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Gelation, hydrodynamic limits and uniqueness in cluster
coagulation processes

Luisa Andreis, Tejas Iyer, Elena Magnanini

Abstract

We consider the problem of gelation in the cluster coagulation model introduced by
Norris [Comm. Math. Phys., 209(2):407-435 (2000)], where clusters take values in a
measure space E, and merge to form a new particle z according to a transition kernel
K(x, y,dz). This model is general enough to incorporate various inhomogenieties in
the evolution of clusters, for example, their shape, or their location in space. We derive
general, sufficient criteria for stochastic gelation in this model, and for trajectories asso-
ciated with this process to concentrate among solutions of a generalisation of the Flory
equation; thus providing sufficient criteria for the equation to have gelling solutions. As
particular cases, we extend results related to the classical Marcus-Lushnikov coagulation
process and Smoluchowski coagulation equation, showing that reasonable ‘homogenous’
coagulation processes with exponent γ > 1 yield gelation; and also, coagulation pro-
cesses with kernel α(m,n) ≥ (m ∧ n) log (m ∧ n)3+ε for ε > 0. In another special
case, we prove a law of large numbers for the trajectory of the empirical measure of the
stochastic cluster coagulation process, by means of a uniqueness result for the solution
of the aforementioned generalised Flory equation. Finally, we use coupling arguments
with inhomogeneous random graphs to deduce sufficient criterion for strong gelation
(the emergence of a particle of size O(N)).
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1 Introduction

Models of coagulation arise widely in many scientific models, in areas ranging from physi-
cal chemistry (in the formation of polymers), to astrophysics (in modelling the formation of
galaxies). A natural model for coagulation would have particles diffusing in space, with ‘larger’
particles being slower than ‘smaller’ ones. A well-known, classical, ‘mean-field’ approximation
to this model from Smoluchowski [39] models a system of particles merging at a rate K̄(x, y)
(for an appropriate function K̄(x, y)) where x and y are masses of the particles. A finite,
discrete approximation to the latter is known as the Marcus-Lushnikov model [29, 19, 28].
The limiting behaviour of the particle masses as the number of particles tend to infinity in
the Marcus-Lushnikov model is generally expected to be encoded by a set of infinitely many
differential equations (or measure-valued differential equations) known as the Smoluchowski
or Flory equations.
Particular cases of the Marcus-Lushnikov model are closely related to other stochastic models:
the case K̄(x, y) = 1 corresponds to the Kingman’s coalescent [27], the case K̄(x, y) =
x+ y has multiple interpretations, including being related to Aldous’ continuum random tree
[1, 5, 4, 9] (see also [10]), whilst the case K̄(x, y) = xy is closely related to the Erdős–Rényi
random graph (see, for example, [25, 3, 2, 8]). We refer the reader to the review paper [6]
for a more general overview (although remark that there has been a lot of progress made over
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the last 25 years). We also remark that in this paper, we are interested in models of pure
coagulation; whilst a lot of work in the literature also allows for the fragmentation of particles.
A natural question of interest related to coagulation processes, is whether or not at some time
t > 0, there exists the formation ofmacroscopic or giant particles. Motivated by the application
to polymer chemistry, this is known as gelation. Gelation is generally defined as whether
a solution of the Smoluchowski (or Flory) equation fails to ‘conserve mass’, which means,
intuitively, that mass is lost to ‘infinite’ particles. This is closely linked to a loss of mass in ‘large
particles’ in the Marcus-Lushnikov model as long as one knows that the trajectories associated
with the model concentrate around the associated solution of the equation. This fact was first
used by Jeon to prove existence of gelling solutions to the Smoluchowski equations [26]. In
order to show this concentration, however, one needs to show that the associated trajectories
of the Marcus-Lushnikov process concentrate around this equation, which may not always be
the case after gelation.
Some general criteria for this concentration, including a weak law of large numbers were proved
by Norris [32, 33]. A large number of related results deal with the Smoluchowski equation
directly, proving sufficient conditions for mass conservation (generally when K̄(x, y) ≤ x +
y), or gelation, sometimes also allowing for the fragmentation of particles; see, for example,
[30, 40, 13, 14], to name a few. It may be the case, that, once gelation occurs, the ‘gel’ or
macroscopic particles, interact with the microscopic ones, in such a way that a correction term
is required in the Smoluchowkski equation, this is known as the Flory equation. A weak law of
large numbers of the Marcus–Lushnikov process to this equation in a particular case was first
proved by Norris [33], and later, concentration of trajectories around solutions of this equation
were proved in [18, 36].
Despite this large body of literature, relatively less is known about models incorporating inho-
mogenieties of particles; for example, their shape, velocity, or location in space. A framework
introduced by Norris in [33], he called the cluster coagulation model, allows one to incorporate
these features in a rather general way (see also [31] for a variant that incorporates diffusion of
clusters). However, apart from a particular special case of the model [22], criteria for gelation
in this model are lacking, despite being of interest from both the perspective of applications
in physics, and mathematically. We do note that there is a number of results related to other
models incorporating the movement of particles as Brownian motions in space [20, 21, 44, 37],
or as particles jumping across two sites [38, 43]; but we are not aware of any general results
concerning criteria for gelation in these models, apart from the interesting induced gelation
effect in a particular case of the two-site model [12]. More recently, from the perspective of
analysis, a strain of research has focused on the study of multi-component generalisations of
the Smoluchowski coagulation equations, where the mass variable is substituted by a variable
in a d-dimensional Euclidean space, and there is an additional source term corresponding to
the system not being in equilibrium (see for example, [17, 16, 41] and reference therein). A
different approach to analyse a related spatial coagulation model and the question of gelation,
using Poisson point processes and large deviations, is in progress in [7].

1.1 Overview on our contribution

Our goal in this paper, is to study gelation, and hydrodynamic limits associated with the
cluster coagulation model. The main novelty of this paper consists in the following: First, in
Theorem 3.2 (and following corollaries), by building upon, and generalising concepts introduced
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by Jeon [26] (see also [36]) we are able to provide sufficient criteria for gelation in the general
setting of the cluster coagulation model; thus providing criteria that may incorporate many
features of a cluster, not only the mass. In the process, we are able to provide improved
criteria for gelation in the classical Markus-Lushnikov process, showing as a particular case, that
reasonable ‘homogenous’ coagulation processes with exponent γ > 1 yield gelation; a generally
accepted scientific principle, that, as far as we are aware, has not been proven rigorously
(see, e.g. [6, 12, 42]). We also show, that, if for ε > 0, K̄(x, y) ≥ (x ∧ y)(log (x ∧ y))3+ε,
gelation occurs (see Corollary 3.6). When the state space also incorporates, for example, the
position of the particles, our criteria guarantees gelation for kernels that are products of a
function decreasing in the distance between particles, and of a gelling kernel of the masses
(see Example 3.4).
Second, we define a generalised Flory equation that is formulated in terms of a ‘conserved
quantity’; corresponding to an invariant associated with the cluster coagulation process. From
the perspective of applications, this quantity may correspond to the total mass of the system,
or, depending on the setting, for example, the ‘centre of mass’ or ‘momentum’. Introducing
this notion allows us to go beyond the setting of [32], and to prove existence of solutions
for the limiting equation under weaker assumptions (Theorem 3.5). Combining this with our
gelation criteria, we prove the existence of gelling solutions for such equations, under suitable
assumptions on the kernel. We also obtain a uniqueness result for this multi-type Flory equation
in a case when the kernel is ‘eventually conservative’ (i.e., kernels that satisfy the condition
of Theorem 3.7), extending the eventual multiplicativity property introduced in [33]. Such
a uniqueness result implies a law of large numbers for the paths of the stochastic cluster
coagulation process (Corollary 3.8). The approach we use in this part of the paper, whilst
well-established (using weak-compactness, and martingale techniques), allow for relatively few
assumptions on the underlying space; we only assume that the clusters take values in a σ-
compact metric space E. This means that our results encapsulate existing generalisation of
the Smoluchowski equation in the literature, including those of [22, 23].
Finally, we use coupling arguments with inhomogeneous random graph models to deduce,
sufficient criteria for ‘strong gelation’ to take place; referring to the emergence of a particle
of order N . These arguments extend the one-to-one coupling used in [22].
The rest of the paper will be structured as follows.

1 In Section 2 we introduce the model, including the definition of a generalised Flory
equation with a conserved quantity in Definition 2.1. Given the very general nature of
the cluster coagulation model, in Section 2.1.2 we give examples of natural models that
fit into this framework and, through the paper, we illustrate how our results apply to these
examples. In Section 2.3, we revise some key concepts regarding gelation (i.e. the notions
of strong gelation and stochastic gelation), slightly modifying previous definitions to our
setting, if needed. We state a result, Theorem 2.2, that links the notion of gelation for
the stochastic particle system to the one for the corresponding limiting equation (whose
proof, almost identical to [Theorem 5, [26]], we omit in this paper).

2 In Section 3 we state the main theorems of this paper. Section 3.1 deals with results
related to stochastic gelation, while Section 3.2 deals with concentration of trajecto-
ries associated with the process along solutions of the multi-type Flory equation. In
this section, in particular, the notion of ‘conserved quantities’ is important, defined in
Definition 3.1. In Section 3.2.4 we state sufficient criteria for uniqueness of solutions
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of the multi-type Flory equation. Finally, Section 3.3 is concerned with strong gelation,
deduced via a coupling with inhomogeneous random graphs.

3 Finally, Section 4 deals with the proofs of the main results, with Sections 4.1, 4.2 and 4.3
containing the proofs of results stated in Sections 3.1, 3.2 and 3.3 respectively.

2 The cluster coagulation process and multi-type Flory
equation

2.1 Definition of the process

In this paper we consider the cluster coagulation process, introduced by James Norris in [33].
Recall that in the cluster coagulation process, one begins with a configuration of clusters
in a measurable space (E,B). Associated with a cluster x ∈ E is a mass function m :
E → (0,∞). Another important quantity associated with the process is a coagulation kernel
K : E × E × B → [0,∞), which satisfies the following:

1 For all A ∈ B (x, y) 7→ K(x, y, A) is measurable,

2 For all x, y ∈ E K(x, y, ·) is a measure on E,

3 symmetric: for all A ∈ E , x, y ∈ E K(x, y, A) = K(y, x, A),

4 finite: for all x, y ∈ E K̄(x, y) := K(x, y, E) <∞

5 preserves mass: for all x, y ∈ E, m(z) = m(x) +m(y) for K(x, y, ·)-a.a. z ∈ E.

Suppose that we begin with a configuration of clusters labelled by an index set I. Then,

� to each pair of clusters x, y ∈ E, we associate an exponential clock (exponential random
variable) with parameter K̄(x, y);

� upon the elapsure of the next exponential random variable in the process, corresponding
to the pair x and y, say, the clusters x and y are removed and replaced by a new cluster
z ∈ E, sampled according to the probability measure

K(x, y, ·)
K̄(x, y)

. (1)

2.1.1 The infinitesimal generator associated with the process

In this paper, we will consider the process as depending on a parameter N ∈ N, which one
may consider as (up to random fluctuations) the total initial mass of the system, and analyse
the process as in the limiting regime as N → ∞. We consider the configuration of clusters
at time t as being encoded by a random point measure L(N)

t on E, so that, for any set
A ⊆ E, a ∈ (0,∞), L(N)

t (A ∩m−1([a,∞))) denotes the random number of clusters of mass
at least a belonging to A. We denote by M+(E) the set of finite, positive measures on E
(also defining M+(E × E) in a similar manner). We may then consider the process as a
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measure-valued Markov process, whose infinitesimal generator A is defined as follows: for any
bounded measurable test function F :M+(E)→ R, we have

AF (Lt) = 1
2

∫
E×E×E

Lt(dx) (Lt − δx) (dy)K(x, y, dz)
(
F (L(x,y)→z

t )− F (Lt)
)
, (2)

where L(x,y)→z := L + (δz − δx − δy). Note that, as L(N)
t is assumed to be a point measure,

the above integral is always with respect to a positive measure. The measure L(x,y) describes
the configuration of the system after a coagulation involving clusters the two clusters x, y ∈ E
and ending with one cluster z with m(z) = m(x) +m(y), for K(x, y, ·)-a.a. z ∈ E. Note the
factor 1

2 in front of the generator, present to ensure that the total rate at with clusters x and
y interact is K̄(x, y) (and not 2K̄(x, y)).
In this paper, we will be interested in the existence of gelling solutions of the following extension
of the Smoluchowski equation, which we refer to as the multi-type Flory equation. Included
in this equation, is a function φ, which one may regard as a conserved quantity of the system
(see Definition 3.1 for more details).
We say that a measure valued process (ut, )t≥0, taking values inM+(E) is a solution of the
multi-type Flory equation with conserved quantity φ, and initial condition u0 if it solves the
following measure valued differential equation (see Definition 2.1 for a more formal definition):

ut − u0 =
∫ t

0

[
Q+(us)−Q−(us)

]
ds; (3)

where Q+(us) and Q−(us) are measures defined such that, for appropriate test functions
J ∈ Cc(E;R),∫

E
J(y)Q+(us)(dy) := 1

2

∫
E×E×E

J(z)K(x, y, dz)us(dx)us(dy), (4)

and ∫
E
J(y)Q−(us)(dx) :=

∫
E×E

J(y)K̄(x, y)us(dx)us(dy) +
∫
E
J(y)g∞(y)us(dy); (5)

with g∞ defined such that

g∞(y) :=
∫
E
φ(x, y)u0(dx)−

∫
E
φ(x, y)us(dx). (6)

We expect, a priori that the Flory equation, or Smoluchowski equation encodes the behaviour
of the process (L(N)

t/N/N)t≥0, for N ‘large’. The re-scaling of time is required to counter-balance
the increase in the number of interactions as the initial mass of clusters grows with N . Thus,
in general, we set

L̄(N)
t := L(N)

t/N/N,

and generally (by abuse of notation, since such a limit may not be unique) use (L̄∗t )t≥0 to
denote a weak limit (a limit along a subsequence) of the process.

2.1.2 Examples of cluster coagulation processes

The cluster coagulation process is general enough to encompass a large number of examples,
depending on particular choices of the space E.
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Example 2.1 (Classical kernel). If E = (0,∞), K(x, y, dz) = K̄(x, y)δx+y, for a con-
tinuous symmetric function K̄(x, y), and the mass function m(x) ≡ x, the above process
corresponds to the classical Marcus-Lushnikov process. In this case, if φ(x, y) := x`(y) for a
function ` : E → R+, Equation 3 reduces to the classical Flory equation (see, for example,
[Definition 2.2, [18]]). In this case, g∞(y) = `(y) (

∫
E xu0(dx)−

∫
E xus(dx)). When ` ≡ 0,

this equation corresponds to the classical Smoluchowski equation. If one interprets the term∫
E xu0(dx) −

∫
E xus(dx) as corresponding to the mass lost to ‘macroscopic’ particles, the

term g∞ encodes the rate at which small clusters (of mass y) are lost in coagulation with
macroscopic ones.

Example 2.2 (Historical Marcus-Lushnikov processes). One may extend E to incorporate not
just the masses of clusters, but their histories. Indeed, we can take E to be a space where
clusters x encode not only their mass, but the history of coagulations (a binary tree embedded
in time) leading to the formation of that particle (see [23] for more details). For these processes,
Jacquot in [23] proved a weak law of large numbers for the trajectories (L̄(N)

t )t∈[0,T ) when the
kernel is a function of the associated masses and it is bounded from above by a product of
sublinear functions.

Example 2.3 (Bilinear coagulation processes). In the case that E = [0,∞)d, A ∈ [0,∞)d×d
is a symmetric matrix with non-negative entries and K(x, y, dz) = (xTAy)δx+y, this model
corresponds to the bilinear coagulation model studied in [22]. In that paper, the authors prove
a weak law of large numbers for the particle system, showing that the trajectories converge
to the unique solution of the Flory equation, and characterise explicitly the ‘gelling time’ (see
Section 2.3), by using comparisons between this process and inhomogeneous random graph
processes.1

Example 2.4 (Toy spatial coagulation models). A large number of toy models that incorporate
information about the locations of clusters in ‘space’ fall into this framework. For example,
we may take E = S × (0,∞) where S ⊆ Rd; in this case an element x of E coincides
with a pair (p, n), p ∈ S, n ∈ (0,∞) and we interpret p as the location of a cluster, and
n := m(p, n) as its mass. We may, then, assume that after a coagulation between clusters
x = (p, n), y = (s, o), the new cluster is placed at a new location, given by a measurable
function of the original clusters, for example, the centre of mass np+os

n+o . Thus, in this case
K((p, n), (s, o), ·) = δnp+os

n+o ,n+o. Another alternative would be a model in which the new
particle occupies one of the locations of the previous particles with probability proportional to
their mass, so that K((p, n), (s, o), ·) = n

n+oδp,n+o + o
n+oδs,n+o (this is similar to the way the

‘collision operator’ is defined in the model of coagulating Brownian particles of [20]).

