 ∈ 𝐴.

If satisfied for a parameter 𝛿 ∈ (0, 1), the error of estimator (5) can be bounded as follows.

Proposition 4 (Theorem 3 in [Tru22]). If RIP{𝑢M }−M (𝛿) holds, then

∥𝑢 − 𝑢M,𝑛∥ ≤ ∥𝑢 − 𝑢M ∥ + 2√
1−𝛿

∥𝑢 − 𝑢M ∥𝑤,∞ .

The assumption of RIP{𝑢M }−M (𝛿) is a weaker version of the standard assumption RIPM−M (𝛿),
which is often used when considering nested sequences (M𝑟)𝑟≥1 of model classes, like 𝑟-sparse
vectors or rank-𝑟 tensors, which satisfy M𝑟 − M𝑟 ⊆ M2𝑟 . We show that such a nestedness
property is also satisfied for the model classes of sparse low-rank tensors considered in this paper.

Because RIPM (𝛿) is a random event, a sufficient number of sample points has to be used to
guarantee that it holds true. For theoretical reasons and since obtaining new sample points may
be costly, a practical goal is to achieve this property with a minimal number 𝑛.

To leverage the existing results from least squares methods [CM17] in the development of
numerical methods, one may rely on explicit bounds on the coefficients or a weighted summability
property of the form 𝒖 ∈ ℓ2

𝝎. Given such a bound, we may define the sets Λ𝑛 corresponding to
the 𝑛 smallest weights and prove that

∥(𝐼 − 𝑃Λ𝑛
)𝒖∥ ≲ 𝑛−𝑠,

where 𝑠 relates to the summability of the sequence 𝝎. An example of this can be seen in [CM21].
From a statistical point of view, this has the advantage that there exist bounds that guarantee that a
small number of parameter evaluations is sufficient to result in a quasi-best sparse approximation
with high probability. Finding sets Λ𝑛 with the prescribed error bounds, however, relies on the
knowledge of an exponentially increasing weight sequences 𝝎. Such sequences do not exist for
every PDE and their existence is not always easy to prove. Moreover, due to the reliance on
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Weighted tensor sparsity 7

optimal sampling, the cited work also requires the ability to draw new samples from a problem
adapted measure.

An alternative approach that mitigates these issues is the use of weighted sparsity [BBRS15;
RS16]. Let 𝒗 denote the sequence of coefficients of 𝑣 ∈ V with respect to a given basis. Then the
set of 𝝎-weighted 𝑟-sparse sequences is given by the ball

𝐵ℓ0
𝝎
(0, 𝑟) = {𝒗 : ∥𝒗∥ℓ0

𝝎
≤ 𝑟}, (6)

where the ℓ0
𝝎-“norm” is a generalisation of the standard ℓ0-“norm” and is defined in Section 2.

In [RW16] the authors show that a significantly improved bound for the probability of the RIP of
𝐵ℓ0

𝝎
(0, 𝑟) can be derived when the ℓ0-“norm” is replaced by its weighted version. Although the

shown a priori convergence rates still rely on weighted summability assumptions, the method
itself does not. The only requirement is an upper bound on the 𝐿∞-norm of the basis functions.
As a consequence, it can be applied easily in practice and is less reliant on the rate of decay of
the sequence 𝝎. The following theorem is a slight generalisation of this result.

Theorem 5. Fix parameters 𝛿, 𝑝 ∈ (0, 1). Let {𝐵 𝑗 } 𝑗∈[𝐷] be orthonormal in 𝐿2(𝑌, 𝛾) and let
𝑤 ≥ 0 be any weight function satisfying ∥𝑤−1∥𝐿1 (𝑌,𝛾) = 1. Assume the weight sequence 𝝎 in
the definition (6) of the model class M satisfies 𝝎 𝑗 ≥ ∥𝑤1/2𝐵 𝑗 ∥𝐿∞ (𝑌,𝛾) and fix

𝑛 ≥ 𝐶𝛿−2𝑟 max{log3(𝑟) log(𝐷),− log(𝑝)}.

Let 𝑦1, . . . , 𝑦𝑛 be drawn independently from 𝑤−1𝛾. Then the probability of RIP𝐵
ℓ0
𝝎
(0,𝑟) (𝛿)

exceeds 1 − 𝑝.

Proof. To make the weight function𝑤 that is used explicit, we define ∥𝑣∥𝑛,𝑤 := 1
𝑛

∑𝑛
𝑖=1 𝑤(𝑦𝑖)𝑣(𝑦𝑖)2.

Applying Theorem 5.2 from [RW16] to the 𝐿2(𝑌, 𝑤−1𝛾)-orthonormal basis {𝜓 𝑗 := 𝑤1/2𝐵 𝑗 } 𝑗∈[𝐷]
shows that the probability of the event

∀𝑣 ∈ ℓ2 : ∥𝑣∥ℓ0
𝝎
≤ 𝑠

exceeds 1 − 𝑝, which implies that

(1 − 𝛿)∥𝜓⊺𝑣∥2
𝐿2 (𝑌,𝑤−1𝛾) ≤ ∥𝜓⊺𝑣∥2

𝑛,1 ≤ (1 + 𝛿)∥𝜓⊺𝑣∥2
𝐿2 (𝑌,𝑤−1𝛾)

holds with probability higher than 1− 𝑝. The claim follows, since ∥𝜓⊺𝑣∥𝐿2 (𝑌,𝑤−1𝛾) = ∥𝐵⊺𝑣∥𝐿2 (𝑌,𝛾)
and ∥𝜓⊺𝑣∥𝑛,1 = ∥𝐵⊺𝑣∥𝑛,𝑤. □

The index set 𝐽𝑛 that contains the 𝑛 largest coefficients of the function can in principle contain
arbitrary large indices. This is an issue for algorithmic realisations, where 𝐽𝑛 must be restricted to
lie in a finite set of candidate indices Λ. The set Λ should be large enough to ensure that 𝐽𝑛 ⊆ Λ

but not too large as to blow up the time complexity of the numerical algorithm, which scales
at least linearly with |Λ|. Specifically, it has to be chosen carefully not to re-introduce the CoD.
Without assumptions on the summability of the coefficients, such a set is difficult to find. For the
model problems considered in this work, this is not a problem since appropriate candidate sets Λ
can be designed based on the summability conditions in Theorem 2. For other problems such
conditions are not known, which impedes the application of compressed sensing algorithms.
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Contributions Without prior knowledge, the exponentially large candidate set Λ = {0, . . . , 𝑑 −
1}𝑀 is a natural choice but classical algorithms for sparse approximation would yield a complexity
polynomial in |Λ| = 𝑑𝑀 , hence the CoD. We propose to use tensor trains [HRS12; Ose11]
to alleviate this CoD. Building upon results from [LYB22], we show that the best 𝑛-term
approximation can be represented in a sparse tensor train format with rank 𝑛. A sparse version of
the ALS algorithm, which we call SALS, can be used to optimise over the sparse components.
The complexity becomes polynomial in 𝑛 and 𝑑 and linear in 𝑀. This allows almost the same
sample complexity bounds as in Theorem 5 while also admitting an admissible algorithmic
realisation. We emphasise that this new algorithm is a feasible alternative to sparse approximation
algorithm, not for the approximation in low-rank tensor format.

1.4 Numerical methods for weighted sparse and low-rank tensor train
approximation

The results of Section 4 provide an approach to express sparse tensors as TTs with a rank that
is bounded by the number of nonzero entries of the component tensors. We demonstrate that
tensors with weighted sparsity are not only sparse but have also low rank, which is not exploited
by the model class of sparse tensor trains from the previous section. Due to the special structure
of these sparse tensor trains, the basis of every core tensor is strongly overparameterised. As a
result, the linear systems arising in the microsteps of the SALS may become very large and the
optimisation becomes very costly. Another consequence of this overparameterisation is that the
sample size that is required for an accurate microstep is larger than it would have to be if only a
minimal basis would have been used.

Contributions As a possible solution to the overparametrisation issue we propose to round
the sparse tensor back to minimal rank. Although this destroys the sparsity of the orthogonal
component tensors, it retains the weighted sparsity of the core tensor. This yields a new model
class of sparse and low-rank tensor trains. Investigating the probability of the RIP for this hybrid
model class is the focus of Section 5. To do this, we show in Theorem 52 that the RIP on
𝐵ℓ0

𝝎
(0, 𝑟) induces a RIP for any model class that is close enough with respect to an appropriate

distance. This is a promising novel result that applies to any model class. In particular, we show
in Theorem 55 that our hybrid model class satisfies the conditions of Theorem 52. It thereby
inherits the RIP from sparse vectors that is guaranteed by the stability result in Theorem 5. The
results improve upon the previously developed theory for tensor reconstruction of solutions of
high-dimensional parametric PDEs as presented in [Tru21; Tru22].

2 A weighted version of Stechkin’s lemma

In what follows, we are concerned with coefficient sequences 𝒙 indexed by a set Λ, which may be
finite or countably infinite. If not specified otherwise, we always assume that Λ = N. Since any
operation defined on the coefficients can be extended to an element-wise operation defined on
sequences, we write e.g. (𝒙𝒚) 𝑗 = 𝒙 𝑗 𝒚 𝑗 as the element-wise product of two sequences 𝒙 and 𝒚 and
(𝒙/𝒚) 𝑗 = 𝒙 𝑗/𝒚 𝑗 as the element-wise division. For any such sequence 𝒙 and any subset 𝐽 ⊆ Λ,
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define 𝑃𝐽𝒙 via

(𝑃𝐽𝒙) 𝑗 :=

{
𝒙 𝑗 𝑗 ∈ 𝐽

0 𝑗 ∈ Λ \ 𝐽.
In other words, 𝑃𝐽 is the canonical projection onto the linear space span{𝒆 𝑗 : 𝑗 ∈ 𝐽},
with 𝒆 𝑗 the canonical sequence having 1 at index 𝑗 and 0 everywhere else. Moreover, let
supp(𝒙) := { 𝑗 ∈ Λ : 𝒙 𝑗 ≠ 0} denote the support of 𝒙. To a vector 𝝎 ∈ [0,∞]Λ of weights we
associate for 0 < 𝑝 ≤ ∞ the weighted ℓ𝑝 spaces

ℓ
𝑝
𝝎 :=

{
𝒙 ∈ RΛ : ∥𝒙∥ℓ𝑝𝝎 := ∥𝝎𝒙∥ℓ𝑝 < ∞

}
.

Central to our analysis is the weighted ℓ0-“norm” given by

∥𝒙∥ℓ0
𝝎
=

∑︁
𝑗∈supp(𝒙)

𝝎2
𝑗 ,

which counts the squared weights of the non-zero entries of 𝒙. When 𝝎 ≡ 1, these weighted
norms reproduce the standard ℓ𝑝 norms.

In sparse approximation theory, the assumption 𝒗 ∈ ℓ𝑞 is often central for the analysis. However,
it provides no guarantee for the position of the largest elements in the sequence. For the purpose
of numerical discretisation this is problematic since a truncation after the first 𝑛 terms of the
sequence is not guaranteed to contain the largest elements. Without an explicit bound on the
decay of 𝒗, no bounds for the discretisation error can be given. We hence argue that it is natural to
require an ordering of the terms that is induced by a weight sequence 𝝎. Such a weighting exists
for instance in the coefficients of solutions of parametric PDEs [BCDM16; BCM16]. Moreover,
we will show later that such a weighting occurs naturally for many classical regularity classes
like Sobolev and Besov spaces and for certain bases.

A very elegant proof of Stechkin’s Lemma (Lemma 1) is provided in [CD15, Lemma 3.6], which
relies on a basic bound for the decay of any 𝒗 ∈ ℓ𝑞 and an application of Hölder’s inequality.
The same reasoning can be applied to obtain a proof for the Stechkin inequality in the weighted
setting below.

Lemma 6. Let 0 < 𝑞 < 𝑝 ≤ ∞ and𝜶,𝝈,𝝎 ∈ [0,∞]N be sequences satisfying𝜶𝑝 = 𝝈𝑝−𝑞𝝎𝑞

(or 𝜶 = 𝝈 in the case 𝑝 = ∞). For a sequence 𝒗 ∈ RN with ∥𝝈𝒗∥ℓ∞ < ∞ and ∥𝝎𝒗∥ℓ𝑞 < ∞
let 𝐽𝑛 be the set of indices corresponding to the 𝑛 largest elements of the sequence 𝝈 |𝒗 |. Then

∥𝒗 − 𝑃𝐽𝑛𝒗∥ℓ𝑝𝜶 ≤ ∥𝑃𝐽𝑛+1
𝝎
𝝈 ∥

−𝑠𝑞
ℓ𝑞

∥𝒗∥ℓ𝑞𝝎 , 𝑠 := 1
𝑞
− 1

𝑝
.

For 𝜶 ≡ 1 it holds that 𝝈 = 𝝎𝑞/(𝑝−𝑞) and the inequality simplifies to

∥𝒗 − 𝑃𝐽𝑛𝒗∥ℓ𝑝 ≤ ∥𝑃𝐽𝑛+1𝝎∥−1
ℓ1/𝑠 ∥𝒗∥ℓ𝑞𝝎 , 𝑠 := 1

𝑞
− 1

𝑝
.

Proof. We start by proving the assertion for 𝑝 = ∞. Without loss of generality, we can assume
that 𝑣 is ordered such that the sequence 𝝈 |𝒗 | is decreasing. Under this assumption 𝐽𝑛 = [𝑛]. The
choice 𝑝 = ∞ implies 𝜶 = 𝝈 and ∥(𝐼 − 𝑃𝐽𝑛)𝜶𝒗∥ℓ𝑝 = ∥(𝐼 − 𝑃[𝑛])𝝈𝒗∥ℓ∞ = 𝝈𝑛+1 |𝒗𝑛+1 |. Now the
bound 𝝈𝑛 |𝒗𝑛 | ≤ ∥𝑃𝐽𝑛

𝝎
𝝈 ∥

−1
ℓ𝑞
∥𝝎𝒗∥ℓ𝑞 follows from

𝑛∑︁
𝑘=1

(
𝝎𝑘

𝝈𝑘

)𝑞
(𝝈𝑛 |𝒗𝑛 |)𝑞 ≤

𝑛∑︁
𝑘=1

(
𝝎𝑘

𝝈𝑘

)𝑞
𝝈𝑞

𝑘
|𝒗

𝑘
|𝑞 =

𝑛∑︁
𝑘=1

𝝎𝑞

𝑘
|𝒗

𝑘
|𝑞 ≤ ∥𝝎𝒗∥𝑞

ℓ𝑞
.
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This proves the claim for 𝑝 = ∞. The case 𝑝 < ∞ can be reduced to 𝑝 = ∞ using Hölder’s
inequality via

∥(𝐼 − 𝑃𝐽𝑛)𝜶𝒗∥
𝑝

ℓ𝑝
= ∥((𝐼 − 𝑃𝐽𝑛)𝝈𝒗)𝑝−𝑞 ((𝐼 − 𝑃𝐽𝑛)𝝎𝒗)𝑞 ∥ℓ1 ≤ ∥(𝐼 − 𝑃𝐽𝑛)𝝈𝒗∥

𝑝−𝑞
ℓ∞ ∥𝝎𝒗∥𝑞

ℓ𝑞
.

The claim follows by using the weighted Stechkin bound for the factor ∥(𝐼 − 𝑃𝐽𝑛)𝝈𝒗∥ℓ∞ ≤
∥𝑃𝐽𝑛+1

𝝎
𝝈 ∥

−1
ℓ𝑞
∥𝝎𝒗∥ℓ𝑞 . □

The preceding lemma is a weighted generalisation of Stechkin’s Lemma 1 with which it coincides
for the choice 𝜶 = 𝝈 = 𝝎 ≡ 1. In this setting, the parameter 𝑞 has to be chosen as small as
possible to exploit the decay of the sequence 𝒗 and increase the rate of convergence 𝑠. When
using the weighted Stechkin estimate of Lemma 6 this is not necessary since the decay of the
sequence can be measured by means of the sequence 𝝎.

To get a better intuition of the derived results, note that each of the sequences 𝜶, 𝝈 and 𝝎
controls a different aspect of the estimate. The sequence 𝜶 determines how the truncation error is
measured, 𝝈 controls the truncation strategy and 𝝎 measures the decay of the sequence. However,
due to the constraint 𝜶𝑝 = 𝝈𝑝−𝑞𝝎𝑞 only two of these sequences can be chosen freely. Typically,
these are 𝜶 and 𝝎.

In the remainder of this section, the roles of the different parameters that occur in Lemma 6 are
discussed with illustrative examples. We start with an examination of 𝑝 and 𝜶, which should be
chosen to obtain an appropriate error norm ∥ • ∥ℓ𝑝𝜶 as in the following four examples.

Example 7 (Sobolev and spectral Barron spaces on the torus). Suppose that 𝑓 is a function on
the 1-torus T and let 𝑣 be its sequence of Fourier coefficients. Then 𝑝 = 1 and 𝑝 = 2 together
with the weight sequence 𝜶(𝑘) 𝑗 := (1 + 𝑗2)𝑘/2 provide a natural choice of parameters since
the Sobolev and spectral Barron norms (cf. [CLLZ22]) of 𝑓 are then defined by

∥ 𝑓 ∥𝐻𝑘 (T) := ∥𝒗∥ℓ2
𝜶 (𝑘 )

and ∥ 𝑓 ∥𝐵𝑘 (T) := ∥𝒗∥ℓ1
𝜶 (𝑘 )

for any 𝑘 ∈ R.

Example 8 (Sobolev and Besov spaces). Consider the Sobolev space 𝑊 𝑘,𝑝 of functions
defined on the interval [0, 1] equipped with the Lebesgue measure, with 𝑘 ≥ 1 and
1 ≤ 𝑝 ≤ ∞. A natural basis for this space is the hierarchical spline basis of degree 𝑘 . It can
be shown (see e.g. [AN21b]) that for any 𝑣 ∈ 𝑊 𝑘,𝑝,

∥𝑣∥𝑊 𝑘, 𝑝 ≍ ∥𝒗∥ℓ𝑝
𝝎 (𝑘 )

with 𝝎(𝑘)ℓ, 𝑗 := 2𝑘ℓ .

A simple example for such a basis is provided in Appendix B. These results can be extended
to the wider class of Besov spaces 𝐵𝑘

𝑞 (𝐿𝑝) for 0 < 𝑝 = 𝑞 ≤ ∞ [AN21b; Lei03].

Example 9. Another useful choice of 𝑝 and 𝜶 can be made when 𝑓 ∈ 𝐿∞(X, 𝛾) for any
measurable set X and probability measure 𝛾. Let 𝒗 be the sequence of coefficients of 𝑓 with
respect to the basis {𝐵 𝑗 } 𝑗∈N and define the sequence 𝜶 𝑗 := ∥𝐵 𝑗 ∥𝐿∞ (X,𝛾) . Then, by triangle
inequality,

∥ 𝑓 ∥𝐿𝑝 (X,𝛾) ≤ ∥ 𝑓 ∥𝐿∞ (X,𝛾) ≤ ∥𝒗∥ℓ1
𝜶
.

By choosing weights so that 𝜶 𝑗 := ∥𝐵 𝑗 ∥𝐿∞ (X,𝛾) + ∥𝐵′
𝑗
∥𝐿∞ (X,𝛾) , one may also arrive at bounds

of the form ∥ 𝑓 ∥𝐿∞ (X,𝛾) + ∥ 𝑓 ′∥𝐿∞ (X,𝛾) ≤ ∥ 𝒇 ∥ℓ1
𝜶
, reflecting how steeper weights encourage
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more smoothness (cf. [RW16]). This bound for instance is used in the proof of Theorem 6.1
in [AB22], which provides dimension independent convergence rates for unweighted least
squares approximation in high dimensions. However, the proof relies on a suboptimal
weighted version of Stechkin’s lemma, which we discuss further in Section 2.1.

Example 10. Another useful application of Lemma 6 is given by the choice 𝑝 = ∞ and
𝜶 ≡ 1. The choice 𝑝 = ∞ requires 𝝈 = 𝜶 ≡ 1 and since 𝜶 ≡ 1, the bound simplifies to

∥(𝐼 − 𝑃𝐽𝑛)𝒗∥ℓ∞ ≤ ∥𝑃𝐽𝑛+1𝝎∥−1
ℓ𝑞 ∥𝒗∥ℓ𝑞𝝎 .

Replacing 𝒗 by the monotonisation

𝒗min
𝑘 := min

𝑗≤𝑘
|𝒗 𝑗 | for all 𝑘 ∈ N

yields 𝐽𝑛 = [𝑛], ∥(𝐼 − 𝑃[𝑛])𝒗min∥ℓ∞ = 𝒗min
𝑛+1 and ∥𝒗min∥ℓ𝑞𝝎 ≤ ∥𝒗∥ℓ𝑞𝝎 and simplifies the bound

even further to
𝒗min
𝑛+1 ≤ ∥𝑃[𝑛+1]𝝎∥−1

ℓ𝑞 ∥𝒗∥ℓ𝑞𝝎 .

Next, we examine the parameters 𝑞 and 𝝎 and illustrate the benefits of the weighted version
of Stechkin’s lemma in terms of convergence. The subsequent two examples aim to provide an
intuition for the choice of 𝑞 and 𝝎, which should be chosen to capture the asymptotic decay of
the sequence 𝒗 in the reference norm ∥ • ∥ℓ𝑞𝝎 .

