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Weak Markovian approximations of rough Heston

Christian Bayer, Simon Breneis

Abstract

The rough Heston model is a very popular recent model in mathematical finance; however, the lack of
Markov and semimartingale properties poses significant challenges in both theory and practice. A way to
resolve this problem is to use Markovian approximations of the model. Several previous works have shown
that these approximations can be very accurate even when the number of additional factors is very low.
Existing error analysis is largely based on the strong error, corresponding to the L2 distance between
the kernels. Extending earlier results by [Abi Jaber and El Euch, SIAM Journal on Financial Mathematics
10(2):309–349, 2019], we show that the weak error of the Markovian approximations can be bounded using
the L1-error in the kernel approximation for general classes of payoff functions for European style options.
Moreover, we give specific Markovian approximations which converge super-polynomially in the number
of dimensions, and illustrate their numerical superiority in option pricing compared to previously existing
approximations. The new approximations also work for the hyper-rough case H > −1/2.

1 Introduction

Rough volatility [10] is a now established paradigm for modeling of equity markets, which provides excellent fits
to market data. However, theoretical analysis and numerical approximation typically becomes more challenging
as rough volatility models are neither Markov processes nor semimartingales. Apart from the rough Bergomi
model [9], the workhorse model of rough volatility is the rough Heston model [15] given by

dSt =
√
VtSt

(
ρdWt +

√
1− ρ2 dBt

)
, S0 = S0, (1.1)

Vt = V0 +

∫ t

0
K(t− s)(θ − λVs) ds+

∫ t

0
K(t− s)ν

√
Vs dWs, (1.2)

where θ, λ, ν > 0, ρ ∈ [−1, 1], where (Bt,Wt) is a two-dimensional standard Brownian motion and where
K is the fractional kernel given by

K(t) =
tH−1/2

Γ(H + 1/2)
, (1.3)

with Hurst parameter H ∈ (−1/2, 1/2).

The kernelK in (1.2) introduces a dependence of the volatility process V on the past, ensuring that the volatility
has memory. However, this also means that the process (S, V ) is neither a Markov process, nor a semi-
martingale. Furthermore, the sample paths of V are only (H − ε)-Hölder continuous, for all ε > 0, where
H ∈ (0, 1/2) is the Hurst parameter in (1.3). This leads to significant problems of the rough Heston model both
in terms of theoretical analysis, and for simulation of sample paths, and option pricing more generally. Note,
however, that the rough Heston model is an affine Volterra process [5], and can be analyzed as such, implying
weak existence and uniqueness as well as a semi-explicit formula for the characteristic function – in terms of a
fractional Riccati equation.

One remedy for these challenging properties of the model is to use Markovian approximations of V . More
precisely, note that the kernel K is completely monotone, and can thus be written as

K(t) =

∫ ∞

0
e−xtµ(dx), µ(dx) := cHx

−H−1/2 dx, cH :=
1

Γ(H + 1/2)Γ(1/2−H)
, (1.4)
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C. Bayer, S. Breneis 2

for all t > 0, where Γ is the gamma function.

Taking the special example of fractional Brownian motion (fBm) WH for a moment, we observe that

WH
t =

∫ t

0
K(t− s) dWs =

∫ t

0

∫ ∞

0
e−x(t−s)µ(dx) dWs

=

∫ ∞

0

∫ t

0
e−x(t−s) dWsµ(dx) =:

∫ ∞

0
Yt(x)µ(dx), (1.5)

where W is a Brownian motion, and where we used the stochastic Fubini theorem. Note that Yt(x) is an
Ornstein-Uhlenbeck (OU) process driven by W with mean-reversion rate x. Indeed, in [12] it was shown
that (Yt(x))x>0 is an infinite-dimensional Markov process. Therefore, fBm is a linear functional of an infinite-
dimensional Markov process.

The representation (1.5) indicates a natural way of approximating fBm by a finite-dimensional Markov process.
We simply discretize the integral over µ(dx) in (1.5), to obtain an approximation ofWH as a linear functional of
a finite-dimensional OU (and hence Markov) process. Furthermore, it is easy to see that discretizing the integral
in (1.5) is equivalent to discretizing the integral in (1.4), i.e. to approximatingK by a discrete sum of exponential
functions KN given by

KN (t) :=
N∑
i=1

wie
−xit, (1.6)

for some non-negative nodes (xi)Ni=1 and non-negative weights (wi)
N
i=1.

Furthermore, using the approximation KN of K , we can define the approximation (SN , V N ) of (S, V ) by

dSN
t =

√
V N
t SN

t

(
ρdWt +

√
1− ρ2 dBt

)
, S0 = S0,

V N
t = V0 +

∫ t

0
KN (t− s)(θ − λV N

s ) ds+

∫ t

0
KN (t− s)ν

√
V N
s dWs.

It has been shown, e.g. in [4] and in [6, Proposition 2.1], that V N is the solution to anN -dimensional stochastic
differential equation (SDE). The precise form of this SDE will however not be important for our purposes.

Given the Markovian approximation (SN , V N ) of (S, V ), we are of course interested in proving error bounds
and convergence rates as N →∞. Assuming Lipschitz-continuous coefficients b and σ, [6] proved for general
stochastic Volterra equations with Hurst parameter H > 0 given by

Xt = X0 +

∫ t

0
K(t− s)b(Xs) ds+

∫ t

0
K(t− s)σ(Xs) dWs (1.7)

the strong error bound

E
∣∣XT −XN

T

∣∣2 ≤ C ∫ T

0

∣∣K(t)−KN (t)
∣∣2 dt, (1.8)

for some C > 0, where XN is again defined by replacing K with KN in (1.7).

However, this bound is not directly applicable to the rough Heston model due to the singularity of the square root√
Vt in 0. Moreover, the L2-error in K can converge very slowly for small Hurst parameters 1/2 ≫ H > 0.

Indeed, since K(t) ≈ tH−1/2, the singularity at t = 0 of K(t)2 ≈ t2H−1 is barely integrable, leading to slow
convergence rates. For example, using Gaussian quadrature rules, it was shown in [7] that one can achieve a
convergence rate of(∫ T

0

∣∣K(t)−KN (t)
∣∣2 dt

)1/2

≤ C exp

(
−1.064

(
1 +

H

3/2−H

)−1/2√
HN

)
. (1.9)
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Markovian approximations 3

While this rate is superpolynomial, it is still very slow for small H ≈ 0 – ant not applicable at all in the hyper-
rough case −1/2 < H ≤ 0, see [18].

At the same time, a strong error bound as in (1.8) may be too stringent for many practical applications, where
we are often satisfied with a weak error bound. Indeed, in [4, Proposition 4.3] is was shown for the specific case
of the call option in the rough Heston model with some strike price P that we have the much better error bound∣∣E(ST − P )+ − E(SN

T − P )+
∣∣ ≤ C ∫ T

0

∣∣K(t)−KN (t)
∣∣ dt, (1.10)

where x+ := x∨ 0. Using the L1-error instead of the L2-error in the kernel is a significant improvement, since
K has much better integrability properties at t = 0 thanK2. However, the authors of [4] did not seem to proceed
to prove the weak error bound (1.10) for more general payoff functions. Moreover, they proved (1.10) only under
very strong assumptions on the approximating kernel KN . The first aim of this paper is hence to extend and
greatly generalize the results of [4]. More precisely, in Corollary 2.12 we prove that for every H ∈ (−1/2, 1/2)
and for “nice” payoff functions h : R+ → R, there exists a constant C > 0 such that∣∣Eh(ST )− Eh(SN

T )
∣∣ ≤ C ∫ T

0

∣∣K(t)−KN (t)
∣∣ dt. (1.11)

Additionally, the approximating kernels KN only have to satisfy the rather mild Assumption 2.1.

Having proved the error bound (1.11), we want to find a good approximationKN ofK minimizing the L1-norm,
and prove a convergence rate similar to (1.9). We give two slightly different versions in Theorems 3.9 and 3.16.
In particular, in Theorem 3.16 we show that we can achieve the convergence rate∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≤ C exp

(
−2.38

√
(H + 1/2)N

)
(1.12)

for any H > −1/2. This is a much faster convergence rate than the one in (1.9), especially for tiny H > 0,
and moreover, it is also valid for negative H > −1/2.

The paper is structured as follows. In Section 2, we prove (1.11), i.e. that the weak error of the Markovian
approximations of the rough Heston model can be bounded by the L1-error in the kernel. Next, in Section
3 we give two separate (but similar) approaches for achieving small L1-errors in the kernel KN . Especially
the first approach using geometric Gaussian rules in Section 3.1 resembles the approach in [7], except that
we refine their results in several ways. The second approach in Section 3.2 using non-geometric Gaussian
rules is essentially an improvement of the first approach, yielding the rate in (1.12). We decided to give both
methods, since the geometric rules are simpler and easier to understand, and since the majority of the proof
for the geometric rules can be transferred to the non-geometric rules. Next, in Section 4, we show that by
optimizing the L1-error we can indeed achieve very fast convergence rates and achieve small errors even for
small values of the approximating dimension N . We also illustrate that minimizing the L1-error leads to much
faster convergence rates in the weak errors than minimizing the L2-error. Finally, some technical results and
some of the algorithms used in Section 4 are delegated to the appendices.

2 Weak error of Markovian approximations

Throughout this section, we will work under the following assumption.

Assumption 2.1. Assume that KN are chosen such that

eN :=

∫ T

0

∣∣K(t)−KN (t)
∣∣ dt→ 0,

and that there exists a constant C > 0 such that for all t ∈ [0, T ] and N ≥ 1, we have

KN (t) ≤ CK(t),
∣∣(KN )′(t)

∣∣ ≤ C ∣∣K ′(t)
∣∣ . (2.1)
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C. Bayer, S. Breneis 4

We remark that sequences of such nodes and weights satisfying Assumption 2.1 have been given in many
previous works, among others in [4, 6, 7, 17] (although (2.1) is usually not verified in these references, it is
merely a rather weak and technical assumption). Also, as in [4, Theorem 3.1], we have strong existence and
uniqueness of the process (SN , V N ), and non-negativity of V N .

We now recall some basic definitions and facts from [4]. First, we define the characteristic function of the log-
stock price log(ST ) as

φ(z) := E [exp (z log(ST /S0))] .

Moreover, we note that φ can be given in semi-closed form as

φ(z) = exp

(∫ T

0
F (z, ψ(T − t, z))g(t) dt

)
, (2.2)

where g is defined by

g(t) = V0 + θ

∫ t

0
K(s) ds = V0 + θ

tH+1/2

Γ(H + 3/2)
, (2.3)

and where ψ is the solution to the fractional Riccati equation

ψ(t, z) =

∫ t

0
K(t− s)F (z, ψ(s, z)) ds, (2.4)

with

F (z, x) =
1

2
(z2 − z) + (ρνz − λ)x+

ν2

2
x2.

By replacing the kernel K with KN and defining gN and ψN as in (2.3) and (2.4), respectively, we obtain a
formula similar to (2.2) for the characteristic function φN of the log-stock price log(SN

T ).

Our ultimate goal will be to prove a bound in terms of eN for the weak error of approximating log(ST ) by
log(SN

T ). To this end, we will first prove a local Lipschitz error bound for the characteristic function
∣∣φ(z)− φN (z)

∣∣
in terms of eN in Section 2.1. Then, in Section 2.2, we will use this error bound on φ to prove a weak error bound
of log(ST ).

2.1 Error bound for the characteristic function

The goal of this subsection is to prove the following theorem under Assumption 2.1.

Theorem 2.2. For all T ≥ 0 there exists a constant C0 such that for all N ≥ 0 and z = a+ bi with a ∈ [0, 1]
and b ∈ R satisfying

C0(1 + b6)eN ≤ 1, (2.5)

we have ∣∣φ(z)− φN (z)
∣∣ ≤ 6C0φ(a)(1 + b6)eN .

From here on, the values of the constant C may change from line to line, but it is always independent of N .
Furthermore, for a complex number z ∈ C, we write z = a+ bi for a, b ∈ R.

First, under Assumption 2.1, we have the following two propositions, similar to [4, Theorem 4.1] and [4, Proposi-
tion 5.4]. We remark that while [4] uses much more restrictive assumptions than Assumption 2.1, it is not difficult
to verify that their proves still go through with only minor adaptations.

Proposition 2.3. There exists a constant C such that for allN ≥ 0 and z = a+ bi with a ∈ [0, 1] and b ∈ R,

sup
t∈[0,T ]

∣∣ψN (t, z)− ψ(t, z)
∣∣ ≤ C(1 + b4)eN .
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Proposition 2.4. There exists a constant C such that for allN ≥ 0 and z = a+ bi with a ∈ [0, 1] and b ∈ R,

sup
N∈N

sup
t∈[0,T ]

∣∣ψN (t, z)
∣∣ ≤ C(1 + b2).

Proposition 2.3 already suggests that the Markovian approximations φN might converge weakly at the same
speed as eN , as in Theorem 2.2. To prove this theorem, we need some intermediary lemmas.

Lemma 2.5. For all T ≥ 0 there exists a constant C0 such that for all N ≥ 0 and z = a+ bi with a ∈ [0, 1]
and b ∈ R satisfying

C0(1 + b6)eN ≤ 1,

we have∣∣∣∣1− exp

(∫ T

0

(
F (z, ψN (T − t, z))− F (z, ψ(T − t, z))

)
g(t) dt

)∣∣∣∣ ≤ 3

2
C0(1 + b6)eN .

Proof. First, by Propositions 2.3 and 2.4, there is a constant C such that for all z = a+ bi with a ∈ [0, 1] and
b ∈ R, ∣∣ψN (t, z)2 − ψ(t, z)2

∣∣ = ∣∣ψN (t, z) + ψ(t, z)
∣∣ ∣∣ψN (t, z)− ψ(t, z)

∣∣
≤ C(1 + b2)

∣∣ψN (t, z)− ψ(t, z)
∣∣

≤ C(1 + b6)eN . (2.6)

Since F is a quadratic polynomial in the second variable, Proposition 2.3 and inequality (2.6) imply that also

sup
t∈[0,T ]

∣∣F (z, ψN (t, z))− F (z, ψ(t, z))
∣∣ ≤ C(1 + b6)eN .

Denote by f(z) the integral inside the exponential function. Since g can be bounded on finite intervals,

|f(z)| ≤ C
∫ T

0

∣∣F (z, ψ(T − t, z))− F (z, ψN (T − t, z))
∣∣ dt

≤ C(1 + b6)

∫ T

0
eN dt ≤ C(1 + b6)eN . (2.7)

We take C0 := 2C , where C is the final constant in (2.7). Since |f(z)| ≤ 1/2,

|1− exp (f(z))| ≤
∞∑
n=1

|f(z)|n

n!
≤ 3

2
|f(z)| ≤ 3

2
C0(1 + b6)eN .

Lemma 2.6. For all T ≥ 0 there exists a constant C0 such that for all N ≥ 0 and z = a+ bi with a ∈ [0, 1]
and b ∈ R satisfying

C0(1 + b4)eN ≤ 1,

we have ∣∣∣∣1− exp

(∫ T

0
F (z, ψ(T − t, z))

(
gN (t)− g(t)

)
dt

)∣∣∣∣ ≤ 3

2
C0(1 + b4)eN .

Proof. The proof of this lemma is similar to the proof of Lemma 2.5.

We can now proceed with the proof of Theorem 2.2.
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Proof of Theorem 2.2. We have

∣∣φ(z)− φN (z)
∣∣ = |φ(z)| ∣∣∣∣1− φN (z)

φ(z)

∣∣∣∣ ≤ φ(a) ∣∣∣∣1− φN (z)

φ(z)

∣∣∣∣ ,
where the last inequality holds since φ is a characteristic function.