2.2 Some more notation, preliminaries and global assumptions

In this paper, we will regard E as a a σ-compact metric space with metric d. Given another
space F , denote by Cb(E;F ), or resp. Cc(E;F ), the spaces of continuous functions E → F
which are bounded, or resp., have compact support. In general, we write Cb(E) (resp. Cc(E))
as a shorthand for Cb(E;R) (resp. Cc(E;R)). We equipM+(E) with a metric d that induces

1Actually, the model studied in [22] is slightly more general, in that clusters x belong to a metric space S,
and K̄(x, y) = π(x)TAπ(y), where π : S → Rd is a continuous function. Clusters x may also change values
according to a kernel J on S, in such a way that π(x) is preserved.
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the vague topology onM+(E). 2 For any n ∈ N, we denote by En the space

En :=
{
u ∈M+(E) :

∫
E
m(x) u(dx) ≤ n

}
and E = ⋃

n∈N En. Note that on En weak and vague topology coincides, while this is not
the case on E . We generally will regard E as the state space of the process, taking values
in D([0,∞); E), the Skorokhod space of right-continuous functions f : [0,∞) → E with
Skorokhod metric dS induced by d.
For any element µ in E , we denote ‖µ‖ :=

∫
E µ(dx). Moreover, given a measure µ ∈M+(E)

and a measurable function f : E → R, we denote by

〈f, µ〉 :=
∫
E
f(x)µ(dx).3

We adapt the definition from [32, 33] of solutions for the generalised Flory equation to our
setting.
Definition 2.1. Given a function φ : E × E → R, we say a map t 7→ ut ∈ M+(E), is
a solution of the multi-type Flory equation with conserved quantity φ if the following are
satisfied:

(i) for all Borel sets A ⊆ E the map t 7→ ut(A) : [0,∞)→ [0,∞] is measurable;

ii) for all f ∈ Cc(E), and t ≥ 0, we have 〈f,u0〉 <∞,∫ t

0

∫
E×E

f(y)K̄(x, y)us(dx)us(dy)ds <∞; and
∫ t

0

∫
E×E

f(y)φ(x, y)u0(dx)us(dy)ds <∞;
(7)

iii) for all f ∈ Cc(E) and t ≥ 0, with Q+ and Q− as defined in (4) and (5),

〈f,ut〉 = 〈f,u0〉+
∫ t

0
〈f,Q+(us)−Q−(us)〉 ds. (8)

iv) For each x ∈ E, t ≥ 0 we have∫
E
φ(x, u)µt(du) ≤

∫
E
φ(x, u)µ0(du). (9)

Note that point ii) ensures that the equation in iii) is well-defined (without terms of the form
∞−∞).

At the level of the stochastic process, we denote by PN (·) and EN [·] probability distributions
and expectations with regards to the trajectories of the process with generator A and (possibly
random) initial condition L̄(N)

0 . Recall also, that the notation L(N)
t refers to the trajectories

of measures associated to the process, whilst L̄(N)
t = L(N)

t/N/N refers to its normalisation.
In addition, we introduce the following notation for the regular conditional distribution and
expectations when the initial condition L̄(N)

0 is given by a (deterministic) measure π ∈M+(E)

PN,π (·) := PN
(
· | L̄(N)

0 = π
)

and EN,π [·] := EN
[
· | L̄(N)

0 = π
]
. (10)

2We recall that the vague (respectively weak) topologies on M+(E) are the smallest topologies that
make the maps µ→

∫
E
f(x)µ(dx) continuous for all f ∈ Cc(E) (respectively Cb(E)). Note that, since E is

separable and complete, (M+(E), d) is a separable and complete space.
3We will generally only use this notation as a shorthand, and stick to the latter notation in proofs, as we

believe it improves the clarity of the exposition.

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



Gelation in cluster coagulation processes 9

Assumption 2.1. In this paper, we will assume throughout that

1 as outlined above, E is a σ-compact metric space,

2 we have L̄(N)
0 = ∑

i∈I
ciδi
N

for some finite set I ⊆ E, ci ∈ N, and there exists c′ > 0
such that ∑i∈I

ci
N
≤ c′ almost surely,

3 there exists µ ∈ E such that
L̄(N)

0 → µ (11)
weakly, in probability, and 〈m,µ〉 > 0.

2.3 Gelation, stochastic gelation and strong gelation

In this paper, we will generally be interested in the emergence of gelation in the cluster
coagulation process, indicating the emergence of ‘large’ clusters. We first recall some definitions
due to Intae Jeon [Definition 2, [26]].
For the cluster coagulation process, let ταN , α ∈ (0, 1], denote the time of emergence of clusters
of size of order N , i.e.,

ταN := inf
{
t ≥ 0 : 〈m1m>αN , L̄(N)

t 〉 > 0
}
. (12)

Definition 2.2. We have the following notions of gelation:

1 The strong gelation time for a cluster coagulation process is defined by

tsg := inf{t > 0 : ∃ 0 < α ≤ 1 such that lim inf
N→∞

PN (ταN ≤ t) > 0}.

2 The gelation time of a solution ut of a multi-type Flory equation is defined by tg :=
inf{t ≥ 0 : 〈m,ut〉 < 〈m,u0〉}.

3 For a non-decreasing function ψ : N → N, with limN→∞ ψ(N) = ∞, and δ > 0, the
(ψ, δ)-stochastic gelation time of the cluster coagulation process (L̄(N))N∈N is defined
by

Tψ,δg := inf
{
t ≥ 0 : lim inf

N→∞
PN

(〈
m1m≤ψ(N), L̄(N)

t

〉
≤
〈
m, L̄(N)

0

〉
− δ

)
> 0

}
.

4 We say strong gelation occurs, gelation occurs, or stochastic gelation occurs if, respec-
tively, tsg <∞, tg <∞ or Tψ,δg <∞.

The following theorem, in the same flavour as [Theorem 5, [26]], provides criteria by which
gelation properties of the finite cluster coagulation processes are reflected in their weak limits:

Theorem 2.2. Suppose that m : E → (0,∞) is continuous, Assumption 2.1 holds and there
is a subsequence (L̄(Nk)

t )t≥0 converging to a limit (L̄∗t )t≥0 with continuous sample paths. For
any t ≥ 0 the following are equivalent:

1 There exists a non-decreasing function ψ : N → N with ψ(N) ≤ N , limN→∞ ψ(N) =
∞, and ε > 0 such that

lim sup
k→∞

PNk
(〈
m1m≤ψ(Nk), L̄(Nk)

t

〉
≤
〈
m, L̄(Nk)

0

〉
− ε

)
> 0.
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2 There exists ε > 0 such that

PN
(〈
m, L̄∗t

〉
≤ 〈m,µ〉 − ε

)
> 0.

�

Remark 2.5. The second statement of Theorem (2.2) may be trivially true if 〈m,µ〉 = ∞,
but the first may not. Thus, using Theorem (2.2), the notion of stochastic gelation provides a
means of extending the definition ‘gelation’ in the Smoluchowski/ Flory equation, to the case
when 〈m,µ〉 =∞.

We omit the proof of Theorem 2.2, as it is almost identical to the proof of [Theorem 5, [26]].
As a result of this proof, however, we are able to generally deduce criteria for the existence
of gelling solutions in Flory equations by proving stochastic gelation in the cluster coagulation
process.

3 Statements of main results and examples

3.1 Sufficient criteria for stochastic gelation in the coagulation pro-
cess

In this section, we state general sufficient conditions for stochastic gelation in the cluster
coagulation model. As this model is rather general, the conditions required are more technical
than conditions for the classical Marcus-Lushnikov process. The main motivation for these
results is that, in applications to non-equilibrium processes, inhomogenieties in the space E
(corresponding to, for example, locations in space, the ‘types’ of cluster, or their velocities)
may play a major role in whether or not gelation occurs. In Assumption 3.1, we can incorporate
these inhomogenieties into the gelation criterion, assuming that we can ‘partition’ the space
E (grouping together, for example, particles that are ‘close’, or of a similar ‘type’) in such
a manner that we have sufficient lower bounds on the rate at which clusters belonging to a
common partition interact. The techniques we use generalises those previously applied to the
Marcus-Lushnikov process by Jeon [26], and Rezakhanlou [36].
In what follows, it will be helpful, to have a stopping time definition, of a ‘gelling time’
which is slightly different from the one in (12). Let ψ : N → N be non-decreasing with
limN→∞ ψ(N) = ∞, and δ ∈ (0, 1). For each N ∈ N we define the (ψ, δ)-gelation time
τN(ψ, δ) such that

τN(ψ, δ) := inf
{
t ≥ 0 :

〈
m1m≥ψ(N), L̄(N)

t

〉
≥ δ

}
,

i.e., the first time that the normalised total mass of clusters of size at least ψ(N) exceeds δ.
Note that choosing ψ(N) = αN we recover the stopping time defined in (12). Now, assume
that the cluster coagulation process satisfies the following assumption.

Assumption 3.1. Suppose that (L̄(N)
t )t∈[0,∞) is a cluster coagulation process, with initial

condition L̄(N)
0 = π. For a function ξ : N → N and a non-decreasing function ψ : N → N

with limN→∞ ψ(N) =∞ we assume the following:
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1 There exists a family of partitions {P(j)}j∈N of E, where ∀j ∈ N
∣∣∣P(j)

∣∣∣ ≤ ξ(N), and

c′(P, j) > 0 ∀P ∈P(j), (13)

where c′(P, j) := inf{K̄(x, y) : 2j ≤ m(x),m(y) < 2j+1 and x, y ∈ P}.

2 There exists a strictly decreasing sequence (δi)i∈N with δi ∈ (0, 1] for all i and δi ↓ δ > 0
such that:

lim sup
N→∞

log2(ψ(N))∑
j=1

1
(δj − δj+1)2

 ∑
P∈P(j)

1
c′(P, j)

 2j <∞. (14)

3 We have limN→∞
ψ(N)ξ(N)

N
= 0.

Theorem 3.2. Suppose that Assumption 3.1 is satisfied. Then, there exists a non decreasing
function ψ′ (depending on ψ, (δj)j∈N, ξ), with limN→∞ ψ

′(N) =∞ such that:

1 If π is an initial condition such that ‖π‖ < ∞, 〈m1m≥1,π〉 > 2δ, and there exists a
constant gπ, (which may depend on π) such that for all s ∈ [0,∞)∫

E×E
L̄(N)
s (dx)L̄(N)

s (dy)K̄(x, y)m(x) ≤ gπ; (15)

then, lim supN→∞ Eπ [τN(ψ′(N), δ)] < C, for a constant C, independent of π.

2 In particular, if (15) is satisfied almost surely on the event
〈
m1m≥1, L̄(N)

0

〉
> δ, and

lim inf
N→∞

PN
(〈
m1m≥1, L̄(N)

0

〉
> δ

)
> 0

then stochastic gelation occurs in the process.

Remark 3.1. Since the bound in (15) may depend on π, we expect it to be a rather weak
restriction. However, even though K̄(x, y) <∞ for all x, y ∈ E, this condition may not always
be satisfied. For example, it may be the case that K̄(x, x) = 0, but limy→x K̄(x, y) =∞, and
the coagulation dynamics may allow particles to become ‘arbitrarily close’ together.

Remark 3.2. In the conditions of Theorem 3.2, the condition on
〈
m1m≥1, L̄(N)

0

〉
ensures

that there is enough mass bounded from below to form a gel. The indicators 1m≥1 may be
replaced by any 1m≥c for any c > 0. However, as we can re-scale the mass function in a cluster
coagulation process to obtain another mass function; and the property of gelation is invariant
under this re-scaling, we use the indicator 1m≥1 without loss of generality.

The following corollary applies these conditions to the classical Marcus-Lushnikov process; pro-
viding criterion for stochastic gelation that improves those appearing in [26, Corollary 1]
and [36, Theorem 1.3].

Corollary 3.3. Suppose we are in the setting of Example 2.1. Then, if K̄(x, y) ≥ c′j > 0 on
2j ≤ x, y < 2j+1, for any δ ∈ (0, 1) there exists a sequence (δi)i∈N ∈ (0, 1]N with δi ↓ δ such
that

∞∑
j=1

2j
c′j(δj − δj+1)2 <∞; (16)

and 〈m1m≥1, µ〉 > 0, stochastic gelation occurs in the coagulation process. In particular, when
〈m1m≥1, µ〉 > 0, stochastic gelation occurs if
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1. We have infi∈[1,2] K̄(1, i) > 0 and for all x, y sufficiently large K̄(cx, cy) = cγK̄(x, y),
with γ > 1

or, alternatively,

2. there exists ε > 0 such that, for all x, y sufficiently large K̄(x, y) ≥ (x∧y) log (x ∧ y)3+ε.

The following provides another example where the gelation criteria may be applied to a toy
spatial model:

Example 3.3. Consider the toy spatial coagulation models, introduced in Example 2.4, where
E = S × (0,∞). Suppose that we begin with N clusters (of mass 1, say), sampled i.i.d from
the uniform distribution on the hypercube S = [0, 1]d, and consider the kernel,

K̄((p, n), (s, o)) :=


κ0

(||p−s||)α , if p 6= s

0, otherwise;

with κ0 ∈ (0,∞) a constant and α > 0. Note that if particles merge at a constant rate
κ0 (without influence of distance), it is well-known that gelation does not occur, however,
in this model, the distance now plays an important role, and one may readily verify that if
α/d > 1, stochastic gelation occurs. Indeed, one may readily verify (for example, by using
induction), that almost surely, the initial configuration of clusters is such that the distance
between any two points is positive throughout the dynamics of the coagulation process, and
hence Equation (15) is satisfied almost surely. Now, for each j ∈ {1, 2, . . . , log2(ψ(N))} we
take a partition of S that consists of ξ(N) hypercubes with side-length 1

(ξ(N))1/d . Note that
c′(P, j) = κ0 minp,s∈P 1

(||p−s||)α ≥ ξ(N)α/d, for all P . Fix, for example, δj := δ+ 2−j; then the
sum in (14) reads

lim sup
N→∞

ξ(N)
(ξ(N))α/d

log2 ψ(N)∑
j=1

23j ≤ C lim sup
N→∞

(ξ(N))1−α/d(ψ(N))3 = lim sup
N→∞

C
ψ(N)3

ξ(N)α/d−1 ,

for some C ∈ R+. Now if α
d
> 1 and we set ψ(N) := ξ(N)

α/d−1
3 ; we can choose any ξ(N)

such that limN→∞ ξ(N) =∞, and that fulfils the third condition in Assumption 3.1.

Example 3.4. Consider the toy spatial coagulation models, introduced in Example 2.4, where
E = S × (0,∞). A natural choice of kernel may be to choose a function that is a product
of a non-increasing function of the distance d between clusters (clusters interact more quickly
if they are closer together), and a function of their mass. In this manner, suppose we choose
kernel of product form K̄((p, n), (s, o)) := h(d(p, s))W (n, o) where h : [0,∞) → [0,∞) is
non-increasing and non-zero, and W is continuous and satisfies the conditions under which
Corollary 3.3 applies. As h is bounded from below (by c0 say) on an interval [0, ε), for ε
sufficiently small, and S is compact, we can choose a finite partition P consisting of open
balls of radius ε, such that, if P ∈P for all x, y ∈ P we have K̄((p, n), (s, o)) ≥ c0W (n, o).
By choosing P(j) = P for each j, one readily verifies (in a similar manner to the proof
of Corollary 3.3) that all conditions in Assumption 3.1 are verified. Finally, if we begin, for
example, with |π| = N clusters of mass 1, the maximum value of m(x) equals N for all x ∈ E,
and we can easily verify condition (15) for K̄, by setting gπ = N max(x,y)∈(S×[0,N ])2 K̄(x, y).
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3.2 Concentration of trajectories on solutions of multi-type Flory
equations and uniqueness

As alluded in the Definition 2.1, an important feature of a multi-type Flory equation is a
conserved quantity φ. This as a function φ : E × E → R such that, for any x, the quantity
〈φ(·, x), L̄(N)

t 〉 is fixed for each t > 0. Perhaps the most natural conserved quantity is a
coagulation process is mass, which corresponds to the choice of function φ(x, y) = m(x); as
masses add upon coagulation, this is fixed along trajectories of the process. However, one may
imagine, in models encoding more information about clusters, that there are other quantities
conserved, reflecting, for example, the centre of mass of clusters in space, or the momentum
of the system (see examples in Section 2.1.2).

