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Efficient option pricing in the rough Heston model using weak simulation
schemes

Christian Bayer, Simon Breneis

Abstract

We provide an efficient and accurate simulation scheme for the rough Heston model in the standard
(H > 0) as well as the hyper-rough regime (H > −1/2). The scheme is based on low-dimensional
Markovian approximations of the rough Heston process derived in [Bayer and Breneis, arXiv:2309.07023],
and provides weak approximation to the rough Heston process. Numerical experiments show that the new
scheme exhibits second order weak convergence, while the computational cost increases linear with respect
to the number of time steps. In comparison, existing schemes based on discretization of the underlying
stochastic Volterra integrals such as Gatheral’s HQE scheme show a quadratic dependence of the compu-
tational cost. Extensive numerical tests for standard and path-dependent European options and Bermudan
options show the method’s accuracy and efficiency.

1 Introduction

The Heston model, first considered in [21], is a popular option pricing model in mathematical finance. Its dynam-
ics are given by

dS̃t =

√
ṼtS̃t

(
ρdWt +

√
1− ρ2 dBt

)
, S̃0 = S0, (1.1)

dṼt = (θ − λṼt) dt+ ν

√
Ṽt dWt, Ṽ0 = V0, (1.2)

where θ, λ, ν > 0, ρ ∈ [−1, 1], and where (Bt,Wt) is a two-dimensional standard Brownian motion.

One reason for its popularity is that the process (S̃, Ṽ ) is affine, and its characteristic function can thus be
given explicitly, see again [21]. This enables very fast pricing of e.g. European options by Fourier inversion.
However, one of its drawbacks is that there are several stylized facts of the market that the Heston model does
not capture, for example the explosion of the implied volatility skew, see also [16]. To resolve these problems,
the rough Heston model was introduced in [16, 17]. Its dynamics are given by

dSt =
√
VtSt

(
ρdWt +

√
1− ρ2 dBt

)
, S0 = S0, (1.3)

Vt = V0 +

∫ t

0
K(t− s)(θ − λVs) ds+

∫ t

0
K(t− s)ν

√
Vs dWs, (1.4)

where K is the fractional kernel

K(t) :=
tH−1/2

Γ(H + 1/2)
=

∫ ∞

0
e−xtµ(dx), µ(dx) :=

x−H−1/2 dx

Γ(H + 1/2)Γ(1/2−H)
,

for all t > 0, with Hurst parameter H ∈ (−1/2, 1/2), and where Γ is the Gamma-function. The use of
rough volatility models like the rough Heston model (1.3)-(1.4) or the rough Bergomi model [12] is by now an
established paradigm for modelling equity markets, as it provides excellent fits to market data, see e.g. [13].

While the rough Heston model resolves several of the shortcomings of the (standard) Heston model, the singular
Volterra-type dynamics of the volatility process V in (1.4) introduce significant challenges both in the theoretical
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C. Bayer, S. Breneis 2

analysis of this model, as well as in simulation and option pricing in practice. In particular, it turns out that
the rough Heston model is neither a semimartingale nor a Markov process. One remedy to this problem is to
use Markovian approximations of the process V . This essentially amounts to replacing the kernel K by an
approximation

KN (t) :=

N∑
i=1

wie
−xit, (1.5)

yielding a Markovian approximation (SN ,V N ) of (S, V ), where V N is an N -dimensional diffusion, see e.g.
[3, 4, 5, 8, 10, 11, 20]. Indeed, denote w := (wi)

N
i=1 and V N := (V (i))Ni=1, and let v0 = (v0)

N
i=1 be

any vector of initial conditions satisfying w · v0 = V0. Then, the dynamics of the Markovian approximation
(SN ,V N ) are given by

dSN
t =

√
V N
t SN

t

(
ρdWt +

√
1− ρ2 dBt

)
, S0 = S0, (1.6)

dV
(i)
t = −xi(V

(i)
t − vi0) dt+ (θ − λV N

t ) dt+ ν
√
V N
t dWt, V

(i)
0 = vi0, (1.7)

for i = 1, . . . , N , where V N
t = w · V N

t . We remark that for dimension N = 1, we again obtain the standard
Heston model (1.1)-(1.2).

Given these Markovian approximations, it is natural to ask for an error bound for the error between S and SN ,
and furthermore, how the nodes x := (xi)

N
i=1 and weights w should be chosen in practice. This question

was answered in the recent work [11], where the authors showed that for sufficiently nice payoff functions
f : R+ → R, we have the weak error bound

∣∣Ef(ST )− Ef(SN
T )
∣∣ ≤ C

∫ T

0

∣∣K(t)−KN (t)
∣∣ dt. (1.8)

This weak error bound was obtained by extending previous results of [4] on the characteristic function, which is
known semi-explicitly for both rough Heston itself (cf. [16]), and for its Markovian approximation (cf. [3, 5]).

It then seems reasonable to choose the Markovian approximation KN , i.e. the nodes x and weights w such
that the error bound (1.8) is minimized. Indeed, the same authors showed in [11] that using Gaussian quadrature
rules, we can achieve the rate of convergence∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≤ C exp

(
−2.38

√
(H + 1/2)N

)
.

They additionally gave an algorithm called “BL2” which seems to vastly outperform the Gaussian quadrature
rules at least for small to moderate dimension N . Indeed, using the approximations KN given by “BL2” they
manage to achieve relative errors in implied volatility smiles of well below 1% for only N = 2, yielding rather
low-dimensional highly accurate Markovian approximations of V .

These optimized quadrature rules of [11] allow us to efficiently price several options using Fourier inversion
techniques. Indeed, due to the Markovian structure of the process (SN ,V N ), Fourier inversion using this
approximation is usually much faster than applying Fourier inversion directly for (S, V ), see again [11]. However,
there are many options important in practice that cannot easily be priced efficiently using Fourier inversion,
especially path-dependent options like Bermudan or American options. For such pricing tasks, it may be more
beneficial to use Monte Carlo (MC) or quasi Monte Carlo (QMC) simulation.

However, simulation of rough Heston, and even standard Heston itself, is notoriously difficult, see for example
[6, 27]. Let us hence first give a short overview of some simulation schemes for the standard Heston model

(1.1)-(1.2). The main difficulty here arises from the square-root term

√
Ṽt in (1.2). If one were to naively apply

the Euler-Maruyama scheme to (1.1)-(1.2), there is a non-zero probability that the simulated volatility process
may become negative. Even worse, while the actual process Ṽ never becomes negative, it hits 0 with positive
probability if the so-called Feller condition 2θ > ν is violated, see e.g. [23]. And indeed, one can observe
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Simulation of rough Heston 3

numerically that the Euler-Maruyama approximation of Ṽ consistently assumes negative values, especially in
the regime 2θ ≤ ν.