Now, for the specific choice of

a = exp

(∫ T

0

(
F (z, ψN (T − t, z))− F (z, ψ(T − t, z))

)
g(t) dt

)
,

we use the inequality∣∣∣∣1− φN (z)

φ(z)

∣∣∣∣ ≤ |1− a|+ ∣∣∣∣a− φN (z)

φ(z)

∣∣∣∣ = |1− a|+ |a| ∣∣∣∣1− 1

a

φN (z)

φ(z)

∣∣∣∣
≤ |1− a|+ (1 + |1− a|)

∣∣∣∣1− 1

a

φN (z)

φ(z)

∣∣∣∣ .
We then use Lemma 2.5 to bound |1− a|, and, using (2.2), we see that

∣∣∣1− 1
a
φN (z)
φ(z)

∣∣∣ can be bounded using

Lemma 2.6. Therefore,∣∣∣∣1− φN (z)

φ(z)

∣∣∣∣ ≤ 3

2
C0(1 + b6)eN +

(
1 +

3

2
C0(1 + b6)eN

)
3

2
C0(1 + b4)eN

≤ 6C0(1 + b6)eN .

2.2 Weak error bound for the log-stock price

We have proved that the error in the characteristic function φ can be bounded using eN . The next step will be
to extend this result to the weak error in XT := log(ST ). To this end, let us introduce some notation related to
the Fourier transform.

Given a function f : R→ R, we denote its generalized Fourier transform by

f̂(z) :=

∫
R
eizxf(x) dx

for all z ∈ C for which the above integral is well-defined. Furthermore, for R ∈ R, we define the damped
function

fR(x) := e−Rxf(x).

Define the sets

I :=
{
R ∈ R : fR ∈ L1

bc, f̂R ∈ L1
}
, J := {R ∈ R : φ(R) <∞} , (2.8)

where L1
bc denotes the set of L1-functions that are bounded and continuous. We remark that we have [0, 1] ⊆

J . Then, for each R ∈ I ∩ J , we have the Fourier pricing formula

Ef(XT ) =
1

2π

∫
R
φ(R− iu)f̂(u+ iR) du, (2.9)

see e.g. [14, Theorem 2.2]. Using this formula, we can prove the following theorem.

DOI 10.20347/WIAS.PREPRINT.3044 Berlin 2023



Markovian approximations 7

Theorem 2.7. Let f : R→ R be a payoff function of the log-stock price, and let a ∈ I ∩ [0, 1] ̸= ∅. Assume
that there are C1, δ > 0 such that ∣∣∣f̂(b+ ia)

∣∣∣ ≤ C1(1 + |b|)−(1+δ). (2.10)

Then there exist constants C̃, ε > 0 independent of f, C1, δ, such that if eN < ε then, for δ ̸= 6,∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃ ( 1

|6− δ|
+

1

δ

)
C1e

δ
6
∧1

N .

For δ = 6, we get ∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃C1 log(e

−1
N )eN .

Remark 2.8. We remark that the proof of Theorem 2.7 only needs Theorem 2.2, and no further properties of
rough Heston. In particular, let X,XN for N ∈ N be random variables, with characteristic functions φ,φN ,
such that φ(a) < ∞ for all a ∈ [0, 1]. Then, for any sequence eN → 0 such that Theorem 2.2 is satisfied,
Theorem 2.7 holds. Moreover, the interval [0, 1] here and in Theorems 2.2 and 2.7 may be replaced by any
subinterval of J (where J is defined as in (2.8)).

Proof of Theorem 2.7. By (2.9), we have for all L ≥ 0,∣∣Ef(XT )− Ef(XN
T )
∣∣ = 1

2π

∣∣∣∣∫
R
f̂(b+ ia)

(
φ(a− ib)− φN (a− ib)

)
db

∣∣∣∣
≤ 1

2π

∣∣∣∣∫ L

−L
f̂(b+ ia)

(
φ(a− ib)− φN (a− ib)

)
db

∣∣∣∣
+

1

2π

∣∣∣∣∣
∫
R\[−L,L]

f̂(b+ ia)
(
φ(a− ib)− φN (a− ib)

)
db

∣∣∣∣∣ .
We now bound these two summands separately. Considering the second summand first, we have∣∣∣∣∣

∫
R\[−L,L]

φ(a− ib)f̂(b+ ia) db

∣∣∣∣∣ ≤
∫
R\[−L,L]

|φ(a− ib)|
∣∣∣f̂(b+ ia)

∣∣∣ db
≤ 2C1φ(a)

∫ ∞

L
b−(1+δ) db =

2C1

δ
φ(a)L−δ,

where a similar statement is true for φN . Moreover, note that Theorem 2.2 implies that

φN (a) ≤ φ(a) +
∣∣φ(a)− φN (a)

∣∣ ≤ φ(a) + 6C0φ(a)eN ≤ (6C0 + 1)φ(a).

Hence, the second summand can be bounded by∣∣∣∣∣
∫
R\[−L,L]

f̂(b+ ia)
(
φ(a− ib)− φN (a− ib)

)
db

∣∣∣∣∣ ≤ 2C1

δ
(φ(a) + φN (a))L−δ

=
4C1

δ
(3C0 + 1)φ(a)L−δ.

Next, we want to bound the first summand using Theorem 2.2. Let C0 be as in Theorem 2.2. and define

L := e
− 1

6+η

N

for some η > 0. Note that we have

lim
N→∞

sup
b∈[−L,L]

C0(1 + b6)eN = lim
N→∞

C0

(
1 + e

− 6
6+η

N

)
eN = 0.

DOI 10.20347/WIAS.PREPRINT.3044 Berlin 2023
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In particular, for large enough N , i.e. for eN sufficiently small, say

eN < γ
6+η
η (2.11)

for some γ ∈ (0, 1) independent of η, condition (2.5) of Theorem 2.2 is satisfied for all b ∈ [−L,L].

Hence, we can apply Theorem 2.2 to bound the first summand, and we have∣∣∣∣∣
∫ L

−L
f̂(b+ ia)

(
φ(a− ib)− φN (a− ib)

)
db

∣∣∣∣∣
≤
∫ L

−L
C1(1 + |b|)−(1+δ)6C0(1 + b6)φ(a)eN db.

Now, for δ ̸= 6,∫ L

−L
(1 + |b|)−(1+δ)(1 + b6) db ≤ 2

∫ L

0
(1 + b)5−δ db =

2

|6− δ|

∣∣∣1− (1 + L)6−δ
∣∣∣

≤ 2(1 + L)(6−δ)∨0

|6− δ|
≤ 27L(6−δ)∨0

|6− δ|
=

27

|6− δ|
e

δ−6
6+η

∧0
N .

Similarly, for δ = 6,∫ L

−L
(1 + |b|)−(1+δ)(1 + b6) db ≤ 2

∫ L

0
(1 + b)−1 db = 2 log(1 + L)

= 2 log
(
1 + e

1− 1
6+η

)
≤ 2

η
e
− η

6+η

N .

Altogether, we get for eN < γ
6+η
η (and δ ̸= 6)

∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ 1

2π

768

|6− δ|
C0C1φ(a)e

δ+η
6+η

∧1
N +

1

2π

4C1

δ
(3C0 + 1)φ(a)e

δ
6+η

N

≤ C̃
(

1

|6− δ|
+

1

δ

)
C1e

δ
6+η

∧1
N ,

with C̃ = φ(a)(123C0 ∨ 1), and similarly, for δ = 6,

∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃ (1 + 1

η

)
C1e

6
6+η

N .

This is almost the statement of the theorem, except that we need to get rid of the parameter η. We do this
by choosing an appropriate value of η, where we restrict ourselves to η ∈ (0, 1). We may then sharpen
requirement (2.11) to

eN ≤ γ7/η, and thus choose η =
7 log γ

log eN
.

We remark that η ∈ (0, 1) for eN sufficiently small (i.e. eN < ε for some ε > 0). Next, note that for δ < 6+ η,
we have

δ

6 + η
=
δ

6
− ηδ

6(6 + η)
≥ δ

6
− η

6
=
δ

6
− 7 log γ

6 log eN
,
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and in particular (if additionally δ ̸= 6),

∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃ ( 1

|6− δ|
+

1

δ

)
C1 exp

((
δ

6
− 7 log γ

6 log eN

)
log eN

)
= C̃

(
1

|6− δ|
+

1

δ

)
C1e

− 7 log γ
6 e

δ/6
N .

Now, the requirements δ < 6 + η and δ ̸= 6 are certainly satisfied for δ < 6, proving this error bound in this
regime.

Next, consider δ = 6. In this case we still have δ < 6 + η, and we get

∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃ (1 + log eN

7 log γ

)
C1 exp

(
− 7 log γ

6 log eN
log eN

)
eN

≤ ĈC1 log(e
−1
N )eN .

For δ ≥ 7, we may choose η = 1, finishing the proof in this case.

Finally, consider δ ∈ (6, 7). Clearly, if the decay assumption on f̂ holds true for some δ > 6, it is also true for
δ = 6, implying that for δ ∈ (6, 7) we also have the same bound as for δ = 6. On the other hand, we may
choose η = δ − 6, which is admissible for N such that eδ−6

N ≤ γ7. Thus, we get a bound of the form

∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ {ĈC1

1
δ−6eN , eδ−6

N ≤ γ7

ĈC1 log(e
−1
N )eN , eδ−6

N > γ7.

≤

{
ĈC1

1
δ−6eN , eδ−6

N ≤ γ7

ĈC1 log
(
γ−

7
δ−6

)
eN , eδ−6

N > γ7.

≤ ĈC1

δ − 6
eN .

This proves the corollary.

Essentially, Theorem 2.7 is already what we wanted to show, in that it demonstrates that the weak error in the
log-stock price log(ST ) can be bounded by eN . From here on, we merely want to polish this result. Mainly, we
want to formulate the decay condition (2.10) in terms of the payoff function f itself (Corollary 2.9), weaken or
generalize the decay condition (Corollary 2.10), and to formulate the result in terms of payoffs of the stock price
ST , rather than the log-stock price log(ST ) (Corollary 2.11). Finally, in Corollaries 2.12, 2.13 and 2.14, we give
more transparent special cases.

First, we formulate the decay condition (2.10) on the Fourier transform f̂ in terms of the payoff function f itself.

Corollary 2.9. Let f : R→ R be a payoff function of the log-stock price, and let n ≥ 2 be an integer. Assume
that f is n times weakly differentiable, and that there is a ∈ [0, 1] and r ∈ L1 such that

|f(x)| ≤ eaxr(x),
∣∣∣f (n)(x)∣∣∣ ≤ eaxr(x).

Then, there exist constants C̃, ε > 0 independent of f and r, such that if eN < ε, then, for n ̸= 7,∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃∥r∥1en−1

6
∧1

N .

For n = 7, we get ∣∣Ef(XT )− Ef(XN
T )
∣∣ ≤ C̃∥r∥1 log(e−1

N )eN .
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Proof. Observe that we have∣∣∣̂f (n)(b+ ai)
∣∣∣ = ∣∣∣∣∫

R
ei(b+ai)xf (n)(x) dx

∣∣∣∣ ≤ ∫
R
e−ax

∣∣∣f (n)(x)∣∣∣ dx ≤ ∫
R
r(x) dx = ∥r∥1.

In particular, since |bn| ≤ |(b+ ai)n| , we have∣∣∣bnf̂(b+ ai)
∣∣∣ ≤ ∣∣∣(b+ ai)nf̂(b+ ai)

∣∣∣ = ∣∣∣̂f (n)(b+ ai)
∣∣∣ ≤ ∥r∥1.

Moreover, in the same spirit as above, we have∣∣∣f̂(b+ ai)
∣∣∣ = ∣∣∣∣∫

R
ei(b+ai)xf(x) dx

∣∣∣∣ ≤ ∥r∥1.
This shows that ∣∣∣f̂(b+ ai)

∣∣∣ ≤ ∥r∥1 (1 ∧ |b|−n) ≤ 2n∥r∥1(1 + |b|)−n.

The corollary follows by an easy application of Theorem 2.7 once we show that a ∈ I , i.e. fa ∈ L1
bc and

f̂a ∈ L1. First, fa ∈ L1
bc follows immediately from the assumptions. For the second condition, we merely note

that f̂a(b) = f̂(b+ ai).

In Corollary 2.9, the payoff f needs to satisfy a very specific growth condition of the form |f(x)| ≤ eaxr(x)
for some r ∈ L1. Since f is a function of the log-stock price XT := log(ST ), this translates roughly to a
polynomial growth condition of the form |h(s)| ≤ sar(log s), where h(s) = f(log s) is the corresponding
payoff function of the stock price ST . In general, this is a reasonable requirement, since Mq := ESq

T may
not exist for q ∈ R\[0, 1]. This non-existence of the moments of the stock price is also referred to as moment-
explosion, and has been studied e.g. in [16] for the rough Heston model. However, depending on the parameters
of the rough Heston model, the moments Mq may exist for all T > 0. In Lemma A.1 in the appendix, we give
some sufficient conditions for the existence of moments Mq for some q < 0 or q > 1.

In the following corollary, we want to extend Corollary 2.9 to allow also other growth conditions on the payoff
function, depending on the existence of the momentsMq . The statement below with all its parameters may look
quite formidable, but all it says is that if the payoff function f grows slightly slower than would be permitted for
the existence of Ef(XT ), and if the derivatives of f up to some order n grow at most exponentially fast (for
x → ±∞), then we can give a rate of convergence. More precisely, the parameters q1 and −q2 should be
interpreted as the largest and smallest moments of ST that exist, γ1 and γ2 denote how much slower f grows
than permitted by q1 and q2, and p1 and p2 determine how fast the derivatives of f grow. Furthermore, we apply
Corollary 2.9 with the parameter a := (ã∧1)∨0. Since this Corollary is rather difficult to comprehend, we give
some much simpler special cases in Corollaries 2.12, 2.13 and 2.14 below.

Corollary 2.10. Let q1 ≥ 1, let q2, p1, p2 ≥ 0, and let γ1, γ2 > 0. Let f : R → R be a payoff function of
the log-stock price, and let n ≥ 2 be an integer. Assume that f is n times weakly differentiable, and that there
is C1 > 0, r ∈ L1 taking values in (0, 1] such that r−1 is locally bounded, and β ∈ [0, 1] such that for all
k = 1, . . . , n,

|f(x)| ≤

{
C1e

−(q2−γ2)xr(x)β, x ≤ 0,

C1e
(q1−γ1)xr(x)β, x ≥ 0,

(2.12)

∣∣∣f (k)(x)∣∣∣ ≤ {C1e
−(p2+q2−γ2)xr(x)β, x ≤ 0,

C1e
(p1+q1−γ1)xr(x)β, x ≥ 0.

(2.13)

Then, there exist constants C̃, ε > 0 independent of f, C1, r, q1, q2, p1, p2, γ1, γ2, β, such that if eN < ε,
then, for n ̸= 7,∣∣Ef(XT )− Ef(XN

T )
∣∣ ≤ C̃C1

(
ep1+p2+q1+q2 r̃(eN )β−1 +M−q2 +Mq1

)
eαN , (2.14)
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where

α :=


(

γ1+γ2
p1+p2+q1+q2

∧ 1
) (

n−1
6 ∧ 1

)
, ã ∈ [0, 1],(

γ2
p2+q2

∧ 1
) (

n−1
6 ∧ 1

)
, ã < 0,(

γ1
p1+q1−1 ∧ 1

) (
n−1
6 ∧ 1

)
ã > 1,

, ã :=
(p1 + q1)γ2 − (p2 + q2)γ1

γ1 + γ2
,

and

r̃(eN ) := inf

{
r(x) : x ∈

[
− α
γ2

log e−1
N − 1,

α

γ1
log e−1

N + 1

]}
.

The same result holds true for n = 7 if we multiply the upper bound (2.14) by log(e−1
N ).