Definition 3.1 (Conserved or sub-conserved quantities). A function φ : E × E → R is said
to be conservative or a conserved quantity if for all x, y, q ∈ E, for K(x, y, ·) a.a. z,

φ (z, q) = φ(x, q) + φ(y, q). (17)

It is, similarly, said to be sub-conservative if for all x, y, q ∈ E, for K(x, y, ·) a.a. z,

φ (z, q) ≤ φ(x, q) + φ(y, q). (18)

It is said to be doubly sub-conservative (similarly doubly conservative), if it is sub-conservative
in the second argument in addition to the first, so that in addition for all x, y, q ∈ E, for
K(x, y, ·) a.a. z,

φ (q, z) = φ(q, x) + φ(q, y). (19)
Finally, if a function ξ : E → R is such that φ(x, y) = ξ(x) is conservative (resp. sub-
conservative), we also say ξ is conservative (resp. sub-conservative).

Remark 3.5. If φ is symmetric and conservative, it is also doubly conservative. Thus, some
examples of doubly conservative functions include φ(x, y) = m(x)m(y), or bilinear functions
for coagulation kernels of the type described in Example 2.3. Indeed, when x, y ∈ [0,∞)d and
we have K(x, y, dz) = K̄(x, y)δx+y, then for any matrix A the function φ(x, y) = xTAy is a
doubly conservative function. In Example 2.3 this means that K̄ itself is a doubly conservative
function.

3.2.1 Conditions for tightness

Lemma 3.4. Assume that the following hold.

1 There exists a doubly sub-conservative φ′ such that K̄ ≤ φ′ pointwise.

2 We have

lim sup
N→∞

EN
[∫

E×E
L̄(N)

0 (dx)
(

L̄(N)
0 (dy)− δx

N

)
φ′(x, y)

]
<∞. (20)

3 There exists a doubly sub-conservative function φ′′ : E ×E → [0,∞), such that for all
n ∈ N the set

E∗n :=
{
u ∈M+(E × E) :

∫
E

u(dx× dy)φ′′(x, y) ≤ n
}

(21)

is compact, and φ′′ satisfies (20)

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 14

Then the sequence of probability measures (PN)N∈N is a tight family of probability measures
on the Skorokhod space D([0,∞); E).

Example 3.6. A simple case in which Lemma 3.4 may be satisfied is when φ′(x, y) =
φ′′(x, y) = m(x)m(y). In this case, if m is continuous, an argument applying Markov’s in-
equality and Prokhorov’s theorem shows that (21) is satisfied if the sets {x : m(x) ≤ k} are
compact. Alternatively, in the setting of Example 2.3 (and Remark 3.5), bilinear kernels can
be made to satisfy the second assumption, if, for example, the matrix A has non-zero entries,
since the sets {x, y ∈ [0,∞)d : xTAy ≤ k} are compact.

Example 3.7. Not that, if ξ′ : [0,∞)→ [0,∞) is continuous and sub-additive 4, the function
φ′(x, y) = (ξ′(m(x)))(ξ′(m(y))) is doubly sub-conservative. This is the analogue of ‘sublinear’
function used by Norris in [33].

Lemma 3.4 shows that the probability measures (PN)N∈N on the space D([0,∞); E) induced
by the processes (L̄(N)

t )t∈[0,∞) are tight; and thus, by Prokhorov’s theorem, the collection of
random trajectories

{
(L̄(N)

t )t∈[0,∞), N ∈ N
}

contains weakly convergent subsequences. The
following theorem gives criteria, under which any limit point of such a subsequence is concen-
trated on trajectories that solve the multi-type Flory equation.

3.2.2 Concentration of trajectories on the multi-type Flory equation

Theorem 3.5. Assume that, the hypotheses of Lemma 3.4 are satisfied; and in addition:

1 The functions K̄ and φ′ appearing in Lemma 3.4 are continuous.

2 There exists a continuous, conservative function φ satisfying (20), such that one of the
following hold:

2.1 For an increasing collection of sets (Ck)k∈N ⊆ E, with ⋂k∈NCc
k = ∅ we have, for

any compact C ′ ⊆ E

lim sup
k→∞

sup
x∈Cc

k
, y∈C′

∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ <∞. (22)

2.2 There exists a continuous doubly sub-conservative function φ∗ satisfying Equa-
tion (20), such that, for a collection of sets (Ck)k∈N ⊆ E, we have, for any
compact C ′ ⊆ E

lim
k→∞

sup
x∈Cc

k
, y∈C′

∣∣∣K̄(x, y)− φ(x, y)
∣∣∣

φ∗(x, y) = 0. (23)

3 The limiting initial condition µ from (11) is such that for any compact set C ′ ⊆ E

lim
N→∞

sup
y∈C′

∣∣∣∣∣
∫
E

L̄(N)
0 (dx)φ(x, y)−

∫
E
µ(dx)φ(x, y)

∣∣∣∣∣ = 0 almost surely. (24)

Then, the limit L̄∗ of any weakly convergent subsequence of an asymptotically conservative
coagulation process (L̄(N)

t )t≥0 is, almost surely, a solution of the multi-type Flory equation
with conserved quantity φ and initial condition µ (according to Definition 2.1).

4Recall that ξ′ is sub-additive if ξ′(x+ y) ≤ ξ′(x) + ξ′(y).
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Examples 3.8. Some particular instances where Theorem 3.5 applies, are the following:

� We can take φ′ = φ′′ = φ∗ in Theorem 3.5 and Lemma 3.4, with φ′ satisfying (20). In
this case, if there exist a nested sequence of compact sets (Ck)k∈N such that ⋃k∈NCk =
E and φ′(x, y) > k on (Ck × Ck)c, one readily verifies the compactness in (21), by
Prokhorov’s theorem and Markov’s inequality. Often, these sets (Ck)k∈N can also be
used in (22) or (23).

� For example, assuming continuity of K̄ we can take

φ′(x, y) = ξ′(m(x))ξ′(m(y)) (25)

for some continuous, sub-linear, positive function ξ′, with limk→∞ ξ
′(k) = ∞, and,

assuming m−1([0, k]) is compact, choose Ck = m−1([0, k]).

� In a similar setting, we can choose φ′(x, y) = m(x) ∧ m(y), in which case (22) is
satisfied. It may the case that∫

E×E
m(x) ∧m(y)µ(dx)µ(dy) <∞,

but 〈m,µ〉 =∞; and, as far as we are aware, this case is not covered by previous results
appearing in the literature. In a similar vein, we can choose φ′(x, y) = ξ′(m(x)∧m(y))
continuous, sub-linear, positive function ξ′.

� Alternatively, we may choose φ(x, y) = m(x)`(y) for some measurable function ` :
E → R+, φ∗(x, y) = m(x), and φ′(x, y) = ξ′(m(x))ξ′(m(y)), and limN→∞〈m, L̄(N)

0 〉 =
〈m,µ〉 almost surely (which may be used to show (24)). In the setting of the classical
Marcus-Lushnikov process (Example 2.1), this example includes a mild strengthening
of [Theorem 2.3, [18]], showing concentration of trajectories around the classical Flory
equation. However, we allow for random initial conditions (L̄(N)

0 )N∈N, and do not require
ξ′(x) ≥ 1.

Remark 3.9. If one considers the initial condition L̄(N)
0 :=

∑N

i=1 δXi
N

, where Xi are i.i.d samples
from the limiting measure µ, if we choose φ′ according to (25), by applying the strong law of
large numbers, one can readily verify that Equations (20) is satisfied when 〈ξ′ ◦m,µ〉 < ∞.
In this case, the term δx/N appearing in Equation (20) is crucial for this argument to work,
since it may be the case, for example, that 〈ξ′ ◦m〉 <∞, but 〈(ξ′ ◦m)2〉 =∞.

Example 3.10. Consider the two toy spatial coagulation models introduced in Example 2.4
where E = S × N0 and S ⊂ Rd. Moreover fix α ∈ (0, 1) and take K̄((p, n), (s, o)) :=
(no)αf(||p− s||), where || · || denotes the euclidean norm and f : R+ 7→ R+ is a continuous
function such that f is uniformly bounded. Then we have that

lim
m→∞

K̄((p, n), (s, o))
n

= 0

for any p, s ∈ S and o ∈ N0, and the function φ = 0 satisfies the properties in (23) and (17).

Example 3.11. We consider again the spatial coagulation models introduced in Example 2.4.
Suppose in addition that

lim
m→∞

K̄((p, n), (s, o))
n

= `(s, o) <∞, (26)
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where ` is a continuous function that does not depend on the position p of the mass going
to infinity; then, the function φ := n`(s, o) satisfies the properties in (23) and (17) for any
choice of the location of the newly formed particle, which we can indicate by X((p,m), (s, n)).
Indeed (26) implies condition (23), and we can also check that also (17) is satisfied:

φ ((X((p,m), (s, n)),m+ n) , (v, j)) = (m+n)`(v, j) = φ((p,m)), (v, j)) +φ((s, n), (v, j)).
(27)

3.2.3 Existence of gelling solutions to the multi-type Flory equation

The following is an immediate implication of Theorem 2.2, Theorem 3.2 and Theorem 3.5
(hence we omit providing an explicit proof):

Corollary 3.6. Suppose a cluster coagulation process (L̄(N)
t )t≥0 satisfies Assumption 3.1 and

the conditions of Theorem 3.5, and thatm is continuous. Then, there exists a gelling solution to
the multi-type Flory equation (Definition 2.1), with conserved quantity φ and initial condition
µ.

Remark 3.12. Note that it may be the case that Assumption 3.1 is satisfied, but 〈m,µ〉 =∞.
In this case, if the conditions of Theorem 3.5 apply, trajectories of the cluster coagulation
process still concentrate around solutions of a Smoluchowski equation; and thus it is natural
to use the notion of stochastic gelation to define gelling solutions of such equations.

Remark 3.13. One of the novelties of Corollary 3.6 comes from the criterion for gelation under
the conditions of Corollary 3.3. In particular, this confirms that a large class of homogeneous
kernels, with exponent γ > 1 have gelling solutions, a well-known conjecture from scientific
modelling literature [6, 12]. Previously, Wagner showed that the mass flow process associated
with such models is explosive, a property conjectured to hold for all coagulation kernels with
gelling solutions [12, 42].

Remark 3.14. If we have uniqueness of the solution of the associated Flory equation, then
Theorem 3.5 also implies a weak law of large numbers for the cluster coagulation process, (since
weak convergence to a constant implies convergence in probability). This has been shown by
Norris [33] in the cases that either K̄(x, y) ≤ m(x) + m(y), K̄(x, y) = ξ′(m(x))ξ′(m(y))
where ξ′ : [0,∞) → [0,∞) is continuous, sub-linear and (ξ′)2 is sub-linear, or if the ker-
nel is ‘eventually multiplicative’ (meaning that, for some R > 0, K̄(x, y) = m(x)m(y) on
(m−1([0, R])×m−1([0, R]))c; see [page 411, [33]]). Notably, Norris also shows an exponential
rate of convergence of the coagulation process to the limit, in a the restricted case of ‘polymer
models’ when the limit is unique (see [Theorem 4.2 and Theorem 4.3, [33]]).

We note, however, that the setting we consider here is more general, and there are a wide
range of kernels satisfying Equation (23) which are not eventually multiplicative. The natural
extension of this result is therefore to consider kernels that are, in some sense, “eventually
conservative”.

3.2.4 Criteria for uniqueness for eventually conservative kernels

The following theorem applies to certain kernels K̄(x, y) which coincide with a conservative
function outside a compact set, and are thus, in a sense, ‘eventually conservative’:
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Theorem 3.7. Suppose that (µt)t≥0 is a solution to the multi-type Flory equation (according
to Definition 2.1) with conserved quantity φ and initial condition µ0 such that ‖µ0‖ < ∞.
Also, assume that, for each k ∈ N sufficiently large, the set

Dk :=
{
x ∈ E :

∫
E
φ(x, y)µ0(dy) ≤ k

}
is compact, with ⋃k∈NDk = E; we have K̄(x, y) ≤ c′φ(x, y) for some c′ > 0 and for some R
sufficiently large, φ(x, y) = K̄(x, y) on (DR ×DR)c. Then, the solution (µt)t≥0 is unique.

Corollary 3.8. Under the hypotheses of Lemma 3.4, Theorem 3.5 and Theorem 3.7; if (µt)t≥0
denotes the associated unique solution to the multi-type Flory equation, we have

(L̄(N))t≥0 −→ (µt)t≥0 in probability, in D([0,∞); E).

Remark 3.15. Note that, unlike in the context of Theorem 3.5, the condition that φ(x, y) =
K̄(x, y) on (DR×DR)c, combined with the symmetry of K̄ implies that φ(x, y) is symmetric.

Remark 3.16. If we take φ(x, y) = m(x)m(y), one readily verifies that K̄(x, y) is eventually
conservative in the sense of Theorem 3.7 if the setsm−1([0, R]) as in Remark 3.14 are compact.

Remark 3.17. Note that, in the setting of Example 2.3, the kernel K̄(x, y) = xTAy is a
symmetric conservative function, hence the uniqueness result, and weak law of large numbers
from Theorem 3.7 and Corollary 3.8 extends the results of [22].

Remark 3.18. It is possible to also apply these results to more general spaces E; as long
as E is a σ-compact metric space. This means that we can take E to be, for example, an
appropriate (restricted) space of functions and the kernel to be of the form

K(f, g, dh) = δm(f)f+m(g)g
m(f)+m(g)

K̄(f, g).

With any kernel of this form, a symmetric, bilinear form gives rise to a symmetric, conserva-
tive function φ; for example, if E = C([0, 1]; [0, 1]) we see that φ(f, g) =

∫
f(x)g(x)dx is

symmetric and conservative.

3.3 Strong gelation: couplings with inhomogeneous random graphs

In certain cases, we may deduce properties about the coagulation model by coupling with auxil-
iary processes. It is well-known that for the classical multiplicative kernelK(x, y) = m(x)m(y),
the cluster masses at time t > 0 are in one-to-one correspondence with the sizes of components
of the Erdős–Rényi random graph with N vertices and 1−e−t/N edge probability. Likewise, the
work by Patterson and Heydecker [22] shows that for cluster coagulation models of a ‘bilin-
ear’ type, the cluster masses are in one-to-one correspondence with an inhomogenous random
graph. In both these cases, gelation coincides with the emergence of a ‘giant component’ in the
associated random graph, and as the giant component is always of order N , strong gelation
occurs, with an explicit description of the gelation time.
In this section, we extend these correspondences to produce, under certain assumptions on
the coagulation kernel, a monotone coupling with an associated inhomogeneous graph model,
hence providing sufficient criteria for strong gelation (resp. stochastic gelation), with an explicit
lower bound (resp. upper bound) on the gelation time.
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Definition 3.2. A coagulation process (Lt)t≥0 with kernel K : E × E × B →→ [0,∞) is
graph dominating if it satisfies the following identity: for all x, y, q ∈ E, for K(x, y, ·) a.a. z,
we have

K̄ (z, q) ≥ K̄(x, q) + K̄(y, q). (28)
Conversely, a coagulation process is graph dominated if the opposite inequality holds: for all
x, y, q ∈ E, for K(x, y, ·) a.a. z, we have

K̄ (z, q) ≤ K̄(x, q) + K̄(y, q). (29)

Remark 3.19. Note the connection between graph dominated/dominating kernels and con-
served quantities in Definition 3.1. Indeed, if a kernel is conservative, the cluster sizes are in
one-to-one correspondence with the component sizes of an inhomogenous random graph.

We will also consider mono-dispersed coagulation processes, i.e. kernels with initial configura-
tion consisting of clusters with mass 1. More precisely, we say a coagulation process (L(N)

t )t≥0
is mono-dispersed, if for each N

Supp
(
L(N)

0

)
⊆ {x ∈ E : m(x) = 1}. (30)

Now, in order to state our theorem, recalling µ from (11), we define the operator TK̄,µ such
that, for any f ∈ L2(µ), we have

TK̄,µf(x) :=
∫
E
f(y)K̄(x, y)µ(dy), (31)

and its operator norm:

Σ(K̄, µ) := ‖TK̄,µ‖L2(µ) = sup
f∈L2(µ),‖f‖L2(µ)=1

∥∥∥TK̄,µf∥∥∥L2(µ)
. (32)

We then have the following result.