Of course, the problem of negative Ṽ can easily be resolved, for example by replacing
√

Ṽ by either
√
Ṽ +,

with x+ := x∨ 0, or
√
|Ṽ |, see also [14, 15]. While these simulation schemes converge as the number of time

steps approaches infinity, they do so rather slowly (or with a large leading constant in the error term), since Ṽ
spends a lot (if not most) of its time close to the singularity at Ṽ = 0.

Other, more promising methods for simulating the standard Heston model are based on moment-matching. In
this direction, we would like to particularly highlight the QE scheme of [9], and the moment-matching scheme
of [25]. The QE scheme (where QE stands for quadratic-exponential) essentially approximates Ṽt+h given Ṽt

by using either a squared Gaussian random variable, or a combination of an exponentially distributed and a
Dirac random variable, where in either case the parameters of the squared Gaussian and exponential random
variables are chosen such that the distribution of Ṽt+h is well-approximated. Whether in a specific simulation
step we use the Gaussian or the exponential random variable essentially depends on how close Ṽt is to 0. Since
we are using squared Gaussians and exponential random variables, the non-negativity of our simulated paths
Ṽ is automatically ensured. While the authors of [9] could not derive a rate of convergence of the QE scheme
as the number of time steps approaches infinity, numerical tests seemed to indicate faster than linear rates of
convergence.

Conversely, the moment-matching scheme of [25] essentially approximates Ṽt+h given Ṽt by using a discrete
random variable that can assume three different values (and all three values are of course non-negative). This
discrete random variable is chosen such that the first five moments of Ṽt+h are fitted exactly. A convenient
advantage of this scheme over the QE scheme is that no regime-switching between two different kinds of
approximation occurs. Moreover, they manage to show that this moment-matching scheme converges with
second order, at least for the volatility process Ṽ .

When trying to simulate samples of the rough Heston model, of course similar problems with the square root
and the non-negativitiy of the volatility process occur, which is why a simple Euler scheme will not yield good
convergence results. A further problem now enters due to the lack of Markov property. If one wanted to apply
Euler directly to (1.3)-(1.7), one would additionally have to compute the integrals in (1.4) in every time step. This
method would thus have quadratic computational cost.

Indeed, the authors of this paper are aware of only one viable simulation scheme, which is the HQE scheme of
[18]. The HQE scheme is essentially an adaptation of the QE scheme for rough Heston or more general affine
rough forward rate models. While the HQE scheme numerically exhibits a weak rate of convergence of 1 in the
number of time discretization steps, its computational cost scales quadratically, precisely because of the need
to compute the integrals in (1.7).

The aim of this paper is to leverage the highly accurate low-dimensional Markovian approximations of [11] to
overcome the quadratic cost in the number of time steps. Hence, in Section 2, we extend the weak simulation
scheme of [25] based on moment-matching with a discrete-valued random variable to the setting of the Marko-
vian approximations (1.6)-(1.7). Then, in Section 3, we compare this weak Markovian scheme with an Euler
scheme based on the same Markovian approximation (henceforth denoted as Markovian Euler scheme to avoid
confusion with a standard Euler discretization of rough Heston), and with the HQE scheme of [18]. In particular,
we compare the efficiency of these three simulation schemes for computing implied volatility smiles, implied
volatility surfaces, Asian call option prices, and Bermudan put option prices in Section 3.2.

In all our numerical examples, our weak Markovian scheme significantly outperforms both the HQE scheme and
the Markovian Euler scheme. While we were unable to prove convergence of our weak scheme (see Section
2.2) at this point, extensive numerical experiments suggests that the error decays like O(n−2), where n is the
number of time discretization steps, i.e., convergence with rate two. For comparison, both the Markovian Euler
scheme and the HQE scheme exhibit numerical convergence at most with rate one. Another advantage of the
Markovian schemes is that they have a computational cost of O(n), compared to O(n2) for the HQE scheme.
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Indeed, the HQE scheme needs to carry along the past values of the process, and recompute the integrals in
(1.4) in every time step. A further advantage of the Markovian schemes over the HQE scheme becomes apparent
in the pricing of Bermudan options: Since we have Markov processes, we may simply apply standard pricing
schemes like the Longstaff-Schwartz algorithm, while accurate pricing under the HQE scheme requires either
more sophisticated (non-Markovian) pricing schemes, or the inclusion of past values in the Longstaff-Schwartz
algorithm.

2 Weak simulation scheme

2.1 Derivation of the scheme

Looking at the dynamics of the Markovian approximation (1.6)-(1.7), it is immediately clear that the volatility
process V does not depend on the stock price S. Hence, we will first give a scheme for simulating V , and later
a scheme for simulating S while preserving the correlation ρ between the Brownian motions driving V and S.

2.1.1 Simulating the volatility

Consider first the Markovian approximation of the volatility process only. Recall that we have

dV
(i)
t = −xi(V

(i)
t − vi0) dt+ (θ − λV N

t ) dt+ ν
√
V N
t dWt, V

(i)
0 = vi0, i = 1, . . . , N,

where w := (wi)
N
i=1 is the vector of weights, v0 = (v0)

N
i=1 is any initial condition with w · v0 = V0,

V N := (V (i))Ni=1, and V N
t = w · V N

t .

In [25], the authors studied weak approximations using discrete-valued random variables of the CIR process,
and showed that their approximations converge weakly with second order. The dynamics of V N are quite similar
in nature to the dynamics of the CIR process, and indeed, for N = 1 we obtain the CIR process. Thus, we aim
to give a simulation scheme for V N similar to that in [25].

Similarly as in [25], we split the above SDE in two parts. We denote by D(z, h) := Zh := Zi
h, the solution at

time h of the ODE

dZi
t = −xi(Z

i
t − vi0) dt+ (θ − λZt) dt, Zi

0 = zi, i = 1, . . . , N, Zt = w ·Zt,

and by S(y, h) := Yh := Y i
h the solution at time h of the SDE

dY i
t = ν

√
Yt dWt, Y i

0 = yi, i = 1, . . . , N, Yt = w · Yt. (2.1)

Next, we give schemes D̂ and Ŝ for approximating D and S, respectively. First, note that D is a linear ODE
and can hence be solved exactly. The solution is given by

D(z, h) = Zh = eAhz +A−1(eAh − Id)b,

where
A := −λ1wT − diag(x), and b := θ1+ diag(x)v0,

where 1 := (1, . . . , 1)T ∈ RN , Id ∈ RN×N is the identity matrix, and diag(x) ∈ RN×N is the diagonal
matrix with entries x. Therefore, we can simply set D̂(z, h) := D(z, h).