Proof. The proof is rather technical, so we only give the general idea. Fix some parameters b1, b2 > 0. Let
g : R→ R be a function that is n times weakly differentiable such that for k = 1, . . . , n

g(x) =

{
f(x), x ∈ [−b2, b1],
0, x ∈ (−∞,−b2 − 1] ∪ [b1 + 1,∞),

|g(x)− f(x)| ≤

{
C1e

−(q2−γ2)xr(x)β, x ∈ (−∞,−b2],
C1e

(q1−γ1)xr(x)β, x ∈ [b1,∞),
(2.15)

∣∣∣g(k)(x)∣∣∣ ≤ {C1cke
−(p2+q2−γ2)xr(x)β, x ∈ [−b2 − 1,−b2],

C1cke
(p1+q1−γ1)xr(x)β, x ∈ [b1, b1 + 1].

The existence of such a function g is ensured by Corollary B.2, and it satisfies the conditions of Corollary 2.9.
Using ∣∣Ef(XT )− Ef(XN

T )
∣∣ ≤ ∣∣Eg(XT )− Eg(XN

T )
∣∣ (2.16)

+ |Ef(XT )− Eg(XT )|+
∣∣Ef(XN

T )− Eg(XN
T )
∣∣ , (2.17)

we estimate (2.16) by Corollary 2.9, and (2.17) by (2.15) together with Mq1 and M−q2 . Finally, the choice

b1 = −
α

γ1
log eN , b2 = −

α

γ2
log eN

yields the desired result.

Finally, we formulate Corollary 2.10 in terms of payoff functions of the stock price ST .

Corollary 2.11. Let q1 ≥ 1, let q2, p1, p2 ≥ 0, and let γ1, γ2 > 0. Let h : R+ → R be a payoff function of
the stock price, and let n ≥ 2 be an integer. Assume that h is n times weakly differentiable, and that there is
C1 > 0, r : R+ → R taking values in (0, 1] such that r−1 is locally bounded and

∫∞
−∞ r(ex)dx < ∞, and

β ∈ [0, 1] such that for all k = 1, . . . , n,

|h(x)| ≤

{
C1x

−(q2−γ2)r(x)β, x ≤ 1,

C1x
q1−γ1r(x)β, x ≥ 1,∣∣∣h(k)(x)∣∣∣ ≤ {C1x
−(p2+q2−γ2+k)r(x)β, x ≤ 1,

C1x
p1+q1−γ1−kr(x)β, x ≥ 1.

Then, there exist constants C̃, ε > 0 independent of h,C1, r, q1, q2, p1, p2, γ1, γ2, β (ε also independent of
n), such that if eN < ε, then, for n ̸= 7,∣∣Eh(ST )− Eh(SN

T )
∣∣ ≤ C̃C1

(
ep1+p2+q1+q2 r̃(eN )β−1 +M−q2 +Mq1

)
eαN ,
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where α is as in Corollary 2.10, and

r̃(eN ) := inf

{
r(x) : x ∈

[
e−1e

α
γ2
N , ee

− α
γ1

N

]}
.

The same results hold true for n = 7 if we multiply the upper bounds by log(e−1
N ).

Proof. Define the function f : R → R by f(x) := h(ex). Then, we only have to verify equations (2.12) and
(2.13). However, the bound (2.12) for f itself is trivial, and (2.13) follows immediately from the Faà di Bruno
formula.

We do not claim that the rate of convergence eαN in Corollary 2.11 is necessarily best possible in general.
However, the assumptions imposed on the payoff function are quite natural. They essentially amount to requiring
that h grows slightly slower than the largest moment of ST that exists. If this is the case we can give a specific
convergence rate in eN .

Since Corollary 2.11 can be quite intimidating, we now give a few special cases.

Corollary 2.12. Let h : R+ → R be 8 times weakly differentiable and compactly supported. Then there is
C > 0 such that ∣∣Eh(ST )− Eh(SN

T )
∣∣ ≤ CeN .

Proof. Choose β = 1, r(x) = (1 + |log x|)−2, p1 = p2 = 0, q2 > 0 such that M−q2 < ∞ (by Lemma
A.1), q1 = 1, γ1 = q1, and γ2 = q2, so that ã = 0. We then get constants C, ε > 0 such that if eN < ε, then∣∣Eh(ST )− Eh(SN

T )
∣∣ ≤ CeN .

We can drop the restriction eN < ε by noting that h is uniformly bounded, and hence for eN ≥ ε,∣∣Eh(ST )− Eh(SN
T )
∣∣ ≤ 2∥h∥∞ ≤

2∥h∥∞
ε

eN .

Corollary 2.13. Let h : R+ → R be a payoff function of the stock price that is twice weakly differentiable. Let
q1 ≥ 1 and q2 ≥ 0 be such that ESq1

T + ES−q2
T < ∞, and assume that h(x) = O(xq1−ε) for x → ∞ and

h(x) = O(x−q2+ε) for x → 0. Assume furthermore that the first two derivatives of h grow only polynomially
in x for x→ 0 and x→∞. Then there exist some C,α > 0 such that∣∣Eh(ST )− Eh(SN

T )
∣∣ ≤ CeαN .

Proof. This is really just a non-quantitative reformulation of Corollary 2.11.

The following corollary has convenient assumptions that are usually satisfied in practice. It merely requires
(global) Lipschitz continuity of the payoff, and the existence of a moment Mq := ESq

T with q > 1. We remark
that the convergence rate q−1

12q is of course very bad, and certainly not optimal. However, the purpose of this

corollary is to demonstrate that the weak error can be bounded using the L1-error in the kernel, not just the
L2-error.

Corollary 2.14. Let h : R+ → R be a Lipschitz continuous payoff function of the stock price, and let q ∈ (1, 2].
Then, there exist constants C, ε > 0 independent of h and q, such that if eN < ε, then

∣∣Eh(ST )− Eh(SN
T )
∣∣ ≤ C∥h∥Lip

(
(q − 1)−1 +M1/2

q

)
log(e−1

N )e
q−1
12q

N .

Remark 2.15. The condition eN < ε can be removed by a localization argument similar to Corollary 2.12 using
Lipschitz continuous approximations with compact support, at the cost of a worse convergence rate.
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Proof. Since h is Lipschitz continuous, the limit h(0) := limx↓0 h(x) certainly exists. Furthermore, by replacing

h with h̃ = h − h(0), we may assume without loss of generality that h(0) = 0. Denote by L the Lipschitz
constant of h.

Now, assume for a moment that h is additionally twice weakly differentiable with bounded derivatives. Let ∥h∥C2

be the supremum norm on h′ and h′′. In Corollary 2.11, set β = 0, r = (1 + |log(x)|)−2, q2 = p2 = 0,
γ2 = 1, q1 ∈ (1, 2], γ1 = q1 − 1, p1 = 1, C1 = ∥h∥C2 . Then, there exist constants C̃, ε > 0 independent
of h, q1, such that if eN < ε, then,

∣∣Eh(ST )− Eh(SN
T )
∣∣ ≤ C̃∥h∥C2

(
(q1 − 1)−2 +Mq1

)
log(e−1

N )2e
q1−1
6q1

N .

Next, we define a sequence of twice weakly differentiable functions hn approximating h. The functions hn are
defined via their second weak derivative h′′n, together with the initial conditions hn(0) = h′n(0) = 0. The
function h′′n is given by

h′′n(x) :=

4
(
h
(
k+1
n

)
− h

(
k
n

))
n2, x ∈

[
k
n ,

k+1/2
n

]
,

−4
(
h
(
k+1
n

)
− h

(
k
n

))
n2, x ∈

[
k+1/2

n , k+1
n

]
.

It is easily verified that

h′n(k/n) = 0, hn(k/n) = h(k/n), ∥hn∥C2 ≤ 4∥h∥Lipn, and ∥h− hn∥∞ ≤
∥h∥Lip

n
,

where ∥h∥Lip is the Lipschitz-norm of h.

Therefore, we get∣∣Eh(ST )− Eh(SN
T )
∣∣ ≤ |Eh(ST )− Ehn(ST )|+

∣∣Ehn(ST )− Ehn(SN
T )
∣∣

+
∣∣Ehn(SN

T )− Eh(SN
T )
∣∣

≤ 2
∥h∥Lip

n
+ C̃∥h∥Lipn

(
(q1 − 1)−2 +Mq1

)
log(e−1

N )2e
q1−1
6q1

N .

Setting

n =

((
(q1 − 1)−2 +Mq1

)
log(e−1

N )2e
q1−1
6q1

N

)−1/2

,

we get

∣∣Eh(ST )− Eh(SN
T )
∣∣ ≤ C̃∥h∥Lip

(
(q1 − 1)−1 +M1/2

q1

)
log(e−1

N )e
q1−1
12q1
N .

3 L1-approximation of the fractional kernel

The aim of this section is to give kernels KN of the form (1.6), such that

eN :=

∫ T

0

∣∣K(t)−KN (t)
∣∣ dt

converges quickly for N → ∞. We give two different approximations in Sections 3.1 and 3.2, respectively.
Throughout, we will make heavy use of the representation of K in terms of its inverse Laplace transform, i.e.,

K(t) =
tH−1/2

Γ(H + 1/2)
= cH

∫ ∞

0
e−xtx−H−1/2 dx, cH =

1

Γ(H + 1/2)Γ(1/2−H)
. (3.1)
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3.1 Geometric Gaussian approximations

Let us now define the approximations KN we use, which deviate slightly from the approximations in [7]. We
denote by rd : R→ N+ the function rounding to the nearest positive integer.

Definition 3.1 (Geometric Gaussian Rules). Let N ∈ N be the total number of nodes and α, β, a, b ∈ (0,∞)
be parameters of the scheme. Define

m := rd
(
β
√
(1/2 +H)N

)
, n := rd

(
1

β

√
N

1/2 +H

)
(≈ N/m), (3.2)

ξ0 := 0, ξn := b exp

(
α√

1/2 +H

√
N

)
, ξi = a

(
ξn
a

) i
n

, i = 1, . . . , n.

Let (xj)mj=1 be the nodes and (w̃j)
m
j=1 be the weights of a Gaussian quadrature formula of level m on the

interval [0, ξ1] with the weight function w(x) = cHx
−H−1/2. Furthermore, let (xj)

(i+1)m
j=im+1 be the nodes

and (w̃j)
(i+1)m
j=im+1 be the weights of a Gaussian quadrature formula of level m on to the intervals [ξi, ξi+1] for

i = 1, . . . , n − 1 with the weight function w(x) ≡ 1. Then we define the geometric Gaussian rule of type
(H,N,α, β, a, b) to be the set of nodes (xj)mn

j=1 with weights (wj)
mn
j=1 defined by

wj :=

{
w̃j , if j = 1, . . . ,m,

cHw̃jx
−H−1/2
j , else.

The approximation of K is then given by

KN (t) :=
mn∑
j=1

wje
−xjt.

In what follows we will often drop the function rd in (3.2) and assume that m and n can be real numbers, and
that N = nm exactly, purely for convenience. This does not affect the convergence rates.

Remark 3.2. In geometric Gaussian rules, we have four parameters that we can freely choose:α, β, a, b. These
parameters can be interpreted as follows:

■ The parameter α determines the cutoff point ξn of the integral in (3.1), i.e. we approximate the integral
only on the interval [0, ξn].

■ The parameter β determines the level of the Gaussian quadrature rule.

■ The parameter a determines the size of the first interval [0, ξ1]. This interval is special due to the singu-
larity in the weight function w.

■ The parameter b is used for fine-tuning the results.

In particular, parameter α is mainly responsible for controlling the error in our approximation on the interval
[ξn,∞), parameter β is mainly responsible for controlling the error on [ξ1, ξn], and parameter a is mainly
responsible for controlling the error on [0, ξ1].

Throughout this section, we will use the following proposition. It states that Gaussian quadrature is lower-biased
for completely monotone functions.

Proposition 3.3. Let f : [a, b] → R be completely monotone, and let (xi)ni=1 be the nodes and (wi)
m
i=1 be

the weights of Gaussian quadrature with respect to the weight function w. Then,∫ b

a
f(x)w(x) dx−

n∑
i=1

wif(xi) ≥ 0.
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Proof. This follows immediately from Theorem D.1, using that derivatives of even order of completely monotone
functions are non-negative.

We now start with the proof of the convergence rate, by stating a lemma on the error of Gaussian quadrature.
This is a sharpened version of [19, Theorem 19.3] for the specific function f(x) = (x+ c)−γ . The proof is very
technical, and delegated to Appendix C.

Lemma 3.4. Let f : [−1, 1] → R, f(x) := (x + c)−γ , where c > 1, and γ > 1. Let (xi)mi=1 be the
nodes and (wi)

m
i=1 be the weights of Gaussian quadrature of levelm on [−1, 1] with weight w(x) ≡ 1. Define

µ := 2m
γ−1 , assume that µ ≥ 1

c−1 ∨
3c

2
√
c2−1

, set ε :=

√
µ2(c2−1)+1−c

µ2−1
, and r := c − ε +

√
(c− ε)2 − 1.

Then, ∣∣∣∣∣
∫ 1

−1
f(x) dx−

m∑
i=1

wif(xi)

∣∣∣∣∣ ≤ νε1−γ
(
c+

√
c2 − 1

)−2m
,

where

ν := νm,r,γ,c :=
8

π

4m2

4m2 − 1

r

(r − r−1)2

(
1 +

(π/2)γ

γ − 1

)
eγ−1.

Recall the representation (3.1) of K . In the following Lemmas, we split up the error of Gaussian quadrature
on the interval [0,∞) into several smaller intervals that we treat separately. More precisely, in Lemma 3.5, we
consider intervals [ξi, ξi+1] with i = 1, . . . , n−1, in Lemma 3.6 the interval [ξ1, ξn], in Lemma 3.7 the interval
[0, ξ1], and in Lemma 3.8 the interval [ξn,∞). Finally, we will combine all these error bounds in Theorem 3.9.

Lemma 3.5. Let b > a > 0, and H > −1/2. Let (xi)mi=1 be the nodes and (wi)
m
i=1 be the weights of the

Gaussian quadrature of level m on the interval [a, b] with weight function w(x) ≡ 1. Then,∫ ∞

0

∣∣∣∣∣
∫ b

a
e−xtx−H−1/2 dx−

m∑
i=1

wix
−H−1/2
i e−xit

∣∣∣∣∣dt
≤ νm,r,H+3/2,c

(
b− a
2

)−H−1/2

ε−H−1/2
(
c+

√
c2 − 1

)−2m
,

where c := b+a
b−a , γ := H + 3/2, and µ, ε and r are as in Lemma 3.4.

Proof. Since the function x 7→ e−xtx−H−1/2 is completely monotone, Proposition 3.3 implies that∫ ∞

0

∣∣∣∣∣
∫ b

a
e−xtx−H−1/2 dx−

m∑
i=1

wix
−H−1/2
i e−xit

∣∣∣∣∣ dt
=

∫ ∞

0

(∫ b

a
e−xtx−H−1/2 dx−

m∑
i=1

wix
−H−1/2
i e−xit

)
dt

=

∫ b

a
x−H−3/2 dx−

m∑
i=1

wix
−H−3/2
i .

This is obviously the error of Gaussian quadrature for the function x 7→ x−H−3/2 on the interval [a, b]. By a
simple linear transformation and Lemma 3.4, we get the result.

To simplify, we only prove asymptotic bounds from now on. More precisely, if we write f(n) ≈ g(n), then we
mean f(n) = g(n)(1 + o(n)), so that leading constants remain valid.
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Lemma 3.6. Let (xi)Ni=1 be the nodes and (wi)
N
i=1 be the weights of a geometric Gaussian rule with pa-

rameters α > 0, β = log(3+2
√
2)

α , and a ≥ b > 0, cf. Definition 3.1. Assuming cn :=
(
b
a

)1/n ≈ 1, we
have ∫ ∞

0

∣∣∣∣∣cH
∫ ξn

ξ1

e−xtx−H−1/2 dx−
N∑

i=m+1

wie
−xit

∣∣∣∣∣ dt
≲ C1a

−H−1/2NH/2+1/4

(
1 +

1

2
(1− cn)

)−2m (√
2 + 1

)−2m
,

where

C1 :=
2

π
cH

(
2eβ

(3 + 2
√
2)
√
H + 1/2

)H+1/2 (√
2 + 1

)1/2−H

1− (3 + 2
√
2)−H−1/2

(
1 +

(π/2)H+3/2

H + 1/2

)
.