Theorem 3.9. Suppose (L̄(N)
t )t≥0 is a coagulation process with mono-dispersed initial con-

figuration, and that t∗ := inf {t > 0 : tΣ(K,µ) > 1}. Then, recalling the definitions of tsg and
Tψ,δg from Definition 2.2

1 If (L̄(N)
t )t≥0 is graph dominating, then strong gelation occurs, with tsg ≤ t∗.

2 If (L̄(N)
t )t≥0 is graph dominated then, for any ψ : N→ N non-decreasing with limN→∞ ψ(N) =

∞, and for any δ > 0 we have Tψ,δg ≥ t∗.

In fact, as we will see in Section 4.3, we can say a bit more: that the cluster sizes in the
coagulation model dominate or are dominated by the component sizes of an associated inho-
mogeneous random graph model when the coagulation process is graph dominating or graph
dominated respectively.

Example 3.20. Suppose that we are in the same setting as Example 2.4 with particles moving
to the centre of mass and ρ : S → [0,∞) is an even (i.e., ρ(p) = ρ(−p)), concave function.
Then, the coagulation process with kernel K̄ : (S × N0)2 → [0,∞) defined by

K̄((p,m), (s, n)) := mnρ(p− s)
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is graph dominating . Indeed, one may readily compute that for all q ∈ S:

K̄
((

mp+ ns

m+ n
,m+ n

)
, (q, `)

)
= (m+ n)`ρ

(
mp+ ns

m+ n
− q

)
= (m+ n)`ρ

(
m(p− q) + n(s− q)

m+ n

)

≥ (m+ n)`
(

m

m+ n
ρ (p− q) + n

m+ n
ρ(s− q)

)
= m`ρ(p− q) + n`ρ(s− q)
= K̄((p,m), (q, `)) + K̄((s, n), (q, `)).

(33)

Conversely, if ρ′ : S → [0,∞) is an even, convex function, then the kernel defined by
K̄((p,m), (s, n)) := mnρ′(p− s) is graph dominated.

Example 3.21. If S is a compact normed vector space with norm ‖ · ‖, then the function
ρ(·) := maxp∈S ‖p‖−‖·‖ is concave. Thus, in this case, the kernel mnρ(p−s) is a decreasing
function of the distance between two points.

4 Proofs of main results

4.1 Criteria for gelation: proof of Theorem 3.2 and Corollary 3.3

This section is dedicated to the proofs of Theorem 3.2 and Corollary 3.3.
In the remainder of this section, we will often assume that we work with a fixed N with
initial condition L̄(N)

0 = π, with |π| < ∞ such that, as in the statement of Theorem 3.2,
〈m1m≥1,π〉 > δ, and Assumption 3.1 is satisfied. We may further assume, by making δ0 smaller
if necessary, that we have a sequence (δi)i∈N satisfying the requirement of Assumption 3.1 such
that each δi < 〈m1m≥1,π〉. Moreover, we choose ψ′ such that

ψ′(N) = ψ(N) ∧max
{
k : 2k+2

δk − δk+1
≤ N

ξ(N)

}
; (34)

one readily verifies that ψ′ is non-decreasing, and limN→∞ ψ
′(N) = ∞. In order to prove

Theorem 3.2, we define the family of functions Fk : E → R such that, for each t ∈ [0,∞)

Fk(L̄(N)
t ) :=

〈
m1m≥2k+1 , L̄(N)

t

〉
/ 〈m1m≥1,π〉 (35)

and an associated family of stopping times (Tk)k∈N defined such that

Tk := inf
{
t > 0 :

〈
m1m≥2i , L̄

(N)
t

〉
≥ δi for i = 0, 1, . . . , k

}
,

i.e., the first time that the normalised total mass of clusters with mass at least 2i exceeds δi
for each i = 0, . . . , k. Note that the functions Fk depend on π and the times Tk depend on
N , but for brevity of notation, we will exclude this dependence in the remainder of the section.

Lemma 4.1. For N ∈ N sufficiently large, for each k ≤ log2(ψ(N)), we have

EN,π [Tk] <∞.
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Proof. In this proof, we denote by σ0 ≤ σ1 ≤ σ2 ≤ . . ., the times of coagulations (jumps) in
the normalised coagulation process (L̄(N)

t , t ≥ 0) in increasing order, with σ0 := 0. We also
set

c′min := min
i=1,...,|P(0)|

{c′(i, 0)} ,

with c′min > 0 by Assumption 3.1.
Note, that, the time re-scaling t 7→ Nt in the normalised process corresponds to re-scaling
the coagulation kernel K 7→ K/N , as if X is exponentially distributed with rate K, N ×X
is exponentially distributed with rate K/N .
Fix k ≤ log2(ψ(N)) and i < ‖π‖ such that σi < Tk (recall that ‖π‖ encodes the initial
number of clusters). Then, if x1, . . . , x‖π‖−i denote the clusters at time σi (i.e. the points in
the point measure L̄σi), we have

σi+1 − σi ∼ Exp
‖π‖−i∑

j=1

‖π‖−i∑
k=j+1

K̄(xj, xk)
N

 .
By Equation (13), as long as there exists j, j′ such that xj, xj′ ∈ P (0)

` for some P (0)
` ∈P(0),

then σi+1−σi is stochastically bounded above by Xi, where Xi ∼ Exp
(
c′min
N

)
. Now, note that

if no such ` exists, it must be the case that each set P (0)
j contains at most 1 cluster of mass

larger or equal than 1. If each element of the partition contains exactly one cluster of mass
at most ψ(N), since ξ(N) denotes the maximum size of the partition, 〈m1m≤ψ(N),Lσi〉 is at
most ξ(N)ψ(N). Consequentially, the total proportion of mass in clusters at least ψ(N) is

〈
m1m≥ψ(N), L̄(N)

σi

〉
≥ 〈m1m≥1,π〉

(
1− ξ(N)ψ(N)
〈m1m≥1,π〉N

)
> δ0,

for N sufficiently large (using the third assertion in Assumption 3.1). But this is not possible,
since σi < Tk ≤ Tlog2(ψ(N)), and the above would imply that σi ≥ Tlog2(ψ(N)). Note also, that
as there can be at most ‖π‖ − 1 coagulation events, by a similar argument it must be the
case that σ‖π‖−1 ≥ Tlog2(ψ(N)). As a result, for k ≤ log2(ψ(N)),

EN,π [Tk] < E

‖π‖−1∑
i=1

Xi

 = (‖π‖ − 1)N/c′min <∞.

We note that the upper bound on the expectation of Tk that we get in the proof of Lemma 4.1
may be a large over-estimate. However, since we need it to apply Doob’s optional sampling
theorem on such a stopping time in the proof of Theorem 3.2, it is enough to know that the
expectation is finite.

Lemma 4.2. Suppose that ~v = (v1, . . . , vn), ~c = (c1, . . . , cn) are such that vi ∈ N and ci > 0,
for all i = 1, . . . , n. Then, if ∑n

i=1 vi ≥ k1 > n and ∑n
i=1

1
ci

= k2 then

∑
i

ci
(
v2
i − vi

)
≥ (k1 − n)2

2k2
. (36)
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Proof. Re-writing the left side of Equation (36) we get
∑
i

ci(v2
i − vi)1{vi>1} ≥

∑
i

ci
v2
i

2 1{vi≥2}. (37)

We seek to optimise the right hand side of Equation (37) subject to the constraint∑
i

vi1{vi≥2} ≥ k1 − n.

When doing so, we may remove the condition that vi ≥ 2, and that the vi are integers, as
this can only make the minimum smaller. Exploiting Lagrange multiplier techniques, we seek
to minimise J(~v,~c, λ) := ∑

i civ
2
i /2 + λvi. The Hessian is the diagonal matrix, with entries

given by ci, so any extreme point is a minimiser. Setting ∂J
∂vi

= 0, we have vi = −λ
ci
. Solving

for λ we get λ = n−k1
k2

. Substituting into vi yields the result.

4.1.1 Proof of Theorem 3.2

Proof of Theorem 3.2. First, we fix k < log2(ψ′(N)) ≤ log2(ψ(N)) and note that, given the
initial condition π, the functions Fk are always bounded above by 1, and are clearly measurable.
Now, recalling the generator in (2), we may consider the normalised process (L̄(N)

t , t ≥ 0) as
a Markov process taking values in E with generator AN (now dependent on N), defined such
that for any bounded measurable test function F : E → R, we have

ANF (L̄(N)
t ) (38)

= N

2

∫
E×E×E

(L̄(N)
t (dx)

(
L̄(N)
t − δx

N

)
(dy)K(x, y, dz)

(
F

(
L̄(N)
t + (δz − δx − δy)

N

)
− F

(
L̄(N)
t

))
,

(39)

where the N scaling somes from dividing the kernel by N (the time rescaling) and multiplying
the measures L̄(N)

t by N (corresponding to normalising the cluster masses). As Fk only con-
siders the masses of clusters larger than 2k+1, and ignores other features, and the mass of the
coagulated cluster z is m(z) = m(x) +m(y), we deduce that

ANFk(L̄t) = 1
2 〈m1m≥1,π〉

∫
E×E

L̄t(dx)
(
L̄t −

1
N
δx

)
(dy)K̄(x, y) (40)

×
[
(m(x) +m(y))1(m(x) +m(y) ≥ 2k+1)−m(x)1(m(x) ≥ 2k+1)−m(y)1(m(y) ≥ 2k+1)

]
.

(41)

Note that AN corresponds to the generator A in (2) when we scale time and L with N as
described when we introduced L̄(N)

t . Now,

MFk(t) := Fk(L̄(N)
t )− Fk(π)−

∫ t

0
ANFk(L̄(N)

s )ds5

is a martingale with respect to the natural filtration of the process initiated by the measure
π. Now, thanks to hypothesis (15), we may bound the martingale:

|MFk(t)| ≤ 2 + 1
〈m1m≥1,π〉

gπt.

5The fact that MFk
(t) is a martingale follows from the definition of the infinitesimal generator of the

process, see, for example, [Proposition 7.1.6, [35]]
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Since, by Lemma 4.1, Tk+1 has finite expectation, for any fixed N the collection (MFk(t ∧
Tk+1))t≥0 is pointwise dominated by the integrable function 2 + gπTk+1/N , hence uniformly
integrable. Thus, by Doob’s optional sampling theorem (see, for example, [Corollary 2.3.6 and
Theorem 2.3.2, [35]]) MFk(t ∧ Tk+1) is also a martingale, and

EN,π
[
Fk(L̄Tk+1)

]
= EN,π

[
Fk(L̄Tk)

]
+ EN,π

[∫ Tk+1

Tk
ANFk(L̄t)

]
dt. (42)

Note, that, if Tk ≤ t < Tk+1, by definition, we have
〈
m1m≥2k , L̄

(N)
t

〉
≥ δk and

〈
m1m≥2k+1 , L̄(N)

t

〉
< δk+1, (43)

so that 〈
m12k≤m<2k+1 , L̄(N)

t

〉
≥ (δk − δk+1). (44)

Now, we consider the term in (40), and, using the fact that

m(x)1(m(x) ≥ 2k+1) +m(y)1(m(y) ≥ 2k+1) ≤ (m(x) +m(y))1(m(x) or m(y) ≥ 2k+1),

we bound this from below by

1
2 〈m1m≥1,π〉

∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t − 1

N
δx

)
(dy)K̄(x, y)

× (m(x) +m(y))1(m(x) +m(y) ≥ 2k+1 > m(x),m(y))
(13)
≥ 1

2 〈m1m≥1,π〉

2k+1−1∑
n1,n2=2k

∑
P∈P(k)

c′(P, k)(n1 + n2)
〈
1n1≤m(x)<n1+1,x∈P , L̄(N)

t

〉
×
(〈

1n2≤m(x)<n2+1,x∈P , L̄(N)
t

〉
− 1{n1=n2}

)
≥ 2k
〈m1m≥1,π〉

2k+1−1∑
n1,n2=2k

∑
P∈P(k)

c′(P, k)
〈
1n1≤m(x)<n1+1,x∈P , L̄(N)

t

〉
(45)

×
(〈

1n2≤m(x)<n2+1,x∈P , L̄(N)
t

〉
− 1{n1=n2}

)
,

where the first inequality comes by restricting the integral over E×E to the space ⋃P∈P(k) P×
P and then using the inequality from assumption (13).
By exchanging the order of summation in (45), we may lower bound this further by applying
Lemma 4.2 to the integer valued random variables ∑2k+1−1

n=2k N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉
, in-

dexed by the elements of P(k). Note that these are almost surely integer valued as they count
the number of particles at time t in each element P of the partition P(k). Also note that the
assumptions of Lemma 4.2 may be applied since

∑
P∈P(k)

2k+1−1∑
n=2k

N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉
= N

〈
12k≤m<2k+1 , L̄(N)

t

〉
≥ N(δk − δk+1)/2k+1,

(46)
where the last inequality follows from the fact that

〈
m12k≤m<2k+1 , L̄(N)

t

〉
≥ (δk − δk+1) for
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all t ∈ [Tk, Tk+1). We obtain:

2k
N2 〈m1m≥1,π〉

×
∑

P∈P(k)

c′(P, k)


2k+1−1∑

n=2k
N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉2

−
2k+1−1∑
n=2k

N
〈
1n≤m(x)<n+1,x∈P , L̄(N)

t

〉
(36)
≥ 2k((δk − δk+1)N/2k+1 − ξ(N))2

〈m1m≥1,π〉 2N2(∑P∈P(k) c′(P, k)−1) .

If ξ(N) ≤ (δk−δk+1)N
2k+2 , as guaranteed by (34) and the fact that k < log2(ψ′(N)), we may

bound the previous further by

(δk − δk+1)2

2k+5 〈m1m≥1,π〉 (
∑
P∈P(k) c′(P, k)−1) ;

Now, observing that 0 ≤ Fk(L̄(N)
t ) ≤ 1, by applying (42) we have

1 ≥ EN,π
[
Fk(L̄(N)

Tk+1
)
]

≥ EN,π
[∫ Tk+1

Tk
AFk(L̄(N)

t )dt
]
≥ (δk − δk+1)2

2k+5 〈m1m≥1,π〉 (
∑
P∈P(k) c′(P, k)−1)EN,π [(Tk+1 − Tk)] ;

which in turn yields

EN,π [(Tk+1 − Tk)] ≤
2k+5 〈m1m≥1,π〉 (

∑
P∈P(k) c′(P, k)−1)

(δk − δk+1)2 . (47)

Now, summing over k, up until ` = log2(ψ′(N)), we have

EN,π [τ(ψ′(N), δ)] ≤ EN,π [τ(ψ′(N), δ`)] =
`−1∑
k=1

EN,π [(Tk+1 − Tk)]

≤
log2(ψ′(N))∑

k=1

2k+5 〈m1m≥1,π〉 (
∑
P∈P(k) c′(P, k)−1)

(δk − δk+1)2 .

(48)
Taking limits superior of both sides, the right-hand side is bounded by Equation (14).
To complete the proof of the theorem, we prove the second statement. Suppose that, by
assumption, ε > 0 is such that

lim inf
N→∞

PN
(〈
m1m≥1, L̄(N)

0

〉
> ε

)
= p0 > 0.

Now, if we choose a sequence (δi)i∈N with each δi < ε, (so that δ = limi→∞ δi < ε), as
the upper-bound C = C((δi)) is independent of the initial condition π, we may bound the
expected value

EN,π
[
τ(ψ′(N), δ)

∣∣∣∣∣ 〈m1m≥1, L̄(N)
0

〉
> δ

]
≤ C,

hence, by Markov’s inequality, for each N ,

PN
(
τ(ψ′(N), δ) ≤ 2C

∣∣∣∣∣ 〈m1m≥1, L̄(N)
0

〉
> δ

)
≥ 1

2 ,
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and therefore,
lim inf
N→∞

PN (τ(ψ′(N), δ) ≤ 2C) ≥ p0

2 .

This implies that

lim inf
N→∞

PN
(〈
m1m≤ψ′(N), L̄(N)

2C

〉
≤
〈
m, L̄(N)

0

〉
− δ

)
≥ 1− p0

2 ,

hence stochastic gelation occurs (with (ψ′, δ) gelation time at most 2C).

4.1.2 Proof of Corollary 3.3

We finish off this section with the proof of Corollary 3.3.