Next, we provide a scheme Ŝ for approximating S. Define w := 1Tw. Then, we may take the inner product of
the SDE (2.1) with w to get the SDE

dYt = νw
√
Yt dWt, Y0 = w · y.
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This is exactly the SDE studied in [25], with x := w · y and z := ν2w2h. They give the following second order
scheme. Define the quantities

m1 = x, m2 = x2 + xz, m3 = x3 + 3x2z +
3

2
xz2,

p1 =
m1x2x3 −m2(x2 + x3) +m3

x1(x3 − x1)(x2 − x1)
,

p2 =
m1x1x3 −m2(x1 + x3) +m3

x2(x3 − x2)(x1 − x2)
,

p3 =
m1x1x2 −m2(x1 + x2) +m3

x3(x1 − x3)(x2 − x3)
,

x1 = x+Az −
√

(3x+A2z) z,

x2 = x+

(
A− 3

4

)
z,

x3 = x+Az +
√

(3x+A2z) z,

A =
6 +

√
3

4
.

Then, we define Ŷh to be the random variable which is xi with probability pi, i = 1, 2, 3. We remark that for
i = 1, 2, 3, mi = EY i

h and xi ≥ 0, and that the xi and pi are chosen such that p1 + p2 + p3 = 1 and

EŶ k
h = EY k

h for k = 1, . . . , 5.

But now, we are not merely interested in simulating Y , but actually in simulating the entire process Y . Fortu-
nately, we can easily reconstruct an approximation Ŷ from Ŷ . Indeed, we note that the right-hand side of (2.1)
is the same for all i = 1, . . . , N . Hence, the solution of (2.1) must be of the form

Y i
h = yi +Q, i = 1, . . . , N, (2.2)

for some scalar random variable Q. Taking the inner product of (2.2) with w, we get

Yh = w · y + wQ, implying Q =
Yh −w · y

w
.

Hence, we set

Ŝ(y, h) := Ŷh := y +
Ŷh −w · y

w
.

Finally, we combine the schemes for drift and diffusion by Strang splitting, and get

ACIR(v, h) := D

(
Ŝ

(
D

(
v,

h

2

)
, h

)
,
h

2

)
(2.3)

for approximating Vh given v.

2.1.2 Simulating the stock price

We now have a scheme ACIR for simulating the volatility process V . Next, we give a scheme for simulating
(S,V ) as in (1.6)-(1.7). The difficulty here is that the Brownian motion in the stock price is correlated with the
Brownian motion driving the volatility, and the scheme ACIR does not require the simulation of increments of W .

The ensure that we have the correct correlation between S and V , we follow [7]. Define the processes

Y i
t =

∫ t

0
V i
t dt, i = 1, . . . , N.
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The process Y := (Y i)Ni=1 will be useful, since the solution S to (1.6) is given by

St = S0 exp

(∫ t

0

√
Vs

(
ρdWs +

√
1− ρ2 dB2

)
− 1

2

∫ t

0
Vs ds

)
,

where the latter term in the exponent is precisely −1
2w · Y .

Now, the SDE SrHeston((s,v,y), h) given by

dSt =
√
VtSt

(
ρdWt +

√
1− ρ2 dBt

)
, S0 = s,

dV i
t = −xi(V

i
t − vi0) dt+ (θ − λVt) dt+ ν

√
Vt dWt, V i

t = vi,

dY i
t = V i

t dt, Y i
0 = yi,

for i = 1, . . . , N can again be split into two parts, namely the SDE SW ((s,v,y), h) given by

dSt =
√
VtStρ dWt, S0 = s,

dV i
t = −xi(V

i
t − vi0) dt+ (θ − λVt) dt+ ν

√
Vt dWt, V i

t = vi,

dY i
t = Vt dt, Y i

0 = yi,

and the SDE SB((s,v,y), h) given by

dSt =
√
VtSt

√
1− ρ2 dBt, S0 = s,

dV i
t = 0, V i

t = vi,

dY i
t = 0, Y i

0 = yi.

The SDE SB can be solved explicitly. Indeed, since the volatility V is constant, this is essentially the Black-
Scholes model. The solution is given by

Sh = s exp

(√
v
√
1− ρ2Bh −

1

2
v(1− ρ2)h

)
,

Vh = v,

Yh = y.

For the SDE SW , we first approximate V̂h := ACIR(v, h). Next, we approximate Y using the trapezoidal rule,
i.e. Ŷh := y + (v + V̂h)/2. Next, we want to express Sh in terms of Vh and Yh. We make the Ansatz

St = s exp

(
at+

N∑
i=1

bi(Y
i
t − Y i

0 ) +

N∑
i=1

ci(V
i
t − V i

0 )

)
. (2.4)

Using the Itô formula, we get

dSt = St

a dt+ N∑
i=1

bi dY
i
t +

N∑
i=1

ci dV
i
t +

1

2

N∑
i,j=1

cicj d[V
i, V j ]t


= St

[(
a+

N∑
i=1

cixiv
i
0 + θ

N∑
i=1

ci

)
dt

+

N∑
i=1

bi − cixi − λwi

N∑
j=1

cj +
1

2
ν2wi

N∑
j,k=1

cjck

Vi dt+ ν

N∑
i=1

ci
√
Vt dWt

]
.
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To retain the SDE SW , we thus require that

a+

N∑
i=1

cixiv
i
0 + θ

N∑
i=1

ci = 0,

bi − cixi − λwi

N∑
j=1

cj +
1

2
ν2wi

N∑
j,k=1

cjck = 0, i = 1, . . . , N,

ν

N∑
i=1

ci = ρ.

This is achieved with

a = −
N∑
i=1

cixiv
i
0 − θ

N∑
i=1

ci,

bi = cixi + λwi

N∑
j=1

cj −
1

2
ν2wi

N∑
j,k=1

cjck, i = 1, . . . , N,

N∑
i=1

ci =
ρ

ν
,

where the last equation of course has many solutions. We may thus choose the (ci) to be such that the rep-
resentation (2.4) (at least heuristically) becomes as numerically stable as possible. Assume without loss of
generality that the nodes (xi) are ordered with 0 ≤ x1 < · · · < xN . Then, we choose

c1 =
ρ

ν
, ci = 0, i = 2, . . . , N. (2.5)

This further yields

a = −
(
x1v

1
0 + θ

) ρ
ν
, bi =

ρ

ν
x1δi,1 + λwi

ρ

ν
− 1

2
wiρ

2.

We remark that we have tried several different choices of (ci), and (2.5) seemed to perform best, especially for
larger mean-reversions x. Therefore, we get the solution

St = s exp

(
ρ

ν

(
−
(
x1v

1
0 + θ

)
t+ x1(Y

1
t − Y 1

0 )

+

(
λ− 1

2
ρν

)
(Yt − Y0) + (V 1

t − V 1
0 )

))
,

where Yt := w · Y .