Proof. Denote cn :=
(
b
a

)1/n
, and L := eαβ . Applying the triangle inequality for the intervals [ξi, ξi+1] with

i = 1, . . . , n− 1, and using Lemma 3.5, we get∫ ∞

0

∣∣∣∣∣cH
∫ ξn

ξ1

e−xtx−H−1/2 dx−
N∑

i=m+1

wie
−xit

∣∣∣∣∣ dt
≤ C2

n−1∑
i=1

(
ξi+1 − ξi

2

)−H−1/2 (
M +

√
M2 − 1

)−2m
, (3.3)

where

C2 :=
8

π
cH

4m2

4m2 − 1

r

(r − r−1)2

(
1 +

(π/2)H+3/2

H + 1/2

)
eH+1/2ε−H−1/2,

and M = cnL+1
cnL−1 , µ := 2m

H+1/2 , ε =
√

µ2(M2−1)+1−M

µ2−1
, and r =M − ε+

√
(M − ε)2 − 1, and where we

assume that µ ≥ 1
M−1 ∨

3M
2
√
M2−1

.

Consider first the sum in (3.3). Since ξi = acinL
i, we have

n−1∑
i=1

(
ξi+1 − ξi

2

)−H−1/2

≤ (acnL)
−H−1/2

(
cnL− 1

2

)−H−1/2 1

1− (cnL)−H−1/2
. (3.4)

Next, we want to determine the rate at which (3.3) decays. Heuristically, it seems that the rate is mainly deter-

mined by the term
(
M +

√
M2 − 1

)−2m
. Note that

M =
L+ 1

L− 1
+ 2L

1− cn
(cnL− 1)(L− 1)

=:M0 + δ with M0 :=
L+ 1

L− 1
,

where δ ≪ 1, for cn ≈ 1. Let us hence consider the expression
(
M0 +

√
M2

0 − 1
)−2m

. Here,M0 depends

on α and β, while m depends on β, so with this simplification we have removed the dependence of the rate
on the parameters a and b. Recalling Remark 3.2, we want to choose a good value of β (i.e. a good degree of
the Gaussian quadrature rule) to make the error as small as possible. Therefore, we consider the optimization
problem

inf
β>0

(
M0 +

√
M2

0 − 1

)−2m

.
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Markovian approximations 17

After some manipulations, we see that minimizing this is equivalent to minimizing(
eαβ − 1

eαβ + 2eαβ/2 + 1

)αβ

.

Perhaps surprisingly, this can be optimized in closed form, and the solution is

L = eαβ = 3 + 2
√
2, i.e. β =

log(3 + 2
√
2)

α
.

This implies

M0 =
eαβ + 1

eαβ − 1
=
√
2, and M0 +

√
M2

0 − 1 =
√
2 + 1.

Moreover, for all cn ≤ 1,

M +
√
M2 − 1 =

√
2 + δ +

√
(
√
2 + δ)2 − 1

=
√
2 + (1 +

√
2)

1− cn
cn(3 + 2

√
2)− 1

+

√(√
2 + (1 +

√
2)

1− cn
cn(3 + 2

√
2)− 1

)2

− 1

≥
(√

2 + 1
)(

1 +
1

2
(1− cn)

)
.

Using this bound, and (3.4), we get∫ ∞

0

∣∣∣∣∣cH
∫ ξn

ξ1

e−xtx−H−1/2 dx−
N∑

i=m+1

wie
−xit

∣∣∣∣∣dt
≤ C2

(
2

acnL

)H+1/2 (cnL− 1)−H−1/2

1− (cnL)−H−1/2

(
1 +

1

2
(1− cn)

)−2m (√
2 + 1

)−2m
.

It is now that we start using asymptotic bounds. As N → ∞, we have m,n → ∞. Since cn ≈ 1, we have
M ≈

√
2, µ = 2m

H+1/2 , ε ≈ µ−1, and r ≈
√
2 + 1. Plugging in these values, we get the bound in the

statement of the theorem. After noting that µ = 2m
H+1/2 ≥

√
2 + 1 = 1

M−1 ∨
3M

2
√
M2−1

is satisfied for all
m ≥ 2, this proves the lemma.

We have now estimated the approximation error on the interval [ξ1, ξn]. Next, we consider the interval [ξ0, ξ1].

Lemma 3.7. Let (xi)mi=1 be the nodes and (wi)
m
i=1 be the weights of Gaussian quadrature of level m on

the interval [0, a] with respect to the weight function w(x) = cHx
−H−1/2 with H > −1/2. Assume a ≤

2(m+ 1)T−1. Then,∫ T

0

∣∣∣∣∣cH
∫ a

0
e−txx−H−1/2 dx−

m∑
i=1

wie
−xit

∣∣∣∣∣ dt ≤ cHT 1/2+H (Ta)2m+1/2−H

(2m+ 1)!(2m+ 1/2−H)
.

Proof. Since x 7→ e−tx is a completely monotone function, Proposition 3.3 implies that∫ T

0

∣∣∣∣∣cH
∫ a

0
e−txx−H−1/2 dx−

m∑
i=1

wie
−xit

∣∣∣∣∣dt
=

∫ T

0

(
cH

∫ a

0
e−txx−H−1/2 dx−

m∑
i=1

wie
−xit

)
dt

= cH

∫ a

0

(
1− e−Tx

)
x−H−3/2 dx−

m∑
i=1

wi

xi

(
1− e−Txi

)
.
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This is obviously the Gaussian quadrature error of the function

f(x) = (1− e−Tx)x−1 = T
∞∑
n=0

(−xT )n

(n+ 1)!

on the interval [0, a] with respect to the weight function w(x) = cHx
−H−1/2. In particular, because Gaussian

quadrature integrates exactly polynomials up to degree 2m− 1, instead of f we may consider

g(x) := f(x)− T
2m−1∑
n=0

(−xT )n

(n+ 1)!
= T 2m+1x2m

∞∑
n=0

(−xT )n

(n+ 2m+ 1)!
.

If

x ≤ (2m+ 2)T−1, then 0 ≤ g(x) ≤ T 2m+1x2m

(2m+ 1)!
.

Hence, for a ≤ (2m+ 2)T−1, we have (due to the positivity of the weights)∫ T

0

∣∣∣∣∣cH
∫ a

0
e−txx−H−1/2 dx−

m∑
i=1

wie
−xit

∣∣∣∣∣ dt = cH

∫ a

0
g(x)x−H−1/2 dx−

m∑
i=1

wig(xi)

≤ cH
∫ a

0

T 2m+1x2m−H−1/2

(2m+ 1)!
dx

= cH
T 2m+1a2m+1/2−H

(2m+ 1)!(2m+ 1/2−H)
.

Finally, the following formula for the approximation error on [ξn,∞) is trivial.

Lemma 3.8. We have ∫ ∞

0
cH

∫ ∞

a
e−txx−H−1/2 dx dt =

cH
1/2 +H

a−H−1/2.

Proof. This follows immediately using Fubini’s theorem with∫ ∞

0
cH

∫ ∞

a
e−txx−H−1/2 dx dt = cH

∫ ∞

a
x−H−3/2 dx =

cH
1/2 +H

a−H−1/2.

We are finally able to state the following result on the convergence rate of the Gaussian approximations.

Theorem 3.9. Let (xi)Ni=1 be the nodes and (wi)
N
i=1 be the weights of the geometric Gaussian rule with

α = log(3 + 2
√
2), β = 1, a = 10

√
2−14
e

√
(H + 1/2)NT−1, and b = 10

√
2−14
e T−1. Then,∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ cH

H + 1/2
TH+1/2

(
e

10
√
2− 14

)H+1/2 (√
2 + 1

)−2
√

(H+1/2)N
. (3.5)

If instead we choose b = 10
√
2−14
e ((H + 1/2)N)1/4T−1, then,∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ 200

3
cHT

H+1/2N−H/4−1/8
(√

2 + 1
)−2
√

(H+1/2)N
. (3.6)

Remark 3.10. We decided to give two different bounds depending on the choice of the parameter b in the
theorem above. While the latter bound obviously yields the ever so slightly better convergence rate, the former
bound may be more convenient in theoretical applications. This is because in the latter bound, the largest node
x has an additional polynomial factor of growth that is not present in the former bound. Hence, using the latter
bound in theoretical applications may lead to additional annoying logarithmic error terms that can be avoided by
using the former bound.
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Proof. We only prove (3.5), the proof of (3.6) being similar. By the triangle inequality, and Lemmas 3.7, 3.6, and
3.8,

∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ cHT

1/2+H (Tacn(3 + 2
√
2))2m+1/2−H

(2m+ 1)!(2m+ 1/2−H)

+ C1a
−H−1/2NH/2+1/4

(
1 +

1

2
(1− cn)

)−2m (√
2 + 1

)−2m

+
cH

1/2 +H
b−H−1/2 exp

(
−α
√
(H + 1/2)N

)
,

whereC1 is the constant from Lemma 3.6, and where we assume that cn :=
(
b
a

)1/n ≈ 1, a ≤ 2(m+1)T−1,

β = log(3+2
√
2)

α , and b ≤ a.

Let us now choose α such that

exp
(
−α
√

(H + 1/2)N
)
=
(√

2 + 1
)−2β

√
(H+1/2)N

,

in order to ensure that the latter two terms converge at the same speed. It is clear that this is achieved for

α = log
(
3 + 2

√
2
)
, i.e. β = 1.

Next, we want to ensure that the first summand converges at the same speed as the other two. Using Stirling’s
formula, we have

(Tacn(3 + 2
√
2))2m+1/2−H

(2m+ 1)!(2m+ 1/2−H)
≲

(Tacn(3 + 2
√
2))2m+1/2−H

4m2
√
2π · 2m

(
2m
e

)2m
≈ (Ta(3 + 2

√
2))1/2−H

8m5/2
√
π

c2mn

(
eTa(3 + 2

√
2)

2m

)2m

.

To ensure a similar speed of convergence, we need

eTa(3 + 2
√
2)

2m
=
√
2− 1, i.e. a =

(
10
√
2− 14

)
m

eT
.

Obviously, for this choice of a we have a ≤ 2(m+ 1)T−1. Furthermore, we now have∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ cHT

H+1/2

(
(1e (2
√
2− 2))1/2−H

8
√
π

m−2−Hc2mn

+
2

π

(
e2

H + 1/2

)H+1/2 √
2 + 1

1− (3 + 2
√
2)−H−1/2

×

(
1 +

(π/2)H+3/2

H + 1/2

)(
1 +

1

2
(1− cn)

)−2m

+
1

1/2 +H
(Tb)−H−1/2

)(√
2 + 1

)−2
√

(H+1/2)N
.

Assuming that we choose b constant (i.e. independent of N ), such that b ≤ a, we see that only the last
summand in the above bound is relevant, due to the polynomial terms inN . Indeed, since a = C

√
N for some

C, it is not hard to see that we have both

m−2−Hcmn = o(1) and

(
1 +

1

2
(1− cn)

)−2m

= o(1).
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Thus, ∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ cH

H + 1/2
TH+1/2(Tb)−H−1/2

(√
2 + 1

)−2
√

(H+1/2)N
.

To ensure that b ≤ a for all m ≥ 1, we choose b = 10
√
2−14
eT , yielding (3.5).

3.2 Non-geometric Gaussian approximations

We will try to further improve the results of Section 3.1 by choosing non-geometrically spaced intervals [ξi, ξi+1].

Definition 3.11 (Non-geometric Gaussian Rules). Let N ∈ N be the total number of nodes and β, a, c ∈
(0,∞) be parameters of the scheme, where c > 1. We define

m := rd
(
β
√
(1/2 +H)N

)
, n := rd

(
1

β

√
N

1/2 +H

)
(≈ N/m),

ξ0 := 0, ξ1 := a, ξi+1 =

c+ ξ
1/2+H

2m
i

c− ξ
1/2+H

2m
i

2

ξi, i = 1, . . . , n− 1. (3.7)

Here, we assume that ξ
1/2+H

2m
i < c for all i = 1, . . . , n− 1, which is true if we choose c large enough. Define

(xi)
m
i=1 to be the nodes and (w̃i)

m
i=1 to be the weights of Gaussian quadrature of levelm on the interval [0, ξ1]

with the weight function w(x) = cHx
−H−1/2. Furthermore, let (xi)mn

i=m+1 be the nodes and (wi)
mn
i=m+1 be

the weights of Gaussian quadrature of levelm on to the intervals [ξi, ξi+1] for i = 1, . . . , n−1 with the weight
function w(x) ≡ 1. Then we define the non-geometric Gaussian rule of type (H,N, c, β, a) to be the set of
nodes (xi)mn

i=1 with weights (wi)
mn
i=1 defined by

wi :=

{
w̃i, if i = 1, . . . ,m,

cHw̃ix
−H−1/2
i , else.

Remark 3.12. Non-geometric Gaussian rules have three free parameters: β, a, c. They can be interpreted as
follows.

■ The parameter c determines the cutoff point ξn of the interval in (3.1), similar to the parameter α in
geometric Gaussian rules. It is hence mainly used to control the error on [ξn,∞).

■ The parameter β determines the degree of the Gaussian quadrature rule, similar to the parameter β in
geometric Gaussian rules. It is hence mainly used to control the error on [ξ1, ξn].

■ The parameter a determines the size of the interval [0, a], which is again special due to the singularity
in the weight function w. Similarly to the parameter a in geometric Gaussian rules, it is mainly used to
control the error on [0, ξ1].

Finally, we remark that the reason for the specific definition of ξi+1 in (3.7) will become apparent in the proof of
Lemma 3.13. Furthermore, the parameters c, β, a will not depend on N in our proofs.

The following lemma is the equivalent of Lemma 3.6 for non-geometric Gaussian rules. It bounds the error of
the quadrature rule on [ξ1, ξn].
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Lemma 3.13. Let (xi)Ni=1 be the nodes and (wi)
N
i=1 be the weights of a non-geometric Gaussian rule. Then,∫ ∞

0

∣∣∣∣∣cH
∫ ξn

ξ1

e−xtx−H−1/2 dx−
N∑

i=m+1

wie
−xit

∣∣∣∣∣ dt
≲ cH

8

π

(
1 +

(π/2)H+3/2

H + 1/2

)
eH+1/2

n−1∑
i=1

ri

(ri − r−1
i )2

(
Li − 1

2

)−H−1/2

ε
−H−1/2
i c−2m,

whereLi =
ξi+1

ξi
,Mi =

Li+1
Li−1 ,µ := 2m

H+1/2 , εi =
√

µ2(M2
i −1)+1−Mi

µ2−1
, and ri =Mi−εi+

√
(Mi − εi)2 − 1,

and where we assume that µ ≥ 1
Mi−1 ∨

3Mi

2
√

M2
i −1

for i = 1, . . . , n− 1.

Proof. As in the proof of Lemma 3.6, we apply the triangle inequality for the intervals [ξi, ξi+1] with i =
1, . . . , n − 1, and use Lemma 3.5. Then, the statement of the lemma follows directly after noting that by the
definition of ξi+1 in (3.7), we have

ξ
−H−1/2
i

(
Mi +

√
M2

i − 1

)−2m

= c−2m.

While Lemma 3.13 is the equivalent of Lemma 3.6 for non-geometric Gaussian rules to bound the error on
[ξ1, ξn], Lemma 3.7 for the error on [0, ξ1] and Lemma 3.8 for the error on [ξn,∞) can be reused exactly. The
only difference to the geometric Gaussian rules is that we do not have an explicit formula for ξn, but merely the
recursion (3.7). However, the size of ξn is needed to determine the error contribution on [ξn,∞) in Lemma 3.8.
Hence, in the following lemma we determine the approximate size of ξn for non-geometric Gaussian rules.