Example 11 (The choice of 𝑞 and 𝝎 for algebraic decay). Consider the algebraically decaying
sequence 𝒗 𝑗 = 𝑗−𝜌alg for some 𝜌alg > 1. To compare Lemma 1 and Lemma 6, let 𝜶 ≡ 1 and
0 < 𝑞 < 𝑝 ≤ ∞ be arbitrary but fixed. Moreover, define 𝑞 := 1

𝑞
and 𝑝 := 1

𝑝
. Then Lemma 59

provides the equivalence

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ∼ (𝑛 + 1)−(𝜌alg−𝑝) .

This rate is a benchmark against which both versions of Stechkin’s lemma can be compared.
By Lemma 59 it holds that

𝑞

𝜌alg − 𝑞
≤ ∥𝒗∥𝑞

ℓ𝑞
≤

𝜌alg

𝜌alg − 𝑞

for any 𝑞 ∈ (𝑝, 𝜌alg). Stechkin’s lemma thus yields the bound

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ≤ (𝑛 + 1)−𝑠∥𝒗∥ℓ𝑞 ≤ (𝑛 + 1)−(𝑞−𝑝)
(

𝜌alg

𝜌alg − 𝑞

)𝑞
.

As 𝑞 approaches the upper bound 𝜌alg, the predicted rate of convergence approaches the
optimal rate 𝜌alg − 𝑝. However, at the same time the factor ∥𝒗∥ℓ𝑞 diverges to infinity. This
makes the bound only useful for large 𝑛 or small 𝑞, i.e. small 𝑠 = 𝑞 − 𝑝.

Although a different weight sequence 𝝎 cannot provide a faster rate of convergence, it can
change the asymptotic constant. To this end we define the algebraically increasing sequence
𝝎 𝑗 = 𝑗𝑟 for some 𝑟 < 𝜌alg − 𝑞.
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Asymptotic constants for ρalg = 3 and p = 1/2

classical Stechkin lemma

weighted Stechkin lemma

Figure 1: Behaviour of the asymptotic constants of the classical and weighted Stechkin estimates
as the desired rate of convergence 𝑠 approaches the optimal rate 𝑠∗ := 𝜌alg − 𝑝−1.

This choice implies 𝝈 𝑗 = 𝑗−𝑟/(𝑠𝑝) . The technical Lemmas 58 and 59 in the appendix yield
the bounds

∥𝑃𝐽𝑛+1
𝝎
𝝈 ∥

𝑞

ℓ𝑞
≥ (𝑛 + 1)𝑟/𝑠+1

𝑟/𝑠 + 1
and

𝑞

𝜌alg − 𝑟 − 𝑞
≤ ∥𝒗∥𝑞

ℓ
𝑞
𝝎
≤

𝜌alg − 𝑟

𝜌alg − 𝑟 − 𝑞
.

Applying Lemma 6, we obtain the bound

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ≤ ∥𝑃𝐽𝑛+1
𝝎
𝝈 ∥

−𝑠𝑞
ℓ𝑞

∥𝒗∥ℓ𝑞𝝎 ≤ (𝑛 + 1)−(𝑟+𝑠)
(𝑟/𝑠 + 1)−𝑠

(
𝜌alg − 𝑟

𝜌alg − 𝑟 − 𝑞

)𝑞
.

As in the unweighted case, the factor ∥𝒗∥ℓ𝑞𝝎 diverges as 𝑟 increases or 𝑞 decreases. But in
contrast to the unweighted case, we can choose different values for 𝑞 than in the classical
Stechkin estimate while maintaining the same rate of convergence. Denote by 𝑞 the value of
𝑞 chosen in the standard Stechkin estimate and recall that 𝑞 < 𝜌alg. We can hence choose
𝑟 = 𝑞 − 𝑞 and take the limit 𝑞 → 𝑝, leading to the estimate

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ≤ (𝑛 + 1)−(𝑞−𝑝)
(

𝑝

𝜌alg − 𝑞

) 𝑝
.

Compared to the unweighted case, the asymptotic constant in the weighted case is significantly
smaller. A comparison of these constants is given in Figure 1. These constants makes the
Stechkin bound viable even for small values of 𝑛.

Example 12 (The choice of 𝑞 and 𝝎 for exponential decay). Consider the exponentially
decaying sequence 𝒗 𝑗 = 𝜌

𝑗−1
exp with 𝜌exp ∈ (0, 1). To compare Lemma 1 and Lemma 6, let

𝜶 ≡ 1 and 0 < 𝑞 < 𝑝 ≤ ∞ be arbitrary but fixed. Moreover, define 𝑞 := 1
𝑞

and 𝑝 := 1
𝑝
. Then

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 = 𝜌𝑛exp(1 − 𝜌
𝑝
exp)−𝑝 .

This rate is a benchmark against which both versions of Stechkin’s lemma can be compared.
The classical Stechkin lemma yields the bound

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ≤ (𝑛 + 1)−𝑠∥𝒗∥ℓ𝑞 = (𝑛 + 1)−𝑠 (1 − 𝜌
𝑞
exp)−𝑞, with 𝑠 = 𝑞 − 𝑝.

Notably, even though the factor ∥𝒗∥ℓ𝑞 does no longer impose a lower limit on 𝑞, the optimal
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exponential rate of convergence cannot be recovered. Moreover, the asymptotic constant
still grows without bounds when 𝑞 decreases. This illustrates that Lemma 1 cannot fully
exploit the decay of the sequence, which renders the estimates only useful as an asymptotic
statement or for small values of 𝑠.

To compare the preceding bound with the weighted bound of Lemma 6, we choose the
exponentially growing weight sequence 𝝎 𝑗 = 𝑟−( 𝑗−1) for some 𝑟 ∈ (𝜌exp, 1). This choice
implies 𝝈 𝑗 = 𝑟 ( 𝑗−1)/(𝑠𝑝) and consequently

∥𝑃𝐽𝑛+1
𝝎
𝝈 ∥

𝑞

ℓ𝑞
=
𝑟−(𝑛+1)/𝑠 − 1
𝑟−1/𝑠 − 1

≥ 𝑟−𝑛/𝑠 and ∥𝒗∥𝑞
ℓ
𝑞
𝝎
=

1
1 − (𝜌exp/𝑟)𝑞

.

Lemma 6 then yields

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝 ≤ ∥𝑃𝐽𝑛+1
𝝎
𝝈 ∥

−𝑠𝑞
ℓ𝑞

∥𝒗∥ℓ𝑞𝝎 ≤ 𝑟𝑛 (1 − (𝜌exp/𝑟)𝑞)−𝑞 .

This shows that in contrast to the classical Stechkin inequality, the weighted Stechkin
inequality can actually recover an exponential rate of convergence. This rate is even
independent of 𝑞 but the asymptotic constant grows without bounds when 𝑟 approaches 𝜌exp.

2.1 Relation to previous results

Lemma 6 is not the first extension of Stechkin’s lemma to the weighted case. Another extension
was proposed in [RW16], which we briefly recall. For a fixed parameter 𝑝 and sequence 𝝎̃ they
consider the weighted 𝑟-sparse approximation error

𝜎𝑟 (𝑣)ℓ𝑝𝜶 := min
𝐼⊆N

𝝎̃(𝐼)≤𝑟

∥(1 − 𝑃𝐼)𝒗∥ℓ𝑝𝜶 , 𝝎̃ := 𝜶𝑝/(2−𝑝) ,

where for any subset 𝐼 ⊆ N the weighted cardinality is defined by 𝝎̃(𝐼) :=
∑

𝑖∈𝐼 𝝎̃
2
𝑖
. To bound this

error, for a given sequence 𝒗 and a threshold 𝑟 > 0 the set of indices 𝐽𝑛 corresponding to the 𝑛 largest
elements of the sequence 𝝎̃ |𝒗 | is considered. Moreover, let 𝑛(𝑟) := max{𝑛 ∈ N : 𝝎̃(𝐽𝑛) ≤ 𝑟}. By
maximality of 𝑛(𝑟), it holds that 𝝎̃(𝐽𝑛(𝑟)+1) > 𝑟. Consequently,

𝜎𝑟 (𝒗)ℓ𝑝𝜶 ≤ ∥(1 − 𝑃𝐽𝑛(𝑟 ) )𝒗∥ℓ𝑝𝜶 . (7)

Using the unweighted version of Stechkin’s lemma, it is concluded in [RW16, Theorem 3.2] that

𝜎𝑟 (𝒗)ℓ𝑝𝜶 ≤ (𝑟 − ∥𝝎̃∥2
ℓ∞)

−𝑠∥𝝎̃(2−𝑞)/𝑞 ∥ℓ𝑞 , 𝑠 :=
1
𝑞
− 1

𝑝
,

for all 0 < 𝑞 < 𝑝 ≤ 2 and 𝑟 > ∥𝝎̃∥2
ℓ∞ . The main weakness of this statement comes from the

requirement 𝑟 > ∥𝝎̃∥2
ℓ∞ . This condition requires that the sequence 𝝎̃ is bounded and implies

at the same time that the bound only applies for a large threshold 𝑟, i.e. asymptotically. Hence,
either the sparse vectors are part of a finite dimensional space, which contradicts the asymptotical
nature of the result, or the sparse vectors are in an infinite dimensional space but the sequence
is asymptotically constant, which only results in a very limited generalisation of the classical
Stechkin lemma. These shortcomings can be eliminated by using our weighted version of
Stechkin’s lemma. In fact, applying Lemma 6 with 𝜶 = 𝝎̃(2−𝑝)/𝑝 and 𝝎 = 𝝎̃(2−𝑞)/𝑞 to the
bound (7) yields the subsequent corollary of Lemma 6.
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Corollary 13. For 𝝎̃ ∈ [0,∞]N and 0 < 𝑞 < 𝑝 ≤ 2 define 𝜶 := 𝝎̃(2−𝑝)/𝑝, 𝝈 := 𝝎̃−1 and
𝝎 := 𝝎̃(2−𝑞)/𝑞. Let 𝒗 ∈ ℓ∞𝝈 ∩ ℓ

𝑞
𝝎 and let 𝐽𝑛 be the set of indices corresponding to the 𝑛 largest

elements of 𝝈 |𝒗 |. Then, for any 𝑟 ≥ 0,

𝝈𝑟 (𝒗)ℓ𝑝𝜶 ≤ ∥(1 − 𝑃𝐽𝑛(𝑟 ) )𝒗∥ℓ𝑝𝜶 ≤ 𝑟−𝑠∥𝒗∥ℓ𝑞𝝎 , 𝑠 :=
1
𝑞
− 1

𝑝
.

This new weighted version of Stechkin’s lemma results in improved bounds in the original
work [RW16] as well as derived works such as [AB22].

Example 14. Let {𝐵 𝑗 } 𝑗∈N be an 𝐿2(𝑌, 𝜌)-orthonormal basis and identify 𝑣 ∈ 𝐿2(𝑌, 𝜌) with
its sequence of coefficients 𝒗 ∈ ℓ2. Moreover, define the weight sequence 𝝎 𝑗 := ∥𝐵 𝑗 ∥𝑤,∞
and the model class

M := {𝒗 ∈ ℓ2 : ∥𝒗∥ℓ0
𝝎
≤ 𝑟}.

Combining Proposition 4 and Theorem 5 with Corollary 13 yields the bound

∥𝑣 − 𝑣M,𝒚∥ ≤ ∥𝑣 − 𝑣M ∥ + 2√
1−𝛿

∥𝑣 − 𝑣M ∥𝑤,∞
≤ ∥𝒗 − 𝒗M ∥ℓ2 + 2√

1−𝛿
∥𝒗 − 𝒗M ∥ℓ1

𝝎

≤ (1 + 2√
1−𝛿

)∥𝒗 − 𝒗M ∥ℓ1
𝝎

≤ 𝑟−1(1 + 2√
1−𝛿

)∥𝒗∥
ℓ

1/2
𝝎3/2

,

which holds with high probability if 𝑛 ≳ 𝑟 log3(𝑟)𝛿−2.

2.2 The relation of ℓ𝑝𝝎 to other spaces

It is of general interest to examine the relation of weighted sequence spaces depending on
exponents and the weight sequences, which is the topic of this section. We first substantiate our
claim that 𝝎 measures the decay of the sequence 𝒗 by noting that a sequence in ℓ

𝑞
𝝎 decays in

modulus with a rate of 𝝎−1.

Lemma 15. Let 𝒗 ∈ ℓ
𝑞
𝝎. Then |𝒗𝑘 | ≤ 𝝎−1

𝑘
∥𝒗∥ℓ𝑞𝝎 .

Proof. Obviously, 𝝎𝑘 |𝒗𝑘 | ≤ ∥𝝎𝒗∥ℓ𝑞 . □

The regularity in the ℓ𝑞𝝎 space is described by the two parameters 𝑞 and 𝝎. The preceding lemma
implies that a sequence 𝒗 ∈ ℓ

𝑝

𝝎̃ also lies in ℓ
𝑞
𝝎, if its upper bound lies in this space, i.e.

∥𝒗∥ℓ𝑞𝝎 ≤ ∥𝝎̃−1∥𝒗∥ℓ𝑝𝝎̃ ∥ℓ𝑞𝝎 = ∥𝝎̃−1∥ℓ𝑞𝝎 ∥𝒗∥ℓ𝑝𝝎̃ .

This indicates that the exponent parameter 𝑞 can be increased by simultaneously increasing the
weight sequence parameter 𝝎. This is made precise in the subsequent lemma.

Lemma 16. Let 0 ≤ 𝑞 ≤ 𝑝 ≤ ∞ and 𝝎, 𝝎̃ ∈ [0,∞]N. Then for any sequence 𝒗 ∈ ℓ
𝑝

𝝎̃, it holds
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that
∥𝒗∥ℓ𝑞𝝎 ≤ ∥𝝎̃−1∥

ℓ
1/𝑠
𝝎
∥𝒗∥ℓ𝑝𝝎̃ , 𝑠 = 1

𝑞
− 1

𝑝
.

Proof. By Hölder’s inequality

∥𝒗∥𝑞
ℓ
𝑞
𝝎
= ∥𝝎𝑞𝒗𝑞 ∥ℓ1 = ∥(𝝎𝝎̃ )

𝑞 (𝝎̃𝒗)𝑞 ∥ℓ1 ≤ ∥(𝝎𝝎̃ )
𝑞 ∥ℓ𝑟 ∥(𝝎̃𝒗)𝑞 ∥ℓ𝑡 = ∥𝝎𝝎̃ ∥

𝑞

ℓ𝑟𝑞
∥𝝎̃𝒗∥𝑞

ℓ𝑡𝑞
,

where 𝑟 ∈ [1,∞] and 𝑡 ∈ [1,∞] satisfy 1
𝑟
+ 1

𝑡
= 1. Choosing 𝑡 =

𝑝

𝑞
yields the claim. □

Example 17 (Sparse polynomial approximation rates in Gaussian Sobolev spaces). Let 𝛾
be the standard Gaussian measure on R and {𝐵 𝑗 } 𝑗∈N be the basis of normalised Hermite
polynomial in 𝐿2(R, 𝛾). Since these polynomials constitute an Appell sequence, it holds that

∥𝑣∥𝐻𝑘 (R,𝛾) = ∥𝒗∥ℓ2
𝝎̃ (𝑘 )

with 𝝎̃(𝑘) 𝑗 :=
√︃∑min{ 𝑗 ,𝑘}

ℓ=0
Γ( 𝑗+1)

Γ( 𝑗−ℓ+1) ≍ 𝑗 𝑘/2 := 𝝎(𝑘) 𝑗 .

Applying Lemma 6 yields the following bound for the best 𝑛-term approximation 𝑣𝑛 of 𝑣:

∥𝑣−𝑣𝑛∥𝐿2 (R,𝛾) = ∥𝒗−𝑃𝐽𝑛𝒗∥ℓ2 ≤ ∥𝑃𝐽𝑛+1𝝎(𝑘−𝜀)∥−1
ℓ2 ∥𝒗∥ℓ1

𝝎 (𝑘−𝜀)
≲ (𝑛+1)−(𝑘+1−𝜀)/2∥𝒗∥ℓ1

𝝎 (𝑘−𝜀)
.

The required weighted summability 𝒗 ∈ ℓ1
𝝎(𝑘−𝜀) can usually not be inferred directly from

the smoothness of the function. However, since ∥𝝎̃(𝑘 + 1)−1∥ℓ2
𝝎 (𝑘−𝜀)

is finite, Lemma 16 can
be used to obtain the more natural summability condition 𝒗 ∈ ℓ2

𝝎̃(𝑘+1) . Consequently, for
arbitrary 𝜀 > 0,

∥𝑣 − 𝑣𝑛∥𝐿2 (R,𝛾) ≲ (𝑛 + 1)−(𝑘+1−𝜀)/2∥𝑣∥𝐻𝑘+1 (R,𝛾) .

Remark 18 (Best 𝑛-term rates in higher dimensions). To briefly discuss the best 𝑛-term rates
in higher dimensions, we consider isotropic weight sequences of the form 𝝎̄(𝑎) = 𝝎(𝑎)⊗𝑀 ,
where 𝑎 ∈ (0,∞) determines growth of 𝝎(𝑎) (rates for anisotropic product weight sequences
should follow by similar arguments). To obtain worst-case rates for the approximation, we
apply Lemmas 6 and 16

∥𝒖 − 𝑃𝐽𝑛𝒖𝒖∥ℓ2 ≤ ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1
ℓ2 ∥𝒖∥ℓ1

𝝎̄ (𝑎)
≤ ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1

ℓ2 ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

∥𝒖∥ℓ2
𝝎̄ (𝐴)

and compute an upper bound for the decay rate 𝜀(𝑛) := ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1
ℓ2 . Then, for fixed 𝑎,

we choose the parameter 𝐴 > 𝑎 as small as possible while ensuring that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

is
finite.

Exponential decay (analytic regularity) Consider the weight sequence 𝝎(𝑎) 𝑗 = 𝑓𝑎 ( 𝑗)
with 𝑓𝑎 (𝑥) := exp(𝑎𝑥). In this case, there exists a constant 𝑐𝑅 such that

𝜀(𝑛) ≲ 𝑛−(𝑀−1)/(2𝑀) exp(−𝑐𝑅𝑎𝑛1/𝑀)

and it holds that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

< ∞ for any 𝑎 < 𝐴.
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Algebraic decay (mixed Sobolev regularity) Consider the weight sequence𝝎(𝑎) 𝑗 = 𝑔𝑎 ( 𝑗)
with 𝑔𝑎 (𝑥) := (𝑥 + 1)𝑎. In this case, we obtain the bound

𝜀(𝑛) ≲ 𝑛−(𝑎+1/2) ln(𝑛)𝑎(𝑀−1) .

and it holds that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

< ∞ for any 𝑎 < 𝐴 − 1
2 .

Proofs for these statements can be found in appendix C. Note that interestingly, the best
𝑛-term approximation rate seems to depend on the dimension 𝑀 in the exponential case
while it is independent of 𝑀 in the algebraic case.

Together with Example 17, this provides best 𝑛-term 𝐿2-approximation rates in the Sobolev
spaces 𝐻𝑘,mix(R𝑅, 𝛾⊗𝑀) for the tensor product Hermite polynomial basis. It can also
be shown [HS10] that the similar rate ∥(𝐼 − 𝑃𝐽𝑛)𝑢∥𝐿2 ≤ 𝑛−𝑘 ∥𝑢∥𝐻𝑘,mix also holds (up to
logarithmic factors) for the hierarchical tensor product spline basis in the Sobolev spaces
𝐻𝑘,mix( [0, 1]𝑀 , 𝜆⊗𝑀) from Example 8.

Finally, we use these insights to highlight the relation of weighted sequences spaces to other
well-knwon sequence spaces. We start our discussion with the relation of ℓ𝑝𝝎 for different values of
𝑝 and 𝝎. In particular, we show that ℓ𝑞 can not be embedded into ℓ

𝑝
𝜔 for any 𝑝 and any unbounded

𝝎. It is clear that this is not possible, because otherwise Lemma 15 would provide decay rates for
sequences in ℓ𝑝. A concrete counterexample is provided in the proof of the subsequent lemma.

Lemma 19. Let 0 < 𝑞 ≤ 𝑝 ≤ ∞ and 𝝎 ≲ 𝝎̃ ∈ [0,∞]N. Then

(i) ℓ
𝑞
𝝎 ⊆ ℓ

𝑝
𝝎 and ℓ

𝑝

𝝎̃ ⊆ ℓ
𝑝
𝝎.

Moreover,

(ii) if 1 ≲ 𝝎 is bounded, then ℓ
𝑝
𝝎 ≃ ℓ𝑝 and

(iii) if 𝝎 is unbounded, then ℓ𝑞 ⊈ ℓ
𝑝
𝝎 ⊆ ℓ𝑝 for any 𝑞 > 0.

Proof. The two inclusions ℓ𝑞𝝎 ⊆ ℓ
𝑝
𝝎 and ℓ

𝑝

𝝎̃ ⊆ ℓ
𝑝
𝝎 follow by definition and the assertion (ii) holds

because ∥𝒗∥ℓ𝑝 ≲ ∥𝝎𝒗∥ℓ𝑝 ≤ ∥𝝎∥ℓ∞ ∥𝒗∥ℓ𝑝 . Hence, the mapping 𝒗 ↦→ 𝝎−1𝒗 provides an isometry
between ℓ𝑝 and ℓ

𝑝
𝝎. To show the assertion (iii), assume that 𝝎 is unbounded. Then there exists a

strictly increasing function 𝜎 : N→ N, which defines a subsequence of 𝝎 such that 𝝎𝜎(𝑘) ≥ 2𝑘

for all 𝑘 ∈ N. Now let 𝜀 > 0 and define the sequence 𝒗 by

𝒗𝜎( 𝑗) = 𝑗−(1+𝜀)/𝑞 and 𝒗𝑘 = 0 otherwise.