Hence, we may solve the SDE SW approximately with the algorithm ŜW given by

V̂h = ACIR(v, h),

Ŷh = y + (v + V̂h)
h

2
,

Ŝh = s exp

(
ρ

ν

(
−
(
x1v

1
0 + θ

)
h+ x1(Ŷ

1
h − Y 1

0 )

+

(
λ− 1

2
ρν

)
(Ŷh − Y0) + (V̂ 1

h − V 1
0 )

))
.

We have thus solved the SDEs SB and SW separately, and now want to combine them again using some
splitting scheme. While the algorithm for SB is exact, the algorithm for ŜW may be of second order, since
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ACIR is based on the second-order algorithm of [25], and Ŷ is computed using the trapezoidal rule. Hence, we
would like to use a splitting scheme that is also of second order. We remark that there are several such splitting
schemes, see for example the overview article [28]. One possibility is to again use Strang splitting, as in (2.3) for
ACIR. However, in our experience the following randomized Leapfrog splitting seemed to perform slightly better.
This splitting scheme is given by

ŜrHeston((s,v,y), h) =

{
ŜW (SB((s,v,y), h), h), if U ≤ 1

2 ,

SB(ŜW ((s,v,y), h), h), else,

where U is a uniform random variable on [0, 1] independent of everything else.

2.2 Boundary behaviour and convergence

In Section 2.1 we have given an algorithm for simulating the Markovian approximation of the rough Heston model
(1.6)-(1.7). Let us now first discuss whether the algorithm is well-defined, i.e. whether the total volatility V stays
non-negative. The only apparent issue that could occur is that the scheme ACIR for simulating the volatility V
may yield negative values for V = w · V . Here, we recall that ACIR was given by

ACIR(v, h) = D

(
Ŝ

(
D

(
v,

h

2

)
, h

)
,
h

2

)
,

where D was the (exact) solution to an ODE and Ŝ was the approximate solution to an SDE.

Recall also that the algorithm Ŝ is a simple multidimensional extension of [25], who studied the one-dimensional
equation

dXt = α
√
Xt dWt.

The authors in [25] actually proved that their scheme for simulating X remains non-negative. In particular, this
implies that V̂h := Ŝ(v, h) satisfies w·V̂h ≥ 0 if w·v ≥ 0. Therefore, the step Ŝ always retains non-negativity.

The situation is a lot less clear for the deterministic part D. Indeed, it is not hard to find two-dimensional
examples where w · v ≥ 0, but w · D(v, h) < 0. However, in our numerical simulations it never happened
that the algorithm actually produced negative volatility. In fact, it seems that the process V does not only stay in
the half-space w ·V ≥ 0, but even in a cone that is contained in it. Unfortunately we were unable to prove that
this is really the case, but in Figure 1 we provide a plot illustrating that point. However, together with Eduardo
Abi Jaber we are currently working on resolving this issue and determining the state space of the Markovian
approximation V , see [1].

While it therefore seems that ACIR produces only non-negative total volatilities, we were not able to prove that.
Hence, the algorithm above is strictly speaking not well-defined. To remedy this, one could for example use
V + := max(V, 0) instead of V whenever non-negativity is crucial. However, since this never seems to occur
we have in fact not done so in our implementation.

The next question is about the convergence of the approximation scheme. As noted above already, the authors
in [25] proved weak second order convergence for their approximation scheme of the CIR process. In particular,
this implies that V N,M → V N weakly of order 2 for N = 1, since for N = 1 the process V N is the
CIR process. Since V N for N ≥ 2 seems to be merely a multidimensional version of V 1, we conjecture that
V N,M → V N also weakly of order 2 for any N . However, since we were not even able to prove that w ·V N,M

stays non-negative, we could of course also not prove a convergence rate.

Next, we used an algorithm very similar to the one in [7, Section 4.2] for approximating S given an approximation
of V N . While the scheme in [7, Section 4.2] is modelled after second-order schemes in [7, Section 1], the author
notes that it is not directly possible to prove a convergence rate of order two, since the proofs in [7, Section 1]
require that the SDE has uniformly bounded moments. For the Heston model this is not necessarily the case,
as was shown in [19]. Similar comments of course apply in our setting.
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Figure 1: Samples of the two-dimensional Markovian approximation V N,M of the volatility using 105 sam-
ple paths on a time grid with 1000 time steps. Plotted are all the points V N,M

ti
for every time step ti,

i = 0, . . . , 1000, and all the 105 samples. The black line is the line where the total volatility w · V N,M = 0,
and the total volatility is positive above that line. We can see clearly that V N,M seems to lie in a cone in the non-
negative half-space. If it seems like V N,M occasionally lies below the black line, this is merely because of the
thickness of the sample points, zooming in shows that all samples are always above the black line. The param-
eters used are x = (1, 10),w = (1, 2), λ = 0.3, ν = 0.3, V0 = 0.02, θ = 0.02, T = 1,v0 = (0.02, 0).

3 Numerics

In this section we price various kinds of vanilla and exotic options in the rough Heston model, where we compare
the weak approximation scheme from Section 2 with a simple implicit Euler scheme given in Section 3.1.1 and
the HQE scheme from [18] as in Section 3.1.2. In all our examples we used the same parameters as in [4,
Section 4.2], namely

λ = 0.3, ν = 0.3, θ = 0.02, V0 = 0.02, ρ = −0.7, S0 = 1,

while the values for T and H may vary. We remark that the weak scheme and the implicit Euler scheme require
us to choose a Markovian approximation KN of K of the form (1.5). The recent paper [11] studies the problem
of weak Markovian approximation of rough Heston, and the algorithm “BL2” shows promising results. Hence,
we decided to use the approximations KN generated by this algorithm BL2. Throughout, we will explicitly write
down the nodes x and weights w that were generated using BL2.

This section is therefore structured as follows. First, in Section 3.1, we briefly describe the implicit Euler scheme
in Section 3.1.1 and the HQE scheme in Section 3.1.2 that we compare our weak scheme with. Furthermore, in
Section 3.1.3, we compare the computational costs of these three simulation schemes. Finally, in Section 3.2 we
compare these three simulation schemes for various kinds of options: Implied volatility smiles in Section 3.2.1,
implied volatility surfaces in Section 3.2.2, Geometric Asian options in 3.2.3, and Bermudan put options in 3.2.4.

3.1 Other simulation schemes used for benchmarking

3.1.1 Implicit Euler scheme

Since the Markovian approximation (SN ,V N ) given in (1.6)-(1.7) satisfies a standard SDE, we can apply a
(slightly modified) implicit Euler scheme to simulate sample paths. We use the implicit Euler scheme rather than
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the explicit Euler scheme due to the stiffness of the SDE governing V N . For large speeds of mean-reversion x,
the explicit Euler scheme tends to overshoot, leading to highly unstable behaviour for ∆t ≳ x−1

N . The implicit
Euler scheme, however, mostly suppresses those large oscillations, avoiding instability and overflow errors.