Lemma 3.14. Let η = η(c, β) be the solution of the ODE

dηt
dt

= 2 log

(
1 +

2e
ηt
2β2

c− e
ηt
2β2

)
, η0 = 0. (3.8)

Note that η has a finite explosion time T0. The following two statements are equivalent.

1 The explosion time T0 > 1, i.e. η1 <∞.

2 There exists δ > 0 such that for N sufficiently large we have

max
i=1,...,n

ξ
H+1/2

2m
i < (1− δ)c. (3.9)

If one of these conditions is satisfied, then

ξn = Ω(1) exp

(
1

β

√
N

H + 1/2
η1

)
.

Remark 3.15. We need to have maxi=1,...,n ξ
1/2+H

2m
i < c to ensure that the non-geometric Gaussian rule

is well-defined, cf. (3.7). This lemma hence gives a semi-explicit asymptotic formula for ξn if we satisfy this
condition even with an additional δ > 0 of leeway.

Proof. Define κ := (H+1/2)n
2m ≈ 1

2β2 , and assume that N is large. Recall that

ξi+1 = ξi

c+ ξ
H+1/2

2m
i

c− ξ
H+1/2

2m
i

2

= ξi

(
1 +

2ξ
κ/n
i

c− ξκ/ni

)2

.
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Set η
(n)
i/n

:= log ξ
1/n
i . Then,

η
(n)
i+1
n

= η
(n)
i
n

+
2

n
log

1 +

2 exp

(
κη

(n)
i
n

)
c− exp

(
κη

(n)
i
n

)
 , η

(n)
1/n =

1

n
log a.

This is almost the Euler discretization of the ODE (3.8), whose solution we denote by η.

If we now have the uniform bound ξ
H+1/2

2m
i < (1 − δ)c, clearly also η(n) remains uniformly bounded in n. In

particular, we may assume that the vector field in (3.8) is bounded (for t ≤ 1), and we have the convergence

lim
n→∞

η
(n)
1 = η1.

The error
∣∣∣η(n)1 − η1

∣∣∣ will of course depend on δ. Furthermore, this also implies that η1 < ∞, and hence

T0 > 1.

Conversely, assume that T0 > 1, and for now, assume also a ≤ 1. Since the vector field governing η is

increasing and non-negative, the Euler discretization is lower-biased. This implies in particular that η
(n)
1 ≤ η1.

If a > 1, then there exists tn ∈ (0,∞) with ηtn = 1
n log a = η

(n)
1/n. Clearly, tn → 0 as n→∞. Again since

the Euler scheme is lower-biased, we have

η
(n)
1 ≤ η1+tn−1/n ≤ η(1+T0)/2 <∞,

where the second inequality holds for n sufficiently large. Therefore,

max
i=1,...,n

ξ
H+1/2

2m
i = ξ

H+1/2
2m

n = exp

(
n
H + 1/2

2m
η
(n)
1

)
≤ exp

(
1

2β2
η(1+T0)/2

)
< c,

where the last (strict!) inequality holds, since the explosion time T0 is exactly at exp
(

1
2β2 η(1+T0)/2

)
= c.

Thus, since the inequality is strict, and since exp
(

1
2β2 η(1+T0)/2

)
is independent of n, we can find a uniform δ

satisfying (3.9).

Finally, assume that one of these two conditions (and hence both) are satisfied. Then, we prove the asymptotic
formula for ξn. Due to the boundedness of the vector field (since T0 > 1), we have that the solution of the ODE is

Lipschitz in the initial condition and in the driving vector field. Now, κ = 1
2β2 +O(N−1/2), η

(n)
1/n = O(N−1/2),

and n =
√
N , implying that we have

η
(n)
1 =

(
1 + f(N−1)

)
η1,

where f satisfies |f(N)| = O(N−1/2). Therefore,

ξn = exp (n (1 + f(N)) η1) = exp

(
1

β

√
N

H + 1/2
η1

)
Ω(1).

We can now proceed with the proof of the error bound for non-geometric Gaussian rules.

Theorem 3.16. Define the constants β0 = 0.92993273, and c0 = 3.60585021. Let KN be a Gaussian
approximation coming from a non-geometric Gaussian rule with parameters c ≥ c0, β ≥ β0, and a > 0,
where c > c0 or β > β0. Then,∫ T

0

∣∣K(t)−KN (t)
∣∣dt ≲ cH

H + 1/2
ξ−1/2−H
n

= Ω(1) exp

(
−η1(c, β)

β

√
(H + 1/2)N

)
.
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Figure 1: The error bounds for the approximationsKN suggested in [7, Theorem 2.1], and in our Theorems 3.9
and 3.16 are all of the form CNγe−α(H)

√
N . This figure illustrates how the exponent of convergence α(H)

varies in H for these three approximations.

In the first inequality, the higher order terms explode as (c, β) → (c0, β0), and in the second inequality, the
leading constant explodes for the same limit. Furthermore, we have

η1(c0, β0)

β0
= 2.3853845446404978.

In Figure 1 we compare the convergence rates of our results with the previously achieved strong convergence
rate in [7, Theorem 2.1].

Proof of Theorem 3.16. Assume for now that the conditions of Lemma 3.14 are satisfied, i.e. the explosion time
T0 of η in (3.8) satisfies T0 > 1. Then we can apply the triangle inequality on the intervals [0, ξ1], [ξ1, ξn], and
[ξn,∞), and apply Lemmas 3.7, 3.13, 3.8 and 3.14, to get∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≤ O(1)

(
(Ta)2m+1/2−H

m2(2m)!

+

n−1∑
i=1

ri

(ri − r−1
i )2

(Li − 1)−H−1/2 ε
−H−1/2
i c−2β

√
(H+1/2)N

+ exp

(
− 1

β

√
(H + 1/2)Nη1(c, β)

))
, (3.10)

where a ≤ 2(m + 1)T−1, Li = ξi+1

ξi
, Mi = Li+1

Li−1 , µ := 2m
H+1/2 , εi =

√
µ2(M2

i −1)+1−Mi

µ2−1
, and ri =

Mi − εi +
√
(Mi − εi)2 − 1, and where we assume that µ ≥ 1

Mi−1 ∨
3Mi

2
√

M2
i −1

.

The first summand in this bound converges factorially fast (for a independent of N ), and will hence be of no
further concern. On the other hand, we want that the second and the third summand converge at the same
speed. Hence, we wish to solve the optimization problem

arginf
c>1,β>0

c−2β
√

(H+1/2)N , subject to c−2β
√

(H+1/2)N = exp

(
− 1

β

√
(H + 1/2)Nη1(c, β)

)
.
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This is equivalent to
arginf
c>1,β>0

−β log c, subject to 2β2 log c = η1(c, β). (3.11)

The solution can be numerically computed to be

β0 = 0.92993273, c0 = 3.60585021.

For these values, we have
c−2β0
0 = e−2.3853845446404978.

However, we still need to ensure that T0 = T0(c, β) > 1. In fact, for the choice (c, β) = (c0, β0), it is not
hard to see that this condition will likely be violated. Indeed, recall that the explosion happens exactly when

c = exp
(
ηT0
2β2

)
, or equivalently, when 2β2 log c = ηT0 . But this is precisely the constraint in the optimization

problem (3.11) with T0 = 1. Therefore, Lemma 3.14 is in fact not applicable for (c, β) = (c0, β0). This can
be remedied by choosing c or β slightly larger. Indeed, note that the vector field in (3.8) is strictly decreasing in
both c and β, and hence, T0(c, β) is strictly increasing. Therefore, if c ≥ c0, β ≥ β0, and c > c0 or β > β0,
then T0(c, β) > 1, and our application of Lemma 3.14 was valid.

What does this choice of c and β mean for the convergence rate of the kernel error? Recall that (c0, β0) was
the solution to the optimization problem where we wanted to optimize over the convergence rate subject to the
constraint that the second and third summand in (3.10) converge at the same speed. If we now increase c or β,
then the second term will converge faster, while the third term will converge more slowly. We can further quantify
this by stating that

c−2β
√

(H+1/2)N ≤ O(1)e−γ
√
N exp

(
− 1

β

√
(H + 1/2)Nη1(c, β)

)
for some small γ > 0 depending on c, β.

We have now almost shown that the second term in (3.10) converges faster than the third term, and that we can
hence (asymptotically) ignore it. However, we still need to treat the constants in front, to ensure that they do not
cause additional troubles as N →∞. Indeed, one can show that

n−1∑
i=1

ri

(ri + r−1
i )2

(Li − 1)−H−1/2ε
−H−1/2
i = O

(
n−1∑
i=1

mH+1/2

)
= O

(
N3/4+H/2

)
.

Altogether, this shows the bound∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≤ O(1) exp

(
− 1

β

√
(H + 1/2)Nη1(c, β)

)
.

Finally, we note that only the error on the interval [ξn,∞) remains in the above bound, the errors on the other
intervals having converged with higher order. Therefore, we also have∫ T

0

∣∣K(t)−KN (t)
∣∣ dt ≲ ∫ T

0

∫ ∞

ξn

cHe
−txx−H−1/2 dx dt ≤ cH

1/2 +H
ξ−H−1/2
n .

4 Numerics

Throughout this section, we compare the approximations KN ofK given in Section 3 with previously proposed
methods. We demonstrate the efficiency of the geometric and non-geometric Gaussian rules for the pricing
of various options under the rough Heston model, but we also indicate possible ways how these theoretically
derived rules can be further improved numerically. With that in mind, below is a list of the quadrature rules we
compare for approximating K by KN .
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1 “GG” (Geometric Gaussian quadrature): This is the quadrature rule from Theorem 3.9 with a = 4/T and
b = 1/(2T ).

2 ‘’NGG” (Non-Geometric Gaussian quadrature): This is the quadrature rule from Theorem 3.16 with c =
c0, β = β0, and a = 3/T .

3 “OL1” (Optimal L1-error): This is the quadrature rule we get by optimizing the L1-error betweenKN and
K . We use the intersection algorithm outlined in Appendix E for computing the L1-errors.

4 “OL2” (Optimal L2-error): This is the quadrature rule we get by optimizing the L2-error betweenKN and
K . We use [7, Proposition 2.11] for computing L2-errors.

5 “BL2” (Bounded L2-error): This quadrature rule essentially minimizes the L2-error between KN and K ,
but penalizes large nodes x. A more precise description of the algorithm underlying this quadrature rule
can be found in Appendix F.

6 “AE” (Abi Jaber, El Euch): This is the quadrature rule suggested in [4, Section 4.2].

7 “AK” (Alfonsi, Kebaier): This is the quadrature rule suggested in [6, Table 6, left column], which seems to
be the best (completely monotone) quadrature rule in [6].

We note that the algorithms OL2, AK, and BL2 focus on minimizing the L2-error, while the algorithms GG,
NGG, OL1, AE focus on the L1-error. Since the L2-norm of K is infinite for H ≤ 0, the L2-algorithms can
only be applied for positive H . In contrast, the L1-algorithms work for all H > −1/2. Perhaps surprisingly,
BL2 still works for negativeH despite minimizing the L2-norm, since we penalize large mean-reversions, which
corresponds to a smoothing of the singularity of the kernel, see also Appendix F.

Throughout this section we compute option prices under rough Heston using Fourier inversion, since the char-
acteristic function φ of the log-stock price log(ST ) in (1.1) is known in semi-closed form see e.g. [5]. The same
is true for the characteristic function φN of the Markovian approximation log(SN

T ) obtained by replacing K
by KN , see e.g. [3]. For the computation of φ, we need to solve a fractional Riccati equation. This is done
using the Adam’s scheme, see e.g. [13]. To obtain φN , we need to solve an ordinary (N -dimensional) Riccati
equation. This is done using a predictor-corrector scheme, as explained in [4, 7]. We remark that generally
speaking, Fourier inversion of the Markovian approximation tends to be faster, as we only have to solve an
ordinary (higher-dimensional) Riccati equation, which has a cost of O(n), where n is the number of time steps.
In contrast, solving the fractional Riccati equation, which is a Volterra integral equation, has a cost of O(n2).
This difference is especially pronounced if we need to compute prices with high accuracy, small maturity, or tiny
(especially negative) Hurst parameter H .

This numerical section is structured as follows. First, we compare the computational cost of computing all these
quadrature rules, as well as their largest nodes in Section 4.1. Next, in Section 4.2 we verify that the weak
error can indeed be bounded by the L1-error in the kernel as shown in Section 2, rather than the L2-error,
by conducting some specific comparisons of the algorithms OL1 and OL2. In Section 4.3 we numerically verify
the convergence rates of the L1-errors between KN and K that we proved in Section 3, and compare these
rates with the other algorithms. Finally, in Section 4.4, we compute various option prices and verify stylized facts
and properties of the rough Heston model and its Markovian approximations. This includes implied volatility
smiles in Section 4.4.1, implied volatility surfaces in Section 4.4.2, implied volatility skews in Section 4.4.3, and
finally, prices of digital European call options in Section 4.4.4, where we want to illustrate that the Markovian
approximations still converge quickly despite the lack of regularity in the payoff function that is required in Section
2.

4.1 Computational Times and Largest Nodes

Before discussing convergence rates below, let us compare two important quantities associated with these
quadrature rules: computational time and the largest nodes.
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H = −0.1 H = 0.001 H = 0.1

N GG NGG OL1 BL2 AE GG NGG OL1 OL2 BL2 AE AK GG NGG OL1 OL2 BL2 AE AK
1 0.18 0.05 0.24 0.24 -0.46 0.12 0.00 0.14 0.87 0.87 -0.53 - 0.06 -0.07 0.02 0.34 0.34 -0.62 -
2 1.17 0.95 1.40 1.35 0.08 1.02 0.95 1.28 6.83 1.43 0.05 3.32 0.92 0.95 1.18 2.56 0.94 0.03 1.48
3 1.59 1.70 2.24 2.08 0.27 1.39 1.70 2.07 12.2 1.83 0.25 3.32 1.25 1.70 1.93 4.28 1.67 0.22 1.48
4 1.94 2.49 2.98 2.80 0.39 1.70 2.49 2.75 17.3 2.43 0.37 7.10 1.58 2.49 2.57 5.77 2.24 0.34 3.13
5 2.24 3.32 3.66 3.45 0.48 2.02 3.32 3.35 36.7 3.02 0.46 7.10 1.81 1.09 3.14 7.11 2.81 0.43 3.13
6 2.57 4.16 4.24 4.10 0.55 2.26 1.86 3.91 44.0 3.52 0.53 11.5 2.04 1.86 3.65 8.34 3.32 0.50 4.40
7 2.82 2.66 4.79 4.67 0.61 2.48 2.66 4.42 31.1 4.15 0.59 11.5 2.24 2.66 4.28 9.48 3.77 0.56 4.40
8 3.04 2.66 5.32 5.17 0.66 2.68 2.66 4.90 35.5 4.54 0.64 15.5 2.42 2.66 4.58 10.5 4.52 0.61 5.45
9 3.24 2.66 6.03 5.62 0.70 2.86 2.66 5.35 39.7 4.90 0.69 15.5 2.58 2.66 5.20 11.6 4.90 0.66 5.45

10 3.44 3.49 6.65 6.03 0.74 3.04 3.49 6.02 43.9 5.25 0.72 20.0 2.75 3.49 5.74 12.5 5.27 0.70 6.35

Table 1: Largest nodes of the quadrature rules with maturity T = 1. Since the largest nodes increase consider-
ably with N , we give the logarithm with base 10 of the largest node (i.e. a value of 3 in the table corresponds to
a largest node of 103 = 1000).

First, the time it took to compute the quadrature rules for the various algorithms was largely independent of the
Hurst parameter H . For the quadrature rules GG, NGG, OL2, AE and AK, the computation is basically instant,
taking at most a few ms. BL2 is still quite fast, with computational times ranging from a few ms (for N = 1) to
a few seconds (for N = 10). Finally, OL1 is the most expensive, where computing KN for N = 10 already
takes about 15 min.