This sequence satisfies 𝒗 ∈ ℓ𝑞 and 𝒗 ∉ ℓ
𝑝
𝝎 since

∥𝒗∥𝑞
ℓ𝑞

=
∑︁
𝑘∈N

|𝒗𝑘 |𝑞 =
∑︁
𝑗∈N

|𝒗𝝈( 𝑗) |𝑞 =
∑︁
𝑗∈N

𝑗−(1+𝜀) < ∞ and

∥𝒗∥𝑝
ℓ
𝑝
𝝎
=

∑︁
𝑘∈N

|𝝎𝑘𝒗𝑘 |𝑝 =
∑︁
𝑗∈N

|𝝎𝜎( 𝑗)𝒗𝜎( 𝑗) |𝑝 ≥
∑︁
𝑗∈N

2 𝑗 𝑝 𝑗−(1+𝜀)𝑝/𝑞 = ∞. □

Finally, we examine the relation of the weighted ℓ
𝑞
𝝎 spaces to the monotone ℓ𝑞,mon spaces

(cf. [AB22]). For any sequence 𝒗, define the minimal monotone majorant 𝒗mon by

𝒗mon
𝑗 := sup

𝑘≥ 𝑗

|𝒗𝑘 | for all 𝑗 ∈ N.
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The space ℓ𝑞,mon is then defined as the set of all sequences for which the norm ∥𝒗∥ℓ𝑞,mon := ∥𝒗mon∥ℓ𝑞
is finite.

Lemma 20. Let 0 < 𝑝, 𝑞 ≤ ∞ and 𝝎 ∈ [0,∞]N and define 𝜘𝑘 := (𝑘 + 1)−1/𝑝. Then,

(i) ℓ
𝑞
𝝎 ⊆ ℓ𝑝,mon if 𝝎−1 ∈ ℓ𝑝,mon and

(ii) ℓ𝑝,mon ⊆ ℓ
𝑞
𝝎 if 𝜘 ∈ ℓ

𝑞
𝝎.

Proof. For the first assertion, assume that 𝒗 ∈ ℓ
𝑞
𝝎. Then, by Lemma 15, |𝒗mon

𝑘
| = sup 𝑗≥𝑘 |𝒗 𝑗 | ≤

sup 𝑗≥𝑘 𝝎
−1
𝑗
∥𝒗∥ℓ𝑞𝝎 = (𝝎−1)mon

𝑘
∥𝒗∥ℓ𝑞𝝎 . To show the second assertion, let 𝒗 ∈ ℓ𝑝,mon. Then, by

Lemma 1, |𝒗𝑘 | ≤ |𝒗mon
𝑘

| ≤ 𝜘𝑘 ∥𝒗∥ℓ𝑝,mon and consequently ∥𝝎𝒗∥ℓ𝑞 ≤ ∥𝝎𝜘∥ℓ𝑞 ∥𝒗∥ℓ𝑝,mon . □

3 Sparse approximation of parametric PDEs

This section is concerned with an application of the weighted Stechkin lemma for a popular
class of functions where weighted sparsity is encountered naturally. In what follows, we consider
solutions of parametric PDEs that have become popular in the field of Uncertainty Quantification.
We restrict our attention to two prototypical examples mentioned above in Theorems 2 and 3 that
exhibit a holomorphic dependence on the parameter 𝑦. The proofs of these bounds are typically
rather involved and e.g. make use of techniques from complex analysis. With the weighted version
of Stechkin’s lemma deduced in the preceding section, alternative proofs for such bounds can be
derived with more elementary techniques. The principle is demonstrated in this section for the
one-dimensional case 𝐿 = 1 as a use case of Lemma 6.

Assuming that the coefficient 𝑎(𝑦) ≥ 𝑎̌(𝑦) > 0 is finite and bounded from below for every 𝑦 ∈ R
and 𝑓 ∈ 𝐻−1(𝐷), Lax–Milgram theorem allows us to define the solution 𝑢(𝑦) in the space
𝐻1

0 (𝐷) through the variational formulation∫
𝐷

𝑎(𝑥, 𝑦)∇𝑥𝑢(𝑥, 𝑦) · ∇𝑥𝑣(𝑥) d𝑥 =

∫
𝐷

𝑓 (𝑥)𝑣(𝑥) d𝑥 for all 𝑣 ∈ 𝐻1
0 (𝐷).

Moreover, a standard Lax–Milgram a priori estimate tells us that

∥𝑢(𝑦)∥𝐻1
0
≤ 𝑎̌(𝑦)−1∥ 𝑓 ∥𝐻−1 (𝐷) .

Using the machinery of weighted ℓ
𝑝
𝝎-spaces developed in Section 2, we now derive a priori best

𝑛-term convergence bounds for the solution of (1) from first principles. Both results rely on the
holomorphy of the solution map 𝑦 ↦→ 𝑢(𝑦) := 𝑢( • , 𝑦) and make use of the following extension
of Cauchy’s inequality to Banach spaces.

Theorem 21 (Lemma 2.4 in [CDS11]). Let 𝜌 ∈ (1,∞), 𝑋 be a Banach space and 𝑣 :
𝐵C(0, 𝜌) → 𝑋 be holomorphic such that sup𝑦∈𝐵C (0,𝜌) ∥𝑣(𝑦)∥𝑋 ≤ 𝑀 < ∞. Then the power
series coefficients 𝒗 ∈ 𝑋N of 𝑣 satisfy

∥𝒗𝑘 ∥𝑋 ≤ 𝑀𝜌−𝑘 .
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3.1 Affine coefficients

We first consider the model problem (1) with affine coefficients (2). Summability of the power
series of solution 𝑢 can be shown based on its holomorphy.

Theorem 22. Let 𝜌 > 1 and the uniform ellipticity assumption (UEA)

𝐶 := inf
𝑥∈𝐷

𝑎0(𝑥) − 𝜌
∑︁
𝑗≥1

|𝑎 𝑗 (𝑥) | > 0

be satisfied. Moreover, let 𝑢 be the solution of the diffusion equation (1) with affine
coefficients (2). Then the map 𝑦 ↦→ 𝑢(𝑦) is holomorphic from [−1, 1] to 𝐻1

0 (𝐷) and belongs
to 𝐿𝑝 ( [−1, 1], 𝛾; 𝐻1

0 (𝐷)) for all 𝑝 ∈ N ∪ {∞}, where 𝛾 is the uniform measure. Moreover,
for any 𝑟 ∈ (0, 𝜌), the power series coefficients 𝒖 of 𝑢 satisfy the bound

∥𝒖𝑘 ∥𝐻1
0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷)𝐶

−1𝑟−𝑘 .

We omit the proof of this theorem since it follows by the same arguments as the one of the
more interesting log-affine case in Theorem 27. Moreover, we note that in higher dimensions an
anisotropic choice of 𝜌 can be used to reduce the regularity assumptions on 𝑎 as it is done in the
log-affine case.

The preceding lemma guarantees a decay of the power series coefficients of 𝑢. However, in
numerical applications an expansion in terms of an orthonormal basis is preferable. For the
diffusion equation (1) with affine coefficients (2), a suitable basis is given by the Legendre
polynomials. The subsequent two lemmas show how the decay of the power series coefficients
translates into a decay of the Legendre coefficients.

Lemma 23 (see [Ise10]). Let 𝑣 satisfy the conditions of Theorem 21 and let 𝒗 be the power
series coefficients of 𝑣. Then

𝑣(𝑧) =
∑︁
𝑚∈N

𝒗̂𝑚𝐿𝑚 (𝑧),

where 𝐿𝑚 is the 𝑚th normalised Legendre polynomial and 𝒗̂𝑚 satisfies

𝒗̂𝑚 =
∑︁
𝑛∈N

(2𝑚 + 1)1/2(𝑚 + 2𝑛)!
2𝑚+2𝑛𝑛!( 3

2 )𝑚+𝑛
𝒗𝑚+2𝑛,

where the Pochhammer symbol (𝑎)𝑘 is defined as (𝑎)0 = 1, (𝑎)𝑘+1 = (𝑎)𝑘 (𝑎 + 𝑘).

Theorem 24. Let 𝑢 be the solution of the diffusion equation (1) with affine coefficients (2).
Moreover, let the parameters 𝜌 > 1 and 𝐶 > 0 be defined as in Theorem 22. Then, for any
𝑟 ∈ (1, 𝜌), the Legendre basis coefficients 𝒖̂ of 𝑢 satisfy

∥𝒖̂𝑚 ∥𝐻1
0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷)𝐶

−1√2𝑚 + 1
𝑟−𝑚

𝑟2 − 1
.

This implies that 𝒖̂ ∈ ℓ
𝑞
𝝎 for all 𝑞 ∈ (0,∞] and 𝝎𝑛 := 𝑝(𝑛)𝑟𝑛 with 𝑟 ∈ (1, 𝜌) and any
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Weighted tensor sparsity 19

positive function 𝑝 growing at most polynomially.

Proof. Denote by 𝒖 the power series coefficients of 𝑢 and define the double sequence

𝜶𝑚,𝑘 :=
√

2𝑚 + 1
𝑘!

2𝑘 ((𝑘 − 𝑚)/2)!( 3
2 )(𝑘+𝑚)/2

.

By Lemma 23 it holds that 𝒖̂𝑚 =
∑

𝑘∈𝑚+2N 𝜶𝑚,𝑘𝒖𝑘 and hence

∥𝒖̂𝑚 ∥𝐻1
0 (𝐷) ≤ ∥𝑃𝑚+2N𝒖∥ℓ1

𝜶𝑚
, (8)

where the ∥𝒖∥ℓ1
𝛼𝑚

=
∑

𝑘∈N 𝛼𝑚,𝑘 ∥𝒖𝑘 ∥𝐻1
0 (𝐷) . This bound is tight, since equality holds for 𝒖𝑘+1 =

𝒗𝑘𝒖𝑘 and any non-negative sequence 0 ≤ 𝒗 ∈ ℓ1
𝛼𝑚

. By Theorem 22 it holds that ∥𝒖𝑘 ∥𝐻1
0 (𝐷) ≤ 𝑐𝑟−𝑘

with 𝑐 := ∥ 𝑓 ∥𝐻−1 (𝐷)𝐶
−1. Moreover, expressing the Pochhammer symbol in terms of the Gamma

function yields the bound

( 3
2 )𝑘 =

Γ(𝑘 + 3
2 )

Γ( 3
2 )

>

(
min

𝑧∈[0,∞)

Γ(𝑧 + 3
2 )

Γ(𝑧 + 1)

)
︸                 ︷︷                 ︸

=Γ( 3
2 )

Γ(𝑘 + 1)
Γ( 3

2 )
= 𝑘! .

Substituting both bounds into (8) yields

∥𝒖̂𝑚 ∥𝐻1
0 (𝐷) ≤ 𝑐

√
2𝑚 + 1𝑟−𝑚

∑︁
𝑛∈N

2−(𝑚+2𝑛)
(
𝑚 + 2𝑛

𝑛

)
︸                ︷︷                ︸

=𝑝𝑚+2𝑛 (𝑛)≤1

𝑟−2𝑛 ≤ 𝑐
√

2𝑚 + 1𝑟−𝑚

𝑟2 − 1
,

where 𝑝𝑚+2𝑛 is the probability mass function of a binomial distribution with 𝑚 + 2𝑛 trials and a
success probability of 1

2 . The final claim follows directly from this bound and the ratio test for
series convergence. □

Remark 25. It is possible to use Lemma 6 to bound (8). But as shown in Examples 11 and 12,
Stechkin’s lemma cannot fully exploit the decay of a weight sequence. In fact, if possible it is
preferable to derive a bound directly as in the previous proof.

Example 26. Let 𝑢 be the solution of the diffusion equation (1) with affine coefficients (2).
We denote by 𝐿𝑚 the 𝑚th normalised Legendre polynomial and by 𝒖̂ the Legendre basis
coefficients of 𝑢. Moreover, define the weight sequence 𝝎 𝑗 := ∥𝐿 𝑗 ∥∞ =

√︁
2 𝑗 + 1 and the

model class
M := {𝒗 ∈ ℓ2 : ∥𝒗∥ℓ0

𝝎
≤ 𝑟}.

We know from Example 14 that

∥𝑢 − 𝑢M,𝒚∥ ≤ 𝑟−1(1 + 2√
1−𝛿

)∥𝒖∥
ℓ

1/2
𝝎3/2

holds with high probability if 𝑛 ≳ 𝑟 log3(𝑟)𝛿−2. Theorem 24 guarantees that

∥𝒖∥1/2
ℓ

1/2
𝝎3/2

≲
∑︁
𝑚∈N

(2𝑚 + 1)3/4
(√

2𝑚 + 2𝑟−𝑚
)1/2

=
∑︁
𝑚∈N

(2𝑚 + 1)𝑟−𝑚/2 =

√
𝑟 (
√
𝑟 + 1)

(
√
𝑟 − 1)2
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is indeed finite. Note that we can probably obtain better rates by using a faster growing
weight sequence 𝝎 and Lemma 6 instead of Corollary 13.

3.2 Log-affine coefficients

The analysis of (1) with log-affine coefficient (3) is much more involved from a theoretical and
practical side than the affine case. As in the affine case, we begin by showing holomorphy of
the solution 𝑢. The analysis is based on the approach in [CD15], where only the affine case was
considered and an explicit decay of the coefficients ∥𝒖𝜈∥𝐻1

0 (𝐷) was not shown.

Theorem 27. For every 𝑥 ∈ 𝐷, let 𝒂(𝑥) denote the sequence of coefficients (𝒂 𝑗 (𝑥)) 𝑗∈N.
Assume that there exists a sequence 𝝆 ∈ (0,∞)N such that

sup
𝑥∈𝐷

∥𝒂(𝑥)∥ℓ∞𝝆 = 𝐶1 < ∞ and ∥𝝆−1∥ℓ2 = 𝐶2 < ∞.

Then the map 𝑦 ↦→ 𝑢(𝑦) is entire and belongs to 𝐿𝑝 (R, 𝛾; 𝐻1
0 (𝐷)) for all 𝑝 ∈ N, where 𝛾

denotes the Gaussian measure. Moreover, the power series coefficients satisfy the bound

∥𝒖𝝂∥𝐻1
0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷) exp(∥𝝂∥1)

(
𝝂𝝆
𝐶1

)−𝝂
.

Proof. We start by providing a lower bound for 𝑎̌(𝑦) > 0. Since

inf
𝑥

exp((𝒂(𝑥), 𝑦)ℓ2) = exp(inf
𝑥

(𝒂(𝑥)𝝆, 𝝆−1𝑦)ℓ2)

≥ exp(− sup
𝑥

∥𝒂(𝑥)∥ℓ∞𝝆 ∥𝝆
−1𝑦∥ℓ1)

= exp(−𝐶1∥𝝆−1𝑦∥ℓ1),

it holds that 𝑎̌(𝑦) ≥ exp(−𝐶1∥𝝆−1𝑦∥ℓ1). The integrability of 𝑢 now follows by the simple
calculation

E𝑦 [𝑎̌(𝑦)−𝑘 ] ≤ E𝑦 [exp(𝑘𝐶1∥𝝆−1𝑦∥ℓ1)] =
∏
𝑗∈N
E𝑦 𝑗

[exp(𝑘𝐶1𝝆
−1
𝑗 |𝑦 𝑗 |)]

≲
∏
𝑗∈N

exp( 1
2 𝑘

2𝐶2
1𝝆

−2
𝑗 ) = exp( 1

2 𝑘
2𝐶2

1𝐶
2
2 ) < ∞.

We now show that the extension of the map 𝑦 ↦→ 𝑢(𝑦) to the complex domain is analytic.
Following [CD15], we start by defining for 𝒓 ∈ (0,∞)N the open polydiscs 𝑈𝒓 :=

∏
𝑘∈N 𝐵(0, 𝒓𝑘 )

on which 𝑢 is uniformly bounded by

∥𝑢∥𝐿∞ (𝑈𝒓 ;𝐻1
0 (𝐷)) ≤ exp(−𝐶1∥𝝆−1𝒓∥ℓ1)∥ 𝑓 ∥𝐻−1 (𝐷) . (9)

Now, we introduce for any coefficient field 𝑎 the operator 𝐵(𝑎) : 𝑣 ↦→ − div𝑥 (𝑎∇𝑥𝑣) mapping
from 𝐻1

0 (𝐷) to 𝐻−1(𝐷) and decompose the map 𝑦 ↦→ 𝑢(𝑦) into the chain of holomorphic maps

𝑦 ↦→ 𝑎(𝑦) ↦→ 𝐵(𝑎(𝑦)) ↦→ 𝐵(𝑎(𝑦))−1 ↦→ 𝐵(𝑎(𝑦))−1 𝑓 = 𝑢(𝑦).
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The first map is holomorphic by definition and the second and last map are continuous linear maps
and thereby also holomorphic. The third map is the operator inversion which is holomorphic
at any invertible 𝐵. Since 𝐵(𝑎(𝑦)) is invertible for every 𝑦 ∈ CN, the map 𝑦 ↦→ 𝑢(𝑦) is entire.
Applying Cauchy’s inequality in Theorem 21 to (9), we hence obtain

∥𝒖𝝂∥𝐻1
0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷) exp(−𝐶1∥𝝆−1𝒓∥ℓ1)𝒓−𝝂 .

Choosing for every fixed multi-index 𝝂 the sequence 𝒓𝑘 := 𝝂𝑘𝝆𝑘

𝐶1
yields ∥𝝆−1𝒓∥ℓ1 = 1

𝐶1
∥𝝂∥ℓ1 and

proves the result. □

In the setting of log-affine coefficients (3), a suitable basis is given by the Hermite polynomials.
Similar to the Lemma 23 and Theorem 24, the subsequent two results show how the decay of the
power series coefficients translates into a decay of the Hermite coefficients.

Lemma 28. Let 𝑣 satisfy the conditions of Theorem 21 and let 𝒗 be the power series coefficents
of 𝑣. Then

𝑣(𝑧) =
∑︁
𝑚∈N

𝒗̂𝑚𝐻𝑚 (𝑧),

where 𝐻𝑚 is the 𝑚th normalised Hermite polynomial and 𝒗̂𝑚 satisfies

𝒗̂𝑚 =
∑︁
𝑛∈N

(𝑚 + 2𝑛)!
2𝑛𝑛!

√
𝑚!

𝒗𝑚+2𝑛.

Proof. For every 𝑚 ∈ N, let He𝑚 denote the 𝑘 th monic probabilist’s Hermite polynomial. Then,
by [Rai60, Chapter 11, Section 110],

𝑧𝑘 =
∑︁
𝑛∈N
2𝑛≤𝑘

𝑘!
2𝑛𝑛!(𝑘 − 2𝑛)!He𝑘−2𝑛 (𝑧).

Plugging this into the power series expansion for 𝑣 yields

𝑣(𝑧) =
∑︁
𝑘,𝑛∈N
2𝑛≤𝑘

𝑘!
2𝑛𝑛!(𝑘 − 2𝑛)!𝒗𝑘He𝑘−2𝑛 (𝑧) =

∑︁
𝑘,𝑛,𝑚∈N

2𝑛≤𝑘
𝑚=𝑘−2𝑛

𝑘!
2𝑛𝑛!𝑚!

𝒗𝑘He𝑚 (𝑧)

=
∑︁

𝑛,𝑚∈N

(𝑚 + 2𝑛)!
2𝑛𝑛!𝑚!

𝒗𝑚+2𝑛He𝑚 (𝑧).

Substituting He𝑚 =
√
𝑚!𝐻𝑚 yields the desired relation. □

Theorem 29. Let 𝑢 be the solution of the diffusion equation (1) with log-affine coefficients (3).
Moreover, let the parameters 𝝆 and 𝐶1 be defined as in Theorem 27. Finally, let 𝐿 = 1 and
assume that 𝝆 > 𝐶1. Then, the Hermite basis coefficients 𝒖̂ of𝑢 satisfy ∥𝒖̂𝑚 ∥𝐻1

0 (𝐷) ≲
∥ 𝑓 ∥

𝐻−1 (𝐷)√
(𝑚−1)!

.

This implies that 𝒖̂ ∈ ℓ
𝑞
𝝎 for all 𝑞 ∈ (0,∞] and 𝝎 that grow subfactorially.
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Proof. Define the double sequence

𝜶𝑚,𝑘 :=
𝑘!

2(𝑘−𝑚)/2((𝑘 − 𝑚)/2)!
√
𝑚!

.

By Lemma 28 it holds that 𝒖̂𝑚 =
∑

𝑘∈𝑚+2N 𝜶𝑚,𝑘𝒖𝑘 . Hence

|𝒖̂𝑚 | ≤ ∥𝑃𝑚+2N𝒖∥ℓ1
𝜶𝑚

≤ ∥(1 − 𝑃[𝑚−1])𝒖∥ℓ1
𝜶𝑚
. (10)

This bound is tight, since equality holds for any sequence 𝒖 ≥ 0 with 𝒖𝑘 = 0 for all 𝑘 ∈ 𝑚+2N. By
Theorem 27 it holds that ∥𝒖𝑘 ∥𝐻1

0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷) exp(𝑘) ( 𝑘𝜌
𝐶1
)−𝑘 and by Stirling’s approximation

√
2𝜋𝑘 ( 𝑘

𝑒
)𝑘 exp( 1

12𝑘+1 ) < 𝑘! <
√

2𝜋𝑘 ( 𝑘
𝑒
)𝑘 exp( 1

12𝑘 ).

Substituting all three estimates into (10) and assuming 𝑚 ≥ 1 yields

∥𝒖̂𝑚 ∥𝐻1
0 (𝐷) ≤ ∥ 𝑓 ∥𝐻−1 (𝐷)

√︂
2(𝑚 + 1)

𝑚!

