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A note on the monomer-dimer model
Alexandra Quitmann

Abstract

We consider the monomer-dimer model, whose realisations are spanning sub-graphs of a
given graph such that every vertex has degree zero or one. The measure depends on a param-
eter, the monomer activity, which rewards the total number of monomers. We consider general
correlation functions including monomer-monomer correlations and dimer-dimer covariances. We
show that these correlations decay exponentially fast with the distance if the monomer activity is
strictly positive. Our result improves a previous upper bound from van den Berg and is of interest
due to its relation to truncated spin-spin correlations in classical spin systems. Our proof is based
on the cluster expansion technique.

1 Introduction

This note considers the monomer-dimer model [10], whose realisations are spanning sub-graphs of
a given graph such that every vertex has degree zero or one. Vertices with degree zero are referred
to as monomers and pairs of vertices connected by an edge are referred to as dimers. The measure
depends on a parameter, the monomer activity ρ ≥ 0, which controls the total number of monomers.
In case of zero monomer activity no monomers are present and we obtain the classical dimer model.

By superimposing two independent realisations of the monomer-dimer model we obtain a configura-
tion of the double monomer-dimer model. This model can be viewed as a random walk loop soup
whose configurations are collections of self-avoiding and mutually self-avoiding paths which might be
closed or open, see e.g. Figure 1. If the monomer activity is zero, all paths are closed and the double
monomer-dimer model reduces to the double dimer model.

The (double) monomer-dimer model shares an intriguing similarity with the SpinO(N) model, namely
they both have a probabilistic reformulation as a particular random path model [11]. In this representa-
tion, the external magnetic field of the Spin O(N) model plays the same role as the monomer activity
in the monomer-dimer model and the two models only differ in the weight that is assigned to the num-
ber of visits of (open and closed) paths at the vertices. The qualitative behaviour of the random path
model, however, is expected to not depend on the choice of such weight function.

In this note we study the rate of decay of monomer-monomer correlations when the monomer activity is
non-zero. Through the random path representation, this question is closely related to an open problem
in the SpinO(N) model. Here, it is known that spin-spin correlations decay exponentially fast with the
distance between the vertices when the external magnetic field is non-zero. The constant of decay in
the exponent is known to be O(h) as h → 0 for N = 1, 2, 3 [7] and O(h2) for any N ∈ N [11]. It
is however conjectured that the constant decays as O(

√
h) when h → 0 for any integer value of N .

The same behaviour is expected to occur in the monomer-dimer model.

Our main result shows that for any strictly positive value of the monomer activity ρ, monomer-monomer
correlations decay exponentially fast with the graph distance between the vertices. For large enough
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Figure 1: The first two figures show monomer-dimer configurations ω, ω′ ∈ ΩK , where K ⊂ Z2. The
third figure shows their superposition resulting in a collection of open and closed paths.

values of ρ, this result is derived using a cluster expansion. Applying similar analytic tools as in [7] we
can then extend this result to small values of ρ and further show that the constant of decay is of order
at least O(ρ) as ρ→ 0.

It should be emphasized that our result only holds for non-zero values of the monomer activity and
the behaviour of the dimer model, i.e., the monomer-dimer model at zero monomer activity, is strongly
different. In dimension d = 2 the monomer-monomer correlation admits polynomial decay with the
distance between the monomers [2, 3], while in any dimension d ≥ 3 it exhibits long-range order [14].

Our result also holds for more general correlation functions including the dimer-dimer covariance as
special case. It is known that this covariance decays exponentially in the distance between the edges
with a constant of order O(ρ2) in the limit as ρ→ 0. More precisely, in [16] it is shown that the dimer-
dimer covariance is upper bounded by the probability of observing a path in the double monomer-dimer
model that connects these two edges. The exponential decay of such probability then follows from [15]
based on an argument with disagreement percolation. We remark that for non-zero monomer activity,
the connection probability behaves differently, namely it stays uniformly positive in any dimension
d ≥ 3 [13]. In this note, we improve the existing bound due to [15, 16] by showing that the constant
decays as O(ρ) in the limit ρ→ 0.