Due to the square root in the dynamics, we have to ensure that V N,M stays non-negative. There are various
ways to do this, and we have arguably chosen the simplest one. We simply truncate V N,M by taking the
positive part. Another simple solution to this problem may be for example reflection, i.e. using

∣∣V N,M
∣∣ instead

of (V N,M )+. Overall, the quality of the simulation results does not change much depending on the specific way
one deals with this issue.

Choose a final time T , and a number of steps M . We discretize the interval [0, T ] into M subintervals of equal
length ∆t := T/M . Hence, we obtain a partition (tm)Mm=0 of [0, T ] with tm = m∆t. On this time grid, we
define the approximation (SN,M ,V N,M ) of (SN ,V N ) using the drift-implicit Euler scheme given by

SN,M
tm+1

= SN,M
tm

√
(V N,M

tm )+SN,M
tm

(
ρ∆Wm +

√
1− ρ2∆Bm

)
,

V
(i),M
tm+1

= V
(i),M
tm − xi(V

(i),M
tm+1

− vi0)∆t+ (θ − λV N,M
tm+1

)∆t+ ν

√
(V N,M

tm )+∆Wm,

for m = 0, . . . ,M − 1. Here, we set SN,M
0 = S0, V

(i),M
0 = vi0, and V N,M

tm
:= (V

(i),M
tm )Ni=1. Also,

x+ := x ∨ 0, and we have the Brownian increments ∆Wm := Wtm+1 −Wtm and ∆Bm := Btm+1 −Btm .

We remark that we can obtain V N,M
m+1 from V N,M

m by solving an N -dimensional linear system.

3.1.2 HQE scheme

Secondly, we compare the weak scheme from Section 2 with the HQE scheme developed in [18], building on the
classical QE scheme for the (standard) Heston model, cf. [9]. The HQE scheme does not rely on the Markovian
approximations, but rather works directly on the rough volatility process. While a convergence rate has not
been theoretically established for the HQE scheme, it seems to numerically exhibit order 1 convergence as the
number of time steps goes to infinity. The HQE scheme has two major disadvantages compared to our schemes
using Markovian approximations. First, due to the non-Markovianity, the computational cost scales quadratically
in the number of time steps. Second, since the simulated paths lack the Markov structure, it is more difficult to
price e.g. Bermudan options using Longstaff-Schwartz, see also Section 3.2.4.

3.1.3 Computational cost of simulation

Let us briefly compare the computational cost for simulating paths using our weak scheme from Section 2, the
Euler scheme from Section 3.1.1, and the HQE scheme from [18]. Due to the non-Markovian structure, the HQE
scheme has the cost O(M2) per sample, where M is the number of time steps. In contrast, the cost of the
weak and the Euler scheme is O(N2M), where N is the dimension of the Markovian approximation. However,
as we will see in Section 3.2, N ∈ {2, 3} is usually enough, so that in practice the weak and the Euler scheme
exhibit linear cost. Some specific computational times are also given in Table 2.

3.2 Numerical results

3.2.1 European call option

In our first example, we consider European call options. Since the characteristic functions of the stock price
in the rough Heston model and its Markovian approximation are known in semi-closed form, we can compute
reference prices using Fourier inversion, see also [4, 5]. Our goal is then to numerically observe convergence
rates for the various discretization schemes as the number of time steps M → ∞.
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Figure 2: Implied volatility smiles using m = 224 samples and M = 32 time steps, with H = 0.1, T = 1, and
using the nodes and weights given in Table 1 for N = 2. The rough Heston smile (black) and the Markovian
smile (brown) obtained by Fourier inversion are not visible because they are under the weak smile (green).

N = 2 N = 3

H = 0.1
Nodes 0.05 8.7171 0.033333 2.2416 46.831

Weights 0.76733 3.2294 0.55543 1.1110 6.0858

H = −0.2
Nodes 0.49172 60.452 0.63781 9.6554 681.37

Weights 0.70202 33.927 0.66909 3.3694 184.50

Table 1: Nodes and weights from the algorithm BL2 in [11] for T = 1 and H = 0.1 (top tables), and H = −0.2
(bottom tables), both with N = 2 and N = 3.

First, in Figure 2 we see the implied volatility smiles of the Euler, the weak and the HQE scheme for a fixed
number of time steps M = 32. Observe that the weak scheme is sufficiently accurate so that one cannot
distinguish its smile from the truth in the plot. In contrast, the HQE scheme is still a bit off for strikes in the
money, and the Euler scheme has a rather large error.

Next, we want to determine the numerical convergence rates of the implied volatility smiles. The restricting
factor here is the MC error. If the MC error is too large, we will not be able to accurately determine the rate of
convergence. We do two things to combat this problem. First, we restrict ourselves to strikes close to the money,
since the MC error is usually smaller there. Hence, we use the maturity T = 1 and 16 linearly spaced values in
[−0.1, 0.05] for the log-moneyness.

Second, we use quasi Monte Carlo (QMC) instead of MC to further reduce the error. In order to still obtain an
error estimate of the QMC error similar to the MC error estimate, we use randomized QMC (RQMC), see e.g.
the review article [24]. We give the number of samples generated as m = m1 ·m2, where m2 is the number
of Sobol points we use, and m1 is the number of random shifts of these Sobol points.

We now consider two different Hurst parameters, namely H = 0.1 and H = −0.2, and for both we use N = 2
and N = 3 dimensions for the Markovian approximation of V . The precise nodes and weights used are given
in Table 1.

The results for H = 0.1 are reported in Table 2, and illustrated in Figure 3. Based on these computations, it
seems likely that the HQE scheme and the Euler scheme converge with rate 1 as M → ∞, while the weak
scheme converges with rate 2. Furthermore, by comparing N = 2 with N = 3, we see that using a higher
dimension leads (initially) to slower convergence. This is likely caused by the larger nodes (i.e. higher mean-
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reversions) that are present in higher dimensions N . Indeed, the weak scheme seems to need about M ≥ 16
(for N = 2) or M ≥ 64 (for N = 3) time steps to get close to its expected convergence rate of 2, which is
roughly the size of the largest nodes of 8.7171 and 46.831, respectively. The Euler scheme might need a higher
M to get close to achieving rate 1, but the general picture is similar. Hence, when choosing the dimension N
there is a clear trade-off between a more accurate Markovian approximation, and the less accurate simulation.
Finally, to achieve a total relative error of about 1%, we need roughly M = 40 for the HQE scheme (computed
by log-linear interpolation of the errors in Table 2), compared to M = 282 for the Euler scheme (with N = 2),
and M = 13 for the Weak scheme.