∑︁
𝑘≥𝑚

(
𝑘 − 𝑚

𝑒

)−(𝑘−𝑚)/2 ( 𝝆

𝐶1

)−𝑘
≤ 2∥ 𝑓 ∥𝐻−1 (𝐷)

(√
𝑒 + 𝑒

2 + (𝐶1/𝝆)𝑚+3

1 − 𝐶1/𝝆

)
1√︁

(𝑚 − 1)!
. □

Corollary 30. Let 𝒖̂ be the sequences of Hermite basis coefficients from Theorem 29 with
𝐿 = 1 and assume that 𝜌 ≥ 𝐶1. Then, if 𝝎 𝑗 = 𝑟 𝑗/2 with 𝑟 ∈ [1, 2) and 𝐽𝑛 is the set of indices
corresponding to the 𝑛 largest elements of the sequence 𝝎−1

𝑘
∥𝒖̂𝒌 ∥𝐻1

0 (𝐷) , it holds that

∥(1 − 𝑃𝐽𝑛)𝑢̂∥𝐿2 ≲ ∥ 𝑓 ∥𝐻−1 (𝐷)

√
2

√
2 −

√
𝑟
𝑟−𝑛/2.

Proof. From Theorem 29, we know that ∥𝒖̂𝑚 ∥𝐻1
0 (𝐷) ≲

∥ 𝑓 ∥
𝐻−1 (𝐷)√
(𝑚−1)!

. Since 𝑚! ≥ 2𝑚−1, it holds that
1√

(𝑚−1)!
≲ 2−𝑚/2 =: 𝜸𝑚. Applying Lemma 6 with 𝑝 = 2, 𝑞 = 1 and 𝜶 ≡ 1 yields

∥(1 − 𝑃𝐽𝑛)𝒖̂∥𝐿2 = ∥(1 − 𝑃𝐽𝑛)𝒖̂∥ℓ2 ≤ ∥𝑃𝐽𝑛+1𝝎
2∥−1/2

ℓ1 ∥𝒖̂∥ℓ1
𝝎
≲ ∥ 𝑓 ∥𝐻−1 (𝐷) ∥𝑃𝐽𝑛+1𝝎

2∥−1/2
ℓ1 ∥𝜸∥ℓ1

𝝎
.

The claim follows since ∥𝜸∥ℓ1
𝝎
=

√
2√

2−
√
𝑟

and ∥𝑃𝐽𝑛+1𝝎
2∥ℓ1 ≥ ∥𝑃[𝑛+1]𝝎

2∥ℓ1 ≥ 𝑟𝑛. □

Remark 31. Note that the proofs of Theorem 24 and 29 rely essentially on the the formulas
in Lemma 23 and Lemma 28. The similarity of these formulas indicates a deeper relation
stemming from the explicit representations of (𝑝𝑛, 𝐿𝑚)𝐿2 and (𝑝𝑛, 𝐻𝑚)𝐿2 with 𝑝𝑛 (𝑧) := 𝑧𝑛.
We conjecture that similar representations can be derived for all families of orthonormal
polynomials by means of the corresponding three-term recurrence relation.
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4 Sparse approximation using tensor trains

In this section we consider sparse approximation problems in a high-dimensional setting where
weighted sparse vectors can be identified with tensors. We show that tensors in ℓ

𝑞
𝜔 can be

approximated efficiently in a model class of tensor trains with (weighted) sparse component
tensors. The derivation of this relies heavily on results in [LYB22], from which we recall some
theorems. For the sake of completeness and since the proofs foster some interesting insights, they
are also provided.

Finally, we provide a practical algorithm to obtain these representations which provides an
alternative for classical sparse approximation algorithms (such as weighted ℓ1-minimisation) that
circumvents the CoD.

4.1 Tensor train representation of sparse tensors

This section recalls basic representation results for sparse tensors that are originally due to [LYB22].
We first introduce some basic operations on tensors.

Definition 32 (Vectorisation). For any tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 , the vectorisation of 𝐴 is a
vector vec(𝐴) ∈ R𝑑1···𝑑𝑀 defined by the equality

𝐴𝑖1,𝑖2,...,𝑖𝑑 = vec(𝐴)∑
𝑘∈[𝑀 ] 𝑖𝑘𝐷𝑘

with 𝐷𝑘 :=
𝑀∏

ℓ=𝑘+1
𝑑ℓ and 𝐷𝑀 := 1.

Definition 33 (Unfolding [Ose11]). For any tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 and 𝑘 ∈ [𝑀], the 𝑘-
unfolding of 𝐴 is a matrix unfold𝑘 (𝐴) ∈ R𝐶1×𝐶2 with 𝐶1 =

∏𝑘
𝑗=1 𝑑 𝑗 and 𝐶2 =

∏𝑀
𝑗=𝑘+1 𝑑 𝑗 ,

defined by the equality vec(𝐴) = vec(unfold𝑘 (𝐴)).

Definition 34 (Orthogonality). A tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 is called left-orthogonal, if

unfold𝑀−1(𝐴)⊺ unfold𝑀−1(𝐴) = 𝐼 .

It is called right-orthogonal if

unfold1(𝐴) unfold1(𝐴)⊺ = 𝐼 .

Definition 35 (Contraction). Given two tensors 𝐴 ∈ R𝑑1×···×𝑑𝑀 and 𝐵 ∈ R𝑑𝑀×···×𝑑𝑁 , we
define the contraction of 𝐴 and 𝐵 along the last dimension of 𝐴 and the first dimension of 𝐵
as

(𝐴 ◦ 𝐵)𝑖1,...,𝑖𝑀−1,𝑖𝑀+1,...,𝑖𝑁 :=
∑︁

𝑖𝑀∈[𝑑𝑀 ]
𝐴𝑖1,...,𝑖𝑀𝐵𝑖𝑀 ,...,𝑖𝑁 .

The tensor train (TT) decomposition [Ose11] represents a tensor of order 𝑀 as the contraction
of 𝑀 lower order tensors. A tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 is said to have a TT representation of rank
𝑟 ∈ N𝑀−1 if

𝐴 = 𝐴(1) ◦ · · · ◦ 𝐴(𝑀)
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with component tensors 𝐴(𝑘) ∈ R𝑟𝑘−1×𝑑𝑘×𝑟𝑘 and the convention that 𝑟−1 = 𝑟𝑀 = 1. By fixing the
second index of every 𝐴(𝑘) to 𝑖𝑘 , we obtain a matrix 𝐴

(𝑘)
𝑖𝑘

. The entries of 𝐴 can then be computed
by

𝐴𝑖1,...,𝑖𝑀 = 𝐴
(1)
𝑖1

· · · 𝐴(𝑀)
𝑖𝑀

.

Now suppose that the tensor 𝐴 is 𝑅-sparse, i.e. that there exists a set 𝐽 of size 𝑅 such that 𝐴𝑖 ≠ 0
if and only if 𝑖 = (𝑖1, . . . , 𝑖𝑀) ∈ 𝐽. Then 𝐴 can be represented as the sum of 𝑅 rank-1 tensors,

𝐴 =
∑︁
𝑖∈𝐽

𝑒𝑖1 ⊗ · · · ⊗ (𝐴𝑖𝑒𝑖𝑘 ) ⊗ · · · ⊗ 𝑒𝑖𝑀 , (11)

where 𝑒𝑖𝑙 ∈ R𝑑𝑙 are the standard basis vectors and the choice of the index 𝑘 ∈ [𝑀] is arbitrary.
Since every summand is a TT of rank 1, the sum (11) can be represented as a TT of rank 𝑅.

Lemma 36 (Section 4.1 in [Ose11]). Let 𝐴, 𝐵 ∈ R𝑑1×···×𝑑𝑀 be two tensors given in TT format

𝐴𝑖 = 𝐴
(1)
𝑖1

· · · 𝐴(𝑀)
𝑖𝑀

, 𝐵𝑖 = 𝐵
(1)
𝑖1

· · · 𝐵(𝑀)
𝑖𝑀

.

The sum 𝐶 = 𝐴 + 𝐵 can be represented in TT format with components

𝐶
(1)
𝑖1

=

[
𝐴
(1)
𝑖1

𝐵
(1)
𝑖1

]
, 𝐶

(𝑘)
𝑖𝑘

=

[
𝐴
(𝑘)
𝑖𝑘

𝐵
(𝑘)
𝑖𝑘

]
, 𝐶

(𝑀)
𝑖𝑀

=


𝐴
(𝑀)
𝑖𝑀

𝐵
(𝑀)
𝑖𝑀

 ,
where 𝑘 = 2, . . . , 𝑀 − 1 and empty spaces denote blocks of zeros of appropriate dimension.

The proof of Lemma 36 follows directly from the definition of the TT decomposition. Together
with the decomposition (11) it implies that any 𝑅-sparse tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 can be represented
as a TT of rank 𝑅.

If 𝑘 ∉ {1, 𝑑}, this decomposition can be written as

𝐴 = 𝑃(1) ◦ · · · ◦ 𝑃(𝑘−1) ◦ 𝐶 ◦ 𝑃(𝑘+1) ◦ · · · ◦ 𝑃(𝑀) ,

with 𝑃(1) ∈ {0, 1}1×𝑑1×𝑅, 𝑃( 𝑗) ∈ {0, 1}𝑅×𝑑 𝑗×𝑅 for 1 < 𝑗 < 𝑀, 𝑃(𝑀) ∈ {0, 1}𝑅×𝑑𝑀×1, and
𝐶 ∈ R𝑅×𝑑𝑘×𝑅. If 𝐽 = {𝑖1, . . . , 𝑖𝑅}, then by the definition of the component tensors in Lemma 36
it holds that

unfold2(𝑃(1)) =
[
𝑒𝑖11

· · · 𝑒𝑖𝑅1

]
, unfold2(𝑃( 𝑗)) =


𝑒𝑖1

𝑗

. . .

𝑒𝑖𝑅
𝑗

 , unfold1(𝑃(𝑀)) =


𝑒
⊺

𝑖1
𝑀
...

𝑒
⊺

𝑖𝑅
𝑀

 ,
where 𝐶 exhibits the same sparsity pattern as the corresponding 𝑃( 𝑗) . Note that all components
in this representation are 𝑅-sparse and that similar representations exist for 𝑘 = 1 or 𝑘 = 𝑑.

Now consider the case that 𝑖11 = 𝑖21 = 𝑘 . Then the column 𝑒𝑘 appears at least twice in the
matricisation unfold2(𝑃(1)) resulting in an ambiguous representation of the tensor. This is
a principal effect of the representation in Lemma 36 and is not specific to the sparse TT
decomposition. In classical tensor algorithms, uniqueness of the representation is restored (up to
orthogonal transformations) by performing a sequence of rank-revealing QR decompositions on
the factors 𝑃( 𝑗) . However, since the QR decomposition is not guaranteed to preserve sparsity,
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we introduce a sparse QC decomposition 𝑋 = 𝑄𝐶, where 𝑄 is orthogonal and sparse and 𝐶 is
sparse. The idea behind this decomposition is that the image space of 𝑋 is spanned by those
standard basis vectors 𝑒𝑖 for which the row vector 𝑒⊺

𝑖
𝑋 is non-zero. We can hence define 𝑄 as the

sparse orthogonal matrix containing these standard basis vectors as its columns.

To rigorously define this decomposition, recall that any 𝑅-sparse matrix 𝐴 ∈ R𝑛×𝑚 can be
represented by the three 𝑅-tuples

row(𝐴) ∈ [𝑛]𝑅, col(𝐴) ∈ [𝑚]𝑅 and data(𝐴) ∈ R𝑅 .

Here row(𝐴)𝑖 and col(𝐴)𝑖 are the row and column indices of the 𝑖th non-zero entry in 𝐴 and
data(𝐴)𝑖 is its value. Conversely, given three 𝑅-tuples 𝑟 ∈ [𝑛]𝑅, 𝑐 ∈ [𝑚]𝑅 and 𝑑 ∈ R𝑅 such that
the pairs {(𝑟𝑖, 𝑐𝑖)}𝑖∈[𝑅] are unique, we can uniquely define an 𝑅-sparse matrix coo(𝑟, 𝑐, 𝑑) with

row(coo(𝑟, 𝑐, 𝑑)) = 𝑟, col(coo(𝑟, 𝑐, 𝑑)) = 𝑐 and data(coo(𝑟, 𝑐, 𝑑)) = 𝑑.

Finally, define for every 𝑅 ∈ N the 𝑅-tuples

range(𝑅) := (1, . . . , 𝑅) and ones(𝑅) := (1, . . . , 1)

as well as the tuple unique(𝑟) for every tuple 𝑟 ∈ N𝑅, containing only the unique elements of 𝑟.
As usual, we define for any vector 𝑥 ∈ R𝑑 the dimension dim(𝑥) := 𝑑.

Definition 37. Let 𝑋 ∈ R𝑛×𝑚 be an 𝑅-sparse matrix. Then the sparse QC decomposition
𝑋 = 𝑄𝐶 is given by

𝑄 := coo(𝑠, range(𝑟), ones(𝑟)) ∈ R𝑛×𝑟 and 𝐶 := 𝑄⊺𝑋,

where 𝑠 := unique(row(𝑋)) and 𝑟 := dim(𝑠) ≤ 𝑅.

Lemma 38. Let 𝑋 ∈ R𝑛×𝑚 be an 𝑅-sparse matrix and 𝑋 = 𝑄𝐶 be its sparse QC de-
composition. Then 𝑄 ∈ R𝑛×𝑟 is orthogonal and 𝑟-sparse with 𝑟 ≤ 𝑅 and 𝐶 ∈ R𝑟×𝑚 is
𝑅-sparse.

Proof. Recall that 𝑄 := coo(𝑠, range(𝑟), ones(𝑟)) with 𝑠 := unique(row(𝑋)) and 𝑟 := dim(𝑠).
This means that 𝑄 is 𝑟-sparse with 𝑟 = dim(𝑠) ≤ dim(row(𝑋)) = 𝑅. Moreover, since the 𝑘 th

column of 𝑄 is the standard basis vector 𝑒𝑠𝑘 and since the indices in 𝑠 are unique, it follows that
𝑄 is orthogonal. For the same reason, 𝐶 = 𝑄⊺𝑋 is just a version of 𝑋 with the non-zero rows
removed. Therefore, 𝐶 is 𝑅-sparse. □

Applying the sparse QC decomposition sequentially to the unfoldings of all component tensors
results in a TT representation

𝐴 = 𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1) ◦ 𝐶 ◦𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀) . (12)

An implementation of this procedure is listed in Algorithm 1. The resulting component tensors
𝑈 ( 𝑗) ∈ {0, 1}𝑟 𝑗−1×𝑑×𝑟 𝑗 are 𝑟 𝑗 -sparse and left-orthogonal and the component tensors 𝑉 ( 𝑗) ∈
{0, 1}𝑟 𝑗−1×𝑑×𝑟 𝑗 are 𝑟 𝑗−1-sparse and right-orthogonal. The ranks 𝑟 𝑗 are uniformly bounded by
𝑅 and the core tensor 𝐶 remains 𝑅-sparse. These properties are summarised in the following
definition.
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Definition 39. A tensor train representation

𝐴 = 𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1) ◦ 𝐶 ◦𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀)

is called sparsely canonicalised with core position 𝑘 if

1 𝑈 ( 𝑗) ∈ {0, 1}𝑟 𝑗−1×𝑑×𝑟 𝑗 are left-orthogonal and 𝑟 𝑗 -sparse for all 1 ≤ 𝑗 < 𝑘 ,

2 𝑉 ( 𝑗) ∈ {0, 1}𝑟 𝑗−1×𝑑×𝑟 𝑗 are right-orthogonal and 𝑟 𝑗−1-sparse for all 𝑘 < 𝑗 ≤ 𝑀 and

3 𝐶 ∈ R𝑟𝑘−1×𝑑×𝑟𝑘 is min{𝑟𝑘−1, 𝑟𝑘 }-sparse.

Algorithm 1: Sparse canonicalisation
input: Tensor train representation 𝐴 = 𝐴(1) ◦ · · · ◦ 𝐴(𝑀) , desired core position 𝑘 .
output: Sparsely canonicalised representation of 𝐴 with core position 𝑘 .

1 Initialise 𝐶 (0) := 𝐼.
2 for 𝑗 = 1 to 𝑘 − 1 do
3 Define 𝑋 ( 𝑗) := 𝐶 ( 𝑗−1) unfold2(𝐴( 𝑗)).
4 Compute the sparse QC decomposition (cf. Definition 37) 𝑋 ( 𝑗) = 𝑄 ( 𝑗)𝐶 ( 𝑗) .
5 Define unfold2(𝑈 ( 𝑗)) := 𝑄 ( 𝑗) .
6 end
7 Initialise 𝐶 (𝑀+1) := 𝐼.
8 for 𝑗 = 𝑀 to 𝑘 + 1 do
9 Define 𝑋 ( 𝑗) := unfold1(𝐴( 𝑗))𝐶 ( 𝑗+1) .

10 Compute the sparse QC decomposition (cf. Definition 37) (𝑋 ( 𝑗))⊺ = (𝑄 ( 𝑗))⊺ (𝐶 ( 𝑗))⊺.
11 Define unfold1(𝑉 ( 𝑗)) := 𝑄 ( 𝑗) .
12 end
13 Define 𝐶 := 𝐶 (𝑘−1)𝐴(𝑘)𝐶 (𝑘+1) .
14 return 𝐴 = 𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1) ◦ 𝐶 ◦𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀) .

4.2 Approximation results

The deliberations of the preceding section give rise to a model class of tensor trains with sparse
component tensors. Moreover, due to the special structure of the component tensors any weighted
summability condition on the full tensor translates into a weighted summability condition on the
core tensor. This is made precise in the subsequent theorem.

Theorem 40. Every 𝑅-sparse tensor 𝐴 ∈ R𝑑1×···×𝑑𝑀 can be represented in a sparsely
canonicalised TT format

𝐴 = 𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1) ◦ 𝐶 ◦𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀)

with ranks that are uniformly bounded by 𝑅, independent of the chosen core position 𝑘 ∈ [𝑀].
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Moreover, we can define the operator 𝑄 ∈ L(R𝑟𝑘×𝑑𝑘×𝑟𝑘+1 ,R𝑑1×···×𝑑𝑀 ) ≃ R𝑑1···𝑑𝑀×𝑟𝑘𝑑𝑘𝑟𝑘+1 via

𝑄 = unfold𝑘 (𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1)) ⊗ 𝐼𝑑𝑘 ⊗ unfold1(𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀))⊺, (13)

where ⊗ denotes the matrix Kronecker product. This means that 𝐴 = 𝑄𝐶. Interpreted as
a matrix, 𝑄 is left-orthogonal and its columns are standard basis vectors and for every
𝑞 ∈ [0,∞] and 𝝎 ∈ [0,∞]𝑑1×···×𝑑𝑀 it holds that

∥𝐴∥ℓ𝑞𝝎 = ∥𝐶∥ℓ𝑞
𝜷
,

where 𝜷 := 𝑄⊺𝝎 is a (reshaped) subsequence of 𝝎.

Proof. 𝑄 is a linear operator mapping a component tensor from R𝑟𝑘×𝑑𝑘×𝑟𝑘+1 to the space of
full tensors R𝑑1×···×𝑑𝑀 . After vectorising these tensor spaces, we can interpret 𝑄 as a matrix
𝑄 ∈ {0, 1}𝑑1···𝑑𝑀×𝑟𝑘𝑑𝑘𝑟𝑘+1 . We now show that 𝑄 is an orthogonal matrix where every column is a
standard product basis vector. We begin by showing that the matrices

𝐵𝑘 := unfold𝑘+1(𝑈 (1) ◦ · · · ◦𝑈 (𝑘))

are left-orthogonal with columns that are standard basis vectors. Following the lines of [WAA18,
Appendix B], this can be proved by induction. For 𝑘 = 1 the assertion is true by construction of
𝑈 (1) . For 𝑘 > 1 it holds that 𝐵𝑘 = (𝐼𝑟𝑘−1 ⊠ 𝐵𝑘−1) unfold2(𝑈 (𝑘)), where 𝐼𝑟𝑘−1 ⊠ 𝐵𝑘−1 denotes the
Kronecker product. The two matrices (𝐼𝑟𝑘−1 ⊠ 𝐵𝑘−1) and unfold2(𝑈 (𝑘)) are left-orthogonal and
their columns are standard basis vectors. This implies the assertion, since the matrix product
preserves these properties. A similar argument shows that the matrices

𝐷𝑘 := unfold1(𝑈 (𝑘) ◦ · · · ◦𝑈 (𝑀))⊺

are left-orthogonal with columns that are standard basis vectors. This proves the claim, since
𝑄 = 𝐵𝑘−1 ⊗ 𝐼𝑑𝑘 ⊗ 𝐷𝑘+1. □

Let 𝐴 be an 𝑅-sparse coefficient tensor with ∥𝐴∥ℓ0
𝝎
≤ 𝑟 . Then Theorem 40 ensures that 𝐴 = 𝑄𝐶

with

𝑄 ∈ Q𝑅,𝑘 := { unfold𝑘 (𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1)) ⊗ 𝐼𝑑𝑘 ⊗ unfold1(𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀))⊺

: 𝑈 ( 𝑗) , 𝑉 ( 𝑗) ∈ {0, 1}𝑟 𝑗−1×𝑑 𝑗×𝑟 𝑗 with 𝑟 𝑗−1, 𝑟 𝑗 ≤ 𝑅

: all 𝑈 ( 𝑗) are left-orthogonal and 𝑟 𝑗 -sparse

: all 𝑉 ( 𝑗) are right-orthogonal and 𝑟 𝑗−1-sparse }

and
𝐶 ∈ C𝑄,𝑟,𝝎 := 𝐵ℓ0

𝑄⊺𝝎
(0, 𝑟) = {𝐶 ∈ R𝑟𝑘−1×𝑑𝑘×𝑟𝑘 : ∥𝐶∥ℓ0

𝑄⊺𝝎
≤ 𝑟}.