It is further interesting to compare the double monomer-dimer model with the monomer double-dimer
model [13]. The configurations in both models are superpositions of two independently sampled
monomer-dimer configurations. The difference, however, is that in the former model the two monomer-
dimer configurations might have different monomer sets, while in the latter model the monomer sets
have to be identical. Consequently, the paths in the double monomer-dimer model might be open,
while in the monomer double-dimer model all paths are closed. In the discussion above we have seen
that the double monomer-dimer model behaves drastically different if the monomer activity changes
from small, but strictly positive values to zero. This, however, is not the case in the monomer double-
dimer model, i.e., in the system where all the paths are closed [1, 5, 12, 13]. In particular, exponential
decay of the connection probabilities only occurs for large enough values of the monomer activity.

2 Model and main result

Consider a finite undirected graph G = (V,E). A dimer configuration (or perfect matching) of G is a
subset d ⊂ E of edges such that every vertex v ∈ V is an element of precisely one edge. We let DG

be the set of all dimer configurations in G. Given a set A ⊂ V , we let GA be the subgraph of G with
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vertex set V \ A and with edge-set consisting of all the edges in E which do not touch any vertex in
A. We let DG(A) be the set of dimer configurations in GA.

In this note, we concentrate on the d-dimensional cubic lattice. We denote by G = (V,E) the graph
with vertex set V = Zd and with edge set E = {{x, y} : x, y ∈ Zd, d(x, y) = 1}, where d(x, y)
denotes the graph distance between x and y. We denote by GK = (K,EK) the graph with vertex
set K ⊂ Zd and with edge set EK := {{x, y} ∈ E : x, y ∈ K} ⊂ E.

Given K ⊂ Zd, the configuration space of the monomer-dimer model in GK is denoted by ΩK and
it corresponds to the set of tupels ω = (M,d) such that M ⊂ K and d ∈ DGK

(M). We refer to
the first and second element of the tupel ω as a set of monomers and a set of dimers, respectively.
We letM : ΩK → K and D : ΩK → EK be the random variables defined byM(ω) := M and
D(ω) := d for each ω = (M,d) ∈ ΩK .

We define a probability measure on ΩK ,

∀ω ∈ ΩK PK,ρ(ω) :=
ρ|M(ω)|

ZK,ρ
, (2.1)

where ρ ≥ 0 is the parameter of the model (monomer density) and ZK,ρ is the normalizing constant
(partition function).

We are interested in correlations between sets of monomers. For any ρ ≥ 0 and any A ⊂ K we set

CK,ρ(A) := ZK\A,ρ.

In other words, CK,ρ(A) corresponds to the weight of all monomer-dimer configurations in GK with
fixed monomers at all vertices in A. For any A,B ⊂ K with A ∩ B = ∅, we then introduce the
correlation function

UK,ρ(A,B) :=
CK,ρ(A ∪B)

CK,ρ(∅)
− CK,ρ(A)

CK,ρ(∅)
CK,ρ(B)

CK,ρ(∅)
.

We further set
Uρ(A,B) := lim

K↑Zd
UK,ρ(A,B),

where the limit is in the sense of van Hove. Its existence follows from [8, Theorem 10] since our
monomer-dimer model is a special case of the polymer systems studied in [8]. If A,B ∈ E, then the
correlation function reduces to the dimer-dimer covariance, namely

UK,ρ(A,B) = PK,ρ
(
A,B ∈ D

)
− PK,ρ

(
A ∈ D

)
PK,ρ

(
B ∈ D

)
.

Monomer correlations, paths and O(N) spin systems. We now briefly explain the relation be-
tween monomer-monomer and spin-spin correlations. Consider the Spin O(N) model with N ∈ N at
inverse temperature β ≥ 0 and external magnetic field h ≥ 0. In [11, Proposition 2.3] it is shown that
the spin-spin correlation at x, y ∈ K ⊂ V is identical to the two-point function GGK ,N,β,h(x, y) that
is defined in a particular model of random paths. The measure of this model depends on a function
U : N0 → R≥0 which controls the number of visits of paths at the vertices. If we consider a different
choice of the function U , namely if we set Ũ(r) := 1 for any r ∈ N0, then we have that for N = 2,
ρ = h and any β ≥ 0,

CK,ρ({x} ∪ {y})
CK,ρ(∅)

= G̃GK ,N,β,h({x, y}),
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where G̃GK ,N,β,h(x, y) is defined as the function GGK ,N,β,h(x, y), but with the choice of Ũ instead
of U .