Proof of Corollary 3.3. In order to apply Theorem 3.2, we first need to show that the conditions
of Assumption 3.1 are satisfied. We first note that in Assumption 3.1, applying (16) we can
take ξ(N) ≡ 1, and ψ(N) any non-decreasing function such that limN→∞ ψ(N) = ∞ and
limN→∞

ψ(N)
N

= 0. Now, suppose that π is a given initial condition with ‖π‖ < ∞ and
〈m1m≥1,π〉 > δ. Now, to show the final assumption, given π, we define the following set of
possible clusters:

Gπ :=

x ∈ [0,∞) : x =
j∑
i=1

xi, x1, . . . , xj ∈ Supp(π), j ∈ N

 .
Since ‖π‖ < ∞, we have |Gπ| < ∞. Moreover, recalling that for all x, y ∈ [0,∞) we have
K̄(x, y) <∞, and for each s ∈ [0,∞) we have ‖L̄(N)

s ‖ ≤ ‖π‖, we deduce that∫
[0,∞)×[0,∞)

L̄(N)
s (dx)L̄(N)

s (dy)K̄(x, y)(x+ y) ≤ max
x,y∈Gπ

{
(x+ y)K̄(x, y)

}
‖π‖2.

Thus, in this case, (15) is satisfied almost surely on
〈
m1m≥1, L̄(N)

0

〉
> δ. But now, since

by (11), L̄(N)
0 → µ weakly, in probability, it converges almost surely along a sub-sequence.

Moreover, as the function m(x) = x1x≥1 in this case, it is continuous and bounded from
below. By the Portmanteau theorem we deduce that

lim inf
N→∞

〈
m1m≥1, L̄(N)

0

〉
≥ 〈m1m≥1, µ〉 > 0

almost surely, and thus, for any sub-sequence (Nk)k∈N

lim sup
k→∞

PNk

(〈
m1m≥1, L̄(Nk)

0

〉
≥ 〈m1m≥1, µ〉

2

)
≥ 1

2 .

Thus, if we set ε = 〈m1m≥1,µ〉
2 , we have lim infN→∞ PN

(〈
m1m≥1, L̄(N)

0

〉)
> 0. This proves

the first assertion of the corollary.
We now prove the first of the final two assertions. Set κ∗ := infi∈[1,2] K̄(1, i). By the homo-
geneity assumption there exists j0 ∈ N such that, for all j ≥ j0 we have (assuming w.l.o.g.
x < y), K̄(x, y) = xγK̄

(
1, y

x

)
≥ κ∗2γj whenever 2j ≤ x, y < 2j+1. Finally, setting (for

example) δj = δ + 1
1−δ2

−(γ−1)/8j, we also deduce condition (16) with c′j := κ∗2γj.
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For the final assertion, by assumption there exists a j0 ∈ N such that, for all j ≥ j0 we have
K̄(x, y) ≥ 2j(j log 2)3+ε for 2j ≤ x, y < 2j+1. Note that, if we set δ0 = 1, since δi ↓ δ for all
i, we have

lim
i→∞

i∑
j=1

(δj − δj+1) ≤ 1− δ,

and the terms δj − δj+1 need to be decreasing. By choosing δj − δj+1 = κδ0 j
−(1+ε/3), say, for

an appropriate normalising constant κδ0, we deduce the result.

4.2 Concentration of trajectories along solutions of the multi-type
Flory equation

The normalised cluster coagulation process (L̄(N)
t )t≥0 induces a probability measure PN on

the space D([0,∞); E). We wish to show that the family of probability measures (PN)N∈N is
tight, which implies by Prokhorov’s theorem [34, Theorem IV.29, page 82] that (PN)N∈N has
a weakly convergent subsequence. We then show that any such subsequence concentrates on
solutions of the multi-type Flory equation. Throughout this section, it will be beneficial to have
associated “conserved” quantities, preserved by the dynamics of the process. This motivates
the following lemma:
Lemma 4.3. For any cluster coagulation process (L̄(N)

t )t≥0, given any doubly sub-conservative
φ
′ : E × E → R, almost surely for all t ≥ 0 we have, for each y ∈ E∫

E

(
L̄(N)
t (dx)

)
φ′(x, y) ≤

∫
E

(
L̄(N)

0 (dx)
)
φ′(x, y) (49)

and∫
E×E

L̄(N)
t (dx)

(
L̄(N)
t (dy)− δx

N

)
φ′(x, y) ≤

∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ′(x, y).

(50)

Proof. For Equation (49) if τ1 < τ2 denote times of two consecutive coagulation events, with
τ2 involving the coagulation of clusters x′ and y′ to a new cluster z, we have∫

E

(
L̄(N)
τ2 (dx)− L̄(N)

τ1 (dx)
)
φ′(x, y) = (φ′(z, y)− φ′(x′, y)− φ′(y′, y)) .

The right-hand side is 0 for K(x′, y′, dz)−a.a. z, hence almost surely. Now, for Equation (50),
note that integrals of φ′(x, y) with respect to the product measure

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
are nothing but sums of φ′(x, y) across all the distinct pairs of clusters x, y in the process at
time s. Thus, if τ1 < τ2 denote times of two consecutive coagulation events, with τ2 involving
the coagulation of clusters x′ and y′ to a new cluster z, we have∫

E×E
L̄(N)
τ2 (dx)

(
L̄(N)
τ2 (dy)− δx

N

)
φ′(x, y)−

∫
E×E

L̄(N)
τ1 (dx)

(
L̄(N)
τ1 (dy)− δx

N

)
φ′(x, y)

= −φ(x′, y′) + φ(y′, x′)
N2 +

∫
E

(
L̄(N)
τ1 −

δx′

N
− δy′

N

)
(du)(φ′(z, u)− φ′(x′, u)− φ′(y′, u))

N2

+
∫
E

(
L̄(N)
τ1 −

δx′

N
− δy′

N

)
(du)(φ′(u, z)− φ′(u, x′)− φ′(u, y′))

N2 ≤ 0,
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forK(x′, y′, dz)− a.a. z. Note that the first term in the second line comes from the contribution
to the integral from the pair x′, y′ involved with the coagulation, and the other integrals in
the second and third line, comes from the difference in the contributions to the integrals from
pairs (v, u) where v ∈ {x′, y′, z}, and u is a cluster not involved in the coagulation event. The
result follows by iterating over the jumps in the process.

4.2.1 Tightness: the proof of Lemma 3.4

In order to prove Lemma 3.4, we apply some well established tightness criterion, stated in the
appendix.

Proof of Lemma 3.4. We will apply Lemma A.2. For the first compact containment criterion,
first recall that by (21), the set

E∗n :=
{
u ∈M+(E × E) :

∫
E

u(dx× dy)φ′′(x, y) ≤ n
}

is compact. Now, note that, by Lemma 4.3, if we have

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
∈ E∗n, then, for all s ≥ 0, L̄(N)

s (dx)
(

L̄(N)
s (dy)− δx

N

)
∈ E∗n.

Suppose that we denote by DN the set

DN :=
{

u ∈ E : u =
∑
i∈I

ciδi
N
, ci ∈ N, I ⊆ E

}
,

and ιN : DN → M+(E × E) denotes the map u 7→ u(dx)
(
u(dy)− δx

N

)
; and extend this

map to a map ι : ⋃N∈NDN →M+(E × E) such that ι ≡ ιN on DN . We now note that for
any n ∈ N the set

Bn :=

u ∈
⋃
N∈N
DN : ι(u) ∈ E∗n


is relatively compact. Indeed, by the compactness of E∗n, any sequence (ι(ui))i∈N has a con-
vergent subsequence (ι(uik))k∈N. Suppose ν denotes a limit of this subsequence. There, are
two cases: we can either find a further subsequence (which we also denote (ι(uik))k∈N), such
that, for some N ′ ∈ N we have (ι(uik))k∈N = (ιN ′(uik))k∈N, or it is the case that for any
N ′ ∈ N there exists k ∈ N such that ι(uik) = ιj(uik) for some j ≥ N ′. In the latter case,
(since the co-efficient of the δx term tends to 0), we readily verify that

uik ⊗ uik → ν,

hence (uik)k∈N also converges weakly. We may similarly deduce the result in the first case,
when

uik(dx)
(

uik(dy)− δx
N ′

)
→ ν(dx× dy).

Now, since φ′′ satisfies (20) we know EN
[∫
E×E L̄(N)

0 (dx)
(
L̄(N)

0 (dy)− δx
N

)
φ′′(x, y)

]
< c0, for

some c0 ∈ N. Therefore, by Markov’s inequality, for any c1 ∈ N,

lim inf
N→∞

PN
(
∀t ≥ 0 L̄(N)

t ∈ Bc1

)
= lim inf

N→∞
PN

(〈
φ′′, ι(L̄(N)

0 )
〉
≤ c1

)
≥ 1− c0

c1
.
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Thus, by fixing c1 > c0/ε and choosing the closure of Bc1 ⊆ E as the required compact set,
we have the required compact containment condition (150).
For the second criterion, we will define an appropriate family of test functions F, then apply
Lemma A.1. In particular, we choose the family of functions F from E to R such that

F :=
{
J̃ : J̃(u) =

∫
E
J(x)u(dx); J ∈ Cc(E;R)

}
,

where Cc(E;R) denotes the set of continuous functions on E with compact support. By
the definition of the weak topology, this family consists of continuous functions and it is
straightforward to see that it is closed under addition. Moreover, since E is σ-compact, a
measure µ is uniquely determined by the values of 〈f, µ〉, where f ∈ Cc(E;R), thus this
family separates points. Now, let J̃ ∈ F be given, with associated function J : E 7→ R, so
that

J̃(L̄t) = 〈J, L̄t〉 =
∫
E
J(x)L̄t(dx). (51)

We seek to apply Lemma A.1 to the family of pushforward measures{
J̃∗PN : N ∈ N

}
.

Note that these are measures on the space D([0,∞),R) which a separable, and complete
metric space, hence Lemma A.1 applies. Also note, that as the continuous image of a compact
set is compact, we can take J̃(Ec1) as the compact set for the first condition, and thus we
need only verify the second condition of Lemma A.1.
We note that, for fixed T , and η = η(T ) sufficiently small, we can find an integer K ∈ N
such that η < T/K =: η′ ≤ 2η. Therefore, we can define a partition {ti} of [0, T ] such that
ti+1 − ti = η′ > η, so that

J̃∗(PN) ({f : w′(f, η, T ) ≥ ε}) = PN
(
w′((J̃(L̄t))t∈[0,T ], η, T ) ≥ ε

)
≤ PN

(
sup

s,t∈[0,T ],|s−t|≤η′

∣∣∣J̃(L̄s)− J̃(L̄t)
∣∣∣ ≥ ε

)
,

(52)

where w′ denotes the modulus of continuity defined in (149). We now have the following claim:
Claim 4.3.1. For some constant C = C(T ), we have

lim sup
N→∞

EN
[

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣] < Cη, (53)

To complete the proof of Lemma 3.4 using Claim 4.3.1, observe that by Markov’s inequality,
for all n ≥ N , we have

lim
η→0

lim sup
N→∞

PN
(

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣ ≥ ε

)
< lim

η→0

Cη

ε
= 0,

implying (151).

Proof of Claim 4.3.1. We first note some relevant facts: since L̄t is a pure jump Markov
process, and J̃ is bounded and measurable, it is well-known that

MN(t) := J̃(L̄t)− J̃(L̄0)−
∫ t

0
AN J̃(L̄s)ds (54)
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and its quadratic variation

QN(t) := MN(t)2 −
∫ t

0
(AN J̃2 − 2J̃AN J̃)(L̄s)ds (55)

are both martingales under PN (see, for example, the proofs of Proposition 7.1.6, and Propo-
sition 8.3.3 in [35]). From Equation (54), the triangle inequality, and sub-additivity of taking
suprema, it follows that

EN
[

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃ [L̄(t)]− J̃ [L̄s]
∣∣∣] (56)

≤ EN
[

sup
s,t∈[0,T ],|s−t|≤η

|MN(t)−MN(s)|
]

+ EN
[

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣∣∫ t

s
AN J̃(L̄θ)dθ

∣∣∣∣
]

(57)

≤ 2EN
[

sup
0≤t≤T

|MN(t)|
]

+ EN
[

sup
s,t∈[0,T ],t−s≤η

∣∣∣∣∫ t

s
AN J̃(L̄θ)dθ

∣∣∣∣
]
. (58)

We will complete the proof by bounding the two terms on the right side of Equation (58). For
the first, observe that by Doob’s maximal inequality,

EN
[(

sup
0≤t≤T

|M(t)|
)p]
≤
(

p

p− 1

)p
EN [|M(NT )|p] ,

so that, by setting p = 2, and recalling that EN [Q(t)] = 0, we deduce from Equation (55)
that

EN
[

sup
0≤t≤T

|MN(t)|
]2

≤ EN

( sup
0≤t≤T

|MN(t)|
)2
 (59)

≤ 4EN
[
MN(T )2

]
= 4EN

[∫ T

0
(AN J̃2 − 2J̃AN J̃)(L̄s)ds

]
. (60)

Now, we recall that the generator AN of the normalised process (L̄(N)
t )t≥0 may be written as

follows: for bounded measurable test functions F , we have

ANF (L̄(N)
t )

= N

2

∫
E×E×E

(L̄(N)
t (dx)

(
L̄(N)
t − δx

N

)
(dy)K(x, y, dz)

(
F

(
L̄(N)
t + (δz − δx − δy)

N

)
− F

(
L̄(N)
t

))
.

For simplicity, for the remainder of this section, whenever unambiguous, we drop the superscript
(or subscript) (N) when referring to L̄(N)

t , MN(t) and AN . Abusing notation, for each t we
denote by L̄(x,y)→z

t := L̄t + (δz − δx − δy) /N
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Thus,

(AJ̃2 − 2J̃AJ̃)(L̄s)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)

(
J̃(L̄(x,y)→z

s )2 − J̃(L̄)2
)

−NJ̃(L̄s)
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)

(
J̃(L̄(x,y)→z

s )− J̃(L̄)
)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)

(
J̃(L̄s

(x,y)→z)2 − J̃(L̄s)2
)

−N
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)

(
J̃(L̄s)J̃(L̄(x,y)→z

s )− J̃(L̄s)2
)

= N

2

∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)

(
J̃(L̄(x,y)→z

s )− J̃(L̄s)
)2
, (61)

where, by definition (51) of J̃ , we have

J̃(L̄(x,y)→z
s )− J̃(L̄s) = (J(z)− J(y)− J(x)) /N. (62)

Combining this with Equations (61) and (59), we get

EN
[

sup
0≤t≤T

|M(t)|
]2

(63)

≤ EN
[

2
N

∫ T

0
ds
∫
E×E×E

L̄s(dx)
(

L̄s −
δx
N

)
(dy)K(x, y, dz)× (J(z)− J(y)− J(x))2

]
.

(64)

Moreover, recalling that J is continuous with compact support, by the extreme value theorem,
it is bounded. Therefore, bounding (J(z)−J(y)−J(x))2 by a constant cJ , and recalling that,
by assumption, K̄ ≤ φ′ pointwise, we have

EN
[

sup
0≤t≤T

|M(t)|
]2

≤ EN
[

2cJ
N

∫ T

0
ds
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
K̄(x, y)

]
(65)

≤ 2cJ
N

EN
[∫ T

0
ds
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
φ′(x, y)

]
(66)

= 2cJT
N

EN
[∫

E×E
L̄0(dx)

(
L̄0(dy)− δx

N

)
φ′(x, y)

]
. (67)

The last step is possible since we now observe, that, as φ′ is doubly sub-conservative, for each
s ∈ [0,∞) we have∫

E×E
L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ′(x, y) ≤

∫
E×E

L̄(N)
0 (dx)

(
L̄(N)

0 (dy)− δx
N

)
φ′(x, y),

(68)
almost surely.
Thus, by Equations (67) and (68), we have

EN
[

sup
0≤t≤T

|M(t)|
]
≤

√√√√2cJT
N

EN
[∫

E×E
L̄0(dx)

(
L̄0(dy)− δx

N

)
φ′(x, y)

]
. (69)
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In order to bound the second term on the right-side of (58), we apply a similar argument:∣∣∣∣∫ t

s
AJ̃(L̄θ)dθ

∣∣∣∣
=
∣∣∣∣∣N2

∫ t

s
dθ
∫
E×E×E

L̄t(dx)
(

L̄(N)
t − δx

N

)
(dy)K(x, y, dz)J̃(L̄(x,y)→z

θ )− J̃(L̄θ)
∣∣∣∣∣

≤ N

2

∫ t

s
dθ
∫
E×E×E

L̄t(dx)
(

L̄t −
δx
N

)
(dy)K(x, y, dz)

∣∣∣J̃(L̄(x,y)→z
θ )− J̃(L̄θ)

∣∣∣
(70)

As before, using Equation (62), and the fact that |x| =
√
x2, we may bound the previous by

√
cJ
2

∫ t

s
dθ
∫
E×E

L̄s(dx)
(

L̄s(dy)− δx
N

)
K̄(x, y) (71)

≤
√
cJ(t− s)

2

∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y), (72)

where the final inequality follows from (68). Thus, we have obtained the upper bound

EN
[

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣∣∫ t

s
AJ̃(L̄θ)dθ

∣∣∣∣
]
≤
√
cJ
2 ηEN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]
.