Since such a representation exists for all 𝑘 = 1, . . . , 𝑀 , this motivates the definition of the model
class

M𝑅,𝑟,𝝎 :=
⋂

𝑘∈[𝑀]

⋃
𝑄∈Q𝑅,𝑘

𝑄C𝑄,𝑟,𝝎.

As before, we identify the set of coefficient tensors M𝑅,𝑟,𝝎 with the corresponding set of functions.
The following corollary then translates the result of Corollary 13 to the model class M𝑅,𝑟,𝝎

and shows that it exhibits similar approximation rates as the more classical sets of weighted
sparsity.
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Corollary 41. Let 𝝉 ∈ ([0,∞]N)𝑀 and 𝑇 (𝑅) := min{∥𝑃𝐽𝝉∥2
ℓ2 : |𝐽 | = 𝑅 + 1} be the sum of

the 𝑅 + 1 smallest elements in 𝝉2. Moreover, let 0 < 𝑞 < 𝑝 ≤ 2 and define 𝜶 := 𝝉(2−𝑝)/𝑝

and 𝝎 := 𝝉(2−𝑞)/𝑞. Then every 𝒗 ∈ ℓ
𝑞
𝝎 (N𝑀) can be approximated by a tensor 𝒗̃ ∈ M𝑅,𝑟,𝝎

with accuracy
∥𝒗 − 𝒗̃∥ℓ𝑝𝜶 ≤ min{𝑇 (𝑅), 𝑟}−𝑠∥𝒗∥ℓ𝑞𝝎 , 𝑠 := 1

𝑞
− 1

𝑝
.

Proof. Let 𝐽𝑛 be defined as in Corollary 13 and recall that 𝒗 can be approximated by the 𝑛-sparse
tensor 𝒗̃ := 𝑃𝐽𝑛𝒗 with an error of at most

∥(1 − 𝑃𝐽𝑛)𝒗∥ℓ𝑝𝜶 ≤
(
∥𝑃𝐽𝑛+1𝝈

−1∥𝑞
ℓ
𝑞
𝝎

)−𝑠
∥𝒗∥ℓ𝑞𝝎 =

(
∥𝑃𝐽𝑛+1𝝉∥2

ℓ2

)−𝑠
∥𝒗∥ℓ𝑞𝝎 .

Define 𝑛(𝑟) := max{𝑛 ∈ N : ∥𝑃𝐽𝑛𝝉∥2
ℓ2 ≤ 𝑟} and choose 𝑛 = min{𝑅, 𝑛(𝑟)}. Then 𝒗̃ is 𝑅-sparse

and 𝝉-weighted 𝑟-sparse and Theorem 40 guarantees that it can be represented in M𝑅,𝑟,𝝎. The
desired error bounds follows by case distinction. If 𝑛 = 𝑅 then ∥𝑃𝐽𝑛+1𝝉∥2

ℓ2 ≥ 𝑇 (𝑅) by definition
of 𝑇 (𝑅). Hence (∥𝑃𝐽𝑛+1𝝉∥2

ℓ2)−𝑠 ≤ 𝑇 (𝑅)−𝑠. If 𝑛 = 𝑛(𝑟) then ∥𝑃𝐽𝑛+1𝝉∥2
ℓ2 ≥ 𝑟 by maximality of

𝑛(𝑟). Hence (∥𝑃𝐽𝑛+1𝝉∥2
ℓ2)−𝑠 ≤ 𝑟−𝑠. □

Using the model class M𝑅,𝑟,𝝎, the optimisation (5) becomes feasible on product basis. We use
the remainder of this section to provide theoretical guarantees for this optimisation. To apply
Proposition 4, we first show that the model class satisfies the required nestedness property
M𝑅,𝑟,𝝎 −M𝑅,𝑟,𝝎 ⊆ M2𝑅,2𝑟,𝝎 and then show RIPM𝑅,𝑟 ,𝝎 (𝛿) holds with high probability. For this
to make sense, we let 𝑏 : 𝑌 → R𝑑 be a vector of 𝐿2(𝑌, 𝜌)-orthonormal basis functions, define the
tensor product basis 𝐵(𝑦) := 𝑏(𝑦1) ⊗ · · ·⊗𝑏(𝑦𝑀) and suppose that the weight sequence𝝎 satisfies
𝝎 𝑗 ≥ ∥𝐵 𝑗 ∥𝐿∞ . We now identity the space of coefficents 𝑣 ∈ M𝑅,𝑟,𝝎 with the corresponding space
of functions 𝑦 ↦→ (𝐵(𝑦), 𝑣)ℓ2 .

Proposition 42. It holds that M𝑅,𝑟,𝝎 −M𝑅,𝑟,𝝎 ⊆ M2𝑅,2𝑟,𝝎.

Proof. Let 𝐴, 𝐵 ∈ M𝑅,𝑟,𝝎 with core position 𝑘 . By Lemma 36, the difference 𝐶 = 𝐴 − 𝐵 can be
represented in TT format with components

𝐶
(1)
𝑖1

=

[
𝐴
(1)
𝑖1

−𝐵(1)
𝑖1

]
, 𝐶

( 𝑗)
𝑖 𝑗

=

[
𝐴
( 𝑗)
𝑖 𝑗

𝐵
( 𝑗)
𝑖 𝑗

]
, 𝐶

(𝑀)
𝑖𝑀

=


𝐴
(𝑀)
𝑖𝑀

𝐵
(𝑀)
𝑖𝑀

 ,
for 𝑗 = 2, . . . , 𝑀 − 1. After removing duplicate columns in the matricisations of 𝐶 ( 𝑗) for 𝑗 ≠ 𝑘 ,
the resulting tensor satisfies the unweighted sparsity, orthogonality and rank constraints of
M2𝑅,2𝑟,𝝎. And since

∥𝐶 (𝑘) ∥ℓ0
𝑄⊺𝝎

= ∥𝐴 − 𝐵∥ℓ0
𝝎
≤ ∥𝐴∥ℓ0

𝝎
+ ∥𝐵∥ℓ0

𝝎
≤ 2𝑟,

the weighted sparsity constraints are satisfied as well. □

The following immediate consequence of Theorem 5 provides a bound for the probability of
RIPM𝑅,𝑟 ,𝝎 (𝛿).
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Corollary 43. Fix parameters 𝛿, 𝛾 ∈ (0, 1). Let {𝐵 𝑗 } 𝑗∈[𝐷] be orthonormal with respect to
the measure 𝜌 and let 𝑤 ≥ 0 be any weight function satisfying ∥𝑤−1∥𝐿1 = 1. Assume the
weight sequence satisfies 𝝎 𝑗 ≥ ∥𝑤1/2𝐵 𝑗 ∥𝐿∞ and fix

𝑛 ≥ 𝐶𝛿−2𝑟 max{log3(𝑟) log(𝑑𝑀),− log(𝛾)}.

Let 𝑦1, . . . , 𝑦𝑛 be drawn independently from 𝑤−1𝜌. Then the probability of RIPM𝑅,𝑟 ,𝝎 (𝛿)
exceeds 1 − 𝛾.

Proof. Theorem 40 guarantees that every 𝐴 ∈ M𝑅,𝑟,𝝎 can be written as 𝐴 = 𝑄𝐶 with ∥𝐴∥ℓ0
𝝎
=

∥𝐶∥ℓ0
𝜷
≤ 𝑟 and where 𝜷 = 𝑄⊺𝝎. This implies that M𝑅,𝑟,𝝎 ⊆ 𝐵ℓ0

𝝎
(0, 𝑟). The assertion follows,

since Theorem 5 implies RIP𝐵
ℓ0
𝝎
(0,𝑟) (𝛿) and, consequently, RIPM𝑅,𝑟 ,𝝎 (𝛿). □

4.3 Numerical method

In order to present an efficient numerical realisation of the optimisation problem (5), define the
vector 𝐹 ∈ R𝑛 and the bounded linear operator 𝑀 : (R𝑑)⊗𝑀 → R𝑛 by

𝐹𝑖 =
√︁
𝑤(𝑦𝑖)𝑢(𝑦𝑖) and (𝑀𝑣)𝑖 =

√︁
𝑤(𝑦𝑖) (𝑣, 𝐵(𝑦𝑖))Fro. (14)

Then equation (5) is equivalent to the optimisation problem

minimise
𝑣∈M𝑅,𝑟 ,𝝎

∥𝐹 − 𝑀𝑣∥2
ℓ2 . (15)

We propose to solve this problem by a sparse variant of the alternating least squares (ALS)
algorithm introduced in [HRS12; Ose11]. The ALS method solves (15) by refining an initial
guess in a sequence of microsteps, each optimising a single component tensor while keeping
the others fixed. Since every 𝑣 ∈ M𝑅,𝑟,𝝎 can be written as a sparsely canonicalised tensor train
𝑣 = 𝑄𝐶 with core position 𝑘 , the microstep optimising the 𝑘 th component tensor can be written as

minimise
𝐶∈C𝑄,𝑟,𝝎

∥𝐹 − 𝑀𝑄𝐶∥2
ℓ2 .

The operator 𝑄 can be efficiently computed by Algorithm 11 and the resulting sparse tensor
train representation allows for an efficient evaluation of 𝑀𝑄. A classical approach to handle the
weighted sparsity constraints in C𝑄,𝑟,𝝎 = {𝐶 ∈ R𝑟𝑘−1×𝑑𝑘×𝑟𝑘 : ∥𝐶∥ℓ0

𝑄⊺𝝎
≤ 𝑟} is to promote the

weighted ℓ0-constraints via a weighted ℓ1-regularisation term. The resulting problem then reads

minimise
𝐶∈R𝑟𝑘−1×𝑑𝑘×𝑟𝑘

∥𝐹 − 𝑀𝑄𝐶∥2
ℓ2 + 𝜆∥𝜷𝑄 ⊙ 𝐶∥1, (16)

where 𝜷𝑄 := 𝑄⊺𝝎 can be efficiently computed due to the tensor train representation and
sparsity structure of 𝑄. Substituting 𝐷 = 𝛽𝑄 ⊙ 𝐶 into (16) we obtain the standard LASSO
problem [EHJT04; SS86]

minimise
𝐷∈R𝑟𝑘−1×𝑑𝑘×𝑟𝑘

∥𝐹 − 𝑀𝑄(𝜷−1
𝑄 ⊙ 𝐷)∥2

ℓ2 + 𝜆∥𝐷∥1. (17)

The regularisation parameter 𝜆 controls the sparsity of 𝐶 and must be chosen appropriately to
remain in the model class M𝑅,𝑟,𝝎. To do this recall the following two facts.

1Indeed the operator 𝑄 at core position 𝑘 can be efficiently updated from its value at position 𝑘 − 1 or 𝑘 + 1 by
means of a single sparse QC decomposition.
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Algorithm 2: Sparse Alternating Least Squares (SALS)
input: Data pairs (𝑥𝑖, 𝑦𝑖) ∈ R𝑀 × R for 𝑖 = 1, . . . , 𝑛, univariate basis functions {𝑏1, . . . , 𝑏𝑑},

and weight sequences 𝜔𝑚 ∈ R𝑑 for 𝑚 = 1, . . . , 𝑀 .
output: A coefficient tensor 𝒗 ∈ M such that 𝑦 ↦→ (𝒗, 𝐵(𝑦))Fro approximates the data.

1 Initialize the coefficient tensor 𝑣.
2 while not converged do
3 for 𝑘 = 1 to 𝑀 do
4 Compute the sparse canonicalisation (12) with core position 𝑘 .
5 Compute 𝑄 as in (13) and 𝜷𝑄 := 𝑄⊺𝝎.
6 Update 𝐶 by solving equation (17) and use cross-validation to select 𝜆.
7 end
8 end
9 return 𝒗.

1 Theorem 40 implies ∥𝐶∥ℓ0
𝜷𝑄

= ∥𝒗∥ℓ0
𝝎
, which ensures that the weighted sparsity constraint

is satisfied for all components as soon as it is satisfied for the optimised component.

2 Theorem 40 implies ∥𝐶∥ℓ0 = ∥𝒗∥ℓ0 , which ensures that the rank 𝑅 is bounded by the
number of nonzero entries of the core tensor ∥𝐶∥ℓ0 .

It is thus sufficient to choose 𝜆 such that ∥𝐶∥ℓ0
𝜷𝑄

≤ 𝑟 and ∥𝐶∥ℓ0 ≤ 𝑅 to remain in M𝑅,𝑟,𝝎 during
optimisation. Although this would be easy to implement, we propose to choose 𝜆 by 10-fold
cross-validation instead. This allows the algorithm to choose a different regularisation parameter
𝜆, i.e. a different sparsity level, for every core position 𝑘 . Moreover, since the rank 𝑅 in the
sparsely canonicalised representation depends on the sparsity of the solution of the microstep,
the resulting algorithm is inherently rank-adaptive. We call this algorithm sparse alternating
least-squares (SALS) since it modifies a standard ALS method to work on sparse tensors. A
listing of the complete algorithm, in pseudo-code, is provided in Algorithm 2. There it can be
seen that the algorithm differs from a standard ALS only in two points.

1 The standard regression in the microstep is replaced by a (weighted) LASSO.

2 The rank revealing QR decomposition, commonly used to compute the operators 𝑄, is
replaced by a sparse QC decomposition.

It is therefore straight-forward to implement.

5 Low-rank and sparse Tensor Train approximation

Despite its straightforward sample bound and built-in rank adaptivity, the sparse tensor train
model class from the previous section and the associated Algorithm 2 are not optimal, since the
resulting tensor representation does not have minimal rank in general. Motivated by promising
practical results with low-rank tensor reconstructions for holomorphic functions as considered
in [ESTW19; Tru21], this section introduces a new tensor train format which incorporates sparsity
and low-rank.
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To illustrate the advantage of this new format, we consider the approximation of the rank-1
function 𝑥 ↦→ exp(𝑥1 + . . . + 𝑥𝑀) by Legendre polynomials in Appendix D. The remainder of
this section is devoted to investigating this idea in the general setting.

5.1 Approximation results

To obtain an operator 𝑄 which still allows for a meaningful concept of sparsity in the component
tensor𝐶, we replace the sparse QC decomposition from the preceding section with an 𝝎-weighted
QC decomposition.

Definition 44. We say that a matrix 𝑄 is 𝝎-orthogonal if 𝑄⊺ diag(𝝎)𝑄 is diagonal.

Definition 45. Let 𝐴 ∈ R𝑛×𝑚 be a rank-𝑟 matrix. A 𝝎-orthogonal QC decomposition of 𝐴
is a decomposition 𝐴 = 𝑄𝐶 with 𝑄 ∈ R𝑛×𝑟 and 𝐶 ∈ R𝑟×𝑚 for which 𝑄 is orthogonal and
𝝎-orthogonal, i.e. 𝑄⊺𝑄 = 𝐼, and 𝑄⊺ diag(𝝎)𝑄 is diagonal.

Even though this new decomposition may not retain the sparsity as well as the sparse QC
decomposition did, the resulting factors still exhibit a considerable amount of sparsity.

Lemma 46. Let 𝐴 ∈ R𝑛×𝑚 be a rank-𝑟 matrix. Then there exists an 𝝎-orthogonal QC-
decomposition 𝐴 = 𝑄𝐶. This decomposition is unique up to reordering of the columns of 𝑄.
Moreover, if 𝐴 is 𝑅-sparse then 𝑟 ≤ 𝑅 and 𝑄 and 𝐶 are 𝑅𝑟-sparse. (Note that the complexity
is independent of 𝑛 and 𝑚.)

Proof. Let 𝐴 = 𝑄1𝐶1 be the sparse QC decomposition of 𝐴 and let 𝐶1 = 𝑄2𝐶2 be the QR
decomposition of 𝐶1. Moreover, let 𝑄12 := 𝑄1𝑄2 and 𝑈Λ𝑈⊺ be the spectral decomposition of
𝑄
⊺
12 diag(𝝎)𝑄12, define 𝑄 := 𝑄12𝑈 and 𝐶 := 𝑈⊺𝐶2. Then 𝐴 = 𝑄𝐶 by construction and it holds

that
𝑄⊺ diag(𝝎)𝑄 = 𝑈⊺ (𝑄⊺12 diag(𝝎)𝑄12)𝑈 = 𝑈⊺ (𝑈Λ𝑈⊺)𝑈 = Λ.

Note that 𝑄 is a product of three orthogonal matrices and hence orthogonal. Since the QR
decompostion 𝐴 = 𝑄12𝐶2 is unique and since the spectral decomposition of 𝑄⊺12 diag(𝝎)𝑄12 is
unique up to reordering of the columns 𝑈, the matrix 𝑄 = 𝑄12𝑈 is unique up to reordering of its
columns. Now suppose that 𝐴 is 𝑅-sparse. Then 𝑄1 ∈ {0, 1}𝑛×𝑅̃ with 𝑅̃ ≤ 𝑅. This means that
𝐶1 ∈ R𝑅̃×𝑚, which yields the standard bound 𝑟 ≤ min{𝑅̃, 𝑚} ≤ 𝑅. Moreover, since the columns
of 𝑄1 are standard basis vectors, only the rows in row(𝑄1) ∈ [𝑛] 𝑅̃ are nonzero. Consequently,
only the same rows can be nonzero in the product 𝑄 = 𝑄1(𝑄2𝑈). In the worst case, all of the 𝑟
columns of 𝑄 become nonzero for every of these 𝑅̃ rows. This yields a total of 𝑅̃𝑟 ≤ 𝑅𝑟 nonzero
entries. To obtain a sparsity bound for 𝐶, let 𝐴⊺ = 𝑄̃𝐶̃ be the sparse QC decomposition and
𝐶̃⊺ = 𝑄𝐶̄ be the 𝝎-weighted QC decomposition. Now define 𝐶 = 𝐶̄𝑄̃⊺ and observe that 𝐴 = 𝑄𝐶

is a valid 𝝎-weighted QC decomposition. Since the rows of 𝑄̃⊺ are standard basis vectors, only
the columns in col(𝑄̃) ∈ [𝑚] 𝑅̃ are nonzero. Consequently, only the same columns can be nonzero
in the product 𝐶 = 𝐶̄𝑄̃⊺. In the worst case, all of the 𝑟 rows of 𝐶 will be nonzero for every of
these 𝑅̃ columns. This yields a total of 𝑅̃𝑟 ≤ 𝑅𝑟 nonzero entries. □
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Applying the 𝝎-weighted QC decomposition sequentially to the unfoldings of all component
tensors results in a TT representation

𝐴 = 𝑄𝐶 = 𝑈 (1) ◦ · · · ◦𝑈 (𝑘−1) ◦ 𝐶 ◦𝑉 (𝑘+1) ◦ · · · ◦𝑉 (𝑀) ,

where the component tensors 𝑈 ( 𝑗) ∈ R𝑟 𝑗−1×𝑑×𝑟 𝑗 are 𝑟 𝑗𝑅-sparse and left-orthogonal and the
component tensors 𝑉 ( 𝑗) ∈ R𝑟 𝑗−1×𝑑×𝑟 𝑗 are 𝑟 𝑗−1𝑅-sparse and right-orthogonal, the ranks 𝑟 𝑗 are
uniformly bounded by 𝑅 and the core tensor 𝐶 remains 𝑅-sparse. An implementation of this
procedure can be obtained from Algorithm 1 by replacing all sparse QC decompositions with
𝝎-weighted QC decompositions. Analogously to the model class M𝑅,𝑟,𝝎, which is based on the
sparse QC decomposition, we define the model class

M̃𝑅,𝑟,𝝎 :=
⋂

𝑘∈[𝑀]

⋃
𝑄∈Q̃

𝑘,𝑅,𝝎3

𝑄C𝑄,𝑟,𝝎3 ,

which is based on the 𝝎-weighted QC decomposition. The elements of this new model class are
tensors 𝐴 = 𝑄𝐶 with 𝑄 ∈ Q̃𝑘,𝑅,𝝎 and 𝐶 ∈ C𝑄,𝑟,𝝎, where

Q̃𝑘,𝑅,𝝎 :=
{
𝑄 ∈ L(R𝑟𝑘×𝑑𝑘×𝑟𝑘+1 ,R𝑑1×···×𝑑𝑀 )

�� 𝑄 is orthogonal and 𝝎2-orthogonal and 𝑟𝑘 , 𝑟𝑘+1 ≤ 𝑅
}

and
C𝑄,𝑟,𝝎 := {𝐶 ∈ R𝑟𝑘−1×𝑑𝑘×𝑟𝑘 : ∥𝐶∥ℓ0

𝜷𝑄

≤ 𝑟 with 𝜷2
𝑄 := diag(𝑄⊺ diag(𝝎2)𝑄)}.

Note that the new definition of C𝑄,𝑟,𝝎 is a generalisation of the old definition to cases where the
columns of 𝑄 are not standard basis vectors. Note that the definition of M̃𝑅,𝑟,𝝎 corresponds to
the choice of

■ a basis for the core space 𝑄 as well as

■ a weight sequence 𝜷𝑄 .

In Theorem 55 we show that this choice ensures that a tensor with an ℓ0
𝜷𝑄

-sparse core is close to
a sparse vector in ℓ0

𝝎. This is quite surprising since for any sparse core 𝐶 there exists an easy to
construct 𝐶-dependent orthogonal basis 𝑈 such that all coefficients of the full tensor 𝑈𝐶 are
equal to ∥𝐶∥2. This means that𝑈𝐶 is the least sparse tensor possible. However, using information
about the weight sequence 𝝎, we can construct a basis 𝑄 and a weight sequence 𝜷𝑄 such that the
full tensor 𝑄𝐶 retains some of the sparsity of the core 𝐶.