The largest node gives us some insight into how well the singularity of the kernel is captured. If a quadrature
rule with small nodes performs very well, this may indicate that the singularity (and hence the roughness of
the volatility) is not very important for that particular problem, and vice versa. Also, quadrature rules with small
nodes are typically preferable over ones with large nodes (if they perform equally well), as larger nodes might
lead to more problems of numerical stability and higher computational times. It will turn out that this is not
a particularly severe problem for European options as we consider them, but it is much more relevant if one
decides to simulate paths using the Markovian approximation, see also [8].

The largest nodes are given in Table 1. We see that quadrature rules that aim to minimize the L2-error (i.e.
OL2, AK) reach very large nodes for small H . Compared to that, the largest nodes seem to remain bounded for
H → 0 for quadrature rules that aim to minimize the L1-error (i.e. GG, NGG, OL1, AE). Interestingly, BL2 also
has bounded nodes for small H , with largest nodes of similar sizes as for OL1.

4.2 Comparing OL1 with OL2

We have shown in Section 2 that the weak error of the Markovian approximations of the rough Heston model can
be bounded by the L1-error in the kernel. This suggests, in contrast to e.g. the work in [7] that if we want to price
options using the Markovian approximations, we may want to focus on minimizing the L1-error in the kernel,
instead of the L2-error, i.e. should use the algorithm OL1 rather than OL2. The difference becomes especially
pronounced for very small H , as in that case, K(t) = tH−1/2 is barely square-integrable. Furthermore, weak
formulations of rough Heston are possible in the regime of H ∈ (−1/2, 0], see e.g. [1, 2, 18].

In the following figures we aim to show that the error of approximating European call option implied volatility
smiles indeed decreases rapidly as the number N of nodes in the kernel KN increases, if those nodes are
chosen such that the L1-error in the kernel is minimized. We compare these results with using the kernel KN

resulting from minimization of the L2-error.

Throughout, we consider European call options with the same parameters as in [4, Section 4.2], i.e.

S0 = 1, V0 = 0.02, θ = 0.02, λ = 0.3, ν = 0.3, ρ = −0.7, T = 1.

We choose 201 values for the log-moneyness linearly spaced in the interval [−1.5, 0.75]. The implied volatility
smiles of the true (i.e. non-approximated) rough Heston model are computed using Fourier inversion with the
Adams scheme, see e.g. [13]. The implied volatility smiles for the Markovian approximations are computed using
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Figure 2: Left: Implied volatility smiles for European call options with tiny H = 0.001. The truth (black) is barely
visible under the L1-approximation (blue). The L2-approximation (red) is still a bit off. Right: Maximal relative
errors of the implied volatility smiles for different H and N , using kernel approximations KN minimizing the
L1-error (solid) or the L2-error (dashed).

a similar predictor-corrector scheme, see e.g. [4, 7]. All implied volatility smiles were computed with a maximal
relative error of 1.5 · 10−5.

The left plot of Figure 2 compares the implied volatility smiles for the European call option with a tinyH = 0.001,
and using N = 4 nodes. The Markovian approximation using the L1-optimized kernel (blue) is directly over the
true rough Heston smile (black). The approximation using theL2-optimized kernel (red) is still a bit off. Moreover,
it will converge only very slowly to the black line, as is illustrated in the right plot of Figure 2. Here, we see how
the errors in the implied volatility smiles decrease very rapidly for the L1-approximation as N increases, even
for tiny (or negative) H . In contrast, while the L2-approximation still achieves good results for H large enough,
we see that the convergence rate is very slow for tiny H . The precise values of the errors are given in Table 2.

KN minimizing ∥K −KN∥L1 KN minimizing ∥K −KN∥L2

N H = −0.2 H = −0.1 H = 0.001 H = 0.1 H = 0.2 H = 0.001 H = 0.1 H = 0.2

1 16.58 12.33 9.281 6.961 4.986 7.678 0.897 0.778
2 6.675 4.297 2.833 1.879 1.192 6.541 0.606 0.464
3 3.396 1.935 1.133 0.672 0.382 5.835 0.525 0.255
4 1.908 0.975 0.515 0.278 0.144 5.317 0.412 0.139
5 1.130 0.517 0.256 0.127 0.061 4.874 0.313 0.076
6 0.713 0.303 0.135 0.062 0.023 4.513 0.234 0.042
7 0.462 0.181 0.064 0.032 0.014 4.276 0.175 0.024
8 0.306 0.111 0.043 0.018 0.005 4.022 0.130 0.014
9 0.208 0.060 0.021 0.007 0.002 3.798 0.097 0.008

10 0.127 0.035 0.011 0.004 0.001 3.596 0.072 0.004

Table 2: Maximal relative errors in % of the European call smiles for different choices of N and H . The values
in this table have an error of at most 0.003.

Finally, we want to demonstrate that the error of the implied volatility smiles indeed converges at the same rate
as the L1-error of the kernels. To this end, we fix the Hurst parameter H = 0.1, and compute the L1-errors
and the L2-errors of the kernels, as well as the maximal errors of the volatility smiles for kernelsKN minimizing
the L1-error ∥K − KN∥L1 or the L2-error ∥K − KN∥L2 . The results are illustrated in Figure 3. Note that
the errors of the implied volatility smiles decrease roughly at the same speed as the L1-errors of the kernels,
consistent with our theoretical results.
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√
(H+1/2)N , corresponding to the error

bounds (with fitted leading constants) in Theorems 3.9 and 3.16, respectively. Right: Relative L1-errors for GG
for varying H and T = 1.

4.3 L1-error in the kernel

In this section, we want to numerically verify our that theL1-errors of GG and NGG converge super-polynomially,
and that their convergence rate does not become arbitrarily bad for small H .

In the left plot of Figure 4 we see the relative L1-errors for GG and NGG for H = 0.1 and T = 1. We clearly
see that both exhibit super-polynomial convergence. Furthermore, this figure includes lines representing the
convergence rates in Theorems 3.9 and 3.16 (with suitably fitted leading constants), showing that the errors
converge at the rate that we proved there. The right plot of Figure 4 shows that the convergence rates do not
become arbitrarily bad for tiny H > 0, and only significantly worsens once we approach H ≈ −1/2. We
remark that the error lines are wiggly due to the discrete choice of the level m of the Gaussian quadrature rule.

Finally, for small N , we compare GG with OL1. In Figure 5 we show that there still is significant room for
improvement. The figure only goes up to N = 10 because of the high computational cost of computing L1-
errors, cf. Section 4.1.
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Figure 5: Relative L1-errors for GG (dashed lines) and OL1 (solid lines) for T = 1 and varying H .

4.4 Weak convergence of the stock price

In this section we numerically investigate the weak convergence of the Markovian approximations of the rough
Heston model. Throughout, we use the same parameters as in [4, Section 4.2], i.e.

λ = 0.3, θ = 0.3 · 0.02, ρ = −0.7, ν = 0.3, V0 = 0.02, S0 = 1.

As mentioned before, we carry out all these computations using Fourier inversion. This introduces discretization
errors for both the approximation of the Fourier inversion integral, and the numerical solution of the (fractional)
Riccati equations needed for the characteristic function. Since we are not interested in the behaviour of these
discretization errors, we will always try to keep them very small. Our implementation of the Fourier inversion
(both the Adams scheme and the Markovian approximations) takes an error tolerance TOL and returns option
prices or implied volatilities that were computed with a combined relative error of the Fourier inversion and
the Riccati equations that is less than TOL. The specific choice of TOL will vary depending on the option we
consider, and will always be stated explicitly.

4.4.1 Implied volatility smiles for European call options

First, let us consider call options with 301 different values of log-moneyness linearly spaced in the interval
[−1, 0.5] ·

√
T , where we set the maturity T = 0.01, and H = −0.1, 0.001, 0.1. We compute these smiles

using Fourier inversion with a relative accuracy of at least 10−5 = 0.001% for H = 0.001, 0.1, and 10−4 =
0.010% for H = −0.1 (due to the higher computational cost associated with smaller H).

Indeed, especially for high-accuracy computations with tiny T or H , the computational times can become very
large. However, the Adams scheme is more affected by this than the Markovian approximations. For example,
the computation of the smile for H = −0.1 with relative accuracy 10−4 took 6183 seconds using the Adams
scheme, while the Markovian approximations took 40 – 270 seconds, depending on N and the quadrature
rule used. This is because in both cases, we need to solve a Riccati equation to compute the characteristic
function, and this is a fractional Riccati equation for the Adams scheme, while it is an ordinary (N -dimensional)
Riccati equation for the Markovian approximations. The numerical solution of a fractional Riccati equation has a
computational cost ofO(n2) for n time steps, compared toO(n) for ordinary Riccati equations. This difference
becomes especially pronounced for large n, which is needed for high accuracy, and when T and H are small.
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Figure 6: Implied volatility smiles for T = 0.01 and H = −0.1, together with the Markovian approximations
using GG (left) and BL2 (right).

H = −0.1 H = 0.001 H = 0.1

N GG NGG OL1 BL2 AE GG NGG OL1 OL2 BL2 AE AK GG NGG OL1 OL2 BL2 AE AK
1 29.93 31.86 14.93 14.93 49.44 18.29 19.38 8.538 8.315 8.315 31.40 - 13.43 14.77 7.348 0.894 0.894 24.36 -
2 18.35 21.82 5.526 0.591 39.77 11.55 14.16 2.818 7.133 0.223 25.07 8.138 8.288 10.67 2.050 0.650 0.442 20.07 1.112
3 13.35 23.46 2.527 0.112 34.46 8.704 15.75 1.147 6.394 0.101 21.56 8.138 6.017 12.31 0.738 0.553 0.066 17.60 1.112
4 10.58 20.14 1.281 0.012 31.01 7.066 13.16 0.525 5.848 0.007 19.28 24.38 4.405 9.812 0.306 0.427 0.005 15.92 2.004
5 8.802 15.84 0.681 0.002 28.56 7.599 10.74 0.262 5.395 0.001 17.65 24.38 5.058 6.501 0.140 0.319 0.001 14.67 2.004
6 6.109 13.38 0.399 0.000 26.72 3.161 10.83 0.138 5.051 0.000 16.41 29.50 2.121 9.107 0.069 0.236 0.000 13.68 1.659
7 3.707 11.78 0.238 0.000 25.27 1.965 7.282 0.077 4.740 0.000 15.43 29.50 1.371 5.525 0.029 0.174 0.000 12.88 1.659
8 3.697 11.78 0.147 0.001 24.07 1.898 7.282 0.044 4.469 0.000 14.63 31.27 1.245 5.525 0.019 0.128 0.000 12.21 0.999
9 3.844 11.78 0.079 0.002 23.07 1.932 7.282 0.026 4.228 0.000 13.95 31.27 1.206 5.525 0.008 0.094 0.000 11.64 0.999

10 2.482 7.052 0.047 0.003 22.22 1.263 4.476 0.012 4.010 0.000 13.38 30.54 0.804 3.414 0.004 0.070 0.000 11.15 0.503

Table 3: Maximal relative errors in % for the Markovian approximations for implied volatility smiles of the Euro-
pean call option. The discretization error of these errors is at most 0.002% (for H = 0.1 and H = 0.001) and
0.020% (for H = −0.1).

In Figure 6 we see the approximations using GG and BL2 quadrature rules for the implied volatility smile with
H = −0.1. We see that already a very small number of nodes is sufficient to achieve a high accuracy. In-
deed, for BL2 already N = 2 is sufficiently accurate that we cannot see the any difference to the exact,
non-approximated smile anymore without zooming in.

In Table 3 we see the maximal relative errors of the implied volatility smiles in %. As expected, quadrature rules
relying on the L2-error (i.e. OL2, AK) perform very badly for tiny H (and are not well-defined for negative H),
while quadrature rules relying on the L1-error (i.e. GG, NGG, OL1, AE) still work well even for H = −0.1. The
exception here is BL2, which, despite optimizing the (penalized) L2-error outperforms every other method by
multiple magnitudes, even for tiny or negative H . We study this phenomenon a bit further in Appendix F. Aside
from that, both GG and NGG seem to clearly outperform AE, with GG yielding better results. We guess that for
sufficiently large N , NGG will outperform GG, but such large N are likely not necessary for usual applications.
Also, there is still a lot of room for improvement, as OL1 (and of course BL2) show.

In Figure 7 we compare all the methods. In the left figure, we see that algorithms using theL2-error show almost
no convergence, while BL2 significantly outperforms all other algorithms. In the right figure, we see that the error
does not deteriorate too much for GG, OL1, and BL2 as H becomes small or negative, while it does for OL2.

4.4.2 Implied volatility surfaces for European call options

Next, we consider implied volatility surfaces, using 25 maturities linearly spaced in [0.04, 1], where we define
Tmin := 0.04 and Tmax := 1. For each maturity T we take 301 linearly spaced values of log-moneyness in the
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Figure 7: Maximal relative errors of the implied volatility smiles for various quadrature rules. The figure on the left
compares all 7 algorithms forH = 0.001. The figure on the right compares GG, OL1, OL2, BL2 forH = −0.1
(solid lines), H = 0.001 (dashed lines), and H = 0.1 (dash-dotted lines). The black lines are the accuracy
of the computation of the relative errors (due to errors in the Fourier inversion and the solution of the Riccati
equations), 2 · 10−5 for H ≥ 0 and 2 · 10−4 for H < 0.

interval [−1, 0.5] ·
√
T .

Of course, despite computing implied volatilities for multiple maturities, we use the same quadrature rule for all
of them, i.e. we do not adapt the quadrature rule to each individual maturity. But the quadrature rules above
all require us to consider K on some interval [0, T0]. Thus, the question arises how we choose T0. A natural
choice would be T0 = Tmax, the maximal maturity. This is also a very reasonable choice for large N , since if
we chose T0 < Tmax, we could not expect a good approximation on the interval [T0, Tmax]. However, when
N is very small, choosing T0 = Tmax yields very good results for maturities T ≈ Tmax, while giving very bad
approximations for maturities T ≪ Tmax. After some numerical experiments, the choice

T0 = T
α(N)
min T 1−α(N)

max , (4.1)

where

α(1) =
3

5
, α(2) =

1

2
, α(3) =

1

3
, α(4) =

1

4
, α(5) =

1

6
, α(6) =

1

10
, α(N) = 0 (N ≥ 7),

seemed to yield good results.

We computed all surfaces with a relative error tolerance of 10−5 for H = 0.001, 0.1 and 10−4 for H =
−0.1. The computational times for the Adams scheme was 1951 seconds for H = −0.1, 1598 seconds for
H = 0.001, and 529.7 seconds for H = 0.1. In contrast, typical computational times for the Markovian
approximations were between 30 and 100 seconds.

The maximal relative errors (maximum over both the strikes and maturities) are reported in Table 4. The results
are largely similar to Table 3, although the errors generally tend to be a bit larger since we are now jointly
approximating a volatility surface rather than just a single smile. We note that overall, BL2 again performed best,
achieving errors around 1% for N = 3 and errors below the discretization error of 0.002% were reached for
N = 9 largely independent of H .