(73)
Thus, combining Equation (58) with Equations (69) and (73), and passing to the limit as
N →∞,

lim sup
N→∞

EN
[

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣] (74)

≤
√
cJ
2 η lim sup

N→∞
EN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]
(75)

the latter bound being finite by (20). Setting

C :=
√
cJ
2 lim sup

N→∞
EN

[∫
E×E

L̄0(dx)
(

L̄0(dy)− δx
N

)
φ′(x, y)

]

concludes the proof of (53).

4.2.2 Accumulation of trajectories on solutions of the multi-type Flory equation

Now, let P∗ denote an accumulation point of the tight sequence of measures (PN)N∈N, and
assume, by passing to a subsequence, and re-indexing, that PN → P∗ with respect to the
weak topology on the space of measures on D([0,∞); E). Following our previous notation, we
denote by L̄(N) and L̄∗ random trajectories sampled from these distributions. Mostly out of
convenience of notation, applying the Skorokhod representation theorem [34, Theorem IV.13,
page 71],6 we assume that (L̄(N))N∈N converges to L̄∗ pointwise for all ω ∈ Ω with respect to
the Skorokhod topology on D([0,∞); E) on some enlarged probability space (Ω,F ,P(·)). For
the rest of the section, we use the notation E [·] to denote expectations with respect to this
enlarged probability space. This will allow us to more easily draw conclusions about the limiting
trajectory L̄∗, and thus the limiting measure P∗. We now have the following proposition:

6Noting that as a tight probability measure on a metric space, P∗ concentrates on a separable set.
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Proposition 4.4. For any t ∈ [0,∞) we have L̄(N)
t → L̄∗t almost surely in the weak topology.

In addition, L̄(N)
t ⊗ L̄(N)

t → L̄∗t ⊗ L̄∗t almost surely in the weak topology, where the symbol ⊗
denotes the product measure on the space (Ω,F ,P(·)).

Proof of Proposition 4.4. The proof is the result of the following observations:

(I) First note that, for any J ∈ Cc(E;R), the operator J̃ : D([0,∞); E) → D([0,∞);R)
is continuous, as the function J̃ : E → R defined by J̃(u) = 〈J, u〉 is continuous
(see for example, [Theorem 4.3, [24]]). This implies that, if J̃(L̄(N)) denotes the map
t 7→ J̃(L̄(N)

t ), for any J ∈ Cc(E;R), we have J̃(L̄(N)) → J̃(L̄∗) almost surely in
D([0,∞);R).

(II) Applying (53), and observing that sups,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣ is monotone de-

creasing in η, we have

lim
N→∞

E
[
lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄t)− J̃(L̄s)
∣∣∣] = 0. (76)

In addition, one may readily verify that, for any T ∈ [0,∞) the functional

x 7→ lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

‖x(t)− x(s)‖ (77)

is a continuous functional with respect to the Skorokhod topology. Consequentially, by
bounded convergence,

0 = E
[

lim
N→∞

lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄(N)
t )− J̃(L̄(N)

s )
∣∣∣] (77)= E

[
lim
η→0

sup
s,t∈[0,T ],|s−t|≤η

∣∣∣J̃(L̄∗t )− J̃(L̄∗s)
∣∣∣]

(78)
for any J ∈ Cc(E;R), where in the final equality we have used the continuity of (77).
Therefore, the function J̃(L̄∗) : [0,∞) → R such that t 7→ J̃(L̄∗t ) is almost surely
continuous (i.e., J̃(L̄∗) ∈ C([0,∞),R) almost surely).

(III) This continuity implies that for any sequence (tn)n∈N such that tn → t, for any J ∈
Cc(E;R) we have

J̃(L̄∗tn) =
∫
E
J(x)L̄∗tn(dx)→

∫
E
J(x)L̄∗t (dx) almost surely.

But, since, by assumption on the initial condition we have L̄∗0 = µ, where µ denotes
the limiting measure from (11), and the dynamics of the process ensure that ‖L̄(N)

t ‖
is non-increasing for each N , we readily verify that each for each t ∈ [0,∞) we have
L̄∗t (E) ≤ ‖µ‖. Thus, by approximating any F ∈ Cb(E;R) by compactly supported
functions, for any F ∈ Cb(E;R) we have∫

E
F (x)L̄∗tn(dx)→

∫
E
F (x)L̄∗t (dx) almost surely.

This implies that L̄∗ is, almost surely, a continuous trajectory of measures, i.e., L̄∗ ∈
C([0,∞); E).

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 32

(IV) It is well-known that in a Skorokhod space the projection map πt : D([0,∞);E) → E
is a continuous functional at any trajectory x ∈ D([0,∞);E) for which t is a con-
tinuity point. Since every t ∈ [0,∞) is a continuity point of L̄∗t , this implies that
for any t ∈ [0,∞) we have L̄(N)

t → L̄∗t almost surely in the weak topology, as re-
quired. Now, by a similar approach to the proof of Lemma 3.4, the family of measures{
L̄(N)
t ⊗ L̄(N)

t , N ∈ N
}
, is (almost surely) tight, and by assumption uniformly bounded

in norm, thus almost surely relatively compact by [34, Theorem IV.29, page 82]; and
any accumulation point must be L̄∗t ⊗ L̄∗t . Thus, L̄(N)

t ⊗ L̄(N)
t → L̄∗t ⊗ L̄∗t almost surely.

Proof of Theorem 3.5

Parts of the proof of Theorem 3.5 rely on equations from the proof of Lemma 3.4, hence we
recommend that the reader be acquainted with this proof first.

Proof of Theorem 3.5. In order to simplify some expressions, we make some shorthands. Recall
that for any compactly supported J ∈ Cc(E;R), we denote by J̃ the functional such that

J̃(L̄(N)
s ) = 〈J, L̄(N)

s 〉 =
∫
E

L̄(N)
s (dx)J(x).

We also define the following functionals:

G+(L̄(N)
s , J) := 1

2

∫
E×E×E

L̄(N)
s (dx)L̄(N)

s (dy)K(x, y, dz)J(z). (79)

We recall that, by assumption, there exists a continuous function φ : E × E 7→ R+ that
satisfies Equations (17), (23) and (20). We then define Ĝ by

Ĝ(L̄(N)
s , J) :=

∫
E×E

L̄(N)
s (dx)L̄(N)

s (dy)
[
K̄(x, y)− φ(x, y)

]
J(y). (80)

Finally, we define the functional

H(L̄(N)
s , J) :=

∫
E

L̄(N)
s (dy)

〈
φ(·, y), L̄(N)

0

〉
J(y) =

∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y).
(81)

We now have the following claim:

Claim 4.4.1. Almost surely, for any t ∈ [0,∞), J ∈ Cc(E;R) we have

J̃(L̄∗t )− J̃(µ) =
∫ t

0
G+(L̄∗s, J)− Ĝ(L̄∗s, J)−H(L̄∗s, J) ds. (82)

Note that the truth of Equation (82) for any J ∈ Cc(E;R) implies that, almost surely, (L̄∗t )t≥0
satisfies (8) in Definition 2.1. Now, note that, as an application of Proposition 4.4, for any
t ≥ 0 we have

L̄(N)
t (dx)

(
L̄(N)
t (dy)− δx

N

)
→ L̄∗t ⊗ L̄∗t (83)
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almost surely in the weak topology. Recall that we have K̄ ≤ φ′, where φ′ is doubly sub-
conservative and continuous by the first assumption of Theorem 3.5, and φ (which is also
continuous, and φ′ both satisfy (20). Thus, exploiting weak convergence, and Lemma 4.3, we
deduce that (L̄∗t )t≥0 also satisfies Equations (7) and (9), thus is a solution of the multi-type
Flory equation in the sense given by Definition 2.1. Hence the claim completes the proof of
the theorem.

It thus suffices to prove the claim.

Proof of Claim 4.4.1. First note that by recalling the martingale from Equation (54), together
with the bound from (69) in the proof of Lemma 3.4, we obtain

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−1

2

∫ t

0
ds
∫
E×E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K(x, y, dz) (84)

× (J(z)− J(y)− J(x))
∣∣∣∣] = 0. (85)

Now, we define

G−N(L̄(N)
s , J) := 1

2

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K̄((x, y)(J(x) + J(y)), (86)

G+
N(L̄(N)

s , J) := 1
2

∫
E×E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
K(x, y, dz)J(z), (87)

ĜN(L̄(N)
s , J) :=

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

) [
K̄(x, y)− φ(x, y)

]
J(y). (88)

We may thus re-write the inner integral appearing in Equation (84) asG+
N(L̄(N)

s , J)−G−N(L̄(N)
s , J),

so that

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N(L̄(N)

s , J)−G−N(L̄(N)
s , J) ds

∣∣∣∣] = 0. (89)

Now, we seek to exploit the convergence of L̄(N)
s to L̄∗s, but note that as the integrand appearing

in Equation (86) is in general unbounded, and G− is, in general, not continuous. However, it is
possible to show that this functional coincides with a continuous functional on the trajectories
s 7→ L̄(N)

s . Indeed, since φ is conservative, by Lemma 4.3 the quantity
〈
φ(·, y), L̄(N)

s

〉
is fixed,

by adding and subtracting the term corresponding to
∫
E×E L̄(N)

s (dy)L̄(N)
0 (dx)φ(x, y)J(y), we

have
G−N(L̄(N)

s , J) = ĜN(L̄(N)
s , J) +H(L̄(N)

s , J)− EN(L̄(N)
s , J),

with
EN(L̄(N)

s , J) := 1
N

∫
E
φ(x, x)J(x)L̄(N)

s (dx).

Thus, re-writing Equation (89), we get

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N(L̄(N)

s , J)− ĜN(L̄(N)
s , J)−H(L̄(N)

s , J) + EN(L̄(N)
s , J) ds

∣∣∣∣] = 0.
(90)

Now, in order to complete the proof of Equation (82), we need to argue that we can pass the
limit inside the expectation, and exploit weak convergence to replace the terms corresponding

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 34

to L̄(N) with L̄∗.We can pass the limit inside if the term Ĝ(L̄(N)
s , J) was bounded, and then,

need to argue continuity of the operators Ĝ and H. Consequentially, we first approximate the
functional Ĝ by truncations (Ĝ(k))k∈N, such that, with compact sets as defined in Equation (23)

Ĝ(k)(L̄(N)
s , J) :=

∫
Ck

L̄(N)
s (dx)

∫
E

L̄(N)
s (dy)

(
K̄(x, y)− φ(x, y)

)
J(y). (91)

We will now finish the proof with another claim.
Claim 4.4.2. Almost surely, uniformly in s ∈ [0,∞), J ∈ Cc(E) we have

lim
k→∞

lim sup
N→∞

E
[∣∣∣∣∫ t

0
ĜN(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J) ds

∣∣∣∣] = 0, (92)

lim sup
N→∞

E
[∣∣∣∣∫ t

0
G+
N(L̄(N)

s , J)−G+(L̄(N)
s , J) ds

∣∣∣∣] = 0, lim sup
N→∞

E
[∣∣∣∣∫ t

0
EN(L̄(N)

s , J) ds
∣∣∣∣] = 0,

(93)

lim
k→∞

E
[∣∣∣∣∫ t

0
Ĝ(L̄∗s, J)− Ĝ(k)(L̄∗s, J) ds

∣∣∣∣] = 0, (94)

and
lim
N→∞

H(L̄(N)
s , J) = H(L̄∗s, J) almost surely. (95)

Indeed, if Equations (92), (93), (94) and (95) are satisfied, by approximating Ĝ by Ĝ(k) (using
the triangle inequality) in the second equality, and using bounded convergence for the third,
we have

0 = lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+
N(L̄(N)

s , J)− ĜN(L̄(N)
s , J)−HN(L̄(N)

s , J) + EN(L̄(N)
s , J) ds

∣∣∣∣]
(96)

(92),(93)= lim
k→∞

lim
N→∞

E
[∣∣∣∣J̃(L̄(N)

t )− J̃(L̄(N)
0 )−

∫ t

0
G+(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J)−H(L̄(N)

s , J) ds
∣∣∣∣]

(97)

= lim
k→∞

E
[

lim
N→∞

∣∣∣∣J̃(L̄(N)
t )− J̃(L̄(N)

0 )−
∫ t

0
G+(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J)−H(L̄(N)

s , J) ds
∣∣∣∣]

(98)
(95)= lim

k→∞
E
[∣∣∣∣J̃(L̄∗t )− J̃(µ)−

∫ t

0
G+(L̄∗s, J)− Ĝ(k)(L̄∗s, J)−H(L̄∗s, J) ds

∣∣∣∣] (99)

(94)= E
[∣∣∣∣J̃(L̄∗t )− J̃(µ)−

∫ t

0
G+(L̄∗s, J)− Ĝ(L̄∗s, J)−H(L̄∗s, J) ds

∣∣∣∣] . (100)

Finally, we finish the proof of Claim 4.4.2.

Proof of Claim 4.4.2. Note that we have

E
[∣∣∣∣∫ t

0
ĜN(L̄(N)

s , J)− Ĝ(k)(L̄(N)
s , J) ds

∣∣∣∣] (101)

≤ 1
N
E
[∣∣∣∣∫ t

0

∫
Ck

L̄(N)
s (dx)|K̄(x, x)− φ(x, x)||J(x)| ds

∣∣∣∣] (102)

+ E
[∫ t

0

∫
Cc
k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)| ds

]
, (103)
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where we immediately see that

lim sup
N→∞

1
N
E
[∣∣∣∣∫ t

0

∫
Ck

L̄(N)
s (dx)|K̄(x, x)− φ(x, x)||J(x)| ds

∣∣∣∣] = 0, (104)

since K̄, φ and J are continuous, they are bounded on the support of J and thus so is the
expectation. Now, if Equation (22) applies, then the integrand of the second term in (101) is
bounded by some constant c′ > 0, thus by (83) and the Portmanteau theorem, we have

lim sup
N→∞

E
[∫ t

0

∫
Cc
k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)| ds

]
(105)

≤ c′E
[∫ t

0
L̄∗s
(
Cc
k

)
L̄∗s(E)ds

]
; (106)

and applying bounded convergence, using the fact that ⋂k∈NCc
k = ∅, we deduce (92). Oth-

erwise, in the case that Equation (23) applies, we bound the second term in (101) as follows:

E
[∫ t

0

∫
Cc
k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

) ∣∣∣K̄(x, y)− φ(x, y)
∣∣∣ |J(y)| ds

]
, (107)

≤ E
[∫ t

0

∫
Cc
k

L̄(N)
s (dx)

∫
E

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
‖J‖∞ (108)

× sup
x∈Cc

k
, y∈Supp(J)

∣∣∣∣∣K̄(x, y)− φ(x, y)
φ∗(x, y)

∣∣∣∣∣ , (109)

Since φ∗ is doubly sub-conservative, and satisfies Equation (20), we have

lim sup
N→∞

E
[∫ t

0

∫
Cc
k
×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
(110)

≤ lim sup
N→∞

E
[∫ t

0

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
(111)

≤ lim sup
N→∞

tE
[∫

E×E
L̄(N)

0 (dx)
(

L̄(N)
0 (dy)− δx

N

)
φ∗(x, y)

]
(20)
< ∞. (112)

Combining Equation (110), with (101), (104) and (107), we deduce Equation (92).
Equation (93) is proved in an analogous manner to (104), exploiting the compact support of
J . For (94), by the monotone convergence theorem, (83) and Fatou’s lemma we have

E
[∫ t

0

∫
E×E

L̄∗s(dx)L̄∗s(dy)φ∗(x, y) ds
]

(113)

= E
[∫ t

0
lim
j→∞

∫
E×E

L̄∗s(dx)L̄∗s(dy) (φ∗(x, y) ∧ j) ds
]

(114)

= E
[∫ t

0
lim
j→∞

lim
N→∞

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
(φ∗(x, y) ∧ j) ds

]
(115)

≤ lim sup
N→∞

E
[∫ t

0

∫
E×E

L̄(N)
s (dx)

(
L̄(N)
s (dy)− δx

N

)
φ∗(x, y) ds

]
(110)
< ∞. (116)

Applying Equation (113) we deduce Equation (94) in a similar manner to Equation (92).
Finally, recalling the definition of the functional H from Equation (81), we have

lim
N→∞

H(L̄(N)
s , J) = lim

N→∞

∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y).
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Thus,

lim sup
N→∞

∣∣∣H(L̄(N)
s , J)−H(L̄∗s, J)

∣∣∣ (117)

= lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄∗s(dy)µ(dx)φ(x, y)J(y)
∣∣∣∣
(118)

≤ lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣
(119)

+ lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)−

∫
E×E

L̄∗s(dy)µ(dx)φ(x, y)J(y)
∣∣∣∣ .