N = 2 N = 3

HQE Euler Weak Euler Weak
M Error Time Error Time Error Time Error Time Error Time
1 10.85 140.02 17.95 13.361 25.10 31.410 17.95 16.945 32.36 31.761
2 11.06 169.16 14.86 22.093 15.94 51.663 14.64 24.979 25.50 58.088
4 8.124 241.56 13.92 39.432 7.161 104.74 13.71 43.509 16.58 109.58
8 4.591 418.66 12.14 74.123 2.397 201.80 11.98 81.089 8.813 213.27

16 2.240 803.96 9.671 149.11 0.666 384.97 10.40 154.49 3.544 424.29
32 1.158 1680.4 6.774 294.06 0.178 790.95 8.919 341.28 1.068 833.02
64 0.727 3771.5 4.162 572.43 0.053 1551.1 7.265 641.49 0.282 1655.0
128 0.485 9101.3 2.255 1147.3 0.020 3280.9 5.358 1287.2 0.062 3685.8
256 0.312 28538 1.113 2358.0 0.020 6283.3 3.495 2831.2 0.028 7173.7
512 0.191 85816 0.514 4825.8 0.016 13172 2.031 5413.5 0.016 14370

1024 0.159 331835 0.222 9686.1 0.013 26459 1.047 11044 0.012 28867

Table 2: Maximal (over the strike) relative errors in % for the implied volatility smiles, where H = 0.1, together
with the computational times in seconds. The error of the Markovian approximation is 0.0131% for N = 2 and
0.0105% for N = 3. The MC errors are all at most 0.02%, where we used m = 25 · 222 samples. We remark
that we used RQMC for the errors, but MC for the computational times. This is because (R)QMC required us to
first simulate and store all necessary random variables, while in MC, we can just generate them once they are
needed. Hence, RQMC requires a lot more memory, and as a consequence the computational times for RQMC
increased more than linearly (resp. quadratically) for large M .

The results for the Hurst parameter H = −0.2 are given in Table 3 and Figure 4. This is a much more challeng-
ing regime, where the rough Heston model is not well-defined anymore in a strong sense, but merely in a weak
sense, see e.g. [2, 22]. Conversely, the Markovian approximations are still standard SDEs. Nonetheless, as was
also shown in [11], a higher number of nodes N is necessary to get a similarly small Markovian approximation
error as for larger H . Additionally, even if we choose the same dimension N as for larger H , we still get larger
nodes, since larger mean-reversions correspond to the more pronounced singularity in the kernel K . Both of
these problems combined make the task of simulation much harder, as we correspondingly need more time
steps M to achieve small errors. Aside from that, the general picture is similar to the Hurst parameter H = 0.1,
in that the weak scheme (eventually) converges with rate 2, while the Euler scheme likely will converge with rate
1. The weak scheme needs about M ≥ 128 (for N = 2) and M ≥ 1024 (for N = 3) time steps to get close
to rate 2, which is again similar to the largest nodes of 60.452 and 681.37, respectively. To achieve a relative
error of about 1%, we need about M = 107 time steps for the weak scheme with N = 2, while we need
M ≫ 512 for the Euler scheme.

DOI 10.20347/WIAS.PREPRINT.3045 Berlin 2023



Simulation of rough Heston 13

100 101 102 103

Number of time steps

10 4

10 3

10 2

10 1

Maximal relative errors of IV smiles with H=0.1 and N=2

Euler
Weak
HQE
Markov error
Largest node
Rate 1
Rate 2

100 101 102 103

Number of time steps

10 4

10 3

10 2

10 1

Maximal relative errors of IV smiles with H=0.1 and N=3

Euler
Weak
HQE
Markov error
Largest node
Rate 1
Rate 2

Figure 3: Errors of implied volatility smiles with H = 0.1, and N = 2 (left) or N = 3 (right). The horizontal
black line is the error of the Markovian approximation, while the vertical black line is the largest node x of the
Markovian approximation. The solid (blue/red/green) lines represent the maximal errors between the true smile
and the smile using simulation. The dashed lines indicate the 95% MC confidence intervals of these errors.

N = 2 N = 3

M Euler Weak Euler Weak
1 18.44 37.52 18.44 38.74
2 18.10 36.86 17.94 40.39
4 26.52 33.41 25.00 40.19
8 35.55 27.02 31.27 38.70

16 45.07 17.58 37.87 35.64
32 53.27 7.885 45.33 30.36
64 56.99 2.636 54.13 22.71

128 54.27 0.708 63.63 13.83
256 45.98 0.159 71.63 5.945
512 35.11 0.066 75.51 1.859

1024 24.50 0.064 73.81 0.478

Table 3: Maximal (over the strike) relative errors in % for the implied volatility smiles, where H = −0.2. The
error of the Markovian approximation is 0.0649% for N = 2 and 0.00593% for N = 3. The MC errors are all
at most 0.02%, where we used m = 25 · 222 samples.
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Figure 4: Errors of implied volatility smiles with H = −0.2, and N = 2 (left) or N = 3 (right). The horizontal
black line is the error of the Markovian approximation, while the vertical black line is the largest node x. The
solid (red/green) lines represent the maximal errors between the true smile and the smile using simulation. The
dashed lines indicate the 95% MC confidence intervals of these errors.

Nodes 0.20000 34.868
Weights 1.3360 5.6228

Nodes 0.083995 5.6485 118.01
Weights 0.80386 1.6079 8.8078

Table 4: Nodes and weights from the algorithm “BL2” in [11] for H = 0.1, the vector of maturities T =
(1/16, 2/16, . . . , 1), and N = 2, 3.

3.2.2 Implied volatility surface

We now consider an entire volatility surface. Under our standard parameters, we consider the maturities and
log-strikes

T (i) =
i

16
, k(i) = {−0.10,−0.09, . . . , 0.05} ·

√
T (i), i = 1, . . . , 16.

Furthermore, we use Markovian approximations with N = 2 and N = 3 dimensions. The associated nodes
and weights using the BL2 quadrature rule for the above maturity vector are given in Table 4. We remark that
since we are given an entire vector of maturities, we adapted the BL2 algorithm as recommended in [11, Section
3.3.2].

The results are given in Table 5 and Figure 5. These algorithms generally show similar results as for the implied
volatility smiles. The HQE and the Euler scheme seem to converge roughly with rate 1, while the Weak scheme
approaches rate 2 for M ≥ 128 and M ≥ 256 time steps for N = 2 and N = 3, respectively. We compare
this with the largest mean-reversions of 35 and 118, respectively. Using logarithmic interpolation, the HQE
scheme achieves an error of 1% for M = 468 time steps, the Weak scheme with N = 3 for M = 149, and
the Euler scheme needs M = 6035 (by extrapolation).