In Figure 8 we see the maximal relative errors for H = 0.001 for all quadrature rules on the left, and a
comparison for varying H on the right.
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H = −0.1 H = 0.001 H = 0.1

N GG NGG OL1 BL2 AE GG NGG OL1 OL2 BL2 AE AK GG NGG OL1 OL2 BL2 AE AK
1 36.76 40.53 23.21 23.21 52.90 26.71 29.43 19.54 23.78 23.78 40.62 - 21.42 23.68 16.53 17.75 17.75 33.85 -
2 21.84 23.04 9.025 7.255 51.21 17.34 16.35 8.027 19.04 4.223 38.77 17.02 15.58 13.63 7.787 13.30 6.111 32.23 3.945
3 18.14 18.14 4.975 0.806 52.76 15.12 12.87 3.203 14.52 0.948 40.45 19.10 14.22 11.09 2.632 6.808 1.012 33.71 4.089
4 14.68 13.81 2.881 0.644 53.02 12.26 9.995 1.583 11.88 1.044 40.74 24.45 12.27 8.611 1.233 3.679 0.807 33.07 2.426
5 12.38 11.15 1.620 0.176 53.61 12.43 8.213 0.900 14.55 0.274 41.42 26.41 11.67 19.72 0.676 1.505 0.194 34.57 2.153
6 11.12 9.455 1.043 0.012 54.04 8.618 11.90 0.531 12.52 0.056 41.94 26.59 8.732 9.581 0.372 0.623 0.036 35.03 1.218
7 8.756 10.84 0.720 0.012 55.16 7.406 6.733 0.338 16.00 0.012 43.36 26.98 7.845 5.410 0.188 0.414 0.008 36.31 1.473
8 7.604 10.84 0.434 0.002 54.58 5.997 6.733 0.196 16.02 0.002 42.60 26.56 6.253 5.410 0.126 0.284 0.002 35.62 1.197
9 6.933 10.84 0.229 0.001 54.02 5.077 6.733 0.117 16.00 0.001 41.92 26.56 5.148 5.410 0.053 0.289 0.000 35.01 1.197

10 5.121 5.967 0.136 0.001 53.50 3.829 3.557 0.056 15.96 0.001 41.29 26.56 3.940 2.831 0.026 0.228 0.000 34.45 0.994

Table 4: Maximal relative errors in % for the Markovian approximations for implied volatility surfaces of the
European call option. The discretization error of these errors is at most 0.002% for H = 0.001, 0.1 and
0.020% for H = −0.1.
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Figure 8: Maximal relative errors of the implied volatility surfaces for various quadrature rules. The figure on
the left compares all 7 algorithms for H = 0.001. The figure on the right compares GG, OL1, OL2, BL2 for
H = −0.1 (solid lines), H = 0.001 (dashed lines), and H = 0.1 (dash-dotted lines). The black lines are the
accuracy of the computation of the relative errors, 2 · 10−5 for H ≥ 0 and 2 · 10−4 for H < 0.
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Figure 9: Implied volatility skews for H = 0.001 together with the Markovian approximations using GG (left)
and BL2 (right).

4.4.3 Skew of European call options

Next, we compute the skew of the implied volatility surface for European call options. We recall that in non-rough
stochastic volatility models, the skew remains bounded for T → 0, while in rough Heston with Hurst parameter
H , the skew explodes like T 1/2−H . Our Markovian approximations are of course just ordinary stochastic differ-
ential equations. Hence, the skew will remain bounded as T → 0 for fixed quadrature rules. However, we hope
to be able to show that with the right choice of quadrature rule we can exhibit a similar explosion of the skew on
reasonable time scales T . To this end, we use 25 geometrically spaced maturities on the interval [0.004, 1], i.e.
we have maturities between 1 day and 1 year that we want to jointly approximate.

Similarly to the computation of implied volatility surfaces in Section 4.4.2, we are faced with a vector of maturities
T , and need to choose a suitable representative T0 for approximating K by KN . We use the same choice of
T0 as for the implied volatility surfaces given in (4.1).

We computed the skews with relative errors of at most 0.01% for H = 0.001 and H = 0.1, and with relative
errors of at most 0.5% forH = −0.1. The computational times for the skews for the Adams scheme were 6095
seconds for H = −0.1, 4677 seconds for H = 0.001, and 303.5 seconds for H = 0.1. In contrast, typical
computational times for the Markovian approximations were between 60 and 240 seconds.

In Figure 9 we see the skews for GG on the left, and for BL2 on the right. While we can still clearly see that the
skews for GG with N = 10 and the non-Markovian skew do not align perfectly, it is evident that the Markovian
skews yield an explosion similar to T 1/2−H on the time interval [0.001, 1]. On the other hand, we cannot make
out any difference between the skew for BL2 with N = 3 and the non-Markovian skew with the naked eye,
illustrating that the Markovian approximations using BL2 capture the explosion of the skew well on reasonable
time intervals. In particular, BL2 achieved errors below 1% for N = 6 and errors below the discretization error
of 0.020% for N = 10 for positive H .

4.4.4 Pricing digital European call options

Finally, we consider digital European call options. This illustrates that it is not strictly necessary for the payoff
function to be smooth. We consider the option prices themselves and not implied volatilities, as these are not
necessarily well-defined for digital options. We take T = 1 and 301 linearly spaced values of log-moneyness in
the interval [−1, 0.5].

All option prices were computed with a relative accuracy of at least 10−5. The computational times for the option
prices for the Adams scheme were 950.8 seconds for H = −0.1, 988.9 seconds for H = 0.001, and 110.8
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Figure 10: Maximal relative errors of the digital European call prices for various quadrature rules. The figure on
the left compares all 7 algorithms for H = 0.001. The figure on the right compares GG, OL1, OL2, BL2 for
H = −0.1 (solid lines), H = 0.001 (dashed lines), and H = 0.1 (dash-dotted lines). The black line is at
2 · 10−5, which is the accuracy of the computation of the relative errors.

seconds for H = 0.1. In contrast, typical computational times for the Markovian approximations were between
1 and 5 seconds.

In Figure 10 we see the maximal relative errors for H = 0.001 for all quadrature rules on the left, and a
comparison for varying H on the right. Again, BL2 performed best overall, achieving errors around 1% for
N = 3 and errors below the discretization error of 0.002% for N = 7, largely independent of H .

A Moment explosion of the rough Heston model

In this section, we recall and expand on the results of [16] on the existence of moments of ST . For all q ∈ R,
we denote

Mq := ESq
T ∈ (0,∞], M̃q := ESq

T + sup
N∈N

E(SN
T )q ∈ (0,∞].

Lemma A.1. Let q ∈ R. Then, M̃q <∞ for all T > 0 if and only if Mq <∞ for all T > 0. This is the case if
and only if

q ∈ [0, 1], or
(
ρνq − λ < 0 and (ρνq − λ)2 − ν2q(q − 1) ≥ 0

)
.

In particular, the set of q ∈ R for whichMq <∞ for all T > 0 is an interval I , and there is an ε > 0 such that

J :=

{
[−ε, 1 + ε], ρ ≤ 0 or λ > ρν,

[−ε, 1], else
(A.1)

is contained in I . In particular, some negative moment of ST always exists for all T .

Proof. By [16, Theorem 2.4], Mq <∞ for all T > 0 if and only if q ∈ [0, 1] or

ρνq − λ < 0 and (ρνq − λ)2 − ν2q(q − 1) ≥ 0. (A.2)

The first case (q ∈ [0, 1]) is proved in [16, Proposition 3.7], while the second case is proved in [16, Proposition
3.6]. In both cases, the function f in these proofs can be bounded by a constant a that depends on the function
G in these proofs. The function G does not depend on the kernel, making the bound independent of N . Also,
the kernels KN satisfy all the assumptions of [16, Proposition 3.1], so that the arguments in the proof remain
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unchanged for KN . Hence, M̃q < ∞ in both cases. On the other hand, if M̃q < ∞, then trivially Mq < ∞,
proving the first claim of the lemma.

Next, we want to prove that the set q ∈ R with Mq < ∞ is an interval I , and that the interval J in (A.1) is
contained in I . Note that conditional on the first condition in (A.2) being true, we have (ρνq−λ)2 > 0, and the
second condition in (A.2) is necessarily true on an interval q ∈ [−δ1, 1 + δ2] with δ1, δ2 ∈ (0,∞]. Since the
second condition is a quadratic polynomial in q (for ν > 0, with negative leading sign), the second condition is
in fact satisfied on an interval of this form.

If ρ < 0, the condition ρνq − λ < 0 amounts to the interval (− λ
|ρ|ν ,∞), proving the claim for ρ < 0.

If ρ > 0, the condition ρνq − λ < 0 amounts to the interval (−∞, λ
ρν ), proving the statement for ρ > 0.

Finally, if ρ = 0, the condition ρνq − λ < 0 is always satisfied, yielding the interval R, proving the statement
for ρ = 0.

B Localizing functions

In this section we prove a simple lemma on approximating smooth functions on R by compactly supported
smooth functions. While the following results are undoubtedly well-known, we were not able to find precise
references.

Lemma B.1. Let n ≥ 1, and let f : R→ R be an n times weakly differentiable function. Let−∞ < a < b <
∞. Then there exists a function g : R→ R which is n times weakly differentiable such that

g(x) =

{
f(x), x ≤ a,
0, x ≥ b,∣∣∣g(k)(x)∣∣∣ ≤ k∑

i=0

(
k

i

)
ck−i(b− a)−(k−i)

∣∣∣f (i)(x)∣∣∣ , k = 0, . . . , n, x ∈ [a, b],

where ck, k = 0, . . . , n, are absolute constants independent of everything but k.

Proof. Let σ ∈ C∞(R,R) be non-negative and supported on [0, 1] with∫
R
σ(x) dx = 1, ck := sup

x∈R

∣∣∣σ(k)(x)∣∣∣ , k ∈ N0.

Define the function

µ : R→ R, µ(x) =
1

b− a

∫ ∞

x
σ

(
b− y
b− a

)
dy =

1

b− a

∫ ∞

0
σ

(
b− y − x
b− a

)
dy.

We immediately get that µ is infinitely differentiable and non-increasing, that µ(x) = 1 for x ≤ a, that µ(x) = 0
for x ≥ b, and that∣∣∣µ(k)(x)∣∣∣ = ∣∣∣∣ dkdxk

1

b− a

∫ ∞

0
σ

(
b− y − x
b− a

)
dy

∣∣∣∣
= (b− a)−k−1

∣∣∣∣∫ ∞

0
σ(k)

(
b− y − x
b− a

)
dy

∣∣∣∣ ≤ ck(b− a)−k.

Now, define g(x) := f(x)µ(x). Obviously, g(x) = f(x) for x ≤ a and g(x) = 0 for x ≥ b. Moreover,

∣∣∣g(k)(x)∣∣∣ = ∣∣∣∣∣
k∑

i=0

(
k

i

)
f (i)(x)µ(k−i)(x)

∣∣∣∣∣ ≤
k∑

i=0

(
k

i

)
ck−i(b− a)−(k−i)

∣∣∣f (i)(x)∣∣∣ .
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Corollary B.2. Let n ≥ 1, and let f : R → R be an n times weakly differentiable function. Let −∞ < a1 <
b1 < a2 < b2 <∞. Then there exists a function g : R→ R which is n times weakly differentiable such that

g(x) =

{
f(x), x ∈ [b1, a2],

0, x ∈ (−∞, a1] ∪ [b2,∞),∣∣∣g(k)(x)∣∣∣ ≤ k∑
i=0

(
k

i

)
ck−i(bj − aj)−(k−i)

∣∣∣f (i)(x)∣∣∣ , k = 0, . . . , n, x ∈ [aj , bj ], j = 1, 2,

where ck, k = 0, . . . , n, are absolute constants independent of everything but k.

Proof. Just apply Lemma B.1 twice.

C Proof of Lemma 3.4

The aim of this section is to prove Lemma 3.4. First, some technical lemmas are needed. The interesting case
in the following lemma is µ → ∞. The purpose of this lemma is that it allows us to remove a quantity δ in the
rate of convergence at the cost of the factor e.

Lemma C.1. Let M > 1 and µ ≥ 1
M−1 ∨

3M
2
√
M2−1

. Then,

inf
δ∈(0,M−1)

δ−1

(
M − δ +

√
(M − δ)2 − 1

)−µ

≤ e(δ∗)−1(M +
√
M2 − 1)−µ,

where

δ∗ :=

√
µ2(M2 − 1) + 1−M

µ2 − 1

is where the infimum is attained.

Proof. Taking the derivative with respect to δ and setting it 0 conveniently leads to a quadratic equation with the
(unique positive) solution δ = δ∗, where the infimum is attained. For simplicity, we write δ instead of δ∗.

Define c :=
√
M2 − 1µ for brevity. Then,

M − δ +
√

(M − δ)2 − 1 =
1

µ2 − 1

(
Mµ2 −

√
c2 + 1

+

√
c2µ2 − 2Mµ2

√
c2 + 1 + (M2 + 1)µ2

)
.

Our goal is now to show the lower bound (C.1) below. Since x 7→
√
x is concave, we have

√
c2 + 1 ≤ c+ 1

2c .
Hence,

M − δ +
√

(M − δ)2 − 1 ≥ 1

µ2 − 1

(
Mµ2 − c− 1

2c
+ µ

√
c2 − 2Mc− M

c
+M2 + 1

)
.

Furthermore,√
c2 − 2Mc− M

c
+M2 + 1 =

√
(c−M)2 + 1− M

c
= (c−M)

√
1 +

1

c(c−M)
.
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Since c > M by the lower bound on µ in the statement of the lemma, we can apply the bound

√
1 + x ≥ 1 +

x

2
− x2

8
,

valid for all x ≥ 0, to get

(c−M)

√
1 +

1

c(c−M)
≥ c−M +

1

2c
− 1

8c2(c−M)
,

yielding in total the bound

M − δ +
√
(M − δ)2 − 1 ≥ 1

µ2 − 1

(
(Mµ+ c)(µ− 1) +

µ− 1

2c
− µ

8c2(c−M)

)

We now want to show that the last two summands are non-negative. Indeed, since µ ≥ 3
2

M√
M2−1

, we have

c =
√
M2 − 1µ ≥ 3

2M, and hence,

µ− 1

2c
− µ

8c2(c−M)
=

1

2c

(
µ− 1− µ

4c(c−M)

)
≥ 1

2c

(
µ− 1− µ

3M2

)
>

1

2c

(
2

3
µ− 1

)
≥ 1

2c

(
M√

M2 − 1
− 1

)
> 0,

where we additionally used M > 1. Therefore, we have the bound

M − δ +
√
(M − δ)2 − 1 ≥ µ− 1

µ2 − 1
(Mµ+ c) =

(
M +

√
M2 − 1

) µ

µ+ 1
. (C.1)

We remark that all the computations were carried out in such a way that the error in this lower bound is of order
O(µ−2) as µ→∞, for fixed M > 1. Finally,

inf
δ∈(0,M−1)

δ−1

(
M − δ +

√
(M − δ)2 − 1

)−µ

≤ δ−1

((
M +

√
M2 − 1

)( µ

µ+ 1

))−µ

≤ eδ−1
(
M +

√
M2 − 1

)−µ
.

It merely remains to verify that δ < M − 1. We have

δ =

√
µ2(M2 − 1) + 1−M

µ2 − 1
≤ Mµ−M

µ2 − 1
=

M

µ+ 1
.

Then, δ < M − 1 if µ ≥ 1
M−1 .

In the proof of Lemma 3.4, we will represent f using its Chebyshev series. Consequently, we need bounds for
the coefficients of that series. The following Lemma gives such a bound. We remark that a bound of the form
ε−γr−k below would be trivial by bounding f by its maximum. The improvement to ε1−γr−k is achieved by
noting that the integral only spends ε amount of time close to the singularity.

Lemma C.2. Let f : C\{−c} → C, f(x) = (x + c)−γ , where c > 1 and γ > 1. Let r > 1 and ε > 0 be

such that c = r+r−1

2 + ε, and let k ∈ R. Then,∣∣∣∣∣ 1πi
∫
|z|=1

z−1−kf

(
z + z−1

2

)
dz

∣∣∣∣∣ ≤ 4/π

r − r−1

(
1 +

(π/2)γ

γ − 1

)
ε1−γr−k.
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Proof. Define δ := 2
r+r−1 ε, so that c = (1 + δ) r+r−1

2 . We have

∣∣∣∣ 1πi
∫
|z|=1

z−1−kf

(
z + z−1

2

)
dz

∣∣∣∣
=

∣∣∣∣∣ 1πi
∫
|z|=r

z−1−kf

(
z + z−1

2

)
dz

∣∣∣∣∣
≤ r−k

π

∫ 2π

0

∣∣∣∣reiθ + r−1e−iθ

2
+ c

∣∣∣∣−γ

dθ

=
r−k

π

∫ 2π

0

∣∣∣∣r + r−1

2
(1 + δ + cos θ) + i

r − r−1

2
sin θ

∣∣∣∣−γ

dθ

=
r−k

π

(
r + r−1

2

)−γ ∫ 2π

0

(
(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2
)−γ/2

dθ.