We now present our main theorem. It states that correlation functions between sets of monomers
decay exponentially fast with the distance between their vertices. For any A,B ⊂ V we set

d(A,B) := min
(u,v):u∈A, v∈B

d(u, v).

Theorem 2.1. For any d ≥ 1 and ρ > 0, there exist c, c′ ∈ (0,∞) such that for any non-empty
A,B ⊂ V with A ∩B = ∅,

Uρ(A,B) ≤ c′ e−c d(A,B), (2.2)

where c = c(ρ) = c̃ ρ if ρ is sufficiently small and c̃ ≥ 2
ln(2(a+1)) (a+1)

with a = e
√
e |A| (4d− 1).

Remark 2.2. Concerning the decay of dimer-dimer covariances, our theorem above improves the
result of [15, 16] which states that c = O(ρ2) in the limit as ρ→ 0. We remark, however, that it is still
an open problem to show that c = O(

√
ρ).

3 Proof of Theorem 2.1

In this section we present the proof of Theorem 2.1. We will first prove exponential decay of monomer
correlations in the regime of large ρ using a cluster expansion. Exponential decay for small ρ will then
follow by applying an analytic theorem, see Theorem 3.2 below.

Proposition 3.1. For any d ≥ 1, any K ⊂ Zd, any non-empty A,B ⊂ V with A ∩ B = ∅ and any
ρ ≥

√
e |A| (4d− 1) e, it holds that

0 ≤ UK,ρ(A,B) ≤ e−2 d(A,B) +1. (3.1)

Proof. Fix d ≥ 1, K ⊂ Zd and two non-empty sets A,B ⊂ VL with A ∩ B = ∅. Let ρ ≥√
e |A| (4d− 1) e. To begin, we rewrite the partition function ZK,ρ using a cluster expansion. First,

we note that

ZK,ρ =

|K|/2∑
n=0

∑
(M,d)∈ΩK :
|d|=n

ρ|K|−2|d|

= ρ|K|
(

1 +
∑
n≥1

ρ−2n

n!

∑
(γ1,...,γn)∈En

K

∏
1≤i<j≤n

(
1 + ζ(γi, γj)

))
,

where for γ, γ′ ∈ EK , ζ(γ, γ′) := 1{γ∩γ′=∅} − 1. We denote by Gn the set of all (unoriented)
connected graphs with vertex set Vn = {1, . . . , n}. We introduce the Ursell functions ϕ on finite
ordered sequences (γ1, . . . , γm) ∈ Em

K , which are defined by

ϕ(γ1, . . . , γm) :=

1 if m = 1,
1
m!

∑
G∈Gm

∏
{i,j}∈G

ζ(γi, γj) if m ≥ 2,

where the product is over all edges inG. For any γ∗ ∈ EK , using that ρ ≥
√
e (4d− 1), it holds that∑

γ∈EK

ρ−2e |ζ(γ, γ∗)| ≤ (4d− 1) ρ−2e ≤ 1.
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By cluster expansion [6, Theorem 5.4 ] it thus holds that

ZK,ρ = ρ|K| exp

(∑
m≥1

∑
(γ1,...,γm)∈Em

K

ϕ(γ1, . . . , γm) ρ−2m

)
, (3.2)

where combined sum and integrals converge absolutely. Furthermore, for any γ1 ∈ EK , we have that

1 +
∑
n≥2

n
∑

(γ2,...,γn)∈En−1
K

|ϕ(γ1, γ2, . . . , γn)| ρ−2(n−1) ≤ e. (3.3)

Using a similar cluster expansion as above, we further obtain that for any A ⊂ K ,

ZK\A,ρ = ρ|K|−|A| exp

(∑
m≥1

∑
(γ1,...,γm)∈Em

K\A

ϕ(γ1, . . . , γm) ρ−2m

)
. (3.4)

Form ∈ N andA ⊂ K , let Cm
A denote the set of ordered sequences γ = (γ1, . . . , γm) ∈ Em

K such
that there exists i ∈ [m] and x ∈ A such that x is an endpoint of γi.