Remark 47. Since M𝑅,𝑟,𝝎 ⊆ M̃𝑅,𝑟,𝝎, the approximation error for M̃𝑅,𝑟,𝝎 can be bounded
from above by Corollary 41. To obtain a tighter bound, the total approximation error can
be split into the low-rank approximation error and a subsequent weighted best 𝑛-term
approximation of the core tensor

∥𝑣 − 𝑣low-rank & sparse∥𝐿2 ≤ ∥𝑣 − 𝑣low-rank∥𝐿2 + ∥𝑣low-rank − 𝑣low-rank & sparse∥𝐿2 .

The first term is a classical low-rank approximation error, which is studied in [BNS21;
BEM16; SU14] for 𝑣 ∈ 𝐻𝑘 ( [0, 1]𝑚) and in [BNS21; GHS22] for 𝑣 ∈ 𝐻𝑘1 ( [0, 1]𝑑1) ⊗ · · · ⊗
𝐻𝑘𝑚 ( [0, 1]𝑑𝑚). The second term is a sparse approximation error, which can in principle be
bounded by applying the weighted Stechkin’s lemma to the core tensor 𝐶 of 𝑣low-rank = 𝑄𝐶.
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This gives the bound

∥𝑣low-rank − 𝑣low-rank & sparse∥𝐿2 = ∥(𝐼 − 𝑃𝐽𝑛)𝐶∥ℓ2 ≤ 𝑐(𝜷, 𝑞, 𝑛)−1∥𝐶∥ℓ𝑞
𝜷
≤ 𝑐(𝜷, 𝑞, 𝑛)−1∥𝐶∥ℓ2

𝜷̄

for some 𝑞 < 2 and weight sequences 𝜷 and 𝜷̄. However, bounding ∥𝐶∥ℓ2
𝜷̄

in terms of some
norm of the full tensor ∥𝑄𝐶∥ℓ2

𝝎̄
, for some arbitrary 𝝎̄, requires knowledge of the operator

norm ∥𝑄⊺∥ℓ2
𝜷̄
→ℓ2

𝝎̄
, which is unknown a priori. However, if 𝑄 is 𝝎̄-orthogonal and 𝜷̄ = 𝑄⊺𝝎̄,

then the low-rank approximation can be carried out with respect to the stronger ℓ2
𝝎̄-norm

and we can bound

∥𝐶∥2
ℓ2
𝜷̄

= 𝐶⊺ diag( 𝜷̄2)𝐶 = (𝑄𝐶)⊺ diag(𝝎̄2)𝑄𝐶 = ∥𝑣low-rank∥2
ℓ2
𝝎̄
≤ ∥𝑣∥2

ℓ2
𝝎̄
.

But this requires the low-rank approximation to be carried out with respect to a stronger
norm than 𝐿2. To the knowledge of the authors no rates for this are known.

Remark 48 (Rank bounds for mixed Sobolev spaces). Consider a function 𝑢 of 𝑀 variables
and the corresponding sequence of coefficients 𝒖 ∈ RN ⊗ · · · ⊗ RN with respect to a tensor
product basis. Moreover, suppose that 𝒖 is ℓ2

𝝎̄-summable with respect to the product weight
sequence 𝝎̄ := 𝝎⊗𝑀 with 𝝎 𝑗 := ( 𝑗 + 1)𝑘 . The space ℓ2

𝝎̄ captures the regularity of the mixed
Sobolev spaces 𝐻𝑘,mix ≃ 𝐻𝑘 ⊗ · · · ⊗ 𝐻𝑘 . To bound the rank of 𝑢 by means of weighted
sparsity we utilise the best 𝑛-term approximation rates for 𝒖 from Remark 18. Recall that
𝑟-term approximation in a product basis can be represented with rank 𝑟 in the CP format
and that the rank of any tree-based format is upper bounded by the CP rank (but may
indeed be much smaller). This naïve bound yields (up to logarithmic factors) the best rank-𝑟
approximation rates

∥𝑢 − 𝑢𝑟 ∥𝐻 𝑗 ≤ 𝑟−(𝑘− 𝑗) ∥𝑢∥𝐻𝑘

for all 0 ≤ 𝑗 < 𝑘 . For 𝑗 = 0, these bounds slightly extend the rates from [GH13; GH18]
but are worse than the more recent 𝑟−2𝑘 rates that are derived in [GHS22] for the rank in
the tensor train format. We conjecture that sparsity implies simple rank bounds with sparse
components and a subsequent rounding can reduce the rank from 𝑟2 to 𝑟.

Note, however, that both rank bounds imply roughly the same approximation rates. By
Theorem 40, the number of parameters that are needed to represent the best 𝑟-term
approximation in the sparse tensor train format is bounded by 𝑁 = 𝑀𝑟. This implies an
approximation rate of ( 𝑁

𝑀
)−𝑘 . If we consider the best rank-𝑟 rate 𝑟−2𝑘 from [GHS22], and

assume that the component tensors in the corresponding tensor train representation are
dense, then the number of parameters scales like 𝑁 ∈ O(𝑀𝑟2) and we obtain the same
approximation rate of ( 𝑁

𝑀
)−𝑘 .

We also remark that the best 𝑟-term approximation rates crucially depend on the chosen
basis, while the ranks do not. Therefore, the rank-𝑟 approximation rates that are obtained by
this method can only provide upper bounds. Moreover, the ordering of the modes matters for
the ranks of a tensor train representation. This is not reflected in these simple bounds, where
the ordering is only important for an anisotropic choice of weight sequences.
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Remark 49 (Constructive rank bounds for Sobolev spaces). Similar to the hierarchical
SVD (or PCA) that can be used to construct classical low-rank representation, we can
perform the weighted LASSO hierarchically to construct simultaneously sparse and low-rank
representations. In this remark we demonstrate this procedure for the Tucker decomposition.
Consider a function 𝑢 of 𝑀 variables and the corresponding sequence of coefficients
𝒖 ∈ RN ⊗ · · · ⊗ RN with respect to a tensor product basis. Moreover, suppose that 𝒖 is
ℓ2
𝝎̄-summable with respect to the weight sequence 𝝎̄ :=

∑𝑀
𝑚=1 1⊗(𝑚−1) ⊗ 𝝎 ⊗ 1⊗(𝑀−𝑚) with

𝝎 𝑗 := ( 𝑗 + 1)𝑘 . The space ℓ2
𝝎̄ captures the regularity of the standard Sobolev spaces

𝐻𝑘 ≃
𝑀⋂
𝑚=1

(𝐿2)⊗(𝑚−1) ⊗ 𝐻𝑘 ⊗ (𝐿2)⊗(𝑀−𝑚) .

We can bound the Tucker-rank of 𝑢 by means of weighted sparsity. The method that we use to
derive our rank bounds is constructive and proceeds analogously to the HOSVD algorithm.
We define for every 𝑚 = 1, . . . , 𝑀 the matricisation

(𝒖(𝑚)
𝑗

)𝑖1,...,𝑖𝑀−1 = 𝒖𝑖1,...,𝑖𝑚−1, 𝑗 ,𝑖𝑚,...,𝑖𝑀−1 ,

which we interpret as a sequence of tensors of order 𝑀 − 1. Applying the weighted Stechkin
lemma to the sequence 𝒖(𝑚) , we select 𝑟 many (𝑀 − 1)-dimensional “slices” of 𝒖 and set
the remaining slices to zero. This results in a new tensor which we denote by 𝒖̃(𝑚) . This
construction can be performed sequentially for every 𝑚 = 1, . . . , 𝑀 , leading to the sequence
of approximations

𝒖 =: 𝒖̃(0) { 𝒖̃(1) { . . . { 𝒖̃(𝑀) .

The approximation error of this scheme is given by the telescoping sum

∥𝒖 − 𝒖̃(𝑀) ∥2
ℓ2 =

𝑀∑︁
𝑚=1

∥𝒖̃(𝑚−1) − 𝒖̃(𝑚) ∥2
ℓ2

≲
𝑀∑︁
𝑚=1

𝑟−2𝑘 ∥(1⊗(𝑚−1) ⊗ 𝝎 ⊗ 1⊗(𝑀−𝑚))𝒖̃(𝑚−1) ∥2
ℓ2 ,

where the inequality follows from the weighted Stechkin lemma applied to the tensor-valued
sequence 𝒖̃(𝑚−1) , which is weighted by 𝝎 and a subsequent application of Lemma 16.
Bounding ∥(1⊗(𝑘−1) ⊗ 𝝎 ⊗ 1⊗𝑀−𝑘−1)𝒖̃(𝑘) ∥ℓ2 ≤ ∥𝒖∥ℓ2

𝝎̄
yields the simplified expression

∥𝑢 − 𝑢𝑟 ∥𝐿2 = ∥𝒖 − 𝒖̃(𝑀) ∥ℓ2 ≲
√
𝑀𝑟−𝑘 ∥𝒖∥ℓ2

𝝎̄
. =

√
𝑀𝑟−𝑘 ∥𝑢∥𝐻𝑘 .

But in contrast to the model class in Section 4 the matrices 𝑄 ∈ Q̃𝑘,𝑅,𝝎 are not spanned by a
subbasis of the standard product basis. As a consequence, M̃𝑅,𝑟,𝝎 is no longer a subset of the
sparse vectors ℓ0

𝝎 and Theorem 5 can no longer be applied directly, as it was done in the proof of
Corollary 43. Instead, we rely on the following strong property: If the RIP is satisfied at a point,
it is satisfied in a small neighbourhood of that point. This is stated formally in the subsequent
lemma.
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Lemma 50. Let 𝛿, 𝜏 ∈ [0, 1). Then there exists a constant 𝜀 ≥ 8𝜏 such that for every 𝑎 ∈ 𝐿∞
𝑤

RIP{𝑎} (𝛿) ⇒ RIP𝐵𝐿∞𝑤 (𝑎,∥𝑎∥𝜏) (𝛿 + 𝜀),

with 𝜀 ≤ 15𝜏, if 𝛿 ≤ 1
2 and 𝜏 ≤ 1

4 . For 𝛿 ≤ 1
2 and 𝜏 ≤ 𝛿

15 , this implies

RIP{𝑎} (𝛿) ⇒ RIP𝐵𝐿∞𝑤 (𝑎,∥𝑎∥𝜏) (2𝛿).

To prove this lemma, we require the following result.

Lemma 51. Let 𝑎, 𝑏 ∈ V be bounded with respect to ∥ • ∥𝑤,∞ and define 𝑎̃ := 𝑎
∥𝑎∥ and

𝑏̃ := 𝑏
∥𝑏∥ . Moreover, let ∥ • ∥∗ denote either the norm ∥ • ∥ or the empirical norm ∥ • ∥𝑛. Then

∥𝑎̃ − 𝑏̃∥∗ ≤
1 + ∥𝑏̃∥∗

∥𝑎∥ ∥𝑎 − 𝑏∥𝐿∞
𝑤
.

Proof. By triangle and reverse triangle inequality, it holds that



 𝑎

∥𝑎∥ − 𝑏

∥𝑏∥






∗
≤ 1

∥𝑎∥

(
∥𝑎 − 𝑏∥∗ + ∥𝑏 − ∥𝑎∥

∥𝑏∥ 𝑏∥∗
)
=

∥𝑎 − 𝑏∥∗
∥𝑎∥ + |∥𝑏∥ − ∥𝑎∥|

∥𝑎∥
∥𝑏∥∗
∥𝑏∥

≤ ∥𝑎 − 𝑏∥∗
∥𝑎∥ + ∥𝑎 − 𝑏∥

∥𝑎∥
∥𝑏∥∗
∥𝑏∥ .

The claim follows, since both ∥ • ∥ and ∥ • ∥𝑛 are dominated by ∥ • ∥𝐿∞
𝑤
. □

Proof of Lemma 50. Let 𝐵 := 𝐵∥ • ∥𝑤,∞ (𝑎, 𝑟) with 𝑟 := ∥𝑎∥𝜏 and define 𝑏̃ := 𝑏
∥𝑏∥ for any 𝑏 ∈ 𝐵.

We want to show that

RIP𝐵 (𝛿 + 𝜀) ⇔ |∥𝑏̃∥2 − ∥𝑏̃∥2
𝑛 | ≤ 𝛿 + 𝜀 for all 𝑏 ∈ 𝐵, (18)

given that RIP{𝑎} (𝛿) ⇔ |∥𝑎̃∥2 − ∥𝑎̃∥2
𝑛 | ≤ 𝛿 holds. For this, let ∥ • ∥∗ denote either ∥ • ∥ or ∥ • ∥𝑛

and observe that for any 𝑏 ∈ 𝐵 it holds that��∥𝑎̃∥2
∗ − ∥𝑏̃∥2

∗
�� ≤ (∥𝑎̃∥∗ + ∥𝑏̃∥∗)∥𝑎̃ − 𝑏̃∥∗ ≤ (∥𝑎̃∥∗ + ∥𝑏̃∥∗) (1 + ∥𝑏̃∥∗)𝜏, (19)

where the last inequality follows from Lemma 51 and the assumption ∥𝑎 − 𝑏∥𝐿∞
𝑤
≤ 𝑟 = ∥𝑎∥𝜏. By

assumption, it holds that ∥𝑎̃∥𝑛 ≤
√

1 + 𝛿 and using the fact that ∥𝑎 − 𝑏∥∗ ≤ ∥𝑎 − 𝑏∥𝐿∞
𝑤
≤ 𝑟, we

can bound

∥𝑏̃∥𝑛 =
∥𝑏∥𝑛
∥𝑏∥ ≤ ∥𝑎∥𝑛 + 𝑟

∥𝑎∥ − 𝑟
≤

√
1 + 𝛿∥𝑎∥ + 𝑟

∥𝑎∥ − 𝑟
=

√
1 + 𝛿 + 𝜏

1 − 𝜏
.

Inserting these estimates into equation (19) gives the bounds��∥𝑎̃∥2 − ∥𝑏̃∥2�� ≤ 4𝜏 and
��∥𝑎̃∥2

𝑛 − ∥𝑏̃∥2
𝑛

�� ≤ 4𝜏𝑐,

with 𝑐 := 1+𝛿
(1−𝜏)2 . We can now use the triangle inequality to prove (18) via

|∥𝑏̃∥2 − ∥𝑏̃∥2
𝑛 | ≤ |∥𝑏̃∥2 − ∥𝑏̃∥2

𝑛 − (∥𝑎̃∥2 − ∥𝑎̃∥2
𝑛) | + |∥𝑎̃∥2 − ∥𝑎̃∥2

𝑛 |
≤ |∥𝑏̃∥2 − ∥𝑎̃∥2 | + |∥𝑏̃∥2

𝑛 − ∥𝑎̃∥2
𝑛 | + |∥𝑎̃∥2 − ∥𝑎̃∥2

𝑛 |
≤ 4𝜏 + 4𝜏𝑐︸    ︷︷    ︸

=:𝜀

+𝛿.
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To obtain the lower bound for 𝜀, observe that 𝑐 ≥ 1 with equality when 𝛿 = 𝜏 = 0. Therefore,
𝜀 = 4(1 + 𝑐)𝜏 ≥ 8𝜏.

To obtain the other bound, observe that the function (𝛿, 𝜏) ↦→ 𝑐(𝛿, 𝜏) is increasing in both
arguments. Therefore 𝑐(𝛿, 𝜏) ≤ 𝑐( 1

2 ,
1
4 ) =

8
3 for any 𝛿 ≤ 1

2 and 𝜏 ≤ 1
4 . This results in the loose

upper bound
𝜀 ≤ 15𝜏.

The special case 𝜏 ≤ 𝛿
15 follows immediately. □

For the sake of brevity, let 𝐴 := M𝑅,𝑟,𝝎 and 𝐵 := 𝐵ℓ0
𝝎
(0, 𝑟). In the preceding section, we used

the fact that 𝐴 ⊆ 𝐵 to trivially obtain the restricted isometry property of 𝐴 from that of 𝐵.
Lemma 50 implies that this inclusion is not necessary for the RIP of 𝐵 to extend to 𝐴 if the set 𝐴
is close enough to 𝐵. To make this intuition rigorous, we define the scale-invariant non-symmetric
distance function

𝑑si𝐿∞
𝑤
(𝐴, 𝐵) := sup

𝑎∈𝐴
𝑑𝐿∞

𝑤
(Cone(𝑎),𝑈 (𝐵)),

where the distance function 𝑑𝐿∞
𝑤
(𝐴, 𝐵) is defined as

𝑑𝐿∞
𝑤
(𝐴, 𝐵) := inf

𝑎∈𝐴
inf
𝑏∈𝐵

∥𝑎 − 𝑏∥𝐿∞
𝑤
.

With this definition, we can formulate the following theorem.

Theorem 52. Let 𝛿, 𝑟 ∈ [0, 1) and assume that 𝑑si𝐿∞
𝑤
(𝐴, 𝐵) ≤ 𝑟. Then there exists 𝜀 ≥ 8𝑟

such that
RIP𝐵 (𝛿) ⇒ RIP𝐴 (𝛿 + 𝜀),

with 𝜀 ≤ 15𝑟 if 𝛿 ≤ 1
2 and 𝑟 ≤ 1

4 . For 𝛿 ≤ 1
2 and 𝑟 ≤ 𝛿

15 , this implies

RIP𝐵 (𝛿) ⇒ RIP𝐴 (2𝛿).

Proof. Since 𝑑si𝐿∞
𝑤
(𝐴, 𝐵) ≤ 𝑟, it holds that for all 𝑎 ∈ 𝐴 there exists 𝑡 ∈ (0,∞) and 𝑏 ∈ 𝑈 (𝐵)

such that 𝑑𝐿∞
𝑤
(𝑡𝑎, 𝑏) ≤ 𝑟 . Assuming RIP𝐵 (𝛿), Lemma 50 guarantees that there exists a constant

𝜀 satisfying the given bounds such that

RIP𝐵 (𝛿) ⇒ RIP𝑈 (𝐵) (𝛿) ⇒ RIP{𝑏} (𝛿) ⇒ RIP𝐵𝐿∞𝑤 (𝑏,𝑟) (𝛿+𝜀) ⇒ RIP{𝑡𝑎} (𝛿+𝜀) ⇒ RIP{𝑎} (𝛿+𝜀).

This implies RIP{𝑎} (𝛿 + 𝜀) for all 𝑎 ∈ 𝐴 and consequently RIP𝐴 (𝛿 + 𝜀). □

Remark 53. Note that

𝑑si𝐿∞
𝑤
(𝐴, 𝐵) := sup

𝑎∈𝐴
𝑑𝐿∞

𝑤
(Cone(𝑎),𝑈 (𝐵)) ≤ sup

𝑎̃∈𝑈 (𝐴)
𝑑𝐿∞

𝑤
(𝑎̃,𝑈 (𝐵)) =: 𝑑h(𝑈 (𝐴),𝑈 (𝐵)),

where 𝑑h is the directed Hausdorff distance between sets. This bound can be used in
conjunction with Theorem 52 to provide a simple proof of one of the major corollaries
in [Tru22]. Consider the setting of Proposition 4. Assume that M is a manifold with strictly
positive reach 𝑅 := rch(M, 𝑢M) at point 𝑢M , and define M𝑟 := M ∩ 𝐵(𝑢M , 𝑟) for any
𝑟 ≤ 𝑅. By Proposition 16 in [Tru22], it holds that

𝑑h(𝑈 ({𝑢M} −M𝑟),𝑈 (T𝑢MM)) ≤ 𝑟

𝑅
.
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From this follows that there exists 𝜀 > 0 such that

RIPT𝑢MM (𝛿) ⇒ RIP{𝑢M }−M𝑟
(𝛿 + 𝜀).

This means that if the RIP holds for the tangent space at 𝑢M then it also holds for a
neighbourhood of 𝑢M in M. This is precisely the property that is required in Proposition 4.

Remark 54. Note that Theorem 52 may also be used to verify RIP𝐴 (2𝛿) by checking RIP𝐵 (𝛿)
for a finite subset 𝐵 ⊆ 𝐴 with 𝑑si𝐿∞

𝑤
(𝐴, 𝐵) ≤ 𝛿

15 .

The preceding theorem can be utilised to prove the RIP for our model class of semi-sparse tensors
M̃𝑅,𝑟,𝜔. This is done in the subsequent theorem, which chooses 𝐴 := M̃𝑅,𝑟,𝝎 and 𝐵 := 𝐵𝑟 (ℓ0

𝝎)
and shows that

𝑑si𝐿∞
𝑤
(𝐴, 𝐵) ≤ O

(√︂
𝑟

𝑟

)
.

Theorem 55. Let {𝐵 𝑗 } 𝑗∈[𝐷] be orthonormal with respect to the measure 𝜌 and let 𝑤 ≥ 0
be any weight function satisfying ∥𝑤−1∥𝐿1 = 1. Assume the weight sequence satisfies
𝝎 𝑗 ≥ ∥𝑤1/2𝐵 𝑗 ∥𝐿∞ and fix 𝑐, 𝑟 > 0 and 𝑟 := (1 + 𝑐2)∥𝜔−1∥2

ℓ2/3𝑟. Then it holds that

𝑑si𝐿∞
𝑤
(M̃𝑅,𝑟,𝝎, 𝐵ℓ0

𝝎
(0, 𝑟)) ≤ 1

𝑐
.

Hence, if 𝛿 ≤ 1
2 and 𝑐 ≥ 15

𝛿
, then RIP𝐵

ℓ0
𝝎
(0,𝑟) (𝛿) implies RIPM̃𝑅,𝑟 ,𝝎

(2𝛿).