3.2.3 Geometric Asian call option

As a first path-dependent option, we now consider geometric Asian call options. The advantage of geometric
Asian options in the rough Heston model is that the Fourier transform of the random variable

∫ T
0 log(St) dt is

again known in semi-explicit form, so we can again efficiently compute reference prices and compare them to
our simulation results. Under our standard parameters, we consider the maturity T = 1 and log-strikes

k = {−0.10,−0.09, . . . , 0.05} .
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N = 2 N = 3

M HQE Euler Weak Euler Weak
16 8.631 26.06 10.21 26.06 16.35
32 7.914 24.27 4.686 24.31 8.689
64 5.467 16.57 2.183 17.92 3.656

128 3.036 9.440 1.625 12.81 1.261
256 1.565 4.593 1.632 8.801 0.428
512 0.935 2.240 1.639 5.462 0.200

1024 0.581 1.250 1.643 3.036 0.190

Table 5: Maximal (over the strikes and maturities) relative errors in % for the implied volatility surfaces. The error
of the Markovian approximation is 1.630% for N = 2 and 0.1867% for N = 3. The MC errors are all at most
0.02%, where we used m = 25 · 222 samples.
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Figure 5: Errors of implied volatility surfaces with H = 0.1 for N = 2 (left) or N = 3 (right) dimensions. The
horizontal black line is the error of the Markovian approximation, while the vertical black line is the largest node
x. The solid (blue/red/green) lines represent the maximal errors between the true surface and the surface using
simulation. The dashed lines indicate the 95% MC confidence intervals of these errors.
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Again, we use Markovian approximations with N = 2, 3 dimensions. Since we have the single maturity T = 1,
we use the same nodes and weights as in Table 1 for the implied volatility smiles.

Given the sample paths we compute the Asian option prices using the trapezoidal rule. The results are given
in Table 6 and Figure 6. Note that the weak scheme does not outperform the HQE scheme as much as in the
previous examples. This may be because we compute the average log-stock prices using the trapezoidal rule,
which introduces an additional discretization error. Nonetheless, the weak scheme is of course still much faster
than the HQE scheme given the same number of time steps M .

Again, the HQE scheme and the Euler scheme seem to converge with rate 1, where as the weak scheme
approaches rate 2 for M ≥ 64 and M ≥ 128 time steps for N = 2 and N = 3, respectively. This is a bit
larger than the largest nodes of 12.328 and 59.003, respectively, possibly also due to the discretization error
of the trapezoidal rule. Using logarithmic interpolation, the HQE scheme needs about M = 91 time steps to
achieve a relative error of 1%, while the weak scheme needs M = 25 and the Euler scheme needs M = 789
(by extrapolation) for N = 2.

N = 2 N = 3

M HQE Euler Weak Euler Weak
1 38.58 14.44 30.12 14.44 33.64
2 17.95 40.72 13.98 40.66 19.22
4 13.40 44.82 6.958 44.57 12.44
8 9.606 39.22 3.374 39.47 7.092

16 5.722 30.29 1.270 33.05 5.402
32 2.858 20.32 0.494 27.23 2.616
64 1.387 11.79 0.382 21.43 0.853

128 0.750 5.916 0.513 15.34 0.200
256 0.458 2.585 0.526 9.752 0.069
512 0.283 0.903 0.519 5.576 0.009

1024 0.196 0.071∗ 0.521 2.872 0.014

Table 6: Maximal (over the strikes) relative errors in % for the Asian call prices. The error of the Markovian
approximation is 0.5292% for N = 2 and 0.0123% for N = 3. The MC errors are all at most 0.03%, where
we used m = 25 · 222 samples. We remark that the small error ∗ is the result of a cancellation between the
Markovian error of 0.53% and the discretization error of 0.60%.

3.2.4 Bermudan put option

Next, we value Bermudan put options. For all three schemes (the HQE scheme, the Euler scheme, and the weak
scheme), we use the Longstaff-Schwartz algorithm as in [26]. In all our examples, we use RQMC with a total
of m = 25 · 221 samples (i.e. we use 25 random shifts). Moreover, we always use the first 220 QMC samples
for the linear regression to approximate the stopping rule, and the last 220 QMC samples for the pricing of the
Bermudan option using this stopping rule.

We discuss the choice of features for the linear regression below. Let us remark right away that the Longstaff-
Schwartz algorithm, in its most basic form that we apply, assumes that the underlying process is a Markov
process. This is of course given for the Weak scheme and the Euler scheme, since they are simulations of a
Markovian approximation of rough Heston. However, this is not given for the HQE scheme, which is a direct sim-
ulation of the rough Heston model. Hence, for complete accuracy, one would need to somehow incorporate the
history of the sample paths when pricing Bermudan options using the HQE scheme. Since the aim of this paper
is to demonstrate the efficacy of simulating the Markovian approximations, and not to develop good methods for
pricing Bermudan options using the HQE scheme, we decided to just treat the sample paths simulated by the
HQE scheme as Markovian paths, and to not make use of past information.
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Figure 6: Errors of prices for Asian call options with H = 0.1 for N = 2 (left) or N = 3 (right) dimensions. The
horizontal black line is the error of the Markovian approximation, while the vertical black line is the largest node
x. The solid (blue/red/green) lines represent the maximal errors between the true prices and the prices using
simulation. The dashed lines indicate the 95% MC confidence intervals of these errors.

Throughout these examples, we use the same parameters of the rough Heston model as above, with the excep-
tion that we now incorporate a drift r = 0.06, and that we use S0 = 100 for simplicity. Furthermore, throughout
we use a Bermudan put option with strike K = 105. The maturity of the option is T = 1 (year), and we use two
different scenarios, one with 4 exercise times (corresponding to one exercise time per quarter), and one with 16
exercise times (as a proxy for one exercise time per month).

For the Markovian approximations, we use N = 1, 2, 3 dimensions. The corresponding nodes and weights are
the same as in Table 1 for N = 2, 3. For N = 1 we have the node x1 = 2.1649 and the weight w1 = 2.6233.
We remark that the European put option price under these parameters is roughly 5.244, and the European put
option prices under the Markovian approximations are roughly 5.238 for N = 1, and 5.244 for N = 2, 3.

Choice of features

One of the important things to consider in the Longstaff-Schwartz algorithm is the choice of features for the
linear regression. It seems reasonable to use as features polynomials in the stock price and volatility process.
More precisely, before considering polynomials in these processes, we normalize these features by setting

s :=
S −K

K
, v := V − V0, v = (vi)N−1

i=1 = (wi(V
i − vi0))

N−1
i=1 .

For the HQE scheme, we of course do not have the features corresponding to v. Moreover, notice that we drop
the N -th component V N in v. This is because it can already be determined using V and (V i)N−1

i=1 . Indeed,
numerical experiments showed that we gain no additional accuracy if we include the component V N (but of
course the number of features increases, increasing the computational cost).