The integrand only comes close to the singularity for θ = π. Hence, we split the integral into a part with θ ≈ π,
and a part where θ is far from π. First, let us consider the part where θ ≈ π. There,

∫ π+ r+r−1

r−r−1 δ

π− r+r−1

r−r−1 δ

(
(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2
)−γ/2

dθ ≤ 2
r + r−1

r − r−1
δ1−γ .

For the remainder of the integral, we note that

(∫ π− r+r−1

r−r−1 δ

0
+

∫ 2π

π+ r+r−1

r−r−1 δ

)(
(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2
)−γ/2

dθ

= 2

∫ π− r+r−1

r−r−1 δ

0

(
(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2
)−γ/2

dθ.

Define ξ := θ − π. Since |ξ| ≤ π, we have

(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2 ≥ 4

π2

(
r − r−1

r + r−1

)2

ξ2.

This implies for the integral that

∫ π− r+r−1

r−r−1 δ

0

(
(1 + δ + cos θ)2 +

(
r − r−1

r + r−1

)2

(sin θ)2
)−γ/2

dθ

≤
∫ π

r+r−1

r−r−1 δ

πγ

2γ

(
r − r−1

r + r−1

)−γ

ξ−γ dθ

=
πγ

2γ

(
r − r−1

r + r−1

)−γ
1

γ − 1

((
r + r−1

r − r−1
δ

)1−γ

− π1−γ

)

≤ πγ

2γ
1

γ − 1

(
r + r−1

r − r−1

)
δ1−γ .
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Putting these estimates together, we obtain∣∣∣∣∣ 1πi
∫
|z|=1

z−1−kf

(
z + z−1

2

)
dz

∣∣∣∣∣ ≤ 2r−k

π

(
r + r−1

2

)−γ
r + r−1

r − r−1
δ1−γ

+
2r−kπγ−1

2γ

(
r + r−1

2

)−γ
1

γ − 1

(
r + r−1

r − r−1

)
δ1−γ

≤ 2

π

(
r + r−1

2

)−γ
r + r−1

r − r−1

(
1 +

(π/2)γ

γ − 1

)
δ1−γr−k.

Transforming δ back to ε yields the result.

We can now proceed with the proof of Lemma 3.4.

Proof of Lemma 3.4. For the proof we follow [19, Theorem 19.3] very closely. In fact, the main difference is that
we use a sharper bound on the Chebyshev coefficients ak below.

Let Tk be the Chebyshev polynomial of degree k. By [19, Theorem 3.1], f has a representation as a Chebyshev
series

f(x) =

∞∑
k=0

akTk(x).

Since Gaussian quadrature of levelm is exact for polynomials up to degree 2m− 1, and, by symmetry, further-
more exact for odd functions, and since the Chebyshev polynomials of odd degree are odd functions, we get the
error bound∣∣∣∣∣

∫ 1

−1
f(x) dx−

m∑
i=1

wif(xi)

∣∣∣∣∣ ≤
∞∑
k=0

|a2m+2k|

∣∣∣∣∣
∫ 1

−1
T2m+2k(x) dx−

m∑
i=1

wiT2m+2k(xi)

∣∣∣∣∣ .
Since

∑m
i=1wi = 2 and |Tk(x)| ≤ 1 for x ∈ [−1, 1], [19, Theorem 19.2] implies that∣∣∣∣∣

∫ 1

−1
f(x) dx−

m∑
i=1

wif(xi)

∣∣∣∣∣ ≤
∞∑
k=0

|a2m+2k|
(
2 +

2

(2m+ 2k)2 − 1

)
.

By [19, Theorem 3.1], and in particular equation (3.13) therein, we have

ak =
1

πi

∫
|z|=1

z−1−kf

(
z + z−1

2

)
dz.

By Lemma C.2, we have

|ak| ≤
4/π

r − r−1

(
1 +

(π/2)γ

γ − 1

)
ε1−γr−k.

where r > 1 and ε > 0 are chosen such that c = r+r−1

2 + ε. Therefore,∣∣∣∣∣
∫ 1

−1
f(x) dx−

m∑
i=1

wif(xi)

∣∣∣∣∣ ≤
∞∑
k=0

4/π

r − r−1

(
1 +

(π/2)γ

γ − 1

)
ε1−γr−2m−2k

(
2 +

2

4m2 − 1

)

=
8

π

4m2

4m2 − 1

r

(r − r−1)2

(
1 +

(π/2)γ

γ − 1

)
ε1−γr−2m.
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Note that that r = c − ε +
√

(c− ε)2 − 1. In line with Lemma C.1, we define µ := 2m
γ−1 , and assume that

µ ≥ 1
c−1 ∨

3c
2
√
c2−1

. We choose

ε =

√
µ2(c2 − 1) + 1− c

µ2 − 1
,

and get ∣∣∣∣∣
∫ 1

−1
f(x) dx−

m∑
i=1

wif(xi)

∣∣∣∣∣ ≤ 8

π

4m2

4m2 − 1

r

(r − r−1)2

(
1 +

(π/2)γ

γ − 1

)
eγ−1

× ε1−γ
(
c+

√
c2 − 1

)−2m
.

D Gaussian Approximations of the fractional kernel

This section is devoted to some simple results on both geometric (Section 3.1) and non-geometric (Section
3.2) Gaussian approximations of the fractional kernel K . All results in this section are simple corollaries of the
following general error representation formula of Gaussian quadrature.

Theorem D.1. [11, Theorem 3.6.24] If f ∈ C2n([a, b]), and (xi)
n
i=1 are the nodes and (wi)

n
i=1 are the

weights of Gaussian quadrature with respect to the weight function w, then

∫ b

a
f(x)w(x) dx−

n∑
i=1

wif(xi) =
f (2n)(ξ)

(2n)!

∫ b

a
w(x)pn(x)

2 dx,

where ξ is some point with ξ ∈ [a, b], and pn is a specific polynomial of degree n.

The following corollary will not be explicitly used in the proof of the convergence rates, but it is perhaps an
interesting observation.

Corollary D.2. LetKN be an approximation ofK stemming from a geometric or non-geometric Gaussian rule.
Then,

K(t) ≥ KN (t).

Proof. This follows immediately from Proposition 3.3 once we note that both x 7→ e−xt and x 7→ e−xtx−H−1/2

are completely monotone.

The next corollary gives us an error representation formula for Gaussian approximations. Note that this formula
is not valid for general approximations. Also, we will not use it in the proof of the convergence rates. However,
we use this corollary to compute the actual errors of Gaussian approximations in the numerical part.

Corollary D.3. Let (xi)Ni=1 be the nodes and (wi)
N
i=1 be the weights of a geometric or non-geometric Gaussian

rule, and let KN be the corresponding approximation. Then,

∫ T

0

∣∣K(t)−KN (t)
∣∣ dt = TH+1/2

Γ(H + 3/2)
−

N∑
i=1

wi

xi

(
1− e−xiT

)
.
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Proof. By Corollary D.2, we have∫ T

0

∣∣K(t)−KN (t)
∣∣ dt = ∫ T

0

(
K(t)−KN (t)

)
dt

=

∫ T

0

tH−1/2

Γ(H + 1/2)
dt−

N∑
i=1

wi

∫ T

0
e−xit dt

=
TH+1/2

Γ(H + 3/2)
−

N∑
i=1

wi

xi

(
1− e−xiT

)
.

E Computing L1-errors

Especially for the algorithm OL1 it is necessary to be able to compute the L1 error between KN and K quickly
and with high accuracy. We remark that Corollary D.3 is not applicable since we are dealing with arbitrary
approximations KN that do not stem from Gaussian rules. Simple quadrature rules like the trapezoidal rule
prove unsuitable due to the singularity of the kernelK(t) at t = 0, as we will see below. Also, simple changes of
variables to remove that singularity do not sufficiently solve this problem. Hence, we describe here an algorithm
that allows us to compute the L1-error within a few milliseconds for moderate values of N . More precisely, we
give below three different algorithms in increasing sophistication and efficiency.

1 Trapezoidal: This is just the trapezoidal rule, where we use the midpoint rule on the first interval due to
the singularity in K .

2 Trapezoidal exact singularity: We determine the first root t1 = t > 0 of K(t) − KN (t) = 0. On
[0, t1] we integrate exactly, on [t1, T ] we use the trapezoidal rule.

3 Intersections: We determine all roots (ti)ki=0 when K(t) −KN (t) = 0 (where t0 = 0 and tk = T ),
and compute the error exactly using that∫ T

0

∣∣K(t)−KN (t)
∣∣ dt = k−1∑

i=0

∣∣∣∣∫ ti+1

ti

(
K(t)−KN (t)

)
dt

∣∣∣∣ ,
and the fact that we can integrate K and KN in closed form.

Let us now describe how we find the roots of K(t) −KN (t), where we remark that there are at most O(N)
such roots. Assume that we are given a relative error tolerance TOL, and that we only have to compute the error
up to this relative error tolerance.

To find the roots, we exploit that both K and KN are completely monotone. In particular, this implies the
inequalities

K(t0) +K ′(t0)(t− t0) ≤ K(t) ≤ K(t0),

K(t) ≤ K(t0) +K ′(t0)(t− t0) +
1

2
K ′′(t0)(t− t0)2

for t ≥ t0, with similar inequalities for KN .

We then find the crossings inductively, by moving from t = 0 to t = T . First, obviously, K(0) > KN (0). Next,
we solve

K(t) = KN (0).

This has an explicit solution t̂ > 0, and thanks to complete monotonicity, there was no crossing on [0, t̂).

Suppose now that we are currently at time s ∈ (0, T ), and we want to take the next step. Assume without loss
of generality thatK(s) ≥ KN (s). In the other case, we just swap the roles ofK andKN . We now differentiate
between two cases.
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1 K(s)−KN (s)
K(s) > TOL. In this case, we are rather far away from the next crossing. We then take the next

point t as the solution t > s of the equation

K(s) +K ′(s)(t− s) = KN (s) + (KN )′(s)(t− s) + 1

2
(KN )′′(s)(t− s)2.

This quadratic equation has only one explicit solution t > s, and thanks to complete monotonicity, the
kernels did not cross on [s, t).

2 K(s)−KN (s)
K(s) ≤ TOL. In this case, we might be very close to a crossing. If we proceeded exactly as in

Case 1, the steps would become arbitrarily small if a crossing is ahead. To ensure that the algorithm
terminates at some point, we always need to take a step that is lower bounded by some constant. We
achieve this by choosing t > s such that

sup
τ∈[s,t]

∣∣∣∣K(s)−KN (s)

K(s)
− K(τ)−KN (τ)

K(τ)

∣∣∣∣ ≤ TOL.

This in particular ensures that the relative error on [s, t] is bounded by 2TOL, so we again do not over-
shoot. The above condition can be phrased as two inequalities without the absolute value sign. We
then approximate K(τ) and KN (τ) by their zeroth or first order Taylor polynomial (depending on the
direction of the inequality). This yields two linear inequalities, and we choose t to be the largest value sat-
isfying both inequalities. Therefore, in the resulting interval [s, t], the relative error between the kernels is
bounded by 2TOL.

We have thus given an algorithm on how to travel along the interval [0, T ]. It is not difficult to show that the
algorithm reaches the final point T in finitely many steps. Next, we describe how we determine where the
crossings of K(t)−KN (t) are.

Assume again that we are currently at some point s ∈ [0, T ), that K(s) ≥ KN (s), and that the next point we
step to is t ∈ (s, T ]. We differentiate between two cases.

1 If K(t) > KN (t), we say that there were no crossings on the interval (s, t].

2 If K(t) ≤ KN (t), we say that there is a crossing at (s+ t)/2, an no other crossing in (s, t].

In Tables 5 we compare the three methods for computing the L1-errors. We see that the “Trapezoidal” algorithm
is basically useless, while “Intersections” clearly outperforms “Trapezoidal exact singularity”.

F The algorithm BL2

Here, we give a rough description on the algorithm BL2 which usually achieved the best results in Section 4. We
remark that the actual implementation additionally contains many minor tweaks to ensure better numerical stabil-
ity. The implementation can be found in https://github.com/SimonBreneis/approximations_
to_fractional_stochastic_volterra_equations in the function european_rule in RoughKernel.
py.

Comparing the algorithms OL1 and OL2, we note the following differences: OL1 has better convergence rates
and smaller nodes, while OL2 is faster to compute (due to the explicit error formula in [7, Proposition 2.11]) and
may outperform OL1 for large H (e.g. H = 0.1) and small N , see e.g. Table 3. The idea of BL2 is to combine
the advantages of OL1 and OL2 into one algorithm.

The reason for the bad asymptotic performance and huge nodes of OL2 is the overemphasis of the singularity
of K(t) at t = 0 due to the square (which is less relevant for large H and small N , explaining the good results
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Trapezoidal Trapezoidal exact singularity Intersections
TOL Rel. error n Time (ms) Rel. error n Time (ms) Rel. error n Time (ms)

1 8.99 · 10−1 100 0.35 3.59 · 10−1 100 1.30 8.52 · 10−2 25 2.81
10−1 7.16 · 10−1 800 0.87 1.66 · 10−2 1 · 105 34.3 5.74 · 10−3 73 6.38
10−2 2.52 · 10−2 5 · 107 14270 1.14 · 10−3 8 · 105 220 1.17 · 10−4 346 20.6
10−3 7.24 · 10−5 3 · 106 915 6.48 · 10−7 1990 119
10−4 2.27 · 10−5 7 · 106 1774 9.42 · 10−9 7120 416
10−5 1.39 · 10−6 3 · 107 6992 1.40 · 10−10 5358 321
10−6 8.73 · 10−8 1 · 108 35983 1.65 · 10−12 5195 321
10−7 2.22 · 10−8 2 · 108 122490 4.63 · 10−13 4264 421
10−8 1.16 · 10−13 4124 260
10−9 1.20 · 10−13 3704 230

Table 5: Relative errors, number of kernel evaluations n and computational time in ms for computing the L1-
error for given relative error tolerances TOL. The Markovian approximation KN stems from the BL2 algorithm
with N = 10, H = 0.05, and T = 1. The reference L1-error was computed using the intersections algorithm
with TOL = 10−10 and was about 0.26%.

of OL2 in this setting). We may eliminate this problem by optimizing the L2-norm under the conditions that the
nodes x stay bounded by some constant L, i.e. x ≤ L. This is also where the name BL2 (Bounded L2) comes
from. We denote by opt(H,T,N,L) the algorithm that optimizes the L2-norm of the kernel K with Hurst
parameterH on the interval [0, T ], usingN nodes of size at most L. This algorithm opt returns the minimized
L2-approximation error and the corresponding quadrature rule.

Algorithm 1 BL2

Require: H ∈ (0, 1/2), T > 0, N ∈ N
Ensure: A quadrature rule with N nodes

if N = 1 then
err, rule← opt(H,T,N,∞)
return rule

end if
L← 1
err1, rule1 ← opt(H,T,N − 1, L)
err2, rule2 ← opt(H,T,N,L)
while err2 > (1− ε)err1 do
L← Lq
err1, rule1 ← opt(H,T,N − 1, L)
err2, rule2 ← opt(H,T,N,L)

end while
return rule2

It remains to find a good bound L. The algorithm BL2 given above does this by choosing some small initial
value of L (say L = 1), and iteratively comparing the errors when using N mean-reversions in [0, L], with
using N − 1 mean-reversions. If the improvement is too small (a relative improvement of less than ε), we
increase L by a factor q > 1. The first time the improvement is significantly large (a relative improvement bigger
than ε), we stop and return the current optimal quadrature rule.

It remains to choose the hyperparameters q and ε. After lots of trial and error, the choice q ∈ [1.05, 1.15] and
(surprisingly) ε = 0 was numerically found to be optimal, though we remark that especially the choice of ε may
depend on the optimization algorithm used in opt.
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