Proof. Let 𝐴 ∈ M̃𝑅,𝑟,𝝎. Since 𝝎𝜈 ≥ ∥𝐵𝜈∥𝐿∞ , Corollary 13 states that for every 𝑟 > 0 there exists
𝐽 ⊆ N and 𝐴̃ := 𝑃𝐽𝐴 such that 𝐴̃ ∈ 𝐵ℓ0

𝝎
(0, 𝑟) and

∥𝐴 − 𝐴̃∥𝐿2 ≤ ∥𝐴 − 𝐴̃∥𝐿∞ ≤ ∥𝐴 − 𝐴̃∥ℓ1
𝝎
≤ 𝑟−1/2∥𝐴∥

ℓ
2/3
𝝎2
. (20)

The final ℓ2/3
𝝎2 -norm can be bounded by Lemma 16 via

∥𝐴∥
ℓ

2/3
𝝎2

≤ ∥𝝎−3∥
ℓ

2/3
𝝎2
∥𝐴∥ℓ2

𝝎3
= ∥𝝎−1∥ℓ2/3 ∥𝐴∥ℓ2

𝝎3
. (21)

Recall that 𝐴 ∈ M̃𝑅,𝑟,𝝎 can be written as 𝐴 = 𝑄𝐶 with 𝑄 ∈ Q̃𝑘,𝑅,𝝎 for some 𝑘 ∈ [𝑀] and
𝐶 ∈ C𝑄,𝑟,𝝎. Thus,

∥𝐴∥2
ℓ2
𝝎3

= (𝑄𝐶)⊺ diag(𝝎6) (𝑄𝐶) = 𝐶⊺ diag(𝛽2
𝑄)𝐶 = ∥𝐶∥2

ℓ2
𝛽𝑄

. (22)

Now let 𝐽 := supp(𝐶) and bound

∥𝐶∥2
ℓ2
𝛽𝑄

=
∑︁
𝑗∈𝐽

𝛽2
𝑄, 𝑗𝐶

2
𝑗 ≤

∑︁
𝑗∈𝐽

(∑︁
𝑗∈𝐽

𝛽2
𝑄, 𝑗

)
𝐶2

𝑗 = ∥𝐶∥ℓ0
𝛽𝑄

∥𝐶∥2
ℓ2 ≤ 𝑟 ∥𝐶∥2

ℓ2 = 𝑟 ∥𝐴∥2
ℓ2 . (23)

Combining equations (20), (21), (22) and (23) results in the bound

∥𝐴 − 𝐴̃∥𝐿2 ≤ ∥𝐴 − 𝐴̃∥𝐿∞ ≤
√︃
𝑐1

𝑟
𝑟
∥𝐴∥𝐿2 ,
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with 𝑐1 := ∥𝝎−1∥2
ℓ2/3 . Finally, recall that 𝐴̃ := 𝑃𝐽𝐴 and hence

∥ 𝐴̃∥2
𝐿2 = ∥𝐴∥2

𝐿2 − ∥𝐴 − 𝐴̃∥2
𝐿2 ≥ 𝑟−𝑐1𝑟

𝑟
∥𝐴∥2

𝐿2 .

This means that for every 𝐴 ∈ 𝑀̃𝑅,𝑟,𝝎 there exists 𝐴̃ ∈ 𝐵𝑟 (ℓ0
𝝎) such that

∥𝐴 − 𝐴̃∥𝐿∞ ≤
√︃
𝑐1

𝑟
𝑟
∥𝐴∥𝐿2 ≤

√︃
𝑐1

𝑟
𝑟
·
√︃

𝑟
𝑟−𝑐1𝑟

∥ 𝐴̃∥𝐿2 =

√︃
𝑐1𝑟

𝑟−𝑐1𝑟
∥ 𝐴̃∥𝐿2 = 1

𝑐
∥ 𝐴̃∥𝐿2 ,

where the final equality follows from the choice 𝑟 := (1 + 𝑐2)∥𝝎−1∥2
ℓ2/3𝑟 = 𝑐2𝑐1𝑟 + 𝑐1𝑟.

This shows that for all 𝐴 ∈ M̃𝑅,𝑟,𝝎 there exists a constant 𝑡 := ∥ 𝐴̃∥−1
𝐿2 > 0 and an element

𝐴̄ := 𝑡 𝐴̃ ∈ 𝑈 (𝐵ℓ0
𝝎
(0, 𝑟)) such that 𝑑𝐿∞ (𝑡𝐴, 𝐴̄) ≤ 1

𝑐
. In other words,

𝑑si𝐿∞ (M̃𝑅,𝑟,𝝎, 𝐵ℓ0
𝝎
(0, 𝑟)) ≤ 1

𝑐
.

The claim now follows from Theorem 52. □

Even though Theorem 55 is valid for any weight sequence 𝝎, an increasing sequence 𝝎 is
necessary in practice. If 𝝎 ∝ 1, then 𝑟 = (1 + 𝑐2)∥𝝎−1∥2

ℓ2/3𝑟 ∝ (1 + 𝑐2) dim(𝝎)3𝑟, where the
dimension of the weight vector 𝝎 is the dimension of the ambient tensor product space. Hence,
applying Theorem 55 with a constant weight sequence would require the RIP to hold for the
entire ambient tensor product space.

The nestedness property of the model classes M̃𝑅,𝑟,𝝎 can be proved in the same way as for the
model class M𝑅,𝑟,𝝎.

Proposition 56. It holds that M̃𝑅,𝑟,𝝎 − M̃𝑅,𝑟,𝝎 ⊆ M̃2𝑅,2𝑟,𝝎.

This allows the application of Proposition 4. As in the preceding section, we can use Theorem 5
to provide a bound for the required number of samples when the model class M̃𝑅,𝑟,𝝎 is used in
the optimisation problem (5). As before, let 𝑏 : 𝑌 → R𝑑 be a vector of 𝐿2(𝑌, 𝜌)-orthonormal
basis functions, define the tensor product basis 𝐵(𝑦) := 𝑏(𝑦1) ⊗ · · · ⊗ 𝑏(𝑦𝑀) and suppose that
the weight sequence 𝝎 satisfies 𝝎 𝑗 ≥ ∥𝐵 𝑗 ∥𝐿∞ . Then the following proposition holds true.

Corollary 57. Fix parameters 𝛾 ∈ (0, 1) and 𝛿 ∈ (0, 1
2 ). Let {𝐵 𝑗 } 𝑗∈[𝐷] be orthonormal

with respect to the measure 𝜌 and let 𝑤 ≥ 0 be any weight function satisfying ∥𝑤−1∥𝐿1 = 1.
Assume the weight sequence satisfies 𝝎 𝑗 ≥ ∥𝑤1/2𝐵 𝑗 ∥𝐿∞ and fix 𝑟 := (1 + 𝑐2)∥𝝎−1∥2

ℓ2/3𝑟 for
some 𝑐 > 15

𝛿
. Then, if

𝑛 ≥ 𝐶𝛿−2𝑟 max{log3(𝑟) log(𝑑𝑀),− log(𝛾)}

and 𝑦1, . . . , 𝑦𝑛 are drawn independently from 𝑤−1𝜌, the probability of RIPM̃𝑅,𝑟 ,𝝎
(2𝛿) exceeds

1 − 𝛾.

Proof. Under the given assumptions, Theorem 5 guarantees RIP𝐵
ℓ0
𝝎 ( [𝑑 ]𝑀 ) (0,𝑟) (𝛿). This implies

RIPM̃𝑅,𝑟 ,𝝎
(2𝛿) by Theorem 55. □

Although it is not clear how to write an algorithm that remains in this model class, this is not a
significant drawback, since we can again choose 𝑟 by cross-validation and 𝑅 by standard rank
adaptation strategies.
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5.2 Numerical method

We call the resulting algorithm semisparse ALS (SSALS). The only difference of this method to
the sparse ALS (Algorithm 2) is the usage of the 𝝎-orthogonal QC decomposition instead of a
sparse QC decomposition. Due to this change, the SSALS looses the intrinsic rank-adaptivity of
the SALS. But since SSALS is stable by design, the tensor train rank of the coefficient tensor
can be chosen arbitrary. Note that from an approximation error point of view, it would even be
optimal to perform SSALS on a full rank tensor, which is infeasible due to the size of the resulting
component tensors. We hence propose to implement a rank-adaptive algorithm that is based on
the rank-adaptation strategy proposed in [GK19]. This approach splits the sequence of singular
values of a singular value decomposition into two groups. The first group contains all singular
values that exceed a certain significance threshold and the second group contains all remaining
singular values. By fixing the size of the second group, dropping the smallest singular values
or adding small random singular values if necessary, adaptivity is achieved. Moreover, since
the second group is assumed insignificant, the corresponding singular vectors can be perturbed
randomly without adversely affecting the approximation error. This allows to randomly explore
the space of singular vectors in order to find those that are necessary to represent the sought
function. If a singular vector in the second group is important to represent the sought function,
the corresponding singular value increases during optimisation and is eventually assigned to the
first group.

6 Experiments

This section is concerned with numerical experiments that illustrate the practical performance
of the sparse ALS algorithms derived from the theoretical results in the previous sections. We
examine the reconstruction of a quantity of interest of the finite dimensional Darcy problem (1)
with affine and log-affine coefficients. From Theorem 3 it is known that the solution lies in an
exponentially weighted ℓ2 space. As a consequence, a weighted LASSO as used in the SALS
should (at least theoretically) provide good approximation rates. Since the bases of the micro
steps may become very large, as discussed in Section 5, we modify the SALS to terminate after a
fixed maximal time.

The source code of the implementation is available at github.com/ptrunschke/sparse_als.
Moreover, we compare our results to the highly optimised tensap library [NG20], which can be
found at github.com/anthony-nouy/tensap.

6.1 Affine Darcy equation

Our first experiment is taken from [BBRS15], where a weighted ℓ1 minimisation was used. We
consider model problem (1) on the unit interval 𝐷 = [0, 1] and parameter domain 𝑌 = [−1, 1]𝐿
with 𝐿 = 20. We consider the forcing term 𝑓 ≡ 10 and the diffusion coefficient

𝑎(𝑥, 𝑦) :=
1

10
+ 𝜋2

3
+

𝐿∑︁
𝑚=1

𝑘−2𝑎𝑚 (𝑥)𝑦𝑚,

where 𝑎2𝑚−1(𝑥) = cos(𝑚𝜋𝑥) and 𝑎2𝑚 = sin(𝑚𝜋𝑥). The PDE in its variational form is solved on
a uniform grid with 50 nodes using conforming 𝑃1 finite elements. In this first experiment we
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consider the quantity of interest

𝑈 (𝑦) :=
∫
𝐷

𝑢(𝑥, 𝑦) d𝑥.

We use the probability measure 𝜌 = 1
2𝐿 d𝑦 and weight function 𝑤 ≡ 1 (cf. (4)) and search for

the best approximation with respect to ∥ • ∥𝐿2 (𝑌,𝜌) , using a product basis with 𝑑 = 20 Legendre
polynomials in each variable. Concerning the weight sequence, we utilise the smallest possible
choice 𝝎𝛼 := ∥𝐵𝛼∥𝐿∞ . Note that this is not the exponential weighting, that we could have used
according to Lemma 6 and Theorem 2. Numerical results for the proposed algorithms for the
empirical best-approximation of 𝑈 is provided in Table 1.

n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[5.9 · 10−4, 4.0 · 10−3] [4.4 · 10−4, 3.5 · 10−3] [1.2 · 10−3, 2.9 · 10−3] [1.2 · 10−3, 2.8 · 10−3]

[2.3 · 10−3, 4.0 · 10−3] [2.3 · 10−3, 3.8 · 10−3] [2.0 · 10−3, 3.1 · 10−3] [1.3 · 10−3, 3.0 · 10−3]

[8.6 · 10−4, 4.9 · 10−3] [4.9 · 10−4, 3.5 · 10−3] [1.0 · 10−4, 2.8 · 10−3] [4.9 · 10−5, 8.4 · 10−4]

Table 1: Relative 𝐿2-approximation error for the quantity of interest in Section 6.1. The
relative error in the 𝐿2-norm is estimated on a test set of 1 000 independent samples. The
experiments are performed 10 times and the 5% and 95% quantiles are displayed. All algorithms
use the same samples to compute the empirical approximation (in each column) and the
errors are always computed on the same test set. SALS and SSALS are compared to the
TreeBasedTensorLearning procedure with basis adaptation from tensap.

6.2 Log-affine Darcy equation

The second example considers the Darcy equation with log-affine coefficient with 𝐷 = [0, 1]2

and 𝑌 = R𝐿 where 𝐿 = 20. We define 𝑓 ≡ 1 and

𝑎(𝑥, 𝑦) := exp

(
𝑆𝑘

𝐿∑︁
𝑚=1

𝑚−𝑘 sin(𝜋⌊𝑚2 ⌋𝑥1) sin(𝜋⌈𝑚2 ⌉𝑥2)𝑦𝑚

)
,

where 𝑘 ∈ {1, 2}, 𝑆1 := 2.4 and 𝑆2 := 1.9. As before, we solve the resulting PDE in its variational
form on a uniform grid with 50×50 nodes using conforming 𝑃1 elements. The examined quantity
of interest now is the coefficient of the most important POD mode corresponding to 20 000
sample points. The POD is computed by performing a SVD on the matrix of solution snapshots.
The resulting singular vectors constitute an (almost) orthogonal basis and the coefficeient for the
basis function that is associated with the largest singular value is used as the QoI. We choose
𝜌 = N(0, 𝐼) as a multivariate standard normal distribution and 𝑤 such that 𝑤−1𝜌 is a multivariate
centred normal distribution with variance 2𝐼 or 4𝐼.

In this experiment we search for the best approximation with respect to ∥ • ∥𝐿2 (𝑌,𝜌) , using a basis
of 𝑑 = 20 Hermite polynomials in each mode. Similar to Theorem 3, the used weight sequence
𝜔𝛼 := ∥

√
𝑤𝐵𝛼∥𝐿∞ exhibits an exponential scaling. The results are depicted in Table 2 for 𝑘 = 1

and in Tables 3 and 4 for 𝑘 = 2.
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n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.3 · 10−1, 1.3 · 100] [2.4 · 10−1, 1.3 · 100] [1.5 · 10−1, 3.4 · 10−1] [1.0 · 10−1, 1.9 · 10−1]

[3.4 · 10−1, 1.3 · 100] [2.3 · 10−1, 8.8 · 10−1] [1.5 · 10−1, 4.0 · 10−1] [1.1 · 10−1, 3.2 · 10−1]

[3.9 · 10−1, 8.3 · 10−1] [1.9 · 10−1, 8.8 · 10−1] [1.2 · 10−1, 4.5 · 10−1] [9.1 · 10−2, 3.2 · 10−1]

Table 2: Relative 𝐿2-approximation error for the quantity of interest for 𝑘 = 1 in Section 6.2.
The relative error in the 𝐿2-norm is estimated on a test set of 1 000 independent samples.
The experiments are performed 10 times and the 5% and 95% quantiles are displayed. All
algorithms use the same samples to compute the empirical approximation (in each column) and
the errors are always computed on the same test set. SALS and SSALS are compared to the
TreeBasedTensorLearning procedure with basis adaptation from tensap.

n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.3 · 10−2, 2.3 · 10−1] [1.7 · 10−2, 8.3 · 10−2] [1.0 · 10−2, 3.4 · 10−2] [7.3 · 10−3, 2.8 · 10−2]

[3.3 · 10−2, 9.2 · 10−2] [2.1 · 10−2, 8.4 · 10−2] [8.4 · 10−3, 3.2 · 10−2] [8.3 · 10−3, 2.2 · 10−2]

[3.8 · 10−2, 2.3 · 10−1] [2.1 · 10−2, 1.1 · 10−1] [1.1 · 10−2, 3.0 · 10−2] [6.4 · 10−3, 4.1 · 10−2]

Table 3: Relative 𝐿2-approximation error for the quantity of interest for 𝑘 = 2 and a sampling
distribution 𝑤−1𝜌 = N(0, 2𝐼) in Section 6.2. The relative error in the 𝐿2-norm is estimated on
a test set of 1 000 independent samples. The experiments are performed 10 times and the 5%
and 95% quantiles are displayed. All algorithms use the same samples to compute the empirical
approximation (in each column) and the errors are always computed on the same test set. SALS
and SSALS are compared to the TreeBasedTensorLearning procedure with basis adaptation
from tensap.

6.3 Discussion

The numerical results illustrate that the obtained accuracy of the newly proposed sparse ALS
algorithms SALS and SSALS is comparable to the highly optimised algorithm implemented in
tensap, which we consider as base line. To understand the constraints of our sparse approach,
recall the sample complexity bound

𝑛 ≥ 𝐶𝛿−2𝑟 max{log3(𝑟) log(𝐷),− log(𝑝)}

from Theorem 5 with 𝐷 denoting the dimension of the full tensor product space. Given a fixed
sample size 𝑛, stability parameter 𝛿 and probability 𝑝, this provides a heuristic upper bound on
the weighted sparsity 𝑟 that can be achieved with our adaptive algorithms. To make this concrete,
let 𝛿 =

√
𝐶 and 𝑝 ≥ 1

2 . Then

𝑟 ≤ 𝑛

log(𝐷) =
𝑛

20 log(20) ≤ 𝑛

50
,

indicating that our adaptive algorithms are restricted to model classes with 𝑟 ≤ 𝑛
50 . We suspect

that this bound is implicitly imposed by the cross-validation inside the microstep. Since 1 ≤ 𝑟,
this argument provides a theoretical explanation for the poor performance in the small-data
regime. For 𝑛 = 50, the bound 𝑟 ≤ 1 allows only to recover the mean since 𝐵0 ≡ 1 is the only
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n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.6 · 10−2, 2.1 · 10−1] [7.2 · 10−3, 7.8 · 10−2] [2.4 · 10−3, 3.6 · 10−2] [5.1 · 10−3, 3.9 · 10−2]

[2.9 · 10−2, 1.9 · 10−1] [2.6 · 10−2, 1.3 · 10−1] [2.5 · 10−2, 1.8 · 10−1] [3.6 · 10−2, 2.2 · 10−1]

[1.5 · 10−2, 2.2 · 100] [4.1 · 10−2, 8.2 · 10−1] [4.4 · 10−2, 1.5 · 10−1] [2.2 · 10−2, 1.3 · 10−1]

Table 4: Relative 𝐿2-approximation error for the quantity of interest for 𝑘 = 2 and a sampling
distribution 𝑤−1𝜌 = N(0, 4𝐼) in Section 6.2. The relative error in the 𝐿2-norm is estimated on
a test set of 1 000 independent samples. The experiments are performed 10 times and the 5%
and 95% quantiles are displayed. All algorithms use the same samples to compute the empirical
approximation (in each column) and the errors are always computed on the same test set. SALS
and SSALS are compared to the TreeBasedTensorLearning procedure with basis adaptation
from tensap.

basis function with ∥𝐵 𝑗 ∥𝐿∞ ≤ 1. This indicates that the problem in subsection 6.1 is almost
trivial to solve. In general, it can be seen from the numerical experiments that the errors decrease
when the sample size increases. This is to be expected, since the probability of the restricted
isometry property increases with the number of samples.

We should also note that, although the experiments seem to work very well, the automatic
rank-adaptivity of SALS may fail in pathological scenarios. It is probably easy to construct an
example where the automatic rank adaptation of the sparse QR can not increase the rank in a
productive way. In this case, the semi-sparse ALS should nevertheless succeed, since the rank is
adapted randomly.

In comparison to the baseline tensap, the shown results are quantitatively similar. We consider
this very promising since the proposed algorithms only require simple modifications of the
standard ALS method. Note that the tensap algorithm adapts the basis functions with strategies
based on leave-one-out cross validation [CT04; CVB02] or slope heuristics [MN22], and adapts
the ranks based on a strategy similar to [GK19].

In general, the regularity of the considered function is encoded in 𝝎 in the weighted Stechkin
lemma. Since the target functionals in all experiments are (anisotropically) holomorphic functions,
the best 𝑛-term sets 𝐽𝑛 are (anisotropic) balls in the index space. These are downward-closed sets
matching exactly the basis selection strategy of tensap. It hence should almost be impossible to
improve practical results on the selected model problems.
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A Basic harmonic summation formulas

Lemma 58. For any 𝑠 > 0 and 𝑛 ∈ N, we have 𝑛𝑠+1

𝑠+1 ≤ ∑𝑛
𝑘=1 𝑘

𝑠 ≤ (𝑛+1)𝑠+1

𝑠+1 .

Proof. Both estimates rely on estimating the sum by an integral of the function 𝑓 (𝑥) := 𝑥𝑠. Since
this function is convex, we know that the trapezoidal rule overestimates the integral and

𝑛∑︁
𝑘=1

𝑘 𝑠 =
1
2
( 𝑓 (1) + 𝑓 (𝑛)) +

𝑛−1∑︁
𝑘=1

𝑓 (𝑘) + 𝑓 (𝑘 + 1)
2

≥ 𝑛𝑠 + 1
2

+
∫ 𝑛

1
𝑓 (𝑥) d𝑥 =

𝑛𝑠 + 1
2

+ 𝑛𝑠+1 − 1
𝑠 + 1

.