(120)

The second term in the upper bound of (117) is 0, since the map y 7→
∫
E µ(dx)φ(x, y)J(y) is

bounded and continuous (because J has compact support and φ is continuous), and L̄(N)
s →

L̄∗s. On the other hand, by applying Equation (24), with the compact set C ′ chosen to be the
support of J , for any ε > 0, there exists N0 such that, for all N ≥ N0 we have

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣ ≤ ε
∣∣∣∣∫
E

L̄(N)
s (dy)J(y)

∣∣∣∣ ,
and thus, taking limits superior of both sides, since J is bounded and continuous,

lim sup
N→∞

∣∣∣∣∫
E×E

L̄(N)
s (dy)L̄(N)

0 (dx)φ(x, y)J(y)−
∫
E×E

L̄(N)
s (dy)µ(dx)φ(x, y)J(y)

∣∣∣∣ ≤ ε
∣∣∣∣∫
E

L̄∗s(dy)J(y)
∣∣∣∣ .

Sending ε → 0, we deduce that the first term in the upper bound of (117) is also 0, hence
conclude the proof of (95).

4.2.3 Uniqueness of eventually conservative solutions to the multi-type Flory equa-
tion

Proof of Theorem 3.7. Suppose that (µs)s≥0 and (µ̂s)s≥0 denote two solutions to the Flory
equation, with a given initial condition µ0, with ‖µ0‖ < ∞. Suppose that (µs − µ̂s) |DR
denotes the measure (µs − µ̂s) restricted toDR. By a well-known property of the total variation
distance, we may write

‖(µs − µ̂s) |DR > 0‖ = sup
f :‖f‖∞=1

〈f1DR , (µs − µ̂s))〉 .

Note that, by a straightforward approximation argument (approximating a measurable function
pointwise by continuous functions), if (µt)t≥0 is a solution to the multi-type Flory equation as
in Definition 2.1, Equation (8) is satisfied for all bounded measurable functions supported on

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



Gelation in cluster coagulation processes 37

the compact set Dk, for k ∈ N. Thus, for f such that ‖f‖∞ = 1, we have

〈f1DR , (µs − µ̂s))〉 = 1
2

∫ s

0

∫
E×E×E

f(z)1DR(z)K(u, v, dz) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr
(121)

−
∫ s

0

∫
E×E

f(u)1DR(u)K̄(u, v) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

−
∫ s

0

∫
E×E

f(u)1DR(u)φ(u, v) (µr(du)µ0(dv)− µ̂r(du)µ0(dv)) dr

+
∫ s

0

∫
E×E

f(u)1DR(u)φ(u, v) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr.
(122)

We now bound the values of each of the terms in the above display. For the first, since φ is
conservative, we have 1DR(z) ≤ 1DR(u)1DR(v) for K(u, v, dz)-a.a. z. Moreover, bounding
f(z) above by 1, we have

1
2

∫ s

0

∫
E×E×E

f(z)1DR(z)K(u, v, dz) (µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

≤ 1
2

∫ s

0

∫
E×E

1DR(u)1DR(v)K̄(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| dr. (123)

We now have the following claim:
Claim 4.4.3. We have∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| ≤ 2R
∫
E

1DR(v) |µr(dv)− µ̂r(dv)| .
(124)

By applying Claim 4.4.3, and bounding K̄(x, y) ≤ c′φ(x, y), we may now bound the right-side
of (123):

1
2

∫ s

0

∫
E×E

1DR(u)1DR(v)K̄(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| dr (125)

≤ c′

2

∫ s

0

∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| dr (126)

≤ c′
∫ s

0
R
∫
E

1DR(v) |µr(dv)− µ̂r(dv)| dr ≤ c′R
∫ s

0
‖(µr − µ̂r) |DR‖ dr. (127)

Next, re-writing, and combining the second and fourth terms in (121), recalling that φ(x, y)
coincides with K̄(x, y) on (DR ×DR)c (so in particular DR ×Dc

R) we get∫ s

0

∫
E×E

f(u)1DR(u)
(
φ(u, v)− K̄(u, v)

)
(µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr (128)

=
∫ s

0

∫
E×E

f(u)1DR(u)1DR(v)
(
φ(u, v)− K̄(u, v)

)
(µr(du)µr(dv)− µ̂r(du)µ̂r(dv)) dr

(129)

≤ (c′ + 1)
∫ s

0

∫
E×E

φ(u, v)1DR(u)1DR(v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| dr (130)
(124)
≤ 2R(c′ + 1)

∫ s

0

∫
E

1DR(v) |µr(dv)− µ̂r(dv)| dr ≤ 2R(C + 1)
∫ s

0
‖(µr − µ̂r) |DR‖ dr,

(131)

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 38

where in the second to last inequality, we use the bound K(u, v) ≤ Cφ(u, v). Finally, for the
third term in (121), observing that µ0 is a positive measure, we make a similar computation:

−
∫ s

0

∫
E×E

f(u)1DR(u)φ(u, v) (µr(du)µ0(dv)− µ̂r(du)µ0(dv)) dr (132)

≤
∫ s

0

∫
E×E

1DR(u)φ(u, v) |µr(du)µ0(dv)− µ̂r(du)µ0(dv)| dr (133)

=
∫ s

0

∫
E

1DR(u)
∫
E
φ(u, v)µ0(dv) |µr(du)− µ̂r(du)| dr ≤ R

∫ s

0
‖(µr − µ̂r) |DR‖ dr

(134)

Combining Equations (125), (128) and (132), to bound (121) we deduce that

‖(µs − µ̂s) |DR‖ = sup
f :‖f‖∞=1

〈f1DR , (µs − µ̂s))〉 ≤ 3R(c′ + 1)
∫ s

0
‖(µr − µ̂r) |DR‖ dr.

Claim 4.4.4. Suppose that (µt)t≥0 is a solution to the multi-type Flory equation. Then, if
ξ : E → R+ is a sub-conservative function, for each t ≥ 0∫

E
ξ(x)µt(dx) ≤

∫
E
ξ(x)µ0(dx). (135)

By Claim 4.4.4 applied to the function ξ(x) ≡ 1, we know that for each t ≥ 0, we have

‖(µs − µ̂s) |DR‖ ≤ 2‖µ0‖.

We can thus apply Gronwall’s lemma to deduce that ‖(µs − µ̂s) |DR‖ = 0. As ⋃k∈NDk = E,
it must be the case that ‖(µs − µ̂s)‖ = 0, showing uniqueness.

We finish with the proofs of Claim 4.4.3 and Claim 4.4.4:

Proof of Claim 4.4.3. We bound∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µr(dv)− µ̂r(du)µ̂r(dv)| (136)

≤
∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µr(dv)− µr(du)µ̂r(dv)| (137)

+
∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µ̂r(dv)− µ̂r(du)µ̂r(dv)| .
(138)

For the first term on the right-hand side of (136), we integrate the variable u, applying (9)∫
E×E

1DR(u)1DR(v)φ(u, v) |µr(du)µr(dv)− µr(du)µ̂r(dv)| dr

≤
∫
E

1DR(v)
∫
E
φ(u, v)µr(du) |µr(dv)− µ̂r(dv)| dr

≤
∫
E

1DR(v)
∫
E
φ(u, v)µ0(du) |µr(dv)− µ̂r(dv)| dr ≤ R

∫
E

1DR(v) |µr(dv)− µ̂r(dv)| dr;

and applying a similar argument for the second term in (136), we deduce the result.
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Proof of Claim 4.4.4. Suppose first that ξ is bounded. Then, applying (8) to the function
ξ1Dk , we have

〈ξ1Dk , µs − µ0〉 = 1
2

∫ s

0

∫
E×E×E

(ξ(z)1Dk(z)− ξ(u)1Dk(u)− ξ(v)1Dk(v))K(u, v, dz)µr(du)µr(dv)dr
(139)

+
∫ s

0

∫
E×E

ξ(u)1Dk(u)φ(u, v) (µr(du)(µr(dv)− µ0(dv))) dr.
(140)

By (9), since ξ(u) ≥ 0, and µr is a positive measure, we deduce that the second term on
the right-side above is non-positive. In addition, since φ is conservative, so is the function
x 7→ 〈φ(x, ·), µ0〉, and we deduce that 1DR(z) ≤ 1DR(u)1DR(v) for K(u, v, dz)-a.a. z. In
addition, since ξ is sub-conservative,∫

E×E×E
(ξ(z)1Dk(z))K(u, v, dz)µr(du)µr(dv)

≤
∫
E×E×E

(ξ(u) + ξ(v)) 1Dk(u)1Dk(u)K(u, v, dz)µr(du)µr(dv)

≤
∫
E×E×E

(ξ(u)1Dk(u) + ξ(v)1Dk(v))K(u, v, dz)µr(du)µr(dv).

Thus, 〈ξ1Dk , µs〉 ≤ 〈ξ1Dk , µ0〉, and we deduce the result from monotone convergence. Finally,
we can extend the result to unbounded ξ, again from monotone convergence (approximating
ξ from below by the sub-conservative functions ξ ∧ j, for j ∈ N).

4.3 Coupling with inhomogeneous random graph models

In this section, we recall that the notation (L(N)
t )t≥0 refers to the non-normalised coagulation

process, whilst the notation (L̄(N)
t )t≥0 = (L(N)

t/N/N)t≥0 refers to the normalised process. In
order to construct couplings of the coagulation process with random graphs, it will be useful
to label clusters (i.e. the points in the point measure L(N)

0 ).7 Suppose we start with ‖L(N)
0 ‖ ∈ N

labelled initial clusters, x1, . . . , x‖L(N)
0 ‖. As the coagulation process involves clusters ‘merging’

of the clusters that we have at time zero, we can consider those clusters as building blocks
for clusters that arrive later in the process. Therefore, on the coupling level, it will be helpful
to identify clusters at any time with subsets of [‖L(N)

0 ‖], indicating which of the initial blocks
constitute each cluster.
Furthermore, as we begin with a mono-dispersed initial condition, all of the clusters have mass
one, and thus the mass of a cluster at time t is given by the cardinality of the subset that
identifies it. Consequentially, we say that two subsets I, J ⊆ [‖L(N)

0 ‖] have merged by time t
if there exists a cluster at time t, identified by a set S, such that I ∪ J ⊆ S. We use the same
labelling to define the associated random graph process and we identify connected components
with subsets of [‖L(N)

0 ‖] that represents the labelling of the vertices in such a component. The
graph process is defined in terms of the initial locations and masses of the coagulation process,
such that, given any pair of vertices i < j ∈ [‖L(N)

0 ‖], there is an exponential clock Zi,j with
parameter κ(i, j) as in (141), independent of all the others. When this clock rings, we include
the edge {i, j} in the graph.

7More formally, such a labelling involves expanding the underlying space E, to a space E × N, including
labels, but we omit this, for brevity.
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Definition 4.1. Given a graph comparable coagulation process (L(N)
t )t≥0, the associated graph

process is the random graph process (G(N)
t )t≥0 on vertex set [‖L(N)

0 ‖], where:

1 G
(N)
0 is the empty graph on ‖L(N)

0 ‖ vertices, i.e, containing no edges.

2 Given any pair i, j ∈ [‖L(N)
0 ‖] with i < j, let Zi,j be an exponential random variable

with parameter
κ(i, j) := K̄(xi, xj). (141)

Moreover, assume that all the {Zi,j}i<j are independent and include the edge (i, j) ∈
G

(N)
t if and only if t ≥ Zij.

With regards to the graph process, we say that two subsets I, J ⊆ [‖L(N)
0 ‖] are connected at

time t if they belong to the same connected component. We identify the connected component
of a vertex i ∈ [‖L(N)

0 ‖] with the connected subgraph C(i) containing i.

Proposition 4.5. For a graph dominating coagulation kernel, or a graph dominated coagula-
tion kernel, one may couple the coagulation process with its associated random graph process
such that the following hold.

1 If the coagulation kernel is graph dominating, for all t > 0, if the vertices in a pair of
subsets I, J ⊆ [‖L(N)

0 ‖] belong to the same connected component in the graph process
at time t, the correspondent clusters merged in the coagulation process by time t.

2 If the coagulation kernel is graph dominated, for all t > 0, if clusters with indexes in
a pair of subsets I, J ⊆ [‖L(N)

0 ‖] merged in the coagulation process by time t, the
corresponding vertices are connected in the graph process at time t.

Suppose that, for each n ∈ N, M (N)
n (t) denotes the number of connected components of

size n at time t in (G(N)
t )t≥0. The above proposition then yields the following corollary (a

reformulation of the proposition).

Corollary 4.6. For any graph comparable coagulation process (L(N)
t )t≥0, there exists a cou-

pling of the coagulation process and its associated random graph process such that, on the
coupling,

1 if the coagulation process is graph dominating, for all t ≥ 0, j ∈ N, we have

〈m1m≥j,L(N)
t 〉 ≥

∞∑
n=j

nM (N)
n (t) almost surely; (142)

2 if the coagulation process is graph dominated, for all t ≥ 0, j ∈ N, we have

〈m1m≥j,L(N)
t 〉 ≤

∞∑
n=j

nM (N)
n (t) almost surely. (143)

The proposition and corollary may be used to transfer existing results related to the associated
graph process (an inhomogeneous random graph) to the coagulation process. In the remainder
of the section, we first work towards a proof of Proposition 4.5 (leaving the proof of Corol-
lary 4.6, a reformulation of this result, to the reader). Then, we finish the section with the
proof of Theorem 3.9.
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4.3.1 Proof of Proposition 4.5

Suppose in this section, for brevity of notation, we begin with an initial condition L(N)
0 = π. As

we will consider the clusters as being labelled, and identify clusters in the coagulation process
with the labels of the initial clusters that have merged into it, we use xI ∈ E to denote the
random variable representing the cluster created by merging initial clusters with index in I.
Abusing notation, in order to describe rates of exponential clocks for the coupling, denote the
rate at which particles xI and xJ merge by

K̄(I, J) := K̄(xI , xJ). (144)

Likewise, in the graph process, we write

κ(I, J) :=
∑

k∈I,`∈J
κ(k, `). (145)

We then have the following claim, which is what allows a pathwise coupling to work.

Claim 4.6.1. For disjoint sets S1, S2, S3, S4 ⊆ [‖π‖], given xS1 , xS2 , xS3 , xS4 ∈ E, if a
coagulation process is graph dominating, almost surely (with respect to the dynamics of the
coagulation process) we have

K̄(S1 ∪ S2, S3 ∪ S4) ≥ K̄(S1, S3) + K̄(S1, S4) + K̄(S2, S3) + K̄(S2, S4). (146)

Alternatively, if a labelled coagulation process is graph dominated, almost surely we have

K̄(S1 ∪ S2, S3 ∪ S4) ≤ K̄(S1, S3) + K̄(S1, S4) + K̄(S2, S3) + K̄(S2, S4). (147)

Proof. First notice that from the notation introduced in (144), we have K̄(S1∪S2, S3∪S4) =
K̄(xS1∪S2 , xS3∪S4); recall from (1) that, given xS1 and xS2 , xS1∪S2 has distribution K(xS1 ,xS2 ,·)

K̄(xS1 ,xS2 )
(and the analogous property holds for xS3∪S4). Therefore, we can apply inequality (28), thus
obtaining

K̄(S1 ∪ S2, S3 ∪ S4) ≥ K̄(S1, S3 ∪ S4) + K̄(S2, S3 ∪ S4) almost surely;

we only need to exploit symmetry of K̄ and iterate this inequality to prove (146). The proof
of (147) works in the same way.