Fix now two disjoint subsets A,B ⊂ K . From (3.2) and (3.4) we deduce that,

CK,ρ(A ∪B)

CK,ρ(∅)
=

1

ρ|A|
exp

(
−
∑
m≥1

∑
(γ1,...,γm)∈Cm

A

ϕ(γ1, . . . , γm) ρ−2m

)

× 1

ρ|B|
exp

(
−
∑
m≥1

∑
(γ1,...,γm)∈Cm

B

ϕ(γ1, . . . , γm) ρ−2m

)

× exp

(∑
m≥1

∑
(γ1,...,γm)∈Cm

A ∩C
m
B

ϕ(γ1, . . . , γm) ρ−2m

)

=
CK,ρ(A)

CK,ρ(∅)
CK,ρ(B)

CK,ρ(∅)
exp

(∑
m≥1

ρ−2m
∑

(γ1,...,γm)∈Cm
A ∩C

m
B

ϕ(γ1, . . . , γm)

)
.

(3.5)

Now observe that for any (γ1, . . . , γm) ∈ Cm
A ∩ Cm

B , ϕ(γ1, . . . , γm) 6= 0 only if the graph G,
which is obtained from (γ1, . . . , γm) by drawing an edge between i and j whenever ζ(γi, γj) 6= 0,
is connected. Stated differently, ϕ(γ1, . . . , γm) 6= 0 only if there exists at least one path connecting a
vertex of the set A to a vertex of the set B. In particular, it is necessary that m ≥ d(A,B). Thus,∑

m≥1

ρ−2m
∑

(γ1,...,γm)∈Cm
A ∩C

m
B

|ϕ(γ1, . . . , γm)|

≤ e−2 d(A,B)
∑
m≥1

m
∑

(γ1,...,γm)∈Em
K :

γ1∩A 6=∅

|ϕ(γ1, . . . , γm)|
(ρ
e

)−2m

= e−2 d(A,B)
(ρ
e

)−2 ∑
γ1∈C1

A

(
1 +

∑
m≥2

m
∑

(γ2,...,γm)∈Em−1
K

|ϕ(γ1, . . . , γm)|
(ρ
e

)−2(m−1)
)

≤ e−2 d(A,B) e3 ρ−2 |A| 2d ≤ e−2 d(A,B),

(3.6)

where in the last two steps we used (3.3) and that ρ ≥
√
e |A| (4d− 1) e. From (3.5) and (3.6), we

thus obtain that

UK,ρ(A,B) ≤ CK,ρ(A)

CK,ρ(∅)
CK,ρ(B)

CK,ρ(∅)

(
ee
−2 d(A,B) − 1

)
≤ e−2 d(A,B) +1.
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We are now ready to prove Theorem 2.1. The proof is based on Proposition 3.1 above and on the
following analytic theorem.

Theorem 3.2 ([9, Theorem A.3 and Theorem A.6]). If f : C → R ∪ {∞} is analytic and f(x) ≤ 1
in the region {z |Re(z) > 0} and if f(x) ≤ e−b for a ≤ x ≤ a+ 2, a, b ≥ 0, then for 0 < x < a,

f(x) ≤ e−c x,

where c = b
ln(2(a+1)) (a+1)

.

Proof of Theorem 2.1. We fix two disjoint subsets A,B ⊂ V. To begin, we note that by [8, Theorem
10] for all ρ > 0, the function Uρ(A,B) is an analytic function of ρ on R+ := {x ∈ R : x > 0}.
Using Proposition 3.1 and applying Theorem 3.2 to the function fA,B(ρ) := 1

e
Uρ(A,B) concludes

the proof of the theorem.
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