Using the above variables, it remains to determine which polynomials in s, v and v we should use. Numerical
experiments seem to indicate that the following choice is reasonable: Given a degree d, we consider as features
all the terms

sd1vd2(v1)d3 . . . (vN−1)dN+1 such that d1 + 2d2 + 3d3 + . . . 3dN+1 ≤ d.

In other words, we use polynomials with weighted degree at most d, where monomials in s carry the weight 1,
monomials in v the weight 2, and monomials in v the weight 3. For the HQE scheme we again do not have
terms using v, but we still consider the same weighted degrees for s and v. The number of features for various
choices of N and d is given in Table 7. The HQE scheme corresponds to N = 1.

Finally, it remains to choose an appropriate maximal degree d. To determine d, we computed the Bermudan
prices for the HQE, the Euler, and the Weak scheme using n = 256 simulation time steps, and N = 3
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d 1 2 3 4 5 6 7 8 9 10
N = 1 1 3 5 8 11 15 19 24 29 35
N = 2 1 3 6 10 15 22 30 40 52 66
N = 3 1 3 7 12 19 30 43 60 83 110

Table 7: Number of features for the Longstaff-Schwartz algorithm for various dimensions N (horizontal) of
the Markovian approximation and maximal degrees d (vertical) of the feature polynomials. The HQE scheme
corresponds to N = 1.

dimensions. The resulting prices are given in Table 8. This table seems to indicate that d = 6 is a reasonable
choice. Indeed, for larger d, the results do not markedly improve (i.e. increase) anymore, and overfitting may
even occur. Hence, moving forward, we fix d = 6.

4 execution times 16 execution times
d HQE Euler Weak HQE Euler Weak
1 5.881 6.055 5.887 5.976 6.148 5.983
2 5.969 6.160 5.989 6.112 6.301 6.144
3 5.999 6.202 6.039 6.134 6.360 6.207
4 6.006 6.217 6.055 6.151 6.388 6.231
5 6.006 6.219 6.056 6.155 6.394 6.237
6 6.006 6.219 6.053 6.158 6.397 6.240
7 6.008 6.219 6.055 6.159 6.397 6.244
8 6.009 6.221 6.057 6.159 6.399 6.248
9 6.009 6.218 6.055 6.162 6.399 6.243

10 6.009 6.217 6.054 6.159 6.397 6.239

Table 8: Prices of the Bermudan put option for various maximal degrees d of the feature polynomials, where we
use M = 256. The Weak scheme and the Euler scheme use N = 3.

Convergence results

Having chosen polynomial features with maximal weighted degree d = 6, we now proceed to pricing the
Bermudan put options for various values of approximating dimensions N and number of discretization steps
M . The results for 4 execution times are in Table 9, the results for 16 execution times are in Table 10. The
option prices are further illustrated in Figure 7.

HQE Euler Weak
M N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

4 5.774 6.390 6.414 6.403 5.837 5.793 5.586
8 5.855 6.423 6.486 6.479 5.987 5.952 5.797
16 5.929 6.342 6.452 6.481 6.046 6.029 5.936
32 5.966 6.235 6.355 6.447 6.066 6.064 6.015
64 5.987 6.156 6.252 6.388 6.071 6.076 6.055

128 5.999 6.111 6.171 6.308 6.072 6.076 6.064
256 6.006 6.089 6.122 6.225 6.075 6.075 6.068
512 6.012 6.080 6.098 6.160 6.075 6.078 6.074

1024 6.015 6.078 6.086 6.117 6.077 6.074 6.071
2048 6.016 6.074 6.081 6.094 6.075 6.074 6.070

Table 9: Prices of the Bermudan put option with 4 execution times depending on the number M of time dis-
cretization steps in the simulation. All schemes use feature polynomials up to order d = 6. The 95% MC
confidence intervals are roughly 0.0025.
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HQE Euler Weak
M N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

16 6.099 6.507 6.617 6.645 6.214 6.204 6.109
32 6.127 6.404 6.530 6.619 6.238 6.237 6.190
64 6.144 6.327 6.428 6.561 6.247 6.252 6.231

128 6.152 6.284 6.351 6.483 6.249 6.256 6.245
256 6.159 6.264 6.302 6.402 6.247 6.258 6.249
512 6.164 6.255 6.280 6.339 6.249 6.257 6.251

1024 6.168 6.250 6.268 6.298 6.248 6.258 6.249
2048 6.171 6.250 6.261 6.275 6.248 6.258 6.249

Table 10: Prices of the Bermudan put option with 16 execution times depending on the number M of time
discretization steps in the simulation. All schemes use feature polynomials up to order d = 6. The 95% MC
confidence intervals are roughly 0.0025.
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6.2

6.4

Prices of Bermudan put option with 4 execution times

Euler, N=1
Euler, N=2
Euler, N=3
Weak, N=1
Weak, N=2
Weak, N=3
HQE

102 103

Number of simulation time steps
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Prices of Bermudan put option with 16 execution times
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Euler, N=3
Weak, N=1
Weak, N=2
Weak, N=3
HQE

Figure 7: Bermudan put option prices with H = 0.1 for 4 (left) or 16 (right) exercise times.
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We can see that both the Weak and the Euler scheme seem to converge to the same value, roughly 6.075 for 4
execution times and 6.255 for 16 execution times, both significantly higher than the price of the corresponding
European option of 5.244. In contrast, the HQE scheme converges to the lower values of about 6.02 and 6.17,
respectively. This difference can likely be explained by the fact that we use the standard Longstaff-Schwartz
algorithm for pricing the Bermudan options, and this algorithm assumes the underlying process to be Markov.
This is true for the Weak and the Euler scheme, which use the Markovian approximation, but not true for the
HQE scheme. Thus, it is natural to expect the HQE scheme to yield lower values, and this also shows that
there is relevant information contained in the non-Markovianity of the rough Heston model. This also illustrates a
further advantage of the Markovian approximation: Since this approximation yields a Markov process, accurately
pricing Bermudan or American options is significantly more straightforward, as one can make use of (usually
much simpler) Markovian pricing algorithms.

Finally, let us briefly compare the influence of the approximating dimension N on the computed prices. As
before, we can see that the higher N (and thus, the higher the mean-reversions), the longer it takes for the
prices to stabilize (as the number of time steps M increases). Second, for 4 execution times there does not
seem to be too much of a difference in the computed option prices for large M , whereas (at least for the Weak
scheme) for 16 execution times N = 2 seems to yield slightly larger prices than N = 1, 3. On the one hand,
N = 2 more accurately captures the dynamics of the rough Heston model than N = 1 (in particular the
non-Markovianity), possibly explaining the higher values compared to N = 1. On the other hand, the smaller
results for N = 3 might be the result of overfitting, though this is less clear to the authors and may require
further investigation.
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