Proof of Proposition 4.5. In the proof of this lemma, we will denote by Z(s) an independent
copy of an exponentially distributed random variable, with parameter s. We will prove only
the first statement, since the second is similar.
Suppose that σ0, σ1, σ2, . . . denote the coagulation times associated with the coagulation
process; where we set σ0 := 0. Note that, associating clusters with subsets of [‖π‖] induces
a partition of [‖π‖] which we denote by P(t). Likewise, the connected components of the
associated random graph form a partition of [‖π‖], which we denote by H (t). Now, we
construct a coupling (P̂(t), Ĥ (t)) of the two processes such that, for all t ≥ 0, Ĥ (t) is a
refinement of P̂(t). At time τ0 = 0 this is trivial; both partitions are identical. Now, assume
that this is true for all t ≤ τ̃i. We seek to construct τ̃i+1 such that this is also true for τ̃i+1.
In order to do so, we let the graph evolve independently according to its dynamics, so that
any two distinct connected components Ji, Jj ⊆ Ĥ (τ̃i) merge after Z(κ(Ji, Jj)) (where we

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 42

recall the definition of κ(Ji, Jj) from Equation (145)). Now, since by induction hypothesis
Ĥ (τ̃i) is a refinement of P̂(τ̃i), for any two sets S`, S`′ ∈ P̂(τ̃i) there exist disjoint sets
I1, . . . , Ik, J1, . . . , Jk′ ∈ Ĥ (τ̃i) such that S` = ⋃k

i=1 Ii and S`′ = ⋃k′
i=1 Ji. Then, by iterated

application of Claim 4.6.1 we have

r := K(S`, S`′)−
∑
i<j

κ(Ii, Jj) ≥ 0 almost surely.

We now merge the clusters S` and S`′ at time

min {Z(κ(Ii, Jj)) : i ∈ [k], j ∈ [k′]} ∪ {Z(r)}. (148)

By the minimum property of exponential random variables, this is distributed like Z(K(S`, S`′))
as required. We now verify that Ĥ (τ̃i+1) is a refinement of P̂(τ̃i+1). Indeed, suppose that
clusters S` and S`′ merge at time τ̃i+1. Then, if this occurs because the minimum in Equa-
tion (148) is given by Z(r), there is nothing to prove: the sets I1, . . . , Ik, J1, . . . , Jk′ form a
disjoint partition of S` ∪ S`′ . Otherwise, for some m,m′, the sets Im, Jm′ merge to form a set
V , say. In this case, the sets I1, . . . , Im−1, Im+1, . . . , Ik, J1, . . . , Jm′−1, Jm′+1, . . . , Jk′ , V form
a disjoint partition of S` ∪ S`′ . The result follows.

4.3.2 Proof of Theorem 3.9

Proof of Theorem 3.9. In this proof, for each N ∈ N we use results related to the emergence
of a ‘giant component’ in the inhomogenous random graph [11], to show that, with probability
tending to 1 the associated random graph process (G(N)

t )t≥0 has a component of order N at a
certain time t/N > 0. In particular, note that at any time t/N > 0, the probability of an edge
between two nodes, i, j associated with initial clusters xi, xj in the associated graph process
is

ξN,t(xi, xj) := 1− e−K̄(xi,xj)t/N ,

and thus, by [Remark 2.4, Theorem 3.1, Theorem 3.5 [11]], there exists α ∈ [0, 1] such that8
at time t∗/N , with probability 1− o(1), there exists a unique component of size αN in G(N)

t∗/N .
Thus, by applying the first statement of Corollary 4.6, (recalling the definition of ταN from (12)
and the identity L̄(N)

t = L(N)
t/N/N), for any graph dominating coagulation process (L̄(N)

s )s≥0
we have

P (ταN ≤ t∗) ≥ P
(
〈m1m≥αN ,L(N)

t∗/N〉 ≥ αN
)
≥ P

 ∑
n≥Nα

nM (N)
n (t∗/N) ≥ αN

 = 1− o(1).

This implies that lim infN→∞ P (ταN ≤ t∗) = 1, thus, tsg ≤ t∗.
For the second statement, note that by [Theorem 3.5 and Theorem 3.6, [11]], for any t < t∗

in the associated graph G(N)
t/N we have

∑
n≥ψ(N)

nM (N)
n (t/N)
N

N→∞−−−→ 0 in probability.

8This α would correspond to ξ(κ) appearing in [11]
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By the second statement of Corollary 4.6, this implies that, for any graph dominated coagu-
lation process (L̄(N)

s )s≥0, for any δ > 0

lim
N→∞

P
(〈
m1m≤ψ(N), L̄(N)

t

〉
≤
〈
m, L̄(N)

0

〉
− δ

)
= lim

N→∞
P
(〈
m1m>ψ(N), L̄(N)

t

〉
≥ δ

)
= 0,

hence, for any δ > 0 we have Tψ,δg > t. As t < t∗ was arbitrary, this completes the proof.

A General criteria for relative compactness

Recall that for each N , the cluster coagulation process (L̄(N)
t )t∈[0,∞) is defined as taking values

in the space
E =

⋃
n∈N
{u ∈M+(E) : 〈m,u〉 ≤ n}

Recall also that equip E with the Prokhorov metric, which metrises the topology of weak
convergence. We may interpret (L̄t)t∈[0,∞) as a trajectory in D([0,∞); E), the space of right-
continuous functions f : [0,∞) → E with left-limits. We equip D([0,∞); E) with the Sko-
rokhod metric d. Recall that for a separable, complete metric space (E , δ) with q := δ∧1, the
Skorokhod metric on D([0,∞); E) is defined as follows: Let Λ denotes the set of all strictly
increasing functions mapping [0,∞) onto [0,∞), and Λ′ ⊆ Λ the subset of Lipschitz functions.
Then, for λ ∈ Λ′, define

γ(λ) := sup
s>t≥0

∣∣∣∣∣log λ(s)− λ(t)
s− t

∣∣∣∣∣ <∞
Then, for f, g ∈ D([0,∞); E), we define

d(f, g) := inf
λ∈Λ

(
γ(λ) ∨

∫ ∞
0

e−tu
(

sup
t≥0

q(f(t ∧ u), g(t ∧ u))
)

du
)
. (149)

It is well-established that D([0,∞);R) is a separable and complete metric space see, for
example, [Theorem 5.6, [15]]. In this paper, we use the following, well-known criterion for
tightness in Skorokhod spaces. The first, from [15], has been slightly reformulated for out
purposes. First, we define the following modulus of continuity: for f ∈ D([0,∞);R), η > 0,
T ∈ [0,∞), we define

w′(f, η, T ) := inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

|f(s)− f(t)| ;

where {ti} ranges over all partitions of [0, T ], such that 0 = t0 < t1 < · · · < tn = T , with
ti+1 − ti > η and n ≥ 1.

Lemma A.1 (Corollary 7.4, page 129 [15]). A collection of probability measures {µn}n∈N on
the metric space D([0,∞);R) is tight if and only if the following criteria are satisfied:

1 For all t ∈ [0,∞) ∩Q and ε > 0, there exists a compact set K(t, ε) ⊆ E such that, for
all n ∈ N

lim inf
n→∞

µn ({f : f(t) ∈ K(t, ε)}) ≥ 1− ε, (150)
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2 For any T ∈ [0,∞), there exists η > 0 such that, for all n ∈ N

lim
η→0

lim sup
n→∞

µn ({f : w′(f, η, T ) ≥ ε}) = 0. (151)

�

In literature surrounding stochastic processes, the first condition is often known as compact
containment. The following well-known tightness criterion due to Jakubowski applies more
generally to D([0,∞);F ), where F is a completely regular Hausdorff spaces with metrisable
compacts. Since we assume E is a metric space, it applies to D([0,∞); E):

Lemma A.2 (Theorem 4.6, [24]). A collection of probability measures {µi}i∈I onD([0,∞); E)
is tight if and only if the following criteria are satisfied:

1 For any t > 0 and ε > 0 there is a compact set K(t, ε) ⊆ E such that, for all i ∈ I,

µi ({f : ∀ s ∈ [0, t] f(s) ∈ K(t, ε)}) ≥ 1− ε.9

2 There exists a family of continuous functions F from E to R such that

2.1 The family F separates points, i.e., for any x, y ∈ E there exists f ∈ F such that
f(x) 6= f(y).

2.2 The family F is closed under addition, i.e., if f, g ∈ F then f + g ∈ F.
2.3 Let, for f ∈ F, f̃ : D([0,∞); E) → D([0,∞);R) denote the map such that

f̃(x) = f◦x, for x ∈ D([0,∞); E). Then, for each f ∈ F the family of pushforward
measures

{
f̃∗(µi)

}
i∈I

is a tight family on D([0,∞);R).

�

References

[1] D. Aldous. The continuum random tree. I. Ann. Probab., 19(1):1–28, 1991.

[2] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent.
Ann. Probab., 25(2):812–854, 1997.

[3] D. Aldous and V. Limic. The entrance boundary of the multiplicative coalescent. Electron.
J. Probab., 3:no. 3, 59, 1998.

[4] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab., 26(4):1703–
1726, 1998.

[5] D. Aldous and J. Pitman. Tree-valued Markov chains derived from Galton-Watson pro-
cesses. Ann. Inst. H. Poincaré Probab. Statist., 34(5):637–686, 1998.

9If I = N then we can replace this condition with lim infn→∞ µn ({f : ∀ s ∈ [0, t] f(s) ∈ K(t, ε)}) ≥ 1−ε,
see, for example, the proof of [Corollary 7.4, page 130 [15]].

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



Gelation in cluster coagulation processes 45

[6] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation and
coagulation): a review of the mean-field theory for probabilists. Bernoulli, 5(1):3–48,
1999.

[7] L. Andreis, W. König, H. Langhammer, and R. Patterson. Spatial particle processes
with coagulation: joint distribution, large deviations and gelation phase transition. in
preparation, 2023.

[8] L. Andreis, W. König, and R. Patterson. A large-deviations principle for all the cluster
sizes of a sparse Erdős-Rényi graph. Random Structures & Algorithms, 59(4):522–553,
2021.

[9] J. Bertoin. Eternal additive coalescents and certain bridges with exchangeable increments.
Ann. Probab., 29(1):344–360, 2001.

[10] J. Bertoin. Some aspects of additive coalescents, 2003. arXiv preprint arXiv:0304365.

[11] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous random
graphs. Random Structures Algorithms, 31(1):3–122, 2007.

[12] A. Eibeck and W. Wagner. Stochastic particle approximations for Smoluchoski’s coagu-
lation equation. Ann. Appl. Probab., 11(4):1137–1165, 2001.

[13] M. Escobedo, P. Laurençot, S. Mischler, and B. Perthame. Gelation and mass conser-
vation in coagulation-fragmentation models. J. Differential Equations, 195(1):143–174,
2003.

[14] M. Escobedo, S. Mischler, and B. Perthame. Gelation in coagulation and fragmentation
models. Comm. Math. Phys., 231(1):157–188, 2002.

[15] S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Math-
ematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc.,
New York, 1986. Characterization and convergence.

[16] M. Ferreira, J. Lukkarinen, A. Nota, and J. J. L. Velàzquez. Asymptotic localization in
multicomponent mass conserving coagulation equations. arXiv preprint arXiv:2203.08076,
2022.

[17] M. A. Ferreira, J. Lukkarinen, A. Nota, and J. J. L. Velázquez. Localization in stationary
non-equilibrium solutions for multicomponent coagulation systems. Communications in
Mathematical Physics, 388(1):479–506, 2021.

[18] N. Fournier and J.-S. Giet. Convergence of the Marcus-Lushnikov process. Methodol.
Comput. Appl. Probab., 6(2):219–231, 2004.

[19] D. T. Gillespie. The stochastic coalescence model for cloud droplet growth. J. Atmos.
Sci., 29:1496–1510, 1972.

[20] A. Hammond and F. Rezakhanlou. The kinetic limit of a system of coagulating Brownian
particles. Arch. Ration. Mech. Anal., 185(1):1–67, 2007.

[21] A. Hammond and F. Rezakhanlou. Moment bounds for the Smoluchowski equation and
their consequences. Comm. Math. Phys., 276(3):645–670, 2007.

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



L. Andreis, T. Iyer, E. Magnanini 46

[22] D. Heydecker and R. I. A. Patterson. Bilinear coagulation equations. arXiv preprint
arXiv:1902.07686, 2019.

[23] S. Jacquot. A historical law of large numbers for the Marcus-Lushnikov process. Electron.
J. Probab., 15:no. 19, 605–635, 2010.

[24] A. Jakubowski. On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Statist.,
22(3):263–285, 1986.

[25] S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel. The birth of the giant component.
Random Structures Algorithms, 4(3):231–358, 1993. With an introduction by the editors.

[26] I. Jeon. Existence of gelling solutions for coagulation-fragmentation equations. Comm.
Math. Phys., 194(3):541–567, 1998.

[27] J. F. C. Kingman. The coalescent. Stochastic Process. Appl., 13(3):235–248, 1982.

[28] A. Lushnikov. Some new aspects of coagulation theory. Izv. Acad. Sci. USSR, Ser. Phys.
Atmos. Oceans, 14, 01 1978.

[29] A. H. Marcus. Stochastic coalescence. Technometrics, 10:133–143, 1968.

[30] J. B. McLeod. On an infinite set of non-linear differential equations. Quart. J. Math.
Oxford Ser. (2), 13:119–128, 1962.

[31] J. Norris. Measure solutions for the Smoluchowski coagulation-diffusion equation. arXiv
preprint arXiv:1408.5228, 2014.

[32] J. R. Norris. Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a
hydrodynamic limit for the stochastic coalescent. The Annals of Applied Probability,
9(1):78 – 109, 1999.

[33] J. R. Norris. Cluster coagulation. Comm. Math. Phys., 209(2):407–435, 2000.

[34] D. Pollard. Convergence of stochastic processes. Springer Series in Statistics. Springer-
Verlag, New York, 1984.

[35] D. Revuz and M. Yor. Continuous martingales and Brownian motion, volume 293 of
Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences]. Springer-Verlag, Berlin, third edition, 1999.

[36] F. Rezakhanlou. Gelation for Marcus-Lushnikov process. Ann. Probab., 41(3B):1806–
1830, 2013.

[37] F. Rezakhanlou. Pointwise bounds for the solutions of the Smoluchowski equation with
diffusion. Arch. Ration. Mech. Anal., 212(3):1011–1035, 2014.

[38] R. Siegmund-Schultze and W. Wagner. Induced gelation in a two-site spatial coagulation
model. Ann. Appl. Probab., 16(1):370–402, 2006.

[39] M. V. Smoluchowski. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagula-
tion von Kolloidteilchen. Zeitschrift fur Physik, 17:557–585, Jan. 1916.

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023



Gelation in cluster coagulation processes 47

[40] I. W. Stewart. A global existence theorem for the general coagulation-fragmentation
equation with unbounded kernels. Math. Methods Appl. Sci., 11(5):627–648, 1989.

[41] S. Throm. Uniqueness of measure solutions for multi-component coagulation equations.
arXiv preprint arXiv:2303.00775, 2023.

[42] W. Wagner. Explosion phenomena in stochastic coagulation-fragmentation models. Ann.
Appl. Probab., 15(3):2081–2112, 2005.

[43] W. Wagner. Post-gelation behavior of a spatial coagulation model. Electron. J. Probab.,
11:no. 35, 893–933, 2006.

[44] M. R. Yaghouti, F. Rezakhanlou, and A. Hammond. Coagulation, diffusion and the
continuous Smoluchowski equation. Stochastic Process. Appl., 119(9):3042–3080, 2009.

DOI 10.20347/WIAS.PREPRINT.3039 Berlin 2023


	Introduction
	Overview on our contribution

	The cluster coagulation process and multi-type Flory equation
	Definition of the process
	The infinitesimal generator associated with the process
	Examples of cluster coagulation processes

	Some more notation, preliminaries and global assumptions
	Gelation, stochastic gelation and strong gelation

	Statements of main results and examples
	Sufficient criteria for stochastic gelation in the coagulation process
	Concentration of trajectories on solutions of multi-type Flory equations and uniqueness
	Conditions for tightness
	Concentration of trajectories on the multi-type Flory equation
	Existence of gelling solutions to the multi-type Flory equation
	Criteria for uniqueness for eventually conservative kernels

	Strong gelation: couplings with inhomogeneous random graphs

	Proofs of main results
	Criteria for gelation: proof of Theorem 3.2 and Corollary 3.3
	Proof of Theorem 3.2
	Proof of Corollary 3.3

	Concentration of trajectories along solutions of the multi-type Flory equation
	Tightness: the proof of Lemma 3.4
	Accumulation of trajectories on solutions of the multi-type Flory equation
	Uniqueness of eventually conservative solutions to the multi-type Flory equation

	Coupling with inhomogeneous random graph models
	Proof of Proposition 4.5
	Proof of Theorem 3.9


	General criteria for relative compactness