This gives the lower bound. For the upper bound, observe that 𝑓 is increasing and therefore a left
Riemann sum underestimates the integral. Consequently,

𝑛∑︁
𝑘=1

𝑘 𝑠 ≤
∫ 𝑛+1

1
𝑓 (𝑥) d𝑥 =

(𝑛 + 1)𝑠+1 − 1
𝑠 + 1

≤ (𝑛 + 1)𝑠+1

𝑠 + 1
. □

Lemma 59. For any 𝑠 > 1 and 𝑠 ∈ N, we have 1
𝑠−1 𝑘

1−𝑠 ≤ ∑∞
𝑗=𝑘 𝑗−𝑠 ≤ 𝑠

𝑠−1 𝑘
1−𝑠.

Proof. Both estimates rely on estimating the sum by an integral of the function 𝑓 (𝑥) := 𝑥−𝑠.
Since the function is decreasing, we know that a left Riemann sum overestimates the integral and

∞∑︁
𝑗=𝑘

𝑗−𝑠 ≥
∫ ∞

𝑘

𝑓 (𝑥) d𝑥 =
1

𝑠 − 1
𝑘1−𝑠 .

For the same reason, a right Riemann sum underestimates the integral and
∞∑︁
𝑗=𝑘

𝑗−𝑠 ≤ 𝑓 (𝑘) +
∫ ∞

𝑘

𝑓 (𝑥) d𝑥 = 𝑘−𝑠 + 𝑘1−𝑠

𝑠 − 1
≤

(
1 + 1

𝑠 − 1

)
𝑘1−𝑠 =

𝑠

𝑠 − 1
𝑘1−𝑠 . □

B Example of a hierarchical basis

For 𝑘 = 1 and 𝑝 = 2 the equivalence of Example 8 is easy to see. In this case, we can use the basis

𝜙ℓ, 𝑗 (𝑥) ∝ max{1 − |2ℓ𝑥 − 𝑗 |, 0}, ∥𝜙ℓ, 𝑗 ∥𝐿2 = 1,

for any ℓ ∈ N and odd 0 < 𝑗 < 2ℓ. If we represent 𝑣 ∈ 𝑊1,2 by successive 𝐿2-projections onto
the spaces 𝑉ℓ := span{𝜙ℓ, 𝑗 : 0 < 𝑗 < 2ℓ odd}, it is easy to see that

∥𝑣∥2
𝐿2 =






∑︁
ℓ∈N

∑︁
𝑗

𝒗ℓ, 𝑗𝜙ℓ, 𝑗






2

𝐿2 (𝜆)

=
∑︁
ℓ∈N






∑︁
𝑗

𝒗ℓ, 𝑗𝜙ℓ, 𝑗






2

𝐿2 (𝜆)

=
∑︁
ℓ∈N

∑︁
𝑗

|𝒗ℓ, 𝑗 |2,

where the second equality follows due to the hierarchical projection and the third follows since
𝜙ℓ, 𝑗 have disjoint support for fixed ℓ. Moreover, it is easy to see that all 𝜙 𝑗 ,ℓ are orthogonal with
respect to the 𝐻1

0 semi inner product. This implies that

∥𝑣∥2
𝐻1

0 (𝜆)
=

∑︁
ℓ∈N

∑︁
𝑗

|𝒗ℓ, 𝑗 |2∥𝜙ℓ 𝑗 ∥2
𝐻1

0 (𝜆)
= 3

∑︁
ℓ∈N

∑︁
𝑗

22ℓ |𝒗ℓ 𝑗 |2.
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C Best 𝑛-term rates in higher dimensions

Recall that we consider isotropic weight sequences of the form 𝝎̄(𝑎) = 𝝎(𝑎)⊗𝑀 , where 𝑎 ∈ (0,∞)
determines growth of 𝝎(𝑎). To obtain worst-case rates for the approximation, we apply Lemmas 6
and 16

∥𝒖 − 𝑃𝐽𝑛𝒖𝒖∥ℓ2 ≤ ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1
ℓ2 ∥𝒖∥ℓ1

𝝎̄ (𝑎)
≤ ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1

ℓ2 ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

∥𝒖∥ℓ2
𝝎̄ (𝐴)

and compute an upper bound for the decay rate 𝜀(𝑛) := ∥𝑃𝐽𝑛+1𝝎̄(𝑎)∥−1
ℓ2 . Then, for fixed 𝑎, we

choose the parameter 𝐴 > 𝑎 as small as possible while ensuring that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

is finite.

C.1 Exponential decay (analytic regularity)

First, consider the weight sequence 𝝎(𝑎) 𝑗 = 𝑓𝑎 ( 𝑗) with 𝑓𝑎 (𝑥) := exp(𝑎𝑥) and note that
𝝎̄(𝑎) 𝑗 = 𝑓𝑎 ( 𝑗) :=

∏𝑀
𝑚=1 𝑓𝑎 ( 𝑗𝑚). To obtain a worst-case bound for the best 𝑛-term approximation

of sequences 𝒖 with ∥𝒖∥ℓ2
𝝎̄ (𝐴)

= 1, we seek sets 𝐽∗𝑛 of size 𝑛 that maximise the factor ∥𝑃𝐽∗𝑛𝝎̄(𝑎)∥−1
ℓ2 .

Finding such a set is equivalent to finding a set that minimises ∥𝑃𝐽∗𝑛𝝎̄(𝑎)∥2
ℓ2 . Since 𝑓𝑎 ( 𝑗) =

exp(𝑎∥ 𝑗 ∥1) is monotonic in ∥ 𝑗 ∥1, we can define for every 𝑅 ∈ N the set 𝐽◦
𝑅

:= { 𝑗 ∈ N𝑀 : ∥ 𝑗 ∥1 ≤
𝑅}, which minimises

𝑑 (𝑅) := ∥𝑃𝐽◦
𝑅
𝝎̄(𝑎)∥2

ℓ2 =
∑︁

∥ 𝑗 ∥1≤𝑅
𝑓𝑎 ( 𝑗)2

over all sets 𝐽◦
𝑅

with cardinality bounded by

𝑛(𝑅) := |𝐽◦𝑅 | =
∑︁

∥ 𝑗 ∥1≤𝑅
1.

This means that for every 𝑅 ∈ N we can find a set of size 𝑛(𝑅) which results in the error bound
𝑑 (𝑅)−1/2. Solving this relation for 𝑛 gives an expression for 𝜀(𝑛) = 𝑑 (𝑅(𝑛))−1/2. Note that this
expression is technically only correct if 𝑛 = 𝑛(𝑅) for some 𝑅 ∈ N. To obtain an explicit bound
that is valid for all values of 𝑛, we derive monotonic lower and upper bounds 𝑑 (𝑅) ≤ 𝑑 (𝑅) and
𝑛(𝑅) ≥ 𝑛(𝑅) and define the inverse 𝑅(𝑛) := 𝑛−1(𝑛) as well as 𝜀(𝑛) := 𝑑 (𝑅(𝑛))−1/2. Since these
bounds are monotonic, it holds that 𝑅(𝑛) ≤ 𝑅(𝑛) and thus

𝜀(𝑛) = 𝑑 (𝑅(𝑛))−1/2 ≤ 𝑑 (𝑅(𝑛))−1/2 = 𝜀(𝑛)

if 𝑛 = 𝑛(𝑅) for some 𝑅. Moreover, since 𝑛(𝑅) increases monotonically with 𝑅, we can choose
for any 𝑛 ∈ N a value 𝑅 ∈ N such that 𝑛(𝑅) ≤ 𝑛 ≤ 𝑛(𝑅 + 1) ≤ 𝑛(𝑅 + 1). Then we can bound

𝜀(𝑛)
𝜀(𝑛) ≤ 𝜀(𝑛(𝑅))

𝜀(𝑛(𝑅 + 1)) =

(
𝑑 (𝑅(𝑛(𝑅 + 1)))
𝑑 (𝑅(𝑛(𝑅)))

)1/2
=

(
𝑑 (𝑅 + 1)
𝑑 (𝑅)

)1/2
≤

(
𝑑 (𝑅 + 1)
𝑑 (𝑅)

)1/2
.

Hence, if 𝑐𝜀 :=
(
sup𝑅∈N

𝑑 (𝑅+1)
𝑑 (𝑅)

)1/2 remains bounded, we obtain for any 𝑛 ∈ N the bound

𝜀(𝑛) ≤ 𝑐𝜀𝜀(𝑛).

To find analytic expressions for 𝑑 and 𝑛, we interpret the sums in 𝑑 (𝑅) and 𝑛(𝑅) as Riemann
sums

𝑑 (𝑅) ≳
∫
∥𝑥∥1≤𝑅
𝑥≥0

𝑓𝑎 (𝑥)2 d𝑥 and 𝑛(𝑅) ≲
∫
∥𝑥∥1≤𝑅
𝑥≥0

1 d𝑥.
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To compute the integrals, recall that the volume and surface area of the 𝑀-dimensional ℓ1-ball
are given by

𝑉𝑀 (𝑅) = 2𝑀 𝑅𝑀

𝑀!
and 𝐴𝑀 (𝑅) = 2𝑀

√
𝑀

𝑅(𝑀 − 1)
(𝑀 − 1)! .

Utilising the symmetry of the ℓ1-ball, this immediately yields

𝑛(𝑅) ≲
∫
∥𝑥∥1≤𝑅
𝑥≥0

1 d𝑥 = 2−𝑀
∫
∥𝑥∥1≤𝑅

1 d𝑥 = 2−𝑀𝑉𝑀 (𝑅) = 𝑅𝑀

𝑀!
.

To bound 𝑑 (𝑅), note that Fubini’s theorem implies∫
∥𝑥∥1≤𝑅
𝑥≥0

exp(𝑎∥𝑥∥1) d𝑥 =

∫ 𝑅

0

∫
∥𝑥∥1=𝑟
𝑥≥0

exp(𝑎∥𝑥∥1) d𝑥 d𝑟 =
∫ 𝑅

0
exp(𝑎𝑟)

∫
∥𝑥∥1=𝑟
𝑥≥0

1 d𝑥 d𝑟

=

∫ 𝑅

0
exp(𝑎𝑟)2−𝑀

∫
∥𝑥∥1=𝑟

1 d𝑥 d𝑟 =
∫ 𝑅

0
exp(𝑎𝑟)2−𝑀𝐴𝑀 (𝑟) d𝑟

=

∫ 𝑅

0
exp(𝑎𝑟)

√
𝑀

𝑟𝑀−1

(𝑀 − 1)! d𝑟 (∗)
=

√
𝑀 (−𝑎)−𝑀

(
1 − exp(𝑎𝑅)

𝑀−1∑︁
𝑘=0

(−𝑎𝑅)𝑘
𝑘!

)

=
√
𝑀𝑎−𝑀 exp(𝑎𝑅)

�����exp(−𝑎𝑅) −
𝑀−1∑︁
𝑘=0

(−𝑎𝑅)𝑘
𝑘!

�����,
where the equality (∗) follows from the definition of the incomplete gamma function. Note that
the last line approaches

√
𝑀𝑎−𝑀 exp(𝑎𝑅) (𝑎𝑅)

𝑀−1

(𝑀−1)! =
√
𝑀 𝑅𝑀−1

𝑎(𝑀−1)! exp(𝑎𝑅) as 𝑅 increases. For the
sake of simplicity, we hence compute the rates only up to asymptotic equivalence. This yields the
bounds

■ 𝑛(𝑅) = 𝑐𝑛
𝑅𝑀

𝑀! ,

■ 𝑅(𝑛) = 𝑐𝑅𝑛
1/𝑀 with 𝑐𝑅 := (𝑀!

𝑐𝑛
)1/𝑀 and

■ 𝑑 (𝑅) = 𝑐𝑑
√
𝑀 𝑅𝑀−1

2𝑎(𝑀−1)! exp(2𝑎𝑅).

Moreover, it holds that 𝑐𝜀 = sup𝑅∈N≥1

(
1 + 1

𝑅

) (𝑀−1)/2
exp(2𝑎) < ∞ and, consequently,

𝜀(𝑛) ≤ 𝑐𝜀𝜀(𝑛) = 𝑐𝜀𝑐𝑑𝑛
−(𝑀−1)/(2𝑀) exp(−𝑐𝑅𝑎𝑛1/𝑀).

Finally, observe that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

< ∞ is valid for any 𝑎 < 𝐴.

C.2 Algebraic decay (mixed Sobolev regularity)

Consider the weight sequence 𝝎(𝑎) 𝑗 = 𝑔𝑎 ( 𝑗) with 𝑔𝑎 (𝑥) := (𝑥 + 1)𝑎 and note that 𝝎̄(𝑎) 𝑗 =
𝑔̄𝑎 ( 𝑗) :=

∏𝑀
𝑚=1 𝑔𝑎 ( 𝑗𝑚). Since 𝑔𝑎 (𝑥) = 𝑓𝑎 (ln(𝑥 + 1)), this case can be reduced to the case of

exponential decay. The set of indices which minimise the decay rate are 𝐽◦
𝑅

:= { 𝑗 ∈ N𝑀 :
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∥ln( 𝑗 + 1)∥1 ≤ 𝑅}. Replacing the (Riemann) sums by integrals and performing the change of
variables 𝑦 := ln(𝑥 + 1), we obtain

𝑑 (𝑅) ≳
∫
∥ln(𝑥+1)∥1≤𝑅

𝑥≥0

𝑔̄𝑎 (𝑥)2 d𝑥 =

∫
∥𝑦∥1≤𝑅
𝑦≥0

𝑓𝑎 (𝑦)2 exp(∥𝑦∥1) d𝑦 =

∫
∥𝑦∥1≤𝑅
𝑦≥0

exp((2𝑎 + 1)∥𝑦∥1) d𝑦,

𝑛(𝑅) ≲
∫
∥ln(𝑥+1)∥1≤𝑅

𝑥≥0

1 d𝑥 =

∫
∥𝑦∥1≤𝑅
𝑦≥0

exp(∥𝑦∥1) d𝑦.

This yields the bounds

■ 𝑛(𝑅) = 𝑐𝑛
√
𝑀 𝑅𝑀−1

(𝑀−1)! exp(𝑅),

■ 𝑅(𝑛) = (𝑀 − 1)𝑊
(
𝑐𝑅𝑛

1/(𝑀−1)
)

with 𝑐𝑅 := 1
𝑀−1

(
(𝑀−1)!
𝑐𝑛
√
𝑀

)1/(𝑀−1)
and

■ 𝑑 (𝑅) = 𝑐𝑑
√
𝑀 𝑅𝑀−1

(2𝑎+1) (𝑀−1)! exp((2𝑎 + 1)𝑅).

Moreover, it holds that 𝑐𝜀 = sup𝑅∈N≥1

(
1 + 1

𝑅

) (𝑀−1)/2
exp(2𝑎 + 1) < ∞. To obtain a decay rate,

we define 𝑦 := 𝑐𝑅𝑛
1/(𝑀−1) and recall that [HH08]

ln(𝑦) − ln ln(𝑦) ≤ 𝑊 (𝑦) ≤ ln(𝑦) − 1
2 ln ln(𝑦) ≤ ln(𝑦)

for every 𝑦 ≥ 𝑒. This implies

𝑑 (𝑅(𝑛)) ∝ 𝑊 (𝑦)𝑀−1 exp((2𝑎 + 1) (𝑀 − 1)𝑊 (𝑦))
= 𝑦 (2𝑎+1) (𝑀−1)𝑊 (𝑦)−2𝑎(𝑀−1)

≥ 𝑦 (2𝑎+1) (𝑀−1) ln(𝑦)−2𝑎(𝑀−1)

∝ 𝑛2𝑎+1 ln(𝑛)−2𝑎(𝑀−1) ,

which yields the bound
𝜀(𝑛) ≲ 𝑛−(𝑎+1/2) ln(𝑛)𝑎(𝑀−1) .

Finally, observe that ∥𝝎̄(𝐴)−1∥ℓ2
𝝎̄ (𝑎)

< ∞ is valid for any 𝑎 < 𝐴 − 1
2 .

D The advantage of low ranks for approximation

To illustrate the advantage of this new format, consider approximating the rank-1 function
𝑥 ↦→ exp(𝑥1 + . . .+ 𝑥𝑀) by Legendre polynomials. To solve this approximation problem by means
of an ALS-type algorithm, a sequence of microsteps have to be performed that read

minimise
∥𝐶∥

ℓ0
𝜷
≤𝑟

∥𝐹 − 𝑀𝑄𝐶∥2
ℓ2 .

Here, the vector 𝐹 and operator 𝑀 are defined as in (14) with 𝐵 = vec(𝑏 ⊗ · · · ⊗ 𝑏) given by
a vector of tensor product Legendre polynomials 𝑏 : [−1, 1] → R𝑑 of degree at most 𝑑 − 1.
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The operator 𝑄 maps the core tensor 𝐶 to the full tensor and corresponds to a choice of basis
𝑄⊺𝐵 for the least squares problem of the microstep. Note that the weighted sparsity constraint
∥𝐶∥ℓ0

𝜷
≤ 𝑟 is less restrictive the better the sought function 𝑢 can be expressed in the basis 𝑄. It is

therefore instructive to compare the basis 𝑄 that is chosen in the 𝑘 th microstep of sparse ALS
(Algorithm 2) to the minimal basis that is chosen by a classical ALS.

Sparse ALS In the sparse ALS, 𝑄 ∈ Q𝑅,𝑘 is (up to reshaping) an orthogonal matrix where
every column is a standard basis vector (cf. Theorem 40). This means that the basis functions
𝐵̃sparse := 𝑄⊺𝐵 in this linear least squares problem are of the form

𝐵̃
sparse
𝑗

(𝑥) := 𝐵𝛼 ( 𝑗 ) (𝑥)

for some multi-indices 𝛼( 𝑗) ∈ [𝑑]𝑀 , i.e. that every 𝐵̃
sparse
𝑗

is a product Legendre polynomial of
potentially high degree. Since the sought function

𝑢(𝑥) = exp(𝑥1 + . . . + 𝑥𝑀) = exp(𝑥1) · · · exp(𝑥𝑀) = 𝑢1(𝑥1) · · · 𝑢𝑀 (𝑥𝑀)

is of rank 1, the best approximation 𝑣 = 𝑣1 ⊗ · · · ⊗ 𝑣𝑀 is of rank 1 as well. But the number of
terms in this approximation is exponentially large. This must be the case for any approximation
with small error, since the approximation error ∥𝑢 − 𝑣∥𝐿2 is equivalent to the approximation error
the individual factors

max
𝑘

∥𝑢𝑘 − 𝑣𝑘 ∥𝐿2 ≲ ∥𝑢 − 𝑣∥𝐿2 ≲ ∥𝑢1 − 𝑣1∥𝐿2 + · · · + ∥𝑢𝑀 − 𝑣𝑀 ∥𝐿2 ≲ max
𝑘

∥𝑢𝑘 − 𝑣𝑘 ∥𝐿2 .

Due to this error equivalence and the symmetry of 𝑢, every factor 𝑢𝑘 must be approximated
to the same accuracy by a polynomial 𝑣𝑘 of uniform degree 𝑔 − 1. Thus 𝐵̃sparse has to be the
product basis 𝐵̃sparse = 𝑏̃⊗(𝑘−1) ⊗ 𝑏 ⊗ 𝑏̃⊗(𝑀−𝑘) , where 𝑏̃ : [−1, 1] → R𝑔 ith the vector of Legendre
polynomials of degree at most 𝑔 − 1. This means that the basis has to be (𝑔𝑀−1𝑑)-dimensional.

Standard ALS Suppose that every component tensor other than the 𝑘 th has been updated at
least once. Then the current approximation has the form

𝑄𝐶 = 𝐸1 ⊗ · · · ⊗ 𝐸𝑘−1 ⊗ vec(𝐶) ⊗ 𝐸𝑘+1 ⊗ · · · ⊗ 𝐸𝑀 ,

where the vectors 𝐸ℓ are the coefficients of one-dimensional Legendre polynomial approximations
to the exponential function

ẽxpℓ (𝑥) := 𝐸
⊺
ℓ
𝑏(𝑥)

on the interval [−1, 1]. The basis function 𝐵̃dense := 𝑄⊺𝐵 for the microstep are hence give by

𝐵̃dense
𝑗 (𝑥) := 𝑏 𝑗 (𝑥𝑘 )

∏
ℓ≠𝑘

ẽxpℓ (𝑥ℓ).

Comparison In the preceding two paragraphs we have seen that the basis dimension in the
sparse ALS is exponentially larger than in the standard ALS. From a computational point of
view, this drastically increases the complexity of the micro steps. From a statistical point of
view this also decreases the probability of the RIP. Assuming the approximations ẽxpℓ ≈ exp are
sufficiently good, it holds for every 𝑗 ≥ 4 that

∥ẽxpℓ∥𝐿∞ ( [−1,1]) ≈ ∥exp∥𝐿∞ ( [−1,1]) = 𝑒 ≤
√︁

2 𝑗 + 1 = ∥𝑏 𝑗 ∥𝐿∞ ( [−1,1]) .
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This means that ∥𝐵̃dense
𝑗

∥𝐿∞ ≤ ∥𝐵̃sparse
𝑗

∥𝐿∞ (approximately) for the majority of indices 1 ≤ 𝑗 ≤
𝑟𝑘−1𝑑𝑟𝑘 . Since Theorem 5 requires 𝜷 𝑗 ≥ ∥𝐵̃sparse

𝑗
∥𝐿∞ for the sparse ALS and 𝜷 𝑗 ≥ ∥𝐵̃dense

𝑗
∥𝐿∞

for the standard ALS, the sparsity constraint ∥𝐶∥ℓ0
𝜷
≤ 𝑟 is less restrictive for the standard ALS

and the same approximation error can be achieved with a smaller value of 𝑟. In this special
case, rounding would provide a better basis for the sparse approximation, which indicates that
reducing the rank may increase the practical performance of the (then less sparse) ALS. In
general, however, the basis in the low-rank representation is not uniquely defined and has to be
adapted before performing the sparse approximation